1
|
Raddaoui A, Mabrouk A, Chebbi Y, Frigui S, Salah Abbassi M, Achour W, Thabet L. Co-occurrence of blaNDM-1 and blaOXA-23 in carbapenemase-producing Acinetobacter baumannii belonging to high-risk lineages isolated from burn patients in Tunisia. J Appl Microbiol 2024; 135:lxae039. [PMID: 38346864 DOI: 10.1093/jambio/lxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
AIMS Carbapenem-resistant Acinetobacter baumannii (CR-Ab) is an important cause of infections in burn patients. This study aimed to characterize the antimicrobial susceptibility pattern of CR-Ab isolated from burns in Burn Intensive Care Unit (BICU) of the Trauma and Burn Centre of Ben Arous, to determine the prevalence of β-lactamase-encoding genes and to search eventual genetic relatedness of CR-Ab strains. METHODS AND RESULTS From 15 December 2016 to 2 April 2017, all nonduplicated CR-Ab isolated in burn patients in the BICU were screened by simplex Polymerase Chain Reaction (PCR) for the class A, B, C, and D β-lactamase genes. Sequencing was performed for NDM gene only. Genetic relatedness was determined by using pulsed field gel electrophoresis (PFGE) and by multilocus sequence typing. During the study period, 34 strains of CR-Ab were isolated in burns, mainly in blood culture (n = 14) and central vascular catheter (n = 10). CR-Ab strains were susceptible to colistin but resistant to amikacin (91%), ciprofloxacin (100%), rifampicin (97%), and trimethoprim-sulfamethoxazole (100%). All strains harbored blaOXA-51-like and blaOXA-23 genes, only or associated to blaGES (n = 26; 76%), blaADC (n = 20; 59%), blaPER-1 (n = 6; 18%) or/and blaNDM-1 (n = 3; 9%). PFGE identified 16 different clusters and revealed that most strains belonged to one major cluster A (n = 15; 44.1%). Among NDM-1 isolates, two were clonally related in PFGE and belonged to two single locus variant sequence type ST-6 and ST-85. CONCLUSIONS This is the first description of clonally related NDM-1 and OXA-23-producing A. baumannii strains in the largest Tunisian BICU associated with two single locus variant sequence types ST6 and ST85.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Aymen Mabrouk
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, 1006 Tunis, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Lamia Thabet
- Laboratory Ward, Traumatology and Great Burned Center, 2074 Ben Arous, Tunisia
| |
Collapse
|
2
|
Sánchez-Urtaza S, Ocampo-Sosa A, Rodríguez-Grande J, El-Kholy MA, Shawky SM, Alkorta I, Gallego L. Plasmid content of carbapenem resistant Acinetobacter baumannii isolates belonging to five International Clones collected from hospitals of Alexandria, Egypt. Front Cell Infect Microbiol 2024; 13:1332736. [PMID: 38264728 PMCID: PMC10803598 DOI: 10.3389/fcimb.2023.1332736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Multidrug resistant Acinetobacter baumannii is one of the most important nosocomial pathogens worldwide. During the last decades it has become a major threat for healthcare settings due to the high antibiotic resistance rates among these isolates. Many resistance determinants are coded by conjugative or mobilizable plasmids, facilitating their dissemination. The majority of plasmids harbored by Acinetobacter species are less than 20 Kb, however, high molecular weight elements are the most clinically relevant since they usually contain antibiotic resistance genes. The aim of this work was to describe, classify and determine the genetic content of plasmids harbored by carbapem resistant A. baumannii isolates belonging to predominant clonal lineages circulating in hospitals from Alexandria, Egypt. The isolates were subjected to S1-Pulsed Field Gel Electrophoresis experiments to identify high molecular weight plasmids. To further analyze the plasmid content and the genetic localization of the antibiotic resistance genes, isolates were sequenced by Illumina Miseq and MinION Mk1C and a hybrid assembly was performed using Unicycler v0.5.0. Plasmids were detected with MOBsuite 3.0.3 and Copla.py v.1.0 and mapped using the online software Proksee.ca. Replicase genes were further analyzed through a BLAST against the Acinetobacter Plasmid Typing database. Eleven plasmids ranging in size from 4.9 to 205.6 Kb were characterized and mapped. All isolates contained plasmids, and, in many cases, more than two elements were identified. Antimicrobial resistance genes such as bla OXA-23, bla GES-like, aph(3')-VI and qacEΔ1 were found in likely conjugative large plasmids; while virulence determinants such as septicolysin or TonB-dependent receptors were identified in plasmids of small size. Some of these resistance determinants were, in turn, located within transposons and class 1 integrons. Among the identified plasmids, the majority encoded proteins belonging to the Rep_3 family, but replicases of the RepPriCT_1 (Aci6) family were also identified. Plasmids are of high interest as antibiotic resistance control tools, since they may be used as genetic markers for antibiotic resistance and virulence, and also as targets for the development of compounds that can inhibit transfer processes.
Collapse
Affiliation(s)
- Sandra Sánchez-Urtaza
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Alain Ocampo-Sosa
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Rodríguez-Grande
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
| | - Mohammed A. El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Alexandria, Egypt
| | - Sherine M. Shawky
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Lucia Gallego
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
3
|
Topluoglu S, Taylan-Ozkan A, Alp E. Impact of wars and natural disasters on emerging and re-emerging infectious diseases. Front Public Health 2023; 11:1215929. [PMID: 37727613 PMCID: PMC10505936 DOI: 10.3389/fpubh.2023.1215929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Emerging Infectious Diseases (EIDs) and Re-Emerging Infectious Diseases (REIDs) constitute significant health problems and are becoming of major importance. Up to 75% of EIDs and REIDs have zoonotic origin. Several factors such as the destruction of natural habitats leading humans and animals to live in close proximity, ecological changes due to natural disasters, population migration resulting from war or conflict, interruption or decrease in disease prevention programs, and insufficient vector control applications and sanitation are involved in disease emergence and distribution. War and natural disasters have a great impact on the emergence/re-emergence of diseases in the population. According to a World Bank estimation, two billion people are living in poverty and fragility situations. Wars destroy health systems and infrastructure, curtail existing disease control programs, and cause population movement leading to an increase in exposure to health risks and favor the emergence of infectious diseases. A total of 432 catastrophic cases associated with natural disasters were recorded globally in 2021. Natural disasters increase the risk of EID and REID outbreaks by damaging infrastructure and leading to displacement of populations. A Generic National Action Plan covering risk assessment, mechanism for action, determination of roles and responsibilities of each sector, the establishment of a coordination mechanism, etc. should be developed.
Collapse
Affiliation(s)
- Seher Topluoglu
- Provincial Health Directorate of Ankara, Republic of Türkiye Ministry of Health, Ankara, Türkiye
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Medical Faculty, TOBB University of Economics and Technology, Ankara, Türkiye
| | - Emine Alp
- Department of Clinical Microbiology and Infectious Diseases, Medical Faculty, Ankara Yildirim Beyazit University, Ankara, Türkiye
| |
Collapse
|
4
|
Hamed SM, Elkhatib WF, Brangsch H, Gesraha AS, Moustafa S, Khater DF, Pletz MW, Sprague LD, Neubauer H, Wareth G. Acinetobacter baumannii Global Clone-Specific Resistomes Explored in Clinical Isolates Recovered from Egypt. Antibiotics (Basel) 2023; 12:1149. [PMID: 37508245 PMCID: PMC10376554 DOI: 10.3390/antibiotics12071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a highly problematic pathogen with an enormous capacity to acquire or upregulate antibiotic drug resistance determinants. The genomic epidemiology and resistome structure of 46 A. baumannii clinical isolates were studied using whole-genome sequencing. The isolates were chosen based on reduced susceptibility to at least three classes of antimicrobial compounds and were initially identified using MALDI-TOF/MS, followed by polymerase chain reaction amplification of blaOXA-51-like genes. The susceptibility profiles were determined using a broth microdilution assay. Multi-, extensive-, and pan-drug resistance was shown by 34.8%, 63.0%, and 2.2% of the isolates, respectively. These were most susceptible to colistin (95.7%), amikacin, and trimethoprim/sulfamethoxazole (32.6% each), while only 26.1% of isolates were susceptible to tigecycline. In silico multi-locus sequence typing revealed 8 Pasteur and 22 Oxford sequence types (STs) including four novel STs (STOxf 2805, 2806, 2807, and 2808). The majority of the isolates belonged to Global Clone (GC) 2 (76.4%), GC5 (19.6%), GC4 (6.5%), GC9 (4.3%), and GC7 (2.2%) lineages. An extensive resistome potentially conferring resistance to the majority of the tested antimicrobials was identified in silico. Of all known carbapenem resistance genes, blaOXA-23 was carried by most of the isolates (69.6%), followed by ISAba1-amplified blaADC (56.5%), blaNDM-1 and blaGES-11 (21.7% each), and blaGES-35 (2.2%) genes. A significant correlation was found between carbapenem resistance and carO mutations, which were evident in 35 (76.0%) isolates. A lower proportion of carbapenem resistance was noted for strains possessing both blaOXA-23- and blaGES-11. Amikacin resistance was most probably mediated by armA, aac(6')-Ib9, and aph(3')-VI, most commonly coexisting in GC2 isolates. No mutations were found in pmrABC or lpxACD operons in the colistin-resistant isolates. Tigecycline resistance was associated with adeS (N268Y) and baeS (A436T) mutations. While the lineage-specific distribution of some genes (e.g., blaADC and blaOXA-51-like alleles) was evident, some resistance genes, such as blaOXA-23 and sul1, were found in all GCs. The data generated here highlight the contribution of five GCs in A. baumannii infections in Egypt and enable the comprehensive analysis of GC-specific resistomes, thus revealing the dissemination of the carbapenem resistance gene blaOXA-23 in isolates encompassing all GCs.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez 43727, Egypt
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Ahmed S Gesraha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Shawky Moustafa
- Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Dalia F Khater
- Tanta Laboratory, Animal Health Research Institute, Agricultural Research Center, Tanta 31511, Egypt
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Lisa D Sprague
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
5
|
Odih EE, Oaikhena AO, Underwood A, Hounmanou YMG, Oduyebo OO, Fadeyi A, Aboderin AO, Ogunleye VO, Argimón S, Akpunonu VN, Oshun PO, Egwuenu A, Okwor TJ, Ihekweazu C, Aanensen DM, Dalsgaard A, Okeke IN. High Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii Isolates Recovered in Nigerian Hospitals in 2016 to 2020. mSphere 2023; 8:e0009823. [PMID: 37067411 PMCID: PMC10286719 DOI: 10.1128/msphere.00098-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Acinetobacter baumannii causes difficult-to-treat infections mostly among immunocompromised patients. Clinically relevant A. baumannii lineages and their carbapenem resistance mechanisms are sparsely described in Nigeria. This study aimed to characterize the diversity and genetic mechanisms of carbapenem resistance among A. baumannii strains isolated from hospitals in southwestern Nigeria. We sequenced the genomes of all A. baumannii isolates submitted to Nigeria's antimicrobial resistance surveillance reference laboratory between 2016 and 2020 on an Illumina platform and performed in silico genomic characterization. Selected strains were sequenced using the Oxford Nanopore technology to characterize the genetic context of carbapenem resistance genes. The 86 A. baumannii isolates were phylogenetically diverse and belonged to 35 distinct Oxford sequence types (oxfSTs), 16 of which were novel, and 28 Institut Pasteur STs (pasSTs). Thirty-eight (44.2%) isolates belonged to none of the known international clones (ICs). Over 50% of the isolates were phenotypically resistant to 10 of 12 tested antimicrobials. The majority (n = 54) of the isolates were carbapenem resistant, particularly the IC7 (pasST25; 100%) and IC9 (pasST85; >91.7%) strains. blaOXA-23 (34.9%) and blaNDM-1 (27.9%) were the most common carbapenem resistance genes detected. All blaOXA-23 genes were carried on Tn2006 or Tn2006-like transposons. Our findings suggest that a 10-kb Tn125 composite transposon is the primary means of blaNDM-1 dissemination. Our findings highlight an increase in blaNDM-1 prevalence and the widespread transposon-facilitated dissemination of carbapenemase genes in diverse A. baumannii lineages in southwestern Nigeria. We make the case for improving surveillance of these pathogens in Nigeria and other understudied settings. IMPORTANCE Acinetobacter baumannii bacteria are increasingly clinically relevant due to their propensity to harbor genes conferring resistance to multiple antimicrobials, as well as their ability to persist and disseminate in hospital environments and cause difficult-to-treat nosocomial infections. Little is known about the molecular epidemiology and antimicrobial resistance profiles of these organisms in Nigeria, largely due to limited capacity for their isolation, identification, and antimicrobial susceptibility testing. Our study characterized the diversity and antimicrobial resistance profiles of clinical A. baumannii in southwestern Nigeria using whole-genome sequencing. We also identified the key genetic elements facilitating the dissemination of carbapenem resistance genes within this species. This study provides key insights into the clinical burden and population dynamics of A. baumannii in hospitals in Nigeria and highlights the importance of routine whole-genome sequencing-based surveillance of this and other previously understudied pathogens in Nigeria and other similar settings.
Collapse
Affiliation(s)
- Erkison Ewomazino Odih
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anderson O. Oaikhena
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Anthony Underwood
- Centre for Genomic pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oyinlola O. Oduyebo
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abayomi Fadeyi
- Department of Medical Microbiology and Parasitology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Aaron O. Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Veronica O. Ogunleye
- Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Silvia Argimón
- Centre for Genomic pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | | | - Phillip O. Oshun
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | | | | - David M. Aanensen
- Centre for Genomic pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iruka N. Okeke
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
6
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
7
|
Hajikhani B, Sameni F, Ghazanfari K, Abdolali B, Yazdanparast A, Asarehzadegan Dezfuli A, Nasiri MJ, Goudarzi M, Dadashi M. Prevalence of blaNDM-producing Acinetobacter baumannii strains isolated from clinical samples around the world; a systematic review. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2022.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Ababneh Q, Al Sbei S, Jaradat Z, Syaj S, Aldaken N, Ababneh H, Inaya Z. Extensively drug-resistant Acinetobacter baumannii: role of conjugative plasmids in transferring resistance. PeerJ 2023; 11:e14709. [PMID: 36718445 PMCID: PMC9884047 DOI: 10.7717/peerj.14709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Acinetobacter baumannii is one of the most successful pathogens that can cause difficult-to-treat nosocomial infections. Outbreaks and infections caused by multi-drug resistant A. baumannii are prevalent worldwide, with only a few antibiotics are currently available for treatments. Plasmids represent an ideal vehicle for acquiring and transferring resistance genes in A. baumannii. Five extensively drug-resistant A. baumannii clinical isolates from three major Jordanian hospitals were fully sequenced. Whole-Genome Sequences (WGS) were used to study the antimicrobial resistance and virulence genes, sequence types, and phylogenetic relationship of the isolates. Plasmids were characterized In-silico, followed by conjugation, and plasmid curing experiments. Eight plasmids were recovered; resistance plasmids carrying either aminoglycosides or sulfonamide genes were detected. Chromosomal resistance genes included blaOXA-66, blaOXA-91, and blaOXA-23, and the detected virulence factors were involved in biofilm formation, adhesion, and many other mechanisms. Conjugation and plasmid curing experiments resulted in the transfer or loss of several resistance phenotypes. Plasmid profiling along with phylogenetic analyses revealed high similarities between two A. baumannii isolates recovered from two different intensive care units (ICU). The high similarities between the isolates of the study, especially the two ICU isolates, suggest that there is a common A. baumannii strain prevailing in different ICU wards in Jordanian hospitals. Three resistance genes were plasmid-borne, and the transfer of the resistance phenotype emphasizes the role and importance of conjugative plasmids in spreading resistance among A. baumannii clinical strains.
Collapse
Affiliation(s)
- Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sara Al Sbei
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sebawe Syaj
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Neda’a Aldaken
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza Ababneh
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Zeina Inaya
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
9
|
Jeon JH, Jang KM, Lee JH, Kang LW, Lee SH. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159497. [PMID: 36257427 DOI: 10.1016/j.scitotenv.2022.159497] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance is a major global public health concern. Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of its high levels of resistance to many antibiotics, particularly those considered as last-resort antibiotics, such as carbapenems. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antibiotic resistance genes (ARGs), including the mobilization of ARGs within and between species. We conducted an in-depth, systematic investigation of the occurrence and dissemination of ARGs associated with MGEs in A. baumannii. We focused on a cross-sectoral approach that integrates humans, animals, and environments. Four strategies for the prevention of ARG dissemination through MGEs have been discussed: prevention of airborne transmission of ARGs using semi-permeable membrane-covered thermophilic composting; application of nanomaterials for the removal of emerging pollutants (antibiotics) and pathogens; tertiary treatment technologies for controlling ARGs and MGEs in wastewater treatment plants; and the removal of ARGs by advanced oxidation techniques. This review contemplates and evaluates the major drivers involved in the transmission of ARGs from the cross-sectoral perspective and ARG-transfer prevention processes.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|
10
|
Burkholderia cepacia Complex Infections in Urgently Referred Neonates from Syrian Border Regions to a Hospital in Turkey: A Cross-Border Cluster. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101566. [PMID: 36291502 PMCID: PMC9600117 DOI: 10.3390/children9101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Burkholderia cepacia complex (BCC) is a rare cause of sepsis in neonates, but infections are usually severe. It can be encountered unexpectedly when adequate health care is not provided. In this study, 49 neonatal cases with blood culture-proven BCC bacteremia within the first 72 h following admission to the neonatal intensive care unit between June 2017 and December 2018 were retrospectively analyzed in detail. All but one of the cases were born in Jarabulus, Al Bab, or Aleppo in Syria and were referred to Turkey due to urgent medical treatment needs. The rate of BCC bacteremia among the neonates transferred from across the border was 16.1% (48/297). The most common coexisting problems in the cases were multiple congenital malformations (12.2%), gastrointestinal system atresia (8.2%), and congenital heart diseases (4.1%). The median age at the time of their admission in Turkey was three days, and the median length of stay in another center before the referral was 11.5 h. The case fatality rate was 14.3%. In this study, a high rate of BCC infection and associated mortality was seen in neonates referred from cross-border regions. For centers accepting cases from conflict-affected regions, it is crucial to be careful regarding early detection of bacteremia, planning appropriate treatments, and preventing cross-contamination risks within the unit.
Collapse
|
11
|
Hamed SM, Hussein AF, Al-Agamy MH, Radwan HH, Zafer MM. Tn, a novel transposon harboring and in. J Glob Antimicrob Resist 2022; 30:414-417. [DOI: 10.1016/j.jgar.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
|
12
|
Hamed SM, Hussein AFA, Al-Agamy MH, Radwan HH, Zafer MM. Genetic Configuration of Genomic Resistance Islands in Acinetobacter baumannii Clinical Isolates From Egypt. Front Microbiol 2022; 13:878912. [PMID: 35935207 PMCID: PMC9353178 DOI: 10.3389/fmicb.2022.878912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In Acinetobacter baumannii (A. baumannii), a wide repertoire of resistance genes is often carried within genomic resistance islands (RIs), particularly in high-risk global clones (GCs). As the first in Egypt, the current study aimed at exploring the diversity and genetic configuration of RIs in the clinical isolates of A. baumannii. For this purpose, draft genomes of 18 isolates were generated by Illumina sequencing. Disk diffusion susceptibility profiling revealed multidrug resistance (MDR) and extensive drug resistance (XDR) phenotypes in 27.7 and 72.2%, respectively. The highest susceptibility was noted for tigecycline (100.0%) followed by colistin (94.4%), for which an MIC50 of 0.25 μg/ml was recorded by the broth microdilution assay. Sequence typing (ST) showed that the majority of the isolates belonged to high-risk global clones (GC1, GC2, and GC9). A novel Oxford sequence type (ST2329) that also formed a novel clonal complex was submitted to the PubMLST database. A novel blaADC variant (blaADC−258) was also identified in strain M18 (ST85Pas/1089Oxf). In addition to a wide array of resistance determinants, whole-genome sequencing (WGS) disclosed at least nine configurations of genomic RIs distributed over 16/18 isolates. GC2 isolates accumulated the largest number of RIs (three RIs/isolate) followed by those that belong to GC1 (two RIs/isolate). In addition to Tn6022 (44.4%), the comM gene was interrupted by AbaR4 (5.5%) and three variants of A. baumanniigenomic resistance island 1(AbGRI)-type RIs (44.4%), including AbaR4b (16.6%) and two novel configurations of AbGRI1-like RIs (22.2%). Three of which (AbaR4, AbaR4b, and AbGRI1-like-2) carried blaOXA−23 within Tn2006. With less abundance (38.8%), IS26-bound RIs were detected exclusively in GC2 isolates. These included a short version of AbGRI2 (AbGRI2-15) carrying the genes blaTEM−1 and aphA1 and two variants of AbGRI3 RIs carrying up to seven resistance genes [mphE-msrE-armA-sul1-aadA1-catB8-aacA4]. Confined to GC1 (22.2%), sulfonamide resistance was acquired by an ISAba1 bracketed GIsul2 RI. An additional RI (RI-PER-7) was also identified on a plasmid carried by strain M03. Among others, RI-PER-7 carried the resistance genes armA and blaPER−7. Here, we provided a closer view of the diversity and genetic organization of RIs carried by a previously unexplored population of A. baumannii.
Collapse
Affiliation(s)
- Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira F. A. Hussein
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
- *Correspondence: Mai M. Zafer
| |
Collapse
|
13
|
Kwayess R, Al Hariri HE, Hindy JR, Youssef N, Haddad SF, Kanj SS. Burkholderia cepacia Infections at Sites Other than the Respiratory Tract: A Large Case Series from a Tertiary Referral Hospital in Lebanon. J Epidemiol Glob Health 2022; 12:274-280. [PMID: 35773618 PMCID: PMC9470806 DOI: 10.1007/s44197-022-00048-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives The Burkholderia cepacia complex (Bcc), which was originally thought to be a single species, represents a group of 24 distinct species that are often resistant to multiple antibiotics, and usually known to cause life-threatening pulmonary infections in cystic fibrosis patients. Herein we describe a series of non-respiratory Bcc infections, the risk factors and epidemiologic factors, in addition to the clinical course. Patients and methods This is a retrospective chart review of 44 patients with documented B. cepacia infections isolated from sites other than the respiratory tract admitted between June 2005 and February 2020 to the American University of Beirut Medical Center (AUBMC), a tertiary referral hospital for Lebanon and the Middle East region. The epidemiological background of these patients, their underlying risk factors, the used antibiotic regimens, and the sensitivities of the B. cepacia specimens were collected. Results The majority of the Bcc infections (26/44, 59.1%) were hospital-acquired infections. The most common nationality of the patients was Iraqi (18/44, 40.9%), and the most common site of infection was bacteremia (17/44, 38.6%), followed by skin and soft tissues infections (16/44, 36.4%) and vertebral osteomyelitis (8/44, 18.2%). Most of the isolated B. cepacia were susceptible to ceftazidime, carbapenems, followed by TMP-SMX. Patients responded well to therapy with good overall outcome. Conclusions Bcc can cause infections outside the respiratory tract, mostly as hospital-acquired infections and in immunocompromised patients. Most patients were referred from countries inflicted by wars raising the possibility of a potential role of conflicts which need to be investigated in future studies. Directed therapy according to susceptibility results proved effective in most patients.
Collapse
Affiliation(s)
- Rola Kwayess
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Housam Eddine Al Hariri
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joya-Rita Hindy
- Division of Infectious Diseases, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Nada Youssef
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sara F Haddad
- Division of Infectious Diseases, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
14
|
Odih EE, Irek EO, Obadare TO, Oaikhena AO, Afolayan AO, Underwood A, Adenekan AT, Ogunleye VO, Argimon S, Dalsgaard A, Aanensen DM, Okeke IN, Aboderin AO. Rectal Colonization and Nosocomial Transmission of Carbapenem-Resistant Acinetobacter baumannii in an Intensive Care Unit, Southwest Nigeria. Front Med (Lausanne) 2022; 9:846051. [PMID: 35321470 PMCID: PMC8936076 DOI: 10.3389/fmed.2022.846051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acinetobacter baumannii are of major human health importance because they cause life-threatening nosocomial infections and often are highly resistant to antimicrobials. Specific multidrug-resistant A. baumannii lineages are implicated in hospital outbreaks globally. We retrospectively investigated a suspected outbreak of carbapenem-resistant A. baumannii (CRAB) colonizing patients in an intensive care unit (ICU) of a tertiary hospital in Southwest Nigeria where genomic surveillance of Acinetobacter has hitherto not been conducted. Methods A prospective observational study was conducted among all patients admitted to the ICU between August 2017 and June 2018. Acinetobacter species were isolated from rectal swabs and verified phenotypically with the Biomerieux Vitek 2 system. Whole genome sequencing (WGS) was performed on the Illumina platform to characterize isolates from a suspected outbreak during the study period. Phylogenetic analysis, multilocus sequence typing, and antimicrobial resistance gene prediction were carried out in silico. Results Acinetobacter isolates belonging to the A. baumannii complex were recovered from 20 (18.5%) ICU patients. Single nucleotide polymorphism (SNP) analysis and epidemiological information revealed a putative outbreak clone comprising seven CRAB strains belonging to the globally disseminated international clone (IC) 2. These isolates had ≤2 SNP differences, identical antimicrobial resistance and virulence genes, and were all ST1114/1841. Conclusion We report a carbapenem-resistant IC2 A. baumannii clone causing an outbreak in an ICU in Nigeria. The study findings underscore the need to strengthen the capacity to detect A. baumannii in human clinical samples in Nigeria and assess which interventions can effectively mitigate CRAB transmission in Nigerian hospital settings.
Collapse
Affiliation(s)
- Erkison Ewomazino Odih
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Erkison Ewomazino Odih,
| | - Emmanuel Oladayo Irek
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ife, Nigeria
| | - Temitope O. Obadare
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ife, Nigeria
| | - Anderson O. Oaikhena
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
| | - Ayorinde O. Afolayan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Anthony T. Adenekan
- Department of Anaesthesia and Intensive Care, Obafemi Awolowo University, Ife, Nigeria
| | | | - Silvia Argimon
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
| | - A. Oladipo Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ife, Nigeria
- A. Oladipo Aboderin,
| |
Collapse
|
15
|
Zafer MM, Hussein AFA, Al-Agamy MH, Radwan HH, Hamed SM. Genomic Characterization of Extensively Drug-Resistant NDM-Producing Acinetobacter baumannii Clinical Isolates With the Emergence of Novel bla ADC-257. Front Microbiol 2021; 12:736982. [PMID: 34880837 PMCID: PMC8645854 DOI: 10.3389/fmicb.2021.736982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii has become a major challenge to clinicians worldwide due to its high epidemic potential and acquisition of antimicrobial resistance. This work aimed at investigating antimicrobial resistance determinants and their context in four extensively drug-resistant (XDR) NDM-producing A. baumannii clinical isolates collected between July and October 2020 from Kasr Al-Ainy Hospital, Cairo, Egypt. A total of 20 A. baumannii were collected and screened for acquired carbapenemases (blaNDM, blaVIM and blaIMP) using PCR. Four NDM producer A. baumannii isolates were identified and selected for whole-genome sequencing, in silico multilocus sequence typing, and resistome analysis. Antimicrobial susceptibility profiles were determined using disk diffusion and broth microdilution tests. All blaNDM-positive A. baumannii isolates were XDR. Three isolates belonged to high-risk international clones (IC), namely, IC2 corresponding to ST570Pas/1701Oxf (M20) and IC9 corresponding to ST85Pas/ST1089Oxf (M02 and M11). For the first time, we report blaNDM-1 gene on the chromosome of an A. baumannii strain that belongs to sequence type ST164Pas/ST1418Oxf. Together with AphA6, blaNDM-1 was bracketed by two copies of ISAba14 in ST85Pas isolates possibly facilitating co-transfer of amikacin and carbapenem resistance. A novel blaADC allele (blaADC-257) with an upstream ISAba1 element was identified in M19 (ST/CC164Pas and ST1418Oxf/CC234Oxf). blaADC genes harbored by M02 and M11 were uniquely interrupted by IS1008. Tn2006-associated blaOXA-23 was carried by M20. blaOXA-94 genes were preceded by ISAba1 element in M02 and M11. AbGRI3 was carried by M20 hosting the resistance genes aph(3`)-Ia, aac(6`)-Ib`, catB8, ant(3``)-Ia, sul1, armA, msr(E), and mph(E). Nonsynonymous mutations were identified in the quinolone resistance determining regions (gyrA and parC) of all isolates. Resistance to colistin in M19 was accompanied by missense mutations in lpxACD and pmrABC genes. The current study provided an insight into the genomic background of XDR phenotype in A. baumannii recovered from patients in Egypt. WGS revealed strong association between resistance genes and diverse mobile genetic elements with novel insertion sites and genetic organizations.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Amira F A Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
16
|
Osman M, Rafei R, Ismail MB, Omari SA, Mallat H, Dabboussi F, Cazer C, Karah N, Abbara A, Hamze M. Antimicrobial resistance in the protracted Syrian conflict: halting a war in the war. Future Microbiol 2021; 16:825-845. [PMID: 34223789 DOI: 10.2217/fmb-2021-0040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Syrian conflict has damaged key infrastructure and indirectly affected almost all parts of the Middle East and Europe, with no end in sight. Exhausting conditions created by the Syrian crisis and related massive displacement promote the emergence of numerous public health problems that fuel antimicrobial resistance (AMR) development. Here, we explore the current situation of the Syrian displaced population, and AMR inside Syria and among refugees in host countries. We then suggest a roadmap of selected key interventions and strategies to address the threat of AMR in the context of the Syrian crisis. These recommendations are intended to urge health policy-makers in governments and international health organizations to optimize and push for implementing an effective policy taking into consideration the current obstacles.
Collapse
Affiliation(s)
- Marwan Osman
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Rayane Rafei
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Sciences, Lebanese University, Tripoli, Lebanon
| | - Sarah Al Omari
- Department of Epidemiology & Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Hassan Mallat
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Casey Cazer
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Nabil Karah
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aula Abbara
- Department of Infection, Imperial College, London, UK
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
17
|
Antibiotic-Resistant Acinetobacter baumannii in Low-Income Countries (2000-2020): Twenty-One Years and Still below the Radar, Is It Not There or Can They Not Afford to Look for It? Antibiotics (Basel) 2021; 10:antibiotics10070764. [PMID: 34201723 PMCID: PMC8300836 DOI: 10.3390/antibiotics10070764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
Acinetobacter baumannii is an emerging pathogen, and over the last three decades it has proven to be particularly difficult to treat by healthcare services. It is now regarded as a formidable infectious agent with a genetic setup for prompt development of resistance to most of the available antimicrobial agents. Yet, it is noticed that there is a gap in the literature covering this pathogen especially in countries with limited resources. In this review, we provide a comprehensive updated overview of the available data about A. baumannii, the multi-drug resistant (MDR) phenotype spread, carbapenem-resistance, and the associated genetic resistance determinants in low-income countries (LIICs) since the beginning of the 21st century. The coverage included three major databases; PubMed, Scopus, and Web of Science. Only 52 studies were found to be relevant covering only 18 out of the 29 countries included in the LIC group. Studies about two countries, Syria and Ethiopia, contributed ~40% of the studies. Overall, the survey revealed a wide spread of MDR and alarming carbapenem-resistance profiles. Yet, the total number of studies is still very low compared to those reported about countries with larger economies. Accordingly, a discussion about possible reasons and recommendations to address the issue is presented. In conclusion, our analyses indicated that the reported studies of A. baumannii in the LICs is far below the expected numbers based on the prevailing circumstances in these countries. Lack of proper surveillance systems due to inadequate financial resources could be a major contributor to these findings.
Collapse
|
18
|
Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates from Northern Africa and the Middle East. Antibiotics (Basel) 2021; 10:antibiotics10030291. [PMID: 33799540 PMCID: PMC8002098 DOI: 10.3390/antibiotics10030291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
At the Bundeswehr Hospitals of Hamburg and Westerstede, patients repatriated from subtropical war and crisis zones of Northern Africa and the Middle East were medically treated, including microbiological assessment. Within a six-year interval, 16 Acinetobacter spp. strains, including 14 Acinetobacter baumannii (Ab) isolates with resistance against carbapenems and origins in Afghanistan (n = 4), Iraq (n = 2), Libya (n = 2), and Syria (n = 8) were collected. While clonal relationships of Libyan and Syrian strains had been assessed by superficial next generation sequencing (NGS) and “DiversiLab” repetitive elements sequence-based (rep-)PCR so far, this study provides core genome-based sequence typing and thus more detailed epidemiological information. In detail, sequencing allowed a definitive species identification and comparison with international outbreak-associated Ab strains by core genome multi locus sequence typing (cgMLST) and the identification of MLST lineages, as well as the identification of known resistance genes. The sequence analysis allowed for the confirmation of outbreak-associated clonal clusters among the Syrian and Afghan Ab isolates, indicating likely transmission events. The identified acquired carbapenem resistance genes comprised blaOXA-23, blaOXA-58, blaNDM-1, and blaGES-11, next to other intrinsic and acquired, partly mobile resistance-associated genes. Eleven out of 14 Ab isolates clustered with the previously described international clonal lineages IC1 (4 Afghan strains), IC2 (6 Syrian strains), and IC7 (1 Syrian strain). Identified Pasteur sequence types of the 14 Ab strains comprised ST2 (Syrian), ST25 (Libyan), ST32 (Iraqi), ST81 (Afghan), ST85 (Libyan), and ST1112 (Syrian), respectively. In conclusion, the study revealed a broad spectrum of resistance genes in Ab isolated from war-injured patients from Northern Africa and the Middle East, thereby broadening the scarcely available data on locally abundant clonal lineages and resistance mechanisms.
Collapse
|
19
|
Al-Hassan L, Elbadawi H, Osman E, Ali S, Elhag K, Cantillon D, Wille J, Seifert H, Higgins PG. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii From Khartoum State, Sudan. Front Microbiol 2021; 12:628736. [PMID: 33717019 PMCID: PMC7952628 DOI: 10.3389/fmicb.2021.628736] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Carbapenem resistant Acinetobacter baumannii (CRAb) is an important global pathogen contributing to increased morbidity and mortality in hospitalized patients, due to limited alternative treatment options. Nine international clonal (IC) lineages have been identified in many countries worldwide, however, data still lacks from some parts of the world, particularly in Africa. We hereby present the molecular epidemiology of MDR A. baumannii from four hospitals in Khartoum, Sudan, collected from 2017 to 2018. Forty-two isolates were whole-genome sequenced, and subsequent molecular epidemiology was determined by core genome MLST (cgMLST), and their resistomes identified. All isolates had an array of diverse antibiotic resistance mechanisms conferring resistance to multiple classes of antibiotics. We found a predominance (88%) of IC2 (with the intrinsic OXA-66 and acquired OXA-23), and some with NDM-1. IC2 isolates were sub-divided into 4 STs separated by 5 to 431 allelic differences, and with evidence of seven transmission clusters. Isolates belonging to IC1, IC5, and IC9 were also identified. These data illustrate that MDR IC2 A. baumannii are widely distributed in Khartoum hospitals and are in possession of multiple antibiotic resistance determinants.
Collapse
Affiliation(s)
- Leena Al-Hassan
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hana Elbadawi
- Department of Microbiology, Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | - Einas Osman
- Faculty of Medical Laboratories, Microbiology Department, Ibn Sina University, Khartoum, Sudan
- Bioscience Research Institute, Ibn Sina University, Khartoum, Sudan
| | - Sara Ali
- College of Health Sciences, Medical Laboratory Sciences Program, Gulf Medical University, Ajman, United Arab Emirates
| | - Kamal Elhag
- Department of Microbiology, Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
20
|
Colistin Dependence in Extensively Drug-Resistant Acinetobacter baumannii Strain Is Associated with IS Ajo2 and IS Aba13 Insertions and Multiple Cellular Responses. Int J Mol Sci 2021; 22:ijms22020576. [PMID: 33430070 PMCID: PMC7827689 DOI: 10.3390/ijms22020576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
The nosocomial opportunistic Gram-negative bacterial pathogen Acinetobacter baumannii is resistant to multiple antimicrobial agents and an emerging global health problem. The polymyxin antibiotic colistin, targeting the negatively charged lipid A component of the lipopolysaccharide on the bacterial cell surface, is often considered as the last-resort treatment, but resistance to colistin is unfortunately increasing worldwide. Notably, colistin-susceptible A. baumannii can also develop a colistin dependence after exposure to this drug in vitro. Colistin dependence might represent a stepping stone to resistance also in vivo. However, the mechanisms are far from clear. To address this issue, we combined proteogenomics, high-resolution microscopy, and lipid profiling to characterize and compare A. baumannii colistin-susceptible clinical isolate (Ab-S) of to its colistin-dependent subpopulation (Ab-D) obtained after subsequent passages in moderate colistin concentrations. Incidentally, in the colistin-dependent subpopulation the lpxA gene was disrupted by insertion of ISAjo2, the lipid A biosynthesis terminated, and Ab-D cells displayed a lipooligosaccharide (LOS)-deficient phenotype. Moreover, both mlaD and pldA genes were perturbed by insertions of ISAjo2 and ISAba13, and LOS-deficient bacteria displayed a capsule with decreased thickness as well as other surface imperfections. The major changes in relative protein abundance levels were detected in type 6 secretion system (T6SS) components, the resistance-nodulation-division (RND)-type efflux pumps, and in proteins involved in maintenance of outer membrane asymmetry. These findings suggest that colistin dependence in A. baumannii involves an ensemble of mechanisms seen in resistance development and accompanied by complex cellular events related to insertional sequences (ISs)-triggered LOS-deficiency. To our knowledge, this is the first study demonstrating the involvement of ISAjo2 and ISAba13 IS elements in the modulation of the lipid A biosynthesis and associated development of dependence on colistin.
Collapse
|
21
|
Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9030119. [PMID: 32178356 PMCID: PMC7148516 DOI: 10.3390/antibiotics9030119] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai P.O. Box 144534, UAE
- Correspondence: ; Tel.: +971-4-402-1745
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Beirut, Bekaa Campuses 1103, Lebanon;
| |
Collapse
|
22
|
Al-Hamad A, Pal T, Leskafi H, Abbas H, Hejles H, Alsubikhy F, Darwish D, Ghazawi A, Sonnevend A. Molecular characterization of clinical and environmental carbapenem resistant Acinetobacter baumannii isolates in a hospital of the Eastern Region of Saudi Arabia. J Infect Public Health 2019; 13:632-636. [PMID: 31551188 DOI: 10.1016/j.jiph.2019.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/27/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Environmental and clinical carbapenem-resistant Acinetobacter baumannii (CRAb) isolated in a hospital of the Eastern Region of Saudi Arabia were compared to assess the potential environmental contamination by this pathogen. METHODS Frequent-hand-touch surfaces of intensive care (ICU), medical (MW), and surgical (SW) units were randomly sampled for a month-long period, and the CRAb identified were compared to clinical isolates of the same period by PFGE and blaOXA-51-like gene sequencing. Carbapenemase and ribosomal methylase genes, ISAba1 link to blaOXA51-like or to blaOXA-23, respectively were detected by PCR. RESULTS CRAb was identified from 35.5% of surfaces. All environmental and clinical isolates were multi- or extremely drug resistant. PFGE of all clinical (n=21) and selected environmental (n=30) isolates identified a singleton and four clusters, all of which included both clinical and environmental isolates. In the two largest clusters isolates carried blaOXA-66, ISAba1-linked blaOXA-23, and were from the ICU, MW and the male SW. Isolates of the female SW carried blaOXA-69, ISAba1-linked blaOXA-23 and blaGES-11. A pair of clinical and environmental CRAb from the Male SW harboured blaNDM-1 in addition to ISAba1-linked blaOXA-94. CONCLUSION A worrying level of environmental contamination, often by CRAb belonging to international clones, was revealed, highlighting the importance of environmental hygiene.
Collapse
Affiliation(s)
- Arif Al-Hamad
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Tibor Pal
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hussam Leskafi
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Hussein Abbas
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Heba Hejles
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Fatimah Alsubikhy
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Dania Darwish
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Agnes Sonnevend
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, Pécs H-7624, Hungary.
| |
Collapse
|