1
|
Subramanian G, Manchanda K, Mo Y, Sathe RY, Bharatam PV. Monovalent cation binding to model systems and the macrocyclic depsipeptide, emodepside. J Comput Chem 2024; 45:2409-2423. [PMID: 38924119 DOI: 10.1002/jcc.27451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
This study focuses on the systematic exploration of the emodepside conformations bound to monovalent K+ ion using quantum mechanical density functional theory (DFT) calculations at the M06-2X/6-31+G(d,p) level of theory. Nine conformers of emodepside and their complexes with K+ ion were characterized as stationary points on the potential energy surface. The conformational isomers were examined for their 3D structures, bonding, energetics, and interactions with the cation. A cavitand-like structure (CC) is identified to be the energetically most stable arrangement. To arrive at a better understanding of the K+ ion binding, calculations were initially performed on complexes formed by the K+ and Na+ ions with model ligands (methyl ester and N,N-dimethyl acetamide). Both the natural bond orbital (NBO) method and the block-localized wavefunction (BLW) energy decomposition approach was employed to assess the bonding and energetic contributions stabilizing the ion-bound model complexes. Finally, the solvent effect was evaluated through complete geometry optimizations and energy minimizations for the model ion-ligand complexes and the emodepside-K+ bound complexes using an implicit solvent model mimicking water and DMSO.
Collapse
Affiliation(s)
| | - Kanika Manchanda
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali), Punjab, India
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Rohit Y Sathe
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali), Punjab, India
| |
Collapse
|
2
|
Davie T, Serrat X, Imhof L, Snider J, Štagljar I, Keiser J, Hirano H, Watanabe N, Osada H, Fraser AG. Identification of a family of species-selective complex I inhibitors as potential anthelmintics. Nat Commun 2024; 15:3367. [PMID: 38719808 PMCID: PMC11079024 DOI: 10.1038/s41467-024-47331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.
Collapse
Affiliation(s)
- Taylor Davie
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xènia Serrat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lea Imhof
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, CH-4000, Basel, Switzerland
| | - Jamie Snider
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Igor Štagljar
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, CH-4000, Basel, Switzerland
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | - Nobumoto Watanabe
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Andrew G Fraser
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. Antimicrob Agents Chemother 2023; 67:e0041923. [PMID: 37728916 PMCID: PMC10583680 DOI: 10.1128/aac.00419-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023] Open
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.
Collapse
Affiliation(s)
| | | | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Wit J, Dilks CM, Zhang G, Guisbert KSK, Zdraljevic S, Guisbert E, Andersen EC. Praziquantel inhibits Caenorhabditis elegans development and species-wide differences might be cct-8-dependent. PLoS One 2023; 18:e0286473. [PMID: 37561720 PMCID: PMC10414639 DOI: 10.1371/journal.pone.0286473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans and other animals. Caenorhabditis elegans is an established model to investigate anthelmintics used to treat roundworms. In this study, we use C. elegans to examine the mode of action and the mechanisms of resistance against the flatworm anthelmintic drug praziquantel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited development and that this developmental delay varies by genetic background. Interestingly, both enantiomers of PZQ are equally effective against C. elegans, but the right-handed PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-wide association mapping with 74 wild C. elegans strains to identify a region on chromosome IV that is correlated with differential PZQ susceptibility. Five candidate genes in this region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation. The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a putative protein coding change (G226V), which is correlated with reduced developmental delay. Gene expression analysis suggests that this variant correlates with slightly increased expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background (G226) and the G226 allele into the JU775 genetic background (V226). These experiments revealed that this variant was not sufficient to explain the effects of PZQ on development. Nevertheless, this study shows that C. elegans can be used to study PZQ mode of action and resistance mechanisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ responses in C. elegans.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Gaotian Zhang
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Karen S. Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
5
|
Burns AR, Baker RJ, Kitner M, Knox J, Cooke B, Volpatti JR, Vaidya AS, Puumala E, Palmeira BM, Redman EM, Snider J, Marwah S, Chung SW, MacDonald MH, Tiefenbach J, Hu C, Xiao Q, Finney CAM, Krause HM, MacParland SA, Stagljar I, Gilleard JS, Cowen LE, Meyer SLF, Cutler SR, Dowling JJ, Lautens M, Zasada I, Roy PJ. Selective control of parasitic nematodes using bioactivated nematicides. Nature 2023:10.1038/s41586-023-06105-5. [PMID: 37225985 DOI: 10.1038/s41586-023-06105-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.
Collapse
Affiliation(s)
- Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Rachel J Baker
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megan Kitner
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Jessica Knox
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Cooke
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan R Volpatti
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aditya S Vaidya
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bruna M Palmeira
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth M Redman
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jamie Snider
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sagar Marwah
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sai W Chung
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Margaret H MacDonald
- USDA-ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Jens Tiefenbach
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Chun Hu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qi Xiao
- Department of Biological Sciences, Host Parasite Interactions Program, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Constance A M Finney
- Department of Biological Sciences, Host Parasite Interactions Program, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Henry M Krause
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sonya A MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Stagljar
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Susan L F Meyer
- USDA-ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Sean R Cutler
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Inga Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Peter J Roy
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536248. [PMID: 37090573 PMCID: PMC10120635 DOI: 10.1101/2023.04.10.536248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wucheria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis having serious effects on individuals’ lives. Although current anthelmintics are effective at killing the microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open Transient Receptor Potential (TRP) channels on the muscles of adult female Brugia malayi leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trials for treatment of river blindness. Here we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca 2+ fluorescence in the muscle using Ca 2+ -imaging techniques. Diethylcarbamazine interacts with the TRPC orthologue receptor TRP-2 to promote Ca 2+ entry into the Brugia muscle cells which can activate SLO-1 Ca 2+ activated K + channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca 2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca 2+ entry that is increased by emodepside activation of SLO-1 channels.
Collapse
|
7
|
Kashyap SS, McHugh MA, Robertson AP, Martin RJ. Diethylcarbamazine mediated potentiation of emodepside induced paralysis requires TRP-2 in adult Brugia malayi. Int J Parasitol Drugs Drug Resist 2022; 20:108-112. [PMID: 36368250 PMCID: PMC9772243 DOI: 10.1016/j.ijpddr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Human and veterinary filarial nematode infections are a major health concern in tropical countries. They are transmitted by biting insects and mosquitoes. Lymphatic filariasis, a group of filarial infections caused by Brugia spp. and Wucheria bancrofti affect more than 120 million people worldwide. Infected individuals develop swollen limbs and disfigurement, leading to an inability to work and ostracization from society. Control and prophylaxis for these infections involve mass drug administration combinations of anthelmintics including diethylcarbamazine (DEC). DEC has actions on microfilariae, but its effects on adult worms are less pronounced. The SLO-1 (BK) channel activator, emodepside, kills adults of many filarial species. However, the in vivo efficacy of emodepside is suboptimal against B. malayi, possibly due to reduced bioavailability in the lymphatic system. Expressing different slo-1 splice variants in B. malayi also affects sensitivity to emodepside. This study explores the potentiation of emodepside mediated paralysis by DEC in adult female B. malayi. Worminator motility measurements show that co-application of DEC and emodepside increases the potency of emodepside 4-fold. The potentiation of the emodepside effect persists even after the worms recover (desensitize) from the initial effects of DEC. RNAi knock-down demonstrates that the DEC-mediated potentiation of emodepside requires the presence of TRP-2 channels. Our study demonstrates that the addition of DEC could enhance the effect of emodepside where bioavailability or activity against a specific species may be low.
Collapse
Affiliation(s)
- Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Mark A McHugh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
8
|
Wit J, Workentine ML, Redman E, Laing R, Stevens L, Cotton JA, Chaudhry U, Ali Q, Andersen EC, Yeaman S, Wasmuth JD, Gilleard JS. Genomic signatures of selection associated with benzimidazole drug treatments in Haemonchus contortus field populations. Int J Parasitol 2022; 52:677-689. [PMID: 36113620 DOI: 10.1016/j.ijpara.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 β-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 β-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 β-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.
Collapse
Affiliation(s)
- Janneke Wit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | | | - Elizabeth Redman
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, UK
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Umer Chaudhry
- University of Edinburgh, Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | - Qasim Ali
- Department of Parasitology FVAS, University of Agriculture, D.I. Khan, Pakistan
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Calahorro F, Chapman M, Dudkiewicz K, Holden-Dye L, O'Connor V. PharmacoGenetic targeting of a C. elegans essential neuron provides an in vivo screening for novel modulators of nematode ion channel function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105152. [PMID: 35973757 DOI: 10.1016/j.pestbp.2022.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Chemical or drug treatments are successfully used to treat parasitic nematode infections that impact human, animal and plant health. Many of these exert their effects through modifying neural function underpinning behaviours essential for parasite viability. Selectivity against the parasite may be achieved through distinct pharmacological properties of the parasite nervous system, as exemplified by the success of the ivermectin which target a glutamate-gated chloride channel found only in invertebrates. Despite the success of the ivermectins, emerging resistance and concerns around eco-toxicity are driving the search for new nematocidal chemicals or drugs. Here, we describe the potential of a 5-HT-gated chloride channel MOD-1, which is involved in vital parasite behaviours with constrained distribution in the invertebrate phyla. This ion channel has potential pharmacophores that could be targeted by new nematocidal chemicals and drugs. We have developed a microtiter based bioassay for MOD-1 pharmacology based on its ectopic expression in the Caenorhabditis elegans essential neuron M4. We have termed this technology 'PhaGeM4' for 'Pharmacogenetic targeting of M4 neuron'. Exposure of transgenic worms harbouring ectopically expressed MOD-1 to 5-HT results in developmental arrest. By additional expression of a fluorescence marker in body wall muscle to monitor growth we demonstrate that this assay is suitable for the identification of receptor agonists and antagonists. Indeed, the developmental progression is a robustly quantifiable bioassay that resolves MOD-1 activation by quipazine, 5-carboxyamidotryptamine and fluoxetine and highlight methiothepin as a potent antagonist. This assay has the intrinsic ability to highlight compounds with optimal bioavailability and furthermore to filter out off-target effects. It can be extended to the investigation of other classes of membrane receptors and modulators of neuronal excitation. This approach based on heterologous modulation of the essential M4 neuron function offers a route to discover new effective and selective anthelmintics potentially less confounded by disruptive environmental impact.
Collapse
Affiliation(s)
- Fernando Calahorro
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK.
| | - Mark Chapman
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Katarzyna Dudkiewicz
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| |
Collapse
|
10
|
Paredes GF, Viehboeck T, Markert S, Mausz MA, Sato Y, Liebeke M, König L, Bulgheresi S. Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces. Sci Rep 2022; 12:9725. [PMID: 35697683 PMCID: PMC9192688 DOI: 10.1038/s41598-022-13235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode Laxus oneistus. It thrives, invariably coated by its sulfur-oxidizing symbiont Candidatus Thiosymbion oneisti, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, L. oneistus mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when L. oneistus was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm's Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, L. oneistus upregulates degradation processes, rewires the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development.
Collapse
Affiliation(s)
- Gabriela F Paredes
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Yui Sato
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lena König
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
12
|
Ustyantsev KV, Vavilova VY, Blinov AG, Berezikov EV. Macrostomum lignano as a model to study the genetics and genomics of parasitic flatworms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:108-116. [PMID: 34901708 PMCID: PMC8629357 DOI: 10.18699/vj21.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Hundreds of millions of people worldwide are infected by various species of parasitic flatworms. Without
treatment, acute and chronical infections frequently lead to the development of severe pathologies and even death.
Emerging data on a decreasing efficiency of some important anthelmintic compounds and the emergence of resistance to them force the search for alternative drugs. Parasitic flatworms have complex life cycles, are laborious and
expensive in culturing, and have a range of anatomic and physiological adaptations that complicate the application
of standard molecular-biological methods. On the other hand, free-living flatworm species, evolutionarily close to
parasitic flatworms, do not have the abovementioned difficulties, which makes them potential alternative models
to search for and study homologous genes. In this review, we describe the use of the basal free-living flatworm
Macrostomum lignano as such a model. M. lignano has a number of convenient biological and experimental properties, such as fast reproduction, easy and non-expensive laboratory culturing, optical body transparency, obligatory
sexual reproduction, annotated genome and transcriptome assemblies, and the availability of modern molecular
methods, including transgenesis, gene knockdown by RNA interference, and in situ hybridization. All this makes
M. lignano amenable to the most modern approaches of forward and reverse genetics, such as transposon insertional mutagenesis and methods of targeted genome editing by the CRISPR/Cas9 system. Due to the availability of
an increasing number of genome and transcriptome assemblies of different parasitic flatworm species, new knowledge generated by studying M. lignano can be easily translated to parasitic flatworms with the help of modern
bioinformatic methods of comparative genomics and transcriptomics. In support of this, we provide the results of
our bioinformatics search and analysis of genes homologous between M. lignano and parasitic flatworms, which
predicts a list of promising gene targets for subsequent research.
Collapse
Affiliation(s)
- K V Ustyantsev
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V Yu Vavilova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Blinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Berezikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM. Nat Commun 2021; 12:7164. [PMID: 34887422 PMCID: PMC8660915 DOI: 10.1038/s41467-021-27435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Slowpoke (Slo) potassium channels display extraordinarily high conductance, are synergistically activated by a positive transmembrane potential and high intracellular Ca2+ concentrations and are important targets for insecticides and antiparasitic drugs. However, it is unknown how these compounds modulate ion translocation and whether there are insect-specific binding pockets. Here, we report structures of Drosophila Slo in the Ca2+-bound and Ca2+-free form and in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside. Whereas the architecture and gating mechanism of Slo channels are conserved, potential insect-specific binding pockets exist. Verruculogen inhibits K+ transport by blocking the Ca2+-induced activation signal and precludes K+ from entering the selectivity filter. Emodepside decreases the conductance by suboptimal K+ coordination and uncouples ion gating from Ca2+ and voltage sensing. Our results expand the mechanistic understanding of Slo regulation and lay the foundation for the rational design of regulators of Slo and other voltage-gated ion channels. Slowpoke (Slo) channels are voltage-gated potassium channels that are activated by high intracellular Ca2+ concentrations, and they are targets for insecticides and antiparasitic drugs. Here, the authors present the cryo-EM structures of the Drosophila melanogaster Slo channel in the Ca2+-bound and Ca2+-free conformations, as well as in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside and discuss the mechanisms by which they affect the activity of Slo.
Collapse
|
14
|
Wit J, Rodriguez BC, Andersen EC. Natural variation in Caenorhabditis elegans responses to the anthelmintic emodepside. Int J Parasitol Drugs Drug Resist 2021; 16:1-8. [PMID: 33878514 PMCID: PMC8079822 DOI: 10.1016/j.ijpddr.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Treatment of parasitic nematode infections depends primarily on the use of anthelmintics. However, this drug arsenal is limited, and resistance against most anthelmintics is widespread. Emodepside is a new anthelmintic drug effective against gastrointestinal and filarial nematodes. Nematodes that are resistant to other anthelmintic drug classes are susceptible to emodepside, indicating that the emodepside mode of action is distinct from previous anthelmintics. The laboratory-adapted Caenorhabditis elegans strain N2 is sensitive to emodepside, and genetic selection and in vitro experiments implicated slo-1, a large K+ conductance (BK) channel gene, in emodepside mode of action. In an effort to understand how natural populations will respond to emodepside, we measured brood sizes and developmental rates of wild C. elegans strains after exposure to the drug and found natural variation across the species. Some of the observed variation in C. elegans emodepside responses correlates with amino acid substitutions in slo-1, but genetic mechanisms other than slo-1 coding variants likely underlie emodepside resistance in wild C. elegans strains. Additionally, the assayed strains have higher offspring production in low concentrations of emodepside (a hormetic effect). We find that natural variation affects emodepside sensitivity, supporting the suitability of C. elegans as a model system to study emodepside responses across natural nematode populations.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Briana C Rodriguez
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
15
|
Krücken J, Holden-Dye L, Keiser J, Prichard RK, Townson S, Makepeace BL, Hübner MP, Hahnel SR, Scandale I, Harder A, Kulke D. Development of emodepside as a possible adulticidal treatment for human onchocerciasis-The fruit of a successful industrial-academic collaboration. PLoS Pathog 2021; 17:e1009682. [PMID: 34293063 PMCID: PMC8297762 DOI: 10.1371/journal.ppat.1009682] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Current mass drug administration (MDA) programs for the treatment of human river blindness (onchocerciasis) caused by the filarial worm Onchocerca volvulus rely on ivermectin, an anthelmintic originally developed for animal health. These treatments are primarily directed against migrating microfilariae and also suppress fecundity for several months, but fail to eliminate adult O. volvulus. Therefore, elimination programs need time frames of decades, well exceeding the life span of adult worms. The situation is worsened by decreased ivermectin efficacy after long-term therapy. To improve treatment options against onchocerciasis, a drug development candidate should ideally kill or irreversibly sterilize adult worms. Emodepside is a broad-spectrum anthelmintic used for the treatment of parasitic nematodes in cats and dogs (Profender and Procox). Our current knowledge of the pharmacology of emodepside is the result of more than 2 decades of intensive collaborative research between academia and the pharmaceutical industry. Emodepside has a novel mode of action with a broad spectrum of activity, including against extraintestinal nematode stages such as migrating larvae or macrofilariae. Therefore, emodepside is considered to be among the most promising candidates for evaluation as an adulticide treatment against onchocerciasis. Consequently, in 2014, Bayer and the Drugs for Neglected Diseases initiative (DNDi) started a collaboration to develop emodepside for the treatment of patients suffering from the disease. Macrofilaricidal activity has been demonstrated in various models, including Onchocerca ochengi in cattle, the parasite most closely related to O. volvulus. Emodepside has now successfully passed Phase I clinical trials, and a Phase II study is planned. This Bayer–DNDi partnership is an outstanding example of “One World Health,” in which experience gained in veterinary science and drug development is translated to human health and leads to improved tools to combat neglected tropical diseases (NTDs) and shorten development pathways and timelines in an otherwise neglected area. Onchocerca volvulus is the causative agent of human river blindness, and current elimination programs rely on the use of ivermectin to kill microfilariae. Since no adulticidal drug is available and adult worms have a life span of up to 15 years, elimination programs need to be sustained over several decades. Emodepside is an anthelmintic that is licensed as a dewormer for cats and dogs. Due to its ability to eliminate nematodes located in various extraintestinal host tissues, including migrating larvae and adult filarial worms, it is considered to be an excellent candidate for the treatment of onchocerciasis. Intense collaboration between academia and the pharmaceutical industry has led to a deep understanding of the novel mode of action of the drug and of its parasite target spectrum. Phase I clinical trials with emodepside have demonstrated its safety and adulticide activity against the closely related cattle parasite Onchocerca ochengi. Currently, Phase II clinical trials are planned to confirm that emodepside, developed initially to improve animal health, has also the potential to improve human health by tackling a very important neglected tropical disease (NTD).
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada
| | - Simon Townson
- The Griffin Institute, Northwick Park and St. Mark’s Hospital, Harrow, United Kingdom
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Steffen R. Hahnel
- Elanco Animal Health, Research & Exploratory Development, Monheim, Germany
| | - Ivan Scandale
- Drugs for Neglected Disease initiative, Geneva, Switzerland
| | | | - Daniel Kulke
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
16
|
Emodepside targets SLO-1 channels of Onchocerca ochengi and induces broad anthelmintic effects in a bovine model of onchocerciasis. PLoS Pathog 2021; 17:e1009601. [PMID: 34077488 PMCID: PMC8202924 DOI: 10.1371/journal.ppat.1009601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/14/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Onchocerciasis (river blindness), caused by the filarial worm Onchocerca volvulus, is a neglected tropical disease mostly affecting sub-Saharan Africa and is responsible for >1.3 million years lived with disability. Current control relies almost entirely on ivermectin, which suppresses symptoms caused by the first-stage larvae (microfilariae) but does not kill the long-lived adults. Here, we evaluated emodepside, a semi-synthetic cyclooctadepsipeptide registered for deworming applications in companion animals, for activity against adult filariae (i.e., as a macrofilaricide). We demonstrate the equivalence of emodepside activity on SLO-1 potassium channels in Onchocerca volvulus and Onchocerca ochengi, its sister species from cattle. Evaluation of emodepside in cattle as single or 7-day treatments at two doses (0.15 and 0.75 mg/kg) revealed rapid activity against microfilariae, prolonged suppression of female worm fecundity, and macrofilaricidal effects by 18 months post treatment. The drug was well tolerated, causing only transiently increased blood glucose. Female adult worms were mostly paralyzed; however, some retained metabolic activity even in the multiple high-dose group. These data support ongoing clinical development of emodepside to treat river blindness.
Collapse
|
17
|
Shiomi K. Antiparasitic antibiotics from Japan. Parasitol Int 2021; 82:102298. [PMID: 33548522 DOI: 10.1016/j.parint.2021.102298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
Antibiotics are microbial secondary metabolites and they are important for the treatment of infectious diseases. Japanese researchers have made a large contribution to studies of antibiotics, and they have also been important in the discovery of antiparasitic antibiotics. Satoshi Ōmura received the Nobel Prize in 2015 for the "discoveries concerning a novel therapy against infections caused by roundworm parasites", which means discovery of a new nematocidal antibiotic, avermectin. Here, I review the many antiparasitic antibiotics and their lead compounds that have been discovered for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Kazuro Shiomi
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
18
|
Verma S, Kulke D, McCall JW, Martin RJ, Robertson AP. Recording drug responses from adult Dirofilaria immitis pharyngeal and somatic muscle cells. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 15:1-8. [PMID: 33348209 PMCID: PMC7753077 DOI: 10.1016/j.ijpddr.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Despite being considered one of the most pathogenic helminth infections of companion animals, members of macrocyclic lactone class are the only drugs available for the prevention of heartworm disease caused by Dirofilaria immitis. Alarmingly, heartworm prevention is at risk; several studies confirm the existence of macrocyclic lactone resistance in D. immitis populations across the United States. To safeguard the long term prevention and control of this disease, the identification and development of novel anthelmintics is urgently needed. To identify novel, resistance-breaking drugs, it is highly desirable to: Unfortunately, none of the three above statements can be answered sufficiently for D. immitis and most of our hypotheses derive from surrogate species and/or in vitro studies. Therefore, the present study aims to improve our fundamental understanding of the neuromuscular system of the canine heartworm by establishing new methods allowing the investigation of body wall and pharyngeal muscle responses and their modulation by anthelmintics. We found that the pharynx of adult D. immitis responds to both ivermectin and moxidectin with EC50s in the low micromolar range. We also demonstrate that the somatic muscle cells have robust responses to 30 μM acetylcholine, levamisole, pyrantel and nicotine. This is important preliminary data, demonstrating the feasibility of electrophysiological studies in this important parasite.
Collapse
Affiliation(s)
- S Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - D Kulke
- Drug Discovery and External Innovation, Bayer Animal Health GmbH, 51373, Leverkusen, Germany.
| | | | - R J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - A P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
19
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
20
|
Guest M, Kriek N, Flemming AJ. Studies of an insecticidal inhibitor of acetyl-CoA carboxylase in the nematode C. elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104604. [PMID: 32828380 DOI: 10.1016/j.pestbp.2020.104604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
We have studied the mode of action of the insecticide spirotetramat in the nematode Caenorhabditis elegans. A combination of symptomology, forward genetics and genome editing show that spirotetramat acts on acetyl-CoA carboxylase (ACC) in C. elegans, as it does in insects. We found C. elegans embryos exposed to spirotetramat show a cell division defect which closely resembles the phenotype of loss-of-function mutations in the gene pod-2, which encodes ACC. We then identified two mutations in the carboxyl transferase domain of pod-2 (ACC) which confer resistance and were confirmed using CRISPR/Cas9. One of these mutations substitutes an invertebrate-specific amino acid with one ubiquitous in other taxa; this residue may, therefore, be a determinant of the selectivity of spirotetramat for invertebrates. Such a mutation may also be the target of selection for resistance in the field. Our study is a further demonstration of the utility of C. elegans in studying bioactive chemicals.
Collapse
Affiliation(s)
- M Guest
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - N Kriek
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - A J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| |
Collapse
|
21
|
Xu J, Ma HH, Liu ZM, Zheng W, Lai XY, Zhu H, Liu J, Zhou Y, Zhou XM. Expression and alternative splicing analysis of a large-conductance calcium-activated potassium channel gene in Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21720. [PMID: 32557681 DOI: 10.1002/arch.21720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The large-conductance calcium-activated potassium channel (BKCa ) plays an important role in the regulation of insect neural circuits and locomotion, and thus is a potential target of insecticides. In this study, iberiotoxin, an inhibitor of BKCa , was found to prolong the anesthetic time of ethyl acetate on Plutella xylostella larvae. Therefore, the coding sequence of slowpoke gene coding the alpha subunit of BKCa was cloned to investigate the function of this channel in P. xylostella, and the gene expression profile in the developmental stages and tissues was also characterized. The total length of pxslo DNA was more than 19.9 kb, which harbored four alternative splicing sites (ASP-A, ASP-C, ASP-E, and ASP-G), and the coding sequence of pxslo with the highest frequency of splicing (GenBank ID: MN938456) was 3,405 base pair. The characterized PxSlo protein contained conserved domains previously identified in other insects. Quantitative reverse transcription-polymerase chain reaction analysis showed that pxslo was expressed in all the developmental stages of P. xylostella, with the highest level in adults. In the larval stage, pxslo was mainly expressed in the head and epidermis, while a limited protein was expressed in the midgut. In the adult stage, pxslo was highly expressed in the head, followed by in the ovarian tubule, and was not expressed in the testis or wings. These results suggest that BKCa plays an important physiological role in P. xylostella and provides useful information for the functional study and screening of BKCa inhibitors.
Collapse
Affiliation(s)
- Jie Xu
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha, China
| | - Hai-Hao Ma
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhe-Ming Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Wei Zheng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiao-Yi Lai
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hang Zhu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jia Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Zhou
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiao-Mao Zhou
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
22
|
Verma S, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine activates TRP channels including TRP-2 in filaria, Brugia malayi. Commun Biol 2020; 3:398. [PMID: 32724078 PMCID: PMC7387335 DOI: 10.1038/s42003-020-01128-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Diethylcarbamazine is an important classic drug used for prevention and treatment of lymphatic filariasis and loiasis, diseases caused by filarial nematodes. Despite many studies, its site of action has not been established. Until now, the consensus has been that diethylcarbamazine works by activating host immune systems, not by a direct action on the parasites. Here we show that low concentrations of diethylcarbamazine have direct and rapid (<30 s) temporary spastic paralyzing effects on the parasites that lasts around 4 h, which is produced by diethylcarbamazine opening TRP channels in muscle of Brugia malayi involving TRP-2 (TRPC-like channel subunits). GON-2 and CED-11, TRPM-like channel subunits, also contributed to diethylcarbamazine responses. Opening of these TRP channels produces contraction and subsequent activation of calcium-dependent SLO-1K channels. Recovery from the temporary paralysis is consistent with inactivation of TRP channels. Our observations elucidate mechanisms for the rapid onset and short-lasting therapeutic actions of diethylcarbamazine.
Collapse
Affiliation(s)
- Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
23
|
Jimenez Castro PD, Mansour A, Charles S, Hostetler J, Settje T, Kulke D, Kaplan RM. Efficacy evaluation of anthelmintic products against an infection with the canine hookworm (Ancylostoma caninum) isolate Worthy 4.1F3P in dogs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:22-27. [PMID: 32403053 PMCID: PMC7214830 DOI: 10.1016/j.ijpddr.2020.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Ancylostoma caninum is the most prevalent intestinal nematode of dogs, and has a zoonotic potential. Multiple-drug resistance (MDR) has been confirmed in a number of A. caninum isolates, including isolate Worthy 4.1F3P, against all anthelmintic drug classes approved for hookworm treatment in dogs in the United States (US). The cyclooctadepsipeptide emodepside is not registered to use in dogs in the US, but in a number of other countries/regions. The objective of this study was to evaluate the efficacy of emodepside + praziquantel, as well as three commercial products that are commonly used in the US for treatment of hookworms, against a suspected (subsequently confirmed) MDR A. caninum isolate Worthy 4.1F3P. 40 dogs infected on study day (SD) 0 with 300 third-stage larvae, were randomly allocated to one of five treatment groups with eight dogs each: pyrantel pamoate (Nemex®-2), fenbendazole (Panacur® C), milbemycin oxime (Interceptor®), emodepside + praziquantel tablets and non-treated control. Fecal egg counts (FEC) were performed on SDs 19, 20, 22, 27, 31 and 34. All treatments were administered as per label requirements on SD 24 to dogs in Groups 1 through 4. Two additional treatments were administered on SDs 25 and 26 to dogs in Group 2 as per label requirements. Dogs were necropsied on SD 34 and the digestive tract was removed/processed for worm recovery and enumeration. The geometric mean (GM) worm counts for the control group was 97.4, and for the pyrantel pamoate, fenbendazole, milbemycin oxime, and emodepside + praziquantel groups were 74.8, 72.0, 88.9, and 0.4, respectively. These yielded efficacies of 23.2%, 26.1%, and 8.8%, and 99.6%, respectively. These data support previous findings of the MDR status of Worthy 4.1F3P as treatments with pyrantel pamoate, fenbendazole and milbemycin oxime lacked efficacy. In sharp contrast, Worthy 4.1F3P was highly susceptible to treatment with emodepside + praziquantel.
Collapse
Affiliation(s)
- Pablo D Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Colombia.
| | | | - Samuel Charles
- Bayer US LLC, Animal Health, Research and Development, Shawnee, KS, USA
| | - Joe Hostetler
- Bayer US LLC, Animal Health, Research and Development, Shawnee, KS, USA
| | - Terry Settje
- Bayer US LLC, Animal Health, Research and Development, Shawnee, KS, USA
| | - Daniel Kulke
- Bayer Animal Health GmbH, Drug Discovery & External Innovation, Leverkusen, Germany
| | - Ray M Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
24
|
Liu M, Panda SK, Luyten W. Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules 2020; 10:biom10030426. [PMID: 32182910 PMCID: PMC7175113 DOI: 10.3390/biom10030426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal parasitic nematodes infect approximately two billion people worldwide. In the absence of vaccines for human intestinal nematodes, control of infections currently relies mainly on chemotherapy, but resistance is an increasing problem. Thus, there is an urgent need for the discovery and development of new anthelmintic drugs, especially ones with novel mechanisms of action. Medicinal plants hold great promise as a source of effective treatments, including anthelmintic therapy. They have been used traditionally for centuries and are mostly safe (if not, their toxicity is well-known). However, in most medicinal plants the compounds active against nematodes have not been identified thus far. The free-living nematode C. elegans was demonstrated to be an excellent model system for the discovery of new anthelmintics and for characterizing their mechanism of action or resistance. The compounds discussed in this review are of botanical origin and were published since 2002. Most of them need further studies of their toxicity, mechanisms and structure-activity relationship to assess more fully their potential as drugs.
Collapse
|
25
|
Gaens D, Leithäuser C, Hamann M, Geyer J. Adverse Drug Reactions After Administration of Emodepside/Praziquantel (Profender®) in an MDR1-Mutant Australian Shepherd Dog: Case Report. Front Vet Sci 2019; 6:296. [PMID: 31555677 PMCID: PMC6743036 DOI: 10.3389/fvets.2019.00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022] Open
Abstract
A 3-year-old male Australian Shepherd was presented with signs of neurological toxicity following the administration of Profender® at the recommended dosage. Unfortunately, the owner had received the product from a veterinarian without any further instructions on fasting as recommended by the manufacturer, so the dog was fed prior to Profender® administration. Neurological toxicity included generalized tremor, agitation and panting, and required hospitalization of the dog. All neurological signs resolved after symptomatic treatment within 24 h and the dog was discharged without the need for further medication. MDR1 genotyping revealed a homozygous mutation of the MDR1 gene, which is normally important to prevent brain penetration of emodepside by an efflux-based transport mechanism at the blood brain barrier. This case indicates that Profender® can lead to serious, but transient neurological toxicity in dogs with homozygous MDR1 mutation even at therapeutic dosage, in particular when fasting recommendations are disregarded. Therefore, the case report highlights both the importance of MDR1 genotyping in predisposed dog breeds as well as strict compliance with fasting recommendations around the time of Profender® administration.
Collapse
Affiliation(s)
- Daniela Gaens
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Carola Leithäuser
- Animal Clinic Norderstedt, Evidensia Tierärztliche Klinik Für Kleintiere, Norderstedt, Germany
| | - Melanie Hamann
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Kashyap SS, Verma S, Voronin D, Lustigman S, Kulke D, Robertson AP, Martin RJ. Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel. PLoS Pathog 2019; 15:e1008041. [PMID: 31553770 PMCID: PMC6779273 DOI: 10.1371/journal.ppat.1008041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/07/2019] [Accepted: 08/23/2019] [Indexed: 01/15/2023] Open
Abstract
Filariae are parasitic nematodes that are transmitted to their definitive host as third-stage larvae by arthropod vectors like mosquitoes. Filariae cause diseases including: lymphatic filariasis with distressing and disturbing symptoms like elephantiasis; and river blindness. Filarial diseases affect millions of people in 73 countries throughout the topics and sub-tropics. The drugs available for mass drug administration, (ivermectin, albendazole and diethylcarbamazine), are ineffective against adult filariae (macrofilariae) at the registered dosing regimen; this generates a real and urgent need to identify effective macrofilaricides. Emodepside, a veterinary anthelmintic registered for treatment of nematode infections in cats and dogs, is reported to have macrofilaricidal effects. Here, we explore the mode of action of emodepside using adult Brugia malayi, one of the species that causes lymphatic filariasis. Whole-parasite motility measurement with Worminator and patch-clamp of single muscle cells show that emodepside potently inhibits motility by activating voltage-gated potassium channels and that the male is more sensitive than the female. RNAi knock down suggests that emodepside targets SLO-1 K channels. We expressed slo-1 isoforms, with alternatively spliced exons at the RCK1 (Regulator of Conductance of Potassium) domain, heterologously in Xenopus laevis oocytes. We discovered that the slo-1f isoform, found in muscles of males, is more sensitive to emodepside than the slo-1a isoform found in muscles of females; and selective RNAi of the slo-1a isoform in female worms increased emodepside potency. In Onchocerca volvulus, that causes river blindness, we found two isoforms in adult females with homology to Bma-SLO-1A and Bma-SLO-1F at the RCK1 domain. In silico modeling identified an emodepside binding pocket in the same RCK1 region of different species of filaria that is affected by these splice variations. Our observations show that emodepside has potent macrofilaricidal effects and alternative splicing in the RCK1 binding pocket affects potency. Therefore, the evaluation of potential sex-dependent effects of an anthelmintic compound is of importance to prevent any under-dosing of one or the other gender of nematodes once given to patients.
Collapse
Affiliation(s)
- Sudhanva S. Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Daniel Kulke
- Bayer Animal Health GmbH, Drug Discovery and External Innovation, Leverkusen, Germany
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
27
|
Kyne GM, Curtis MP, Keiser J, Woods DJ. Soil‐transmitted Helminthiasis – Challenges with Discovery of Novel Anthelmintics. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527808656.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Karpstein T, Pasche V, Häberli C, Scandale I, Neodo A, Keiser J. Evaluation of emodepside in laboratory models of human intestinal nematode and schistosome infections. Parasit Vectors 2019; 12:226. [PMID: 31088525 PMCID: PMC6515646 DOI: 10.1186/s13071-019-3476-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Helminthiases are very prevalent worldwide, yet their treatment and control rely on a handful of drugs. Emodepside, a marketed broad-spectrum veterinary anthelminthic with a unique mechanism of action, undergoing development for onchocerciasis is an interesting anthelmintic drug candidate. We tested the in vitro and in vivo activity of emodepside on nematode species that serve as models for human soil-transmitted helminth infection as well as on schistosomes. METHODS In vitro viability assays were performed over a time course of 72 hours for Trichuris muris, Necator americanus, Ancylostoma ceylanicum, Heligmosomoides polygyrus, Strongyloides ratti, Schistosoma mansoni and Schistosoma haematobium. The drug effect was determined by the survival rate for the larvae and by phenotypical scores for the adult worms. Additionally, mice infected with T. muris and hamsters harboring hookworm infection (N. americanus or A. ceylanicum) were administered orally with emodepside at doses ranging from 1.25 to 75 mg/kg. Expelled worms in the feces were counted until 3 days post-drug intake and worms residing in the intestines were collected and counted after dissection. RESULTS After 24 hours, emodepside was very active in vitro against both larval and adult stages of the nematodes T. muris, A. ceylanicum, N. americanus, H. polygyrus and S. ratti (IC50 < 4 µM). The good in vitro activity was confirmed in vivo. Hamsters infected with the hookworms were cured when administered orally with 2.5 mg/kg of the drug. Emodepside was also highly active in vivo against T. muris (ED50 = 1.2 mg/kg). Emodepside was moderately active on schistosomula in vitro (IC50 < 8 µM) 24 h post-drug incubation and its activity on adult S. mansoni and S. haematobium was low (IC50: 30-50 µM). CONCLUSIONS Emodepside is highly active against a broad range of nematode species both in vitro and in vivo. The development of emodepside for treating soil-transmitted helminth infections should be pursued.
Collapse
Affiliation(s)
- Tanja Karpstein
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Disease initiative, Chemin Louis-Dunant 15, 1202 Geneva, Switzerland
| | - Anna Neodo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Caenorhabditis elegans susceptibility to Daldinia cf. concentrica bioactive volatiles is coupled with expression activation of the stress-response transcription factor daf-16, a part of distinct nematicidal action. PLoS One 2018; 13:e0196870. [PMID: 29723292 PMCID: PMC5933902 DOI: 10.1371/journal.pone.0196870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
The bionematicidal effect of a synthetic volatile mixture (SVM) of four volatile organic compounds (VOCs) emitted by the endophytic fungus Daldinia cf. concentrica against the devastating plant-parasitic root-knot nematode Meloidogyne javanica has been recently demonstrated in both in vitro and greenhouse experiments. However, the mode of action governing the observed irreversible paralysis of J2 larvae upon exposure to SVM is unknown. To unravel the mechanism underlying the anthelmintic and nematicidal activities, we used the tractable model worm Caenorhabditis elegans. C. elegans was also susceptible to both the fungal VOCs and SVM. Among compounds comprising SVM, 3-methyl-1-butanol, (±)-2-methyl-1-butanol, and 4-heptanone showed significant nematicidal activity toward L1, L4 and young adult stages. Egg hatching was only negatively affected by 4-heptanone. To determine the mechanism underlying this activity, we examined the response of C. elegans mutants for glutamate-gated chloride channel and acetylcholine transporter, targets of the nematicidal drugs ivermectin and aldicarb, respectively, to 4-heptanone and SVM. These aldicarb- and ivermectin-resistant mutants retained susceptibility upon exposure to 4-heptanone and SVM. Next, we used C. elegans TJ356 strain zIs356 (daf-16::GFP+rol-6), LD1 ldIs7 [skn-1B/C::GFP + pRF4(rol-6(su1006))], LD1171 ldIs3 [gcs-1p::gfp; rol-6(su1006))], CL2166 dvIs19 (gst-4p::GFP) and CF1553 muIs84 (sod-3p::GFP+rol-6), which have mutations in genes regulating multiple stress responses. Following exposure of L4 larvae to 4-heptanone or SVM, there was clear nuclear translocation of DAF-16::GFP, and SKN-1::GFP indicating that their susceptibility involves DAF-16 and SKN1 regulation. Application of 4-heptanone, but not SVM, induced increased expression of, gcs-1::GFP and gst-4::GFP compared to controls. In contrast, application of 4-heptanone or SVM to the sod-3::GFP line elicited a significant decline in overall fluorescence intensity compared to controls, indicating SOD-3 downregulation and therefore overall reduction in cellular redox machinery. Our data indicate that the mode of action of SVM and 4-heptanone from D. cf. concentrica differs from that of currently available nematicides, potentially offering new solutions for nematode management.
Collapse
|
30
|
Weeks JC, Roberts WM, Leasure C, Suzuki BM, Robinson KJ, Currey H, Wangchuk P, Eichenberger RM, Saxton AD, Bird TD, Kraemer BC, Loukas A, Hawdon JM, Caffrey CR, Liachko NF. Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing. Sci Rep 2018; 8:975. [PMID: 29343694 PMCID: PMC5772060 DOI: 10.1038/s41598-017-18457-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
Parasitic helminths infect over 1 billion people worldwide, while current treatments rely on a limited arsenal of drugs. To expedite drug discovery, we screened a small-molecule library of compounds with histories of use in human clinical trials for anthelmintic activity against the soil nematode Caenorhabditis elegans. From this screen, we found that the neuromodulatory drugs sertraline, paroxetine, and chlorpromazine kill C. elegans at multiple life stages including embryos, developing larvae and gravid adults. These drugs act rapidly to inhibit C. elegans feeding within minutes of exposure. Sertraline, paroxetine, and chlorpromazine also decrease motility of adult Trichuris muris whipworms, prevent hatching and development of Ancylostoma caninum hookworms and kill Schistosoma mansoni flatworms, three widely divergent parasitic helminth species. C. elegans mutants with resistance to known anthelmintic drugs such as ivermectin are equally or more susceptible to these three drugs, suggesting that they may act on novel targets to kill worms. Sertraline, paroxetine, and chlorpromazine have long histories of use clinically as antidepressant or antipsychotic medicines. They may represent new classes of anthelmintic drug that could be used in combination with existing front-line drugs to boost effectiveness of anti-parasite treatment as well as offset the development of parasite drug resistance.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - William M Roberts
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Caitlyn Leasure
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D.C., 20052, USA
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Thomas D Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Neurology, University of Washington, Seattle, Washington, 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98104, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 98195, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98104, USA
- Department of Pathology, University of Washington, Seattle, Washington, 98195, USA
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - John M Hawdon
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D.C., 20052, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
31
|
The interactions of anthelmintic drugs with nicotinic receptors in parasitic nematodes. Emerg Top Life Sci 2017; 1:667-673. [PMID: 33525839 DOI: 10.1042/etls20170096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 02/01/2023]
Abstract
Parasitic nematodes express a large number of distinct nicotinic acetylcholine receptors and these in turn are the targets of many classes of anthelmintic drug. This complexity poses many challenges to the field, including sorting the exact subunit composition of each of the receptor subtypes and how much they vary between species. It is clear that the model organism Caenorhabditis elegans does not recapitulate the complexity of nicotinic pharmacology of many parasite species and data using this system may be misleading when applied to them. The number of different receptors may allow nematodes some plasticity which they can exploit to evolve resistance to a specific cholinergic drug; however, this may mean that combinations of cholinergic agents may be effective at sustainably controlling them. Resistance may involve the expression of truncated receptor subunits that affect the expression levels of the receptors via mechanisms that remain to be deciphered.
Collapse
|
32
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
33
|
Abongwa M, Martin RJ, Robertson AP. A BRIEF REVIEW ON THE MODE OF ACTION OF ANTINEMATODAL DRUGS. ACTA VET-BEOGRAD 2017; 67:137-152. [PMID: 29416226 DOI: 10.1515/acve-2017-0013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Anthelmintics are some of the most widely used drugs in veterinary medicine. Here we review the mechanism of action of these compounds on nematode parasites. Included are the older classes of compounds; the benzimidazoles, cholinergic agonists and macrocyclic lactones. We also consider newer anthelmintics, including emodepside, derquantel and tribendimidine. In the absence of vaccines for most parasite species, control of nematode parasites will continue to rely on anthelmintic drugs. As a consequence, vigilance in detecting drug resistance in parasite populations is required. Since resistance development appears almost inevitable, there is a continued and pressing need to fully understand the mode of action of these compounds. It is also necessary to identify new drug targets and drugs for the continued effective control of nematode parasites.
Collapse
Affiliation(s)
- Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| |
Collapse
|
34
|
Zeng R, Yu X, Tan X, Ye S, Ding Z. Deltamethrin affects the expression of voltage-gated calcium channel α1 subunits and the locomotion, egg-laying, foraging behavior of Caenorhabditis elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:84-90. [PMID: 28456310 DOI: 10.1016/j.pestbp.2017.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 02/13/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Deltamethrin belongs to the class of synthetic pyrethroids, which are being widely used as insecticides in agricultural practices. Voltage-gated sodium channels (VGSCs) are the primary targets of these chemicals for toxicity to insects. Caenorhabditis elegans (C. elegans) does not have VGSCs but is susceptible to deltamethrin. Recent findings have suggested that pyrethroids can affect voltage-gated calcium channels (VGCCs). However, it remains elusive whether deltamethrin induces toxicity to C. elegans via modulating the activity of VGCCs. To identify the potential target of deltamethrin, we exposed C. elegans to different concentrations of deltamethrin and Ca2+ channel blockers for different times, characterized the behavioral toxicity of deltamethrin on C. elegans, and determined the expression of egl-19, unc-2, and cca-1, which encode the α1-subunit of the L-, R/N/P/Q-, and T-type VGCC, respectively. We found that deltamethrin inhibited the locomotion, egg-laying and foraging ability of C. elegans in a concentration dependent manner. We also showed that body length of worms on agar plates containing 200mgL-1 deltamethrin for 12h was not significantly different from controls, whereas the cholinesterase inhibitor carbofuran caused hypercontraction which is a characteristic of organophosphates and carbamates, suggesting that deltamethrin's mode of action is distinct from those nematicides. In addition, unc-2 was significantly up-regulated following 0.05mgL-1 deltamethrin exposure for 24h; while egl-19 and cca-1 were significantly up-regulated following 5 and 50mgL-1 deltamethrin exposure for 24h. Further tests of worms' sensitivity and expression of three α1-subunits of VGCC to Ca2+ channel blockers indicate that deltamethrin may induce toxic behavior C. elegans via modulation of the expression of the α1-subunits of VGCC. This study provides insights into the linkage between deltamethrin-induced toxic behavior and the regulation of α1-subunits of VGCC in C. elegans.
Collapse
Affiliation(s)
- Rune Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xing Yu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xing Tan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Disease and Insect Pests, Changsha 410128, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Disease and Insect Pests, Changsha 410128, China.
| |
Collapse
|
35
|
Abongwa M, Buxton SK, Robertson AP, Martin RJ. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms. PLoS One 2016; 11:e0146854. [PMID: 26751958 PMCID: PMC4709073 DOI: 10.1371/journal.pone.0146854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/21/2015] [Indexed: 11/22/2022] Open
Abstract
Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex effects of macrocyclic lactones that may be exploited in combinations with other anthelmintics.
Collapse
Affiliation(s)
- Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Samuel K. Buxton
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
36
|
Adhesion GPCRs as Novel Actors in Neural and Glial Cell Functions: From Synaptogenesis to Myelination. Handb Exp Pharmacol 2016; 234:275-298. [PMID: 27832492 DOI: 10.1007/978-3-319-41523-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) are emerging as key regulators of nervous system development and health. aGPCRs can regulate many aspects of neural development, including cell signaling, cell-cell and cell-matrix interactions, and, potentially, mechanosensation. Here, we specifically focus on the roles of several aGPCRs in synapse biology, dendritogenesis, and myelinating glial cell development. The lessons learned from these examples may be extrapolated to other contexts in the nervous system and beyond.
Collapse
|
37
|
Courtot E, Charvet CL, Beech RN, Harmache A, Wolstenholme AJ, Holden-Dye L, O’Connor V, Peineau N, Woods DJ, Neveu C. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes. PLoS Pathog 2015; 11:e1005267. [PMID: 26625142 PMCID: PMC4666645 DOI: 10.1371/journal.ppat.1005267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
Abstract
Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.
Collapse
Affiliation(s)
- Elise Courtot
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Claude L. Charvet
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Robin N. Beech
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Institute of Parasitology, McGill University, Macdonald Campus, Sainte Anne de Bellevue, Québec, Canada
| | - Abdallah Harmache
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Adrian J. Wolstenholme
- Department of Infectious Disease and Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia, United States of America
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O’Connor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Nicolas Peineau
- Université François Rabelais de Tours, Département de physiologie animale, Tours, France
| | - Debra J. Woods
- Veterinary Medicine Research and Development, Zoetis LLC, Kalamazoo, Michigan, United States of America
| | - Cedric Neveu
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- * E-mail:
| |
Collapse
|
38
|
The Cyclooctadepsipeptide Anthelmintic Emodepside Differentially Modulates Nematode, Insect and Human Calcium-Activated Potassium (SLO) Channel Alpha Subunits. PLoS Negl Trop Dis 2015; 9:e0004062. [PMID: 26437177 PMCID: PMC4593646 DOI: 10.1371/journal.pntd.0004062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/17/2015] [Indexed: 01/12/2023] Open
Abstract
The anthelmintic emodepside paralyses adult filarial worms, via a mode of action distinct from previous anthelmintics and has recently garnered interest as a new treatment for onchocerciasis. Whole organism data suggest its anthelmintic action is underpinned by a selective activation of the nematode isoform of an evolutionary conserved Ca2+-activated K+ channel, SLO-1. To test this at the molecular level we compared the actions of emodepside at heterologously expressed SLO-1 alpha subunit orthologues from nematode (Caenorhabditis elegans), Drosophila melanogaster and human using whole cell voltage clamp. Intriguingly we found that emodepside modulated nematode (Ce slo-1), insect (Drosophila, Dm slo) and human (hum kcnma1)SLO channels but that there are discrete differences in the features of the modulation that are consistent with its anthelmintic efficacy. Nematode SLO-1 currents required 100 μM intracellular Ca2+ and were strongly facilitated by emodepside (100 nM; +73.0 ± 17.4%; n = 9; p<0.001). Drosophila Slo currents on the other hand were activated by emodepside (10 μM) in the presence of 52 nM Ca2+ but were inhibited in the presence of 290 nM Ca2+ and exhibited a characteristic loss of rectification. Human Slo required 300nM Ca2+ and emodepside transiently facilitated currents (100nM; +33.5 ± 9%; n = 8; p<0.05) followed by a sustained inhibition (-52.6 ± 9.8%; n = 8; p<0.001). This first cross phyla comparison of the actions of emodepside at nematode, insect and human channels provides new mechanistic insight into the compound’s complex modulation of SLO channels. Consistent with whole organism behavioural studies on C. elegans, it indicates its anthelmintic action derives from a strong activation of SLO current, not observed in the human channel. These data provide an important benchmark for the wider deployment of emodepside as an anthelmintic treatment. Filarial diseases affect an estimated 200 million people and the Drugs for Neglected Diseases initiative (DNDi) has identified development of macrofilaricidal drugs as a priority. Emodepside, currently used in companion animals, paralyses adult filarial worms and may address this unmet need for human medicine. Its receptor is an evolutionary conserved Ca2+-activated K+ channel, SLO-1. In this paper we address an important knowledge gap in terms of understanding the interaction of emodepside with its target receptor SLO-1 in nematodes in comparison to the human orthologue KCNMA1 and provide the first cross phyla analysis of the interaction of emodepside with slo channels, in nematode, insect and human. Intriguingly, this shows that emodepside modulates slo/BK currents from heterologously expressed channels from all three organisms, however there are discrete differences in the feature of modulation; only the nematode channel exhibits a sustained facilitation by emodepside. This is consistent with the effects of emodepside on C. elegans behaviour and indicates that this differential action of emodepside on the nematode channel likely underlies its potent anthelmintic effects. These data provide an important benchmark for the wider deployment of emodepside as an anthelmintic treatment.
Collapse
|
39
|
Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, Rajendran L, Glavin J, Hunter R, Redman E, Stasiuk S, Schertzberg M, Angus McQuibban G, Caffrey CR, Cutler SR, Tyers M, Giaever G, Nislow C, Fraser AG, MacRae CA, Gilleard J, Roy PJ. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun 2015; 6:7485. [PMID: 26108372 PMCID: PMC4491176 DOI: 10.1038/ncomms8485] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Parasitic nematodes infect one quarter of the world's population and impact all humans through widespread infection of crops and livestock. Resistance to current anthelmintics has prompted the search for new drugs. Traditional screens that rely on parasitic worms are costly and labour intensive and target-based approaches have failed to yield novel anthelmintics. Here, we present our screen of 67,012 compounds to identify those that kill the non-parasitic nematode Caenorhabditis elegans. We then rescreen our hits in two parasitic nematode species and two vertebrate models (HEK293 cells and zebrafish), and identify 30 structurally distinct anthelmintic lead molecules. Genetic screens of 19 million C. elegans mutants reveal those nematicides for which the generation of resistance is and is not likely. We identify the target of one lead with nematode specificity and nanomolar potency as complex II of the electron transport chain. This work establishes C. elegans as an effective and cost-efficient model system for anthelmintic discovery.
Collapse
Affiliation(s)
- Andrew R. Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Genna M. Luciani
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Gabriel Musso
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rachel Bagg
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - May Yeo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Yuqian Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Luckshika Rajendran
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - John Glavin
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Robert Hunter
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
| | - Susan Stasiuk
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
| | - Michael Schertzberg
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - G. Angus McQuibban
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases and Department of Pathology, University of California, San Francisco, California 94158, USA
| | - Sean R. Cutler
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada H3T 1J4
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Andy G. Fraser
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Calum A. MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - John Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
| | - Peter J. Roy
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
40
|
Martin RJ, Verma S, Choudhary S, Kashyap S, Abongwa M, Zheng F, Robertson AP. Anthelmintics: The best way to predict the future is to create it. Vet Parasitol 2015; 212:18-24. [PMID: 26138153 DOI: 10.1016/j.vetpar.2015.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/08/2015] [Accepted: 05/20/2015] [Indexed: 01/25/2023]
Abstract
'The best way to predict the future is to create it.' When we look at drugs that are used to control parasites, we see that new knowledge has been created (discovered) about their modes of action. This knowledge will allow us to predict combinations of drugs which can be used together rationally to increase the spectrum of action and to slow the development of anthelmintic resistance. In this paper we comment on some recent observations of ours on the modes of action of emodepside, diethylcarbamazine and tribendimidine. Emodepside increases the activation of a SLO-1 K(+) current inhibiting movement, and diethylcarbamazine has a synergistic effect on the effect of emodepside on the SLO-1 K(+) current, increasing the size of the response. The combination may be considered for further testing for therapeutic use. Tribendimidine is a selective cholinergic nematode B-subtype nAChR agonist, producing muscle depolarization and contraction. It has different subtype selectivity to levamisole and may be effective in the presence of some types of levamisole resistance. The new information about the modes of action may aid the design of rational drug combinations designed to slow the development of resistance or increase the spectrum of action.
Collapse
Affiliation(s)
- Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Melanie Abongwa
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Fudan Zheng
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
41
|
Yilmaz E, Kulke D, von Samson-Himmelstjerna G, Krücken J. Identification of novel splice variants of the voltage- and Ca²⁺-dependent K⁺-channel SLO-1 of Trichuris muris. Mol Biochem Parasitol 2015; 199:5-8. [PMID: 25779980 DOI: 10.1016/j.molbiopara.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 02/04/2023]
Abstract
The anthelmintic cyclooctadepsipeptide emodepside is effective against nematodes showing resistance against established drug classes. Emodepside exerts its nematicidal effects mainly through its validated target, the tetrameric voltage- and calcium-activated potassium channel SLO-1. Two slo-1 genes were described in Trichuris muris. Alternative splicing is known to alter SLO-1 properties. Here, 16 T. muris splice variants for slo-1.1 and three variants for slo-1.2 were identified in addition to previously described variants. Splice variants caused by intron retentions and/or exon exclusions encode varyingly truncated subunits. Depending on the subunit composition, channels might have altered physiological and pharmacological properties including different modulation by calcium and/or voltage or reduced emodepside susceptibility which might lead to emodepside resistance as observed in Caenorhabditis elegans expressing only similarly truncated Slo-1. The comprehensive characterisation of splice variants is a prerequisite for functional analysis and confirmed conservation of remarkable differences found between both slo-1 paralogs in Trichuris suis.
Collapse
Affiliation(s)
- Esra Yilmaz
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Daniel Kulke
- Global Drug Discovery - Animal Health - Parasiticides, Bayer HealthCare, 51368 Leverkusen, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| |
Collapse
|
42
|
Kulke D, von Samson-Himmelstjerna G, Miltsch SM, Wolstenholme AJ, Jex AR, Gasser RB, Ballesteros C, Geary TG, Keiser J, Townson S, Harder A, Krücken J. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside. PLoS Negl Trop Dis 2014; 8:e3401. [PMID: 25521608 PMCID: PMC4270693 DOI: 10.1371/journal.pntd.0003401] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among species. Most importantly, this study showed for the first time that emodepside directly opens a Slo-1 channel, significantly improving the understanding of the mode of action of this drug class.
Collapse
Affiliation(s)
- Daniel Kulke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Global Drug Discovery, Animal Health, Parasiticides, Bayer HealthCare, Leverkusen, Germany
| | | | - Sandra M. Miltsch
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Adrian J. Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Aaron R. Jex
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Cristina Ballesteros
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Simon Townson
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Harrow, Middlesex, United Kingdom
| | - Achim Harder
- WE Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Greenberg RM. Ion channels and drug transporters as targets for anthelmintics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014; 1:51-60. [PMID: 25554739 PMCID: PMC4278637 DOI: 10.1007/s40588-014-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance.
Collapse
Affiliation(s)
- Robert M Greenberg
- Department of Pathobiology School of Veterinary Medicine University of Pennsylvania 3800 Spruce Street Philadelphia PA 19104 Tel: 215-898-5678
| |
Collapse
|
44
|
Sivanathan S, Scherkenbeck J. Cyclodepsipeptides: a rich source of biologically active compounds for drug research. Molecules 2014; 19:12368-420. [PMID: 25153863 PMCID: PMC6271018 DOI: 10.3390/molecules190812368] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 01/08/2023] Open
Abstract
Faced with the need to find new drugs for all kinds of diseases, science sees that Nature offers numerous classes of compounds showing an impressively high biological potential. Among those are the cyclodepsipeptides, hybrid structures composed of amino and hydroxy acids. In the past decades numerous cyclodepsipeptides have been isolated and their potential as drugs has been studied extensively. For several cyclodepsipeptides total syntheses both in solution and on solid-phase have been established, allowing the production of combinatorial libraries. In addition, the biosynthesis of specific cyclodepsipeptides has been elucidated and used for the chemoenzymatic preparation of nonnatural analogues. This review summarizes the recent literature on cyclic tetra- to decadepsipeptides, composed exclusively of α-amino- and α-hydroxy acids.
Collapse
Affiliation(s)
- Sivatharushan Sivanathan
- Bergische Universität Wuppertal, Fachgruppe C, Organic Chemistry, Gaußstraße 20, Wuppertal 42119, Germany.
| | - Jürgen Scherkenbeck
- Bergische Universität Wuppertal, Fachgruppe C, Organic Chemistry, Gaußstraße 20, Wuppertal 42119, Germany.
| |
Collapse
|
45
|
Roy S, Large RJ, Akande AM, Kshatri A, Webb TI, Domene C, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA. Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels. Eur J Med Chem 2014; 75:426-37. [PMID: 24561672 DOI: 10.1016/j.ejmech.2014.01.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
We have designed, synthesised and characterised the effects of a number of novel anthraquinone derivatives and assessed their effects on large conductance, Ca(2+) activated K(+) (BK) channels recorded from rabbit bladder smooth muscle cells using the excised, inside/out configuration of the patch clamp technique. These compounds are members of the GoSlo-SR family of compounds, which potently open BK channels and shift the voltage required for half maximal activation (V1/2) negatively. The efficacy of the anilinoanthraquinone derivatives was enhanced when the size of ring D was increased, since the cyclopentane and cyclohexane derivatives shifted the V1/2, by -24 ± 6 mV and -54 ± 8 mV, respectively, whereas the cycloheptane and cyclooctane derivatives shifted the V1/2 by -61 ± 6 mV and -106 ± 6 mV. To examine if a combination of hydrophobicity and steric bulking of this region further enhanced their ability to open BK channels, we synthesised a number of naphthalene and tetrahydro-naphthalene derivatives. The tetrahydro-2-naphthalene derivative GoSlo-SR-5-69 was the most potent and efficacious of the series since it was able to shift the activation V1/2 by greater than -100 mV when applied at a concentration of 1 μM and had an EC50 of 251 nM, making it one of the most potent and efficacious BK channel openers synthesised to date.
Collapse
Affiliation(s)
- Subhrangsu Roy
- Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Roddy J Large
- Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Adebola Morayo Akande
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Aravind Kshatri
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Tim I Webb
- Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Carmen Domene
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; Department of Chemistry, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Gerard P Sergeant
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Noel G McHale
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Keith D Thornbury
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland
| | - Mark A Hollywood
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland; Ion Channel Biotechnology Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, County Louth, Ireland.
| |
Collapse
|
46
|
Kulke D, Krücken J, Harder A, von Samson-Himmelstjerna G. Efficacy of cyclooctadepsipeptides and aminophenylamidines against larval, immature and mature adult stages of a parasitologically characterized trichurosis model in mice. PLoS Negl Trop Dis 2014; 8:e2698. [PMID: 24587460 PMCID: PMC3930511 DOI: 10.1371/journal.pntd.0002698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/02/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The genus Trichuris includes parasites of major relevance in veterinary and human medicine. Despite serious economic losses and enormous impact on public health, treatment options against whipworms are very limited. Additionally, there is an obvious lack of appropriately characterized experimental infection models. Therefore, a detailed parasitological characterization of a Trichuris muris isolate was performed in C57BL/10 mice. Subsequently, the in vivo efficacies of the aminophenylamidines amidantel, deacylated amidantel (dAMD) and tribendimidine as well as the cyclooctadepsipeptides emodepside and in particular PF1022A were analyzed. This was performed using various administration routes and treatment schemes targeting histotropic and further developed larval as well as immature and mature adult stages. METHODOLOGY/PRINCIPAL FINDINGS Duration of prepatent period, time-dependent localization of larvae during period of prepatency as well as the duration of patency of the infection were determined before drugs were tested in the characterized trichurosis model. Amidantel showed no effect against mature adult T. muris. Tribendimidine showed significantly higher potency than dAMD after oral treatments (ED50 values of 6.5 vs. 15.1 mg/kg). However, the opposite was found for intraperitoneal treatments (ED50 values of 15.3 vs. 8.3 mg/kg). When emodepside and PF1022A were compared, the latter was significantly less effective against mature adults following intraperitoneal (ED50 values of 6.1 vs. 55.7 mg/kg) or subcutaneous (ED50 values of 15.2 vs. 225.7 mg/kg) administration. Only minimal differences were observed following oral administration (ED50 values of 2.7 vs. 5.2 mg/kg). Triple and most single oral doses with moderate to high dosages of PF1022A showed complete efficacy against histotropic second stage larvae (3 × 100 mg/kg or 1 × 250 mg/kg), further developed larvae (3 × 10 mg/kg or 1 × 100 mg/kg) and immature adults (3 × 10 mg/kg or 1×100 mg/kg). Histotropic first stage larvae were only eliminated after three doses of PF1022A (3 × 100 mg/kg) but not after a single dose. CONCLUSIONS/SIGNIFICANCE These results indicate that the cyclooctadepsipeptides are a drug class with promising candidates for further evaluation for the treatment of trichurosis of humans and livestock animals in single dose regimens.
Collapse
Affiliation(s)
- Daniel Kulke
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Global Drug Discovery – Animal Health – Parasiticides, Bayer HealthCare, Leverkusen, Germany
| | - Jürgen Krücken
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Achim Harder
- WE Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
47
|
Kearn J, Ludlow E, Dillon J, O'Connor V, Holden-Dye L. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 109:44-57. [PMID: 24581383 DOI: 10.1016/j.pestbp.2014.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Plant parasitic nematodes infest crops and present a threat to food security worldwide. Currently available chemical controls e.g. methyl bromide, organophosphates and carbamates have an unacceptable level of toxicity to non-target organisms and are being withdrawn from use. Fluensulfone is a new nematicide of the fluoroalkenyl thioether group that has significantly reduced environmental impact with low toxicity to non-target insects and mammals. Here, we show that the model genetic organism Caenorhabditis elegans is susceptible to the irreversible nematicidal effects of fluensulfone. Whilst the dose required is higher than that which has nematicidal activity against Meloidogyne spp. the profile of effects on motility, egg-hatching and survival is similar to that reported for plant parasitic nematodes. C. elegans thus provides a tractable experimental paradigm to analyse the effects of fluensulfone on nematode behaviour. We find that fluensulfone has pleiotropic actions and inhibits development, egg-laying, egg-hatching, feeding and locomotion. In the case of feeding and locomotion, an early excitation precedes the gross inhibition. The profile of these effects is notably distinct from other classes of anthelmintic and nematicide: the inhibition of motility caused by fluensulfone is not accompanied by the hypercontraction which is characteristic of organophosphates and carbamates and C. elegans mutants that are resistant to the carbamate aldicarb and the macrocyclic lactone ivermectin retain susceptibility to fluensulfone. These data indicate fluensulfone's mode of action is distinct from currently available nematicides and it therefore presents a promising new chemical entity for crop protection.
Collapse
Affiliation(s)
- James Kearn
- Centre for Biological Sciences, University of Southampton, Building 85, University Road, Southampton SO17 1BJ, United Kingdom
| | - Elizabeth Ludlow
- Centre for Biological Sciences, University of Southampton, Building 85, University Road, Southampton SO17 1BJ, United Kingdom
| | - James Dillon
- Centre for Biological Sciences, University of Southampton, Building 85, University Road, Southampton SO17 1BJ, United Kingdom
| | - Vincent O'Connor
- Centre for Biological Sciences, University of Southampton, Building 85, University Road, Southampton SO17 1BJ, United Kingdom
| | - Lindy Holden-Dye
- Centre for Biological Sciences, University of Southampton, Building 85, University Road, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
48
|
Affiliation(s)
- James J. Collins
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Geary TG, Mackenzie CD. Progress and challenges in the discovery of macrofilaricidal drugs. Expert Rev Anti Infect Ther 2013; 9:681-95. [PMID: 21819332 DOI: 10.1586/eri.11.76] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Control of human filarial infections currently depends on chemotherapeutic strategies predominantly directed at microfilariae. Doxycycline therapy in an extended daily dose regimen sterilizes and kills adult stages, but the utility of this drug for routine field use remains an issue of concern. No macrofilaricidal drugs with efficacy after one or two doses are available for use, delaying the achievement of the elimination or eradication of onchocerciasis and lymphatic filariasis. Moxidectin, a macrocyclic lactone, is currently in clinical trials for onchocerciasis. A few other drugs that have already been approved for use in veterinary practice or in human medicine for other indications are available for investigation. Early drug discovery pipelines are poorly populated and the process of macrofilaricide discovery and development remains highly challenging. In particular, the lack of convenient, validated animal models in an antifilarial drug discovery pathway is an unresolved issue.
Collapse
Affiliation(s)
- Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue QC, H9X 3V9, Canada.
| | | |
Collapse
|
50
|
In vivo efficacy of PF1022A and nicotinic acetylcholine receptor agonists alone and in combination against Nippostrongylus brasiliensis. Parasitology 2013; 140:1252-65. [PMID: 23742764 DOI: 10.1017/s0031182013000632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cyclooctadepsipeptide PF1022A and the aminophenylamidines amidantel, deacylated amidantel (dAMD) and tribendimidine were tested as examples for drug classes potentially interesting for development as anthelmintics against human helminthiases. These compounds and levamisole were tested alone and in combination to determine their efficacy against the rat hookworm Nippostrongylus brasiliensis. After three oral treatments, intestinal worms were counted. Drug effects on parasite morphology were studied using scanning electron microscopy (SEM). Plasma pharmacokinetics were determined for tribendimidine and dAMD. All drugs reduced worm burden in a dose-dependent manner, however amidantel was significantly less active than the other aminophenylamidines. Combinations of tribendimidine and dAMD with levamisole or PF1022A at suboptimal doses revealed additive effects. While PF1022A caused virtually no changes in morphology, levamisole, dAMD and tribendimidine caused severe contraction, particularly in the hind body region. Worms exposed to combinations of PF1022A and aminophenylamidines were indistinguishable from worms exposed only to aminophenylamidines. After oral treatment with tribendimidine, only the active metabolite dAMD was detectable in plasma and concentrations were not significantly different for oral treatment with dAMD. The results support further evaluation of cyclooctadepsipeptides alone and in combination with cholinergic drugs to improve efficacy. Combining these with registered drugs may help to prevent development of resistance.
Collapse
|