1
|
Lespine A, Blancfuney C, Prichard R, Alberich M. P-glycoproteins in anthelmintic safety, efficacy, and resistance. Trends Parasitol 2024; 40:896-913. [PMID: 39168719 DOI: 10.1016/j.pt.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
P-glycoprotein (PGP) is a pivotal transmembrane transporter governing the cellular flux of diverse substances shielding mammals from toxics. It can thwart the effectiveness of medicines such as ivermectin (IVM) and other macrocyclic lactone (ML) anthelmintics, undermining therapeutic efforts. We analyze the role of PGPs in limiting the toxicity of these drugs in hosts, and their potential contribution to anthelmintic resistance in nematodes. Targeting nematode PGPs to increase drug sensitivity to MLs seems interesting, but is hampered by the lack of selective inhibitors. The nuclear hormone receptor (NHR)-8 should be seriously considered as a target because it upregulates multiple PGPs involved in anthelmintic resistance and it is specific to nematodes. This would advance our understanding of host-pathogen dynamics and foster innovative therapeutic strategies.
Collapse
Affiliation(s)
- Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | - Roger Prichard
- Institute of Parasitology, McGill University, Ste Anne-de-Bellevue, Canada
| | | |
Collapse
|
2
|
Tong D, Wu F, Chen X, Du Z, Zhou J, Zhang J, Yang Y, Du A, Ma G. The mrp-3 gene is involved in haem efflux and detoxification in a blood-feeding nematode. BMC Biol 2024; 22:199. [PMID: 39256727 PMCID: PMC11389519 DOI: 10.1186/s12915-024-02001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). RESULTS Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). CONCLUSIONS These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.
Collapse
Affiliation(s)
- Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jingju Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
3
|
Mwacalimba K, Sheehy J, Adolph C, Savadelis M, Kryda K, Poulsen Nautrup B. A review of moxidectin vs. other macrocyclic lactones for prevention of heartworm disease in dogs with an appraisal of two commercial formulations. Front Vet Sci 2024; 11:1377718. [PMID: 38978634 PMCID: PMC11229481 DOI: 10.3389/fvets.2024.1377718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Macrocyclic lactones (MLs) are the only drug class currently licensed for heartworm disease prophylaxis. Macrocyclic lactones kill third- and fourth-stage larvae of Dirofilaria immitis, thus preventing the development of adult worms in dogs, which are responsible for heartworm disease, a potentially life-threatening condition. Despite considerable overlap in terms of endectocide spectrum, several important differences distinguish moxidectin from other MLs. Moxidectin has beneficial pharmacokinetic characteristics, such as a longer half-life and greater tissue distribution compared to ivermectin. Additionally, moxidectin has a greater margin of safety compared to ivermectin in dogs with ABCB1 (previously MDR1) gene-defect, which is commonly recognized in collies and other breeds. Multiple laboratory studies have shown that moxidectin is more effective than other commonly used heartworm preventives against resistant strains of D. immitis. This improved efficacy benefits individual dogs and helps reduce the risk of spreading resistant strains within the community. Despite the presence of proven resistant strains in the United States, non-compliance with preventive measures remains a major factor contributing to the diagnosis of heartworm disease in dogs. In retrospective analyses, the oral moxidectin combination product Simparica Trio® (sarolaner, moxidectin, and pyrantel) was associated with increased compliance, resulting in more time of protection compared to dogs receiving flea/tick and heartworm preventive products separately. Compliance with the extended-release moxidectin injectables ProHeart® 6 and ProHeart® 12 was higher than with monthly heartworm preventives, as they provide 6 months or a full year of protection with one single injection, respectively, and revenues remain in the veterinary clinics as injectable moxidectin cannot be sourced through online retailers.
Collapse
Affiliation(s)
| | - Jenifer Sheehy
- Veterinary Professional Services, Zoetis, Parsippany, NJ, United States
| | | | - Molly Savadelis
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | - Kristina Kryda
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | | |
Collapse
|
4
|
Hellinga JR, Krücken J, Schulenburg H, von Samson-Himmelstjerna G. Use of Viscous medium to study anthelmintic drug action in Caenorhabditis elegans. Sci Rep 2024; 14:12756. [PMID: 38830930 PMCID: PMC11148144 DOI: 10.1038/s41598-024-63090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Caenorhabditis elegans is an appealing tool for experimental evolution and for working with antiparasitic drugs, from understanding the molecular mechanisms of drug action and resistance to uncover new drug targets. We present a new methodology for studying the impact of antiparasitic drugs in C. elegans. Viscous medium was initially designed for C. elegans maintenance during long-term evolution experiments. Viscous medium provides a less structured environment than the standard nematode growth media agar, yet the bacteria food source remains suspended. Further, the Viscous medium offers the worm population enough support to move freely, mate, and reproduce at a rate comparable to standard agar cultures. Here, the Viscous medium was adapted for use in antiparasitic research. We observed a similar sensitivity of C. elegans to anthelmintic drugs as in standard liquid media and statistical difference to the standard agar media through a larval development assay. Using Viscous medium in C. elegans studies will considerably improve antiparasitic resistance research, and this medium could be used in studies aimed at understanding long-term multigenerational drug activity.
Collapse
Affiliation(s)
- Jacqueline R Hellinga
- Institute für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Robert von Ostertag Str. 7, 14163, Berlin, Germany
| | - Jürgen Krücken
- Institute für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Robert von Ostertag Str. 7, 14163, Berlin, Germany
| | - Hinrich Schulenburg
- Zoologisches Institut, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Georg von Samson-Himmelstjerna
- Institute für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Robert von Ostertag Str. 7, 14163, Berlin, Germany.
| |
Collapse
|
5
|
Stryiński R, Polak I, Gawryluk A, Rosa P, Łopieńska-Biernat E. The response of Anisakis simplex (s. s.) to anthelmintics - Specific changes in xenobiotic metabolic processes. Exp Parasitol 2024; 261:108751. [PMID: 38604302 DOI: 10.1016/j.exppara.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Anisakiasis is a parasitic disease transmitted through the consumption of raw or undercooked fish and cephalopods that are infected with larvae of Anisakis simplex (sensu stricto) or Anisakis pegreffii. The purpose of this study was to investigate how A. simplex (s. s.) responds to the influence of anthelmintics such as ivermectin (IVM) and pyrantel (PYR). In vitro experiments were conducted using larvae at two developmental stages of A. simplex (s. s.) (L3 and L4) obtained from Baltic herring (Clupea harengus membras). Larvae were cultured with different concentrations of IVM or PYR (1.56, 3.125, and 6.25 μg/mL) for various durations (3, 6, 9, and 12 h) under anaerobic conditions (37 °C, 5% CO2). The gene expression of actin, ABC transporter, antioxidant enzymes, γ-aminobutyric acid receptors, and nicotinic acetylcholine receptors, as well as the oxidative status were analyzed. The results showed that A. simplex (s. s.) L3 stage had lower mobility when cultured with PYR compared to IVM. The analysis of relative gene expression revealed significant differences in the mRNA level of ABC transporters after treatment with IVM and PYR, compared to the control group. Similar patterns were observed in the gene expression of antioxidant enzymes in response to both drugs. Furthermore, the total antioxidant capacity (TAC) and glutathione S-transferase (GST) activity were higher in the treatment groups than in the control group. These findings suggest a relationship between the expression of the studied genes, including those related to oxidative metabolism, and the effectiveness of the tested drugs.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| | - Iwona Polak
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| | - Anna Gawryluk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| | - Paweł Rosa
- National Marine Fisheries Research Institute, Research Station in Świnoujście, Plac Słowiański 11 Str., 72-600, Świnoujście, Poland.
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A Str., 10-719, Olsztyn, Poland.
| |
Collapse
|
6
|
Furnival-Adams J, Kiuru C, Sagna AB, Mouline K, Maia M, Chaccour C. Ivermectin resistance mechanisms in ectoparasites: a scoping review. Parasitol Res 2024; 123:221. [PMID: 38787430 PMCID: PMC11126493 DOI: 10.1007/s00436-024-08223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Ivermectin mass drug administration has been used for decades to target human and veterinary ectoparasites, and is currently being considered for use against malaria vectors. Although there have been few reports of resistance to date in human ectoparasites, we must anticipate the development of resistance in mosquitoes in the future. Hence, through this review, we mapped the existing evidence on ivermectin resistance mechanisms in human ectoparasites. A search was conducted on the 8th November 2023 through databases, PubMed, Web of Science, and Google Scholar, using terms related to ivermectin, human and veterinary ectoparasites, and resistance. Abstracts (5893) were screened by JFA and CK. Data on the study organism, the type of resistance, the analysis methods, and, where applicable, the gene loci of interest were extracted from the studies. Details of the methodology and results of each study were summarised narratively and in a table. Eighteen studies were identified describing ivermectin resistance in ectoparasites. Two studies described target site resistance; and 16 studies reported metabolic resistance and/or changes in efflux pump expression. The studies investigated genetic mutations in resistant organisms, detoxification, and efflux pump expression in resistant versus susceptible organisms, and the effect of synergists on mortality or detoxification enzyme/efflux pump transcription. To date, very few studies have been conducted examining the mechanisms of ivermectin resistance in ectoparasites, with only two on Anopheles spp. Of the existing studies, most examined detoxification and efflux pump gene expression, and only two studies in lice investigated target-site resistance. Further research in this field should be encouraged, to allow for close monitoring in ivermectin MDA programmes, and the development of resistance mitigation strategies.
Collapse
Affiliation(s)
- Joanna Furnival-Adams
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Caroline Kiuru
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Karine Mouline
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Marta Maia
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Carlos Chaccour
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Ali MM, Farhad Z, Wasim M, Raza S, Almutairi MH, Zahra K, Saleem MU, Mehmood K. Evaluation of genotoxic effect via expression of DNA damage responsive gene induced by ivermectin on MDBK cell line. PLoS One 2024; 19:e0296255. [PMID: 38701093 PMCID: PMC11068189 DOI: 10.1371/journal.pone.0296255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 05/05/2024] Open
Abstract
Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.
Collapse
Affiliation(s)
- Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zainab Farhad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Wasim
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kainat Zahra
- Henry C. Lee Institute of Forensic Science, University of New Haven, West Haven, CT, United States of America
| | - Muhammad Usman Saleem
- Faculty of Veterinary Sciences, Department of Biosciences, Bahauddin Zakariya University, Bosan Road, Multan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, Department of Clinical Medicine and Surgery, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
8
|
Shaver AO, Miller IR, Schaye ES, Moya ND, Collins JB, Wit J, Blanco AH, Shao FM, Andersen EJ, Khan SA, Paredes G, Andersen EC. Quantifying the fitness effects of resistance alleles with and without anthelmintic selection pressure using Caenorhabditis elegans. PLoS Pathog 2024; 20:e1012245. [PMID: 38768235 PMCID: PMC11142691 DOI: 10.1371/journal.ppat.1012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Albendazole (a benzimidazole) and ivermectin (a macrocyclic lactone) are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channels (GluCls), but it is unknown whether GluCl genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of-function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required the loss of two GluCl genes (avr-14 and avr-15). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole conditions and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.
Collapse
Affiliation(s)
- Amanda O. Shaver
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Isabella R. Miller
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Etta S. Schaye
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolas D. Moya
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J. B. Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Alyssa H. Blanco
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Fiona M. Shao
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Elliot J. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sharik A. Khan
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Gracie Paredes
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Brinzer RA, Winter AD, Page AP. The relationship between intraflagellar transport and upstream protein trafficking pathways and macrocyclic lactone resistance in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae009. [PMID: 38227795 PMCID: PMC10917524 DOI: 10.1093/g3journal/jkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Parasitic nematodes are globally important and place a heavy disease burden on infected humans, crops, and livestock, while commonly administered anthelmintics used for treatment are being rendered ineffective by increasing levels of resistance. It has recently been shown in the model nematode Caenorhabditis elegans that the sensory cilia of the amphid neurons play an important role in resistance toward macrocyclic lactones such as ivermectin (an avermectin) and moxidectin (a milbemycin) either through reduced uptake or intertissue signaling pathways. This study interrogated the extent to which ciliary defects relate to macrocyclic lactone resistance and dye-filling defects using a combination of forward genetics and targeted resistance screening approaches and confirmed the importance of intraflagellar transport in this process. This approach also identified the protein trafficking pathways used by the downstream effectors and the components of the ciliary basal body that are required for effector entry into these nonmotile structures. In total, 24 novel C. elegans anthelmintic survival-associated genes were identified in this study. When combined with previously known resistance genes, there are now 46 resistance-associated genes that are directly involved in amphid, cilia, and intraflagellar transport function.
Collapse
Affiliation(s)
- Robert A Brinzer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Alan D Winter
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| |
Collapse
|
10
|
Chen X, Wang T, Guo W, Yan X, Kou H, Yu Y, Liu C, Gao W, Wang W, Wang R. Transcriptome reveals the roles and potential mechanisms of lncRNAs in the regulation of albendazole resistance in Haemonchus contortus. BMC Genomics 2024; 25:188. [PMID: 38368335 PMCID: PMC10873934 DOI: 10.1186/s12864-024-10096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Haemonchus contortus (H. contortus) is the most common parasitic nematode in ruminants and is prevalent worldwide. H. contortus resistance to albendazole (ABZ) hinders the efficacy of anthelmintic drugs, but little is known about the molecular mechanisms that regulate this of drug resistance. Recent research has demonstrated that long noncoding RNAs (lncRNAs) can exert significant influence as pivotal regulators of the emergence of drug resistance. RESULTS In this study, transcriptome sequencing was conducted on both albendazole-sensitive (ABZ-sensitive) and albendazole-resistant (ABZ-resistant) H. contortus strains, with three biological replicates for each group. The analysis of lncRNA in the transcriptomic data revealed that there were 276 differentially expressed lncRNA (DElncRNA) between strains with ABZ-sensitive and ABZ-resistant according to the criteria of |log2Foldchange|≥ 1 and FDR < 0.05. Notably, MSTRG.12969.2 and MSTRG.9827.1 exhibited the most significant upregulation and downregulation, respectively, in the resistant strains. The potential roles of the DElncRNAs included catalytic activity, stimulus response, regulation of drug metabolism, and modulation of the immune response. Moreover, we investigated the interactions between DElncRNAs and other RNAs, specifically MSTRG.12741.1, MSTRG.11848.1, MSTRG.5895.1, and MSTRG.14070.1, involved in regulating drug stimulation through cis/trans/antisense/lncRNA‒miRNA-mRNA interaction networks. This regulation leads to a decrease (or increase) in the expression of relevant genes, consequently enhancing the resistance of H. contortus to albendazole. Furthermore, through comprehensive analysis of competitive endogenous RNAs (ceRNAs) involved in drug resistance-related pathways, such as the mTOR signalling pathway and ABC transporter signalling pathway, the relevance of the MSTRG.2499.1-novel-m0062-3p-HCON_00099610 interaction was identified to mainly involve the regulation of catalytic activity, metabolism, ubiquitination and transcriptional regulation of gene promoters. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) validation indicated that the transcription profiles of six DElncRNAs and six DEmRNAs were consistent with those obtained by RNA-seq. CONCLUSIONS The results of the present study allowed us to better understand the changes in the lncRNA expression profile of ABZ-resistant H. contortus. In total, these results suggest that the lncRNAs MSTRG.963.1, MSTRG.12741.1, MSTRG.11848.1 and MSTRG.2499.1 play important roles in the development of ABZ resistance and can serve as promising biomarkers for further study.
Collapse
Affiliation(s)
- Xindi Chen
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China
| | - Tengyu Wang
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China
| | - Wenrui Guo
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China
| | - Xu Yan
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China
| | - Huilin Kou
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China
| | - Yu Yu
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China
| | - Chunxia Liu
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia Municipality, China
| | - Wa Gao
- Inner Mongolia Key Laboratory of Tick-Borne Zoonotic Infectious Disease, Department of Medicine, Hetao College, Bayan Nur, 015000, Inner Mongolia Autonomous Region, China
| | - Wenlong Wang
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China.
| | - Rui Wang
- Key Laboratory of Animal Disease Clinical Diagnosis and Treatment Technology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Ordos Street, Hohhot, 010018, Inner Mongolia Municipality, China.
| |
Collapse
|
11
|
Nogrado K, Adisakwattana P, Reamtong O. Human gnathostomiasis: A review on the biology of the parasite with special reference on the current therapeutic management. Food Waterborne Parasitol 2023; 33:e00207. [PMID: 37719690 PMCID: PMC10502356 DOI: 10.1016/j.fawpar.2023.e00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Gnathostoma is a parasitic nematode that can infect a wide range of animal species, but human populations have become accidental hosts because of their habit of eating raw or undercooked meat from a wide variety of intermediate hosts. While gnathostomiasis is considered an endemic disease, cases of human gnathostomiasis have been increasing over time, most notably in nonendemic areas. There are several complexities to this parasitic disease, and this review provides an update on human gnathostomiasis, including the life cycle, diagnosis, treatment, and treatment strategies used to combat drug resistance. Even now, a definitive diagnosis of gnathostomiasis is still challenging because it is difficult to isolate larvae for parasitological confirmation. Another reason is the varying clinical symptoms recorded in reported cases. Clinical cases can be confirmed by immunodiagnosis. For Gnathosotoma spinigerum, the detection of IgG against a specific antigenic band with a molecular weight of 24 kDa from G. spinigerum advanced third-stage larvae (aL3), while for other species of Gnathostoma including G. binucleatum, the 33-kDa antigen protein is being used. This review also discusses cases of recurrence of gnathostomiasis and resistance mechanisms to two effective chemotherapeutics (albendazole and ivermectin) used against gnathostomiasis. This is significant, especially when planning strategies to combat anthelmintic resistance. Lastly, while no new chemotherapeutics against gnathostomiasis have been made available, we describe the management of recurrent gnathostomiasis using albendazole and ivermectin combinations or extensions of drug treatment plans.
Collapse
Affiliation(s)
- Kathyleen Nogrado
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
13
|
Hajdú G, Somogyvári M, Csermely P, Sőti C. Lysosome-related organelles promote stress and immune responses in C. elegans. Commun Biol 2023; 6:936. [PMID: 37704756 PMCID: PMC10499889 DOI: 10.1038/s42003-023-05246-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Lysosome-related organelles (LROs) play diverse roles and their dysfunction causes immunodeficiency. However, their primordial functions remain unclear. Here, we report that C. elegans LROs (gut granules) promote organismal defenses against various stresses. We find that toxic benzaldehyde exposure induces LRO autofluorescence, stimulates the expression of LRO-specific genes and enhances LRO transport capacity as well as increases tolerance to benzaldehyde, heat and oxidative stresses, while these responses are impaired in glo-1/Rab32 and pgp-2 ABC transporter LRO biogenesis mutants. Benzaldehyde upregulates glo-1- and pgp-2-dependent expression of heat shock, detoxification and antimicrobial effector genes, which requires daf-16/FOXO and/or pmk-1/p38MAPK. Finally, benzaldehyde preconditioning increases resistance against Pseudomonas aeruginosa PA14 in a glo-1- and pgp-2-dependent manner, and PA14 infection leads to the deposition of fluorescent metabolites in LROs and induction of LRO genes. Our study suggests that LROs may play a role in systemic responses to stresses and in pathogen resistance.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Milán Somogyvári
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Raza A, Williams AR, Abeer MM. Importance of ABC Transporters in the Survival of Parasitic Nematodes and the Prospect for the Development of Novel Control Strategies. Pathogens 2023; 12:755. [PMID: 37375445 DOI: 10.3390/pathogens12060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
ABC transporters, a family of ATP-dependent transmembrane proteins, are responsible for the active transport of a wide range of molecules across cell membranes, including drugs, toxins, and nutrients. Nematodes possess a great diversity of ABC transporters; however, only P-glycoproteins have been well-characterized compared to other classes. The ABC transport proteins have been implicated in developing resistance to various classes of anthelmintic drugs in parasitic nematodes; their role in plant and human parasitic nematodes still needs further investigation. Therefore, ABC transport proteins offer a potential opportunity to develop nematode control strategies. Multidrug resistance inhibitors are becoming more attractive for controlling nematodes due to their potential to increase drug efficacy in two ways: (i) by limiting drug efflux from nematodes, thereby increasing the amount of drug that reaches its target site, and (ii) by reducing drug excretion by host animals, thereby enhancing drug bioavailability. This article reviews the role of ABC transporters in the survival of parasitic nematodes, including the genes involved, their regulation and physiological roles, as well as recent developments in their characterization. It also discusses the association of ABC transporters with anthelmintic resistance and the possibility of targeting them with next-generation inhibitors or nutraceuticals (e.g., polyphenols) to control parasitic infections.
Collapse
Affiliation(s)
- Ali Raza
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Frederiksberg, Denmark
| | | |
Collapse
|
15
|
Liu Y, Wang X, Luo X, Wang R, Zhai B, Wang P, Li J, Yang X. Transcriptomics and Proteomics of Haemonchus contortus in Response to Ivermectin Treatment. Animals (Basel) 2023; 13:ani13050919. [PMID: 36899776 PMCID: PMC10000067 DOI: 10.3390/ani13050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A major problem faced by the agricultural industry is the resistance of Haemonchus contortus to anthelmintic drugs. For a better understanding of the response of H. contortus to IVM and for the screening of drug-resistance-related genes, we used RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) technology to detect the transcriptomic and proteomic changes in H. contortus after ivermectin treatment. An integrated analysis of the two omics showed that the differentially expressed genes and proteins were significantly enriched in the pathways of amino acid degradation, the metabolism of xenobiotics by cytochrome P450, the biosynthesis of amino acids, and the tricarboxylic acid cycle. We found that the upregulated UDP-glycosyltransferases (UGT), glutathione S-transferase (GST), cytochrome P450 (CYP), and p-glycoprotein (Pgp) genes play important roles in drug resistance in H. contortus. Our work will help in the understanding of the transcriptome and proteome changes in H. contortus after IVM and will facilitate the discovery of genes related to drug resistance. This information can be further applied to increase the understanding of the response of IVM in relation to H. contortus.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaomin Wang
- The Bureau of Agriculture and Animal Husbandry of Kalaqin Banner, Chifeng 024400, China
- Correspondence: (X.W.); (X.Y.)
| | - Xiaoping Luo
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
| | - Penglong Wang
- Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyan Li
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (X.W.); (X.Y.)
| |
Collapse
|
16
|
Ferreira LC, Lima EF, Silva ALP, Feitosa TF, Klafke GM, Vilela VLR. Effect of cyclosporin A on the toxicity of ivermectin, eprinomectin and moxidectin in populations of Rhipicephalus microplus. Ticks Tick Borne Dis 2023; 14:102113. [PMID: 36565601 DOI: 10.1016/j.ttbdis.2022.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Rhipicephalus microplus is mainly controlled by acaricides. However, reports of resistance to acaricides including macrocyclic lactones (MLs) have become frequent worldwide. Involvement of ABC transporters (ABCts) in populations resistant to ivermectin has been demonstrated. Thus, the aim of this study was to evaluate the efficacy of ivermectin, eprinomectin and moxidectin with and without use of synergistic cyclosporin A (CsA) in resistant populations of R. microplus using larval immersion tests (LITs). Engorged females were collected from four farms in the semiarid region of northeastern Brazil that had histories of continuous use of ivermectin. Questionnaires were applied to collect information about management aimed at controlling ticks on these farms. Resistance to MLs was observed on all of the farms. There was statistically significant synergism (p < 0.05) between CsA and ivermectin in all populations; between CsA and eprinomectin in only one population; and between CsA and moxidectin in two populations. It was concluded that, despite the involvement of ABCts in the mechanisms of resistance to ivermectin, metabolic detoxification does not seem to be the mechanism predominantly involved in resistance to eprinomectin and moxidectin in the populations of R. microplus evaluated.
Collapse
Affiliation(s)
- Larissa Claudino Ferreira
- Programa de Pós-Graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande (UFCG). Avenida Universitária s/n. Patos, Paraíba, Brazil
| | - Estefany Ferreira Lima
- Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Avenida Presidente Tancredo Neves s/n. Sousa, Paraíba, Brazil
| | - Ana Luzia Peixoto Silva
- Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Avenida Presidente Tancredo Neves s/n. Sousa, Paraíba, Brazil
| | - Thais Ferreira Feitosa
- Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Avenida Presidente Tancredo Neves s/n. Sousa, Paraíba, Brazil
| | - Guilherme Marcondes Klafke
- Centro de Pesquisa em Saúde Animal (IPVDF), Secretaria da Agricultura, Pecuária e Desenvolvimento Rural. Estrada do Conde, 6000. Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Vinícius Longo Ribeiro Vilela
- Programa de Pós-Graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande (UFCG). Avenida Universitária s/n. Patos, Paraíba, Brazil; Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Avenida Presidente Tancredo Neves s/n. Sousa, Paraíba, Brazil.
| |
Collapse
|
17
|
Curry E, Prichard R, Lespine A. Genetic polymorphism, constitutive expression and tissue localization of Dirofilaria immitis P-glycoprotein 11: a putative marker of macrocyclic lactone resistance. Parasit Vectors 2022; 15:482. [PMID: 36544229 PMCID: PMC9773537 DOI: 10.1186/s13071-022-05571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dirofilaria immitis causes dirofilariosis, a potentially fatal condition in canids. Dirofilaria infections can be prevented with a macrocyclic lactone (ML) prophylactic regimen. However, some D. immitis isolates have become resistant to MLs. Genetic changes on the P-glycoprotein 11 gene, encoding an ABCB transporter, have been linked to the ML-resistant phenotypes and have been proposed as markers of drug resistance. However, nothing is known about the expression and the localization of this transporter in D. immitis, despite its strong link to ML-resistant phenotypes. METHODS We examined the clinically validated D. immitis P-glycoprotein 11 (DimPgp-11) single nucleotide polymorphism (SNP) via MiSeq analysis in three ML-susceptible isolates (Missouri, MP3 and Yazoo) and two ML-resistant isolates (JYD-34 and Metairie), and correlated the data with previously published MiSeq results of USA laboratory-maintained D. immitis isolates. The level of the expression of the DimPgp-11 messenger RNA transcript was analyzed by droplet digital PCR (ddPCR) and compared in the USA laboratory-maintained isolates, namely the ML-susceptible Missouri and Berkeley isolates, the putative ML-susceptible Georgia III and Big Head isolates and the ML-resistant isolate JYD-34. The immunolocalization of DimPgp-11 was visualized in the microfilaria (mf) life stage of the Missouri isolate using confocal microscopy. RESULTS The results confirmed that the SNP found on DimPgp-11 is differentially expressed in the USA laboratory-maintained isolates. The ML-susceptible isolates had an alternate allele frequency of between 0% and 15%, while it ranged between 17% and 56% in the ML-resistant isolates. The constitutive expression of DimPgp-11 was similar in the Berkeley, Georgia III and Big Head isolates, while it was significantly decreased in the ML-resistant JYD-34 isolate (P < 0.05), when compared to the ML-susceptible Missouri isolate. The DimPgp-11 protein was distinctly localized within the excretory-secretory (ES) duct, pore cells and the excretory cell and, more faintly, along the mf body wall. CONCLUSION Our data confirm that genetic polymorphism of DimPgp-11 is associated with ML resistance in USA laboratory-maintained D. imminits isolates. A link between DimPgp-11 and ML resistance in D. immitis is further supported by the lower protein expression in the ML-resistant JYD-34 isolate when compared with the ML-susceptible Missouri isolate. Interestingly, DimPgp-11 is strategically located surrounding the ES pore where it could play an active role in ML efflux.
Collapse
Affiliation(s)
- Emily Curry
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Montreal, QC Canada
| | - Roger Prichard
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Montreal, QC Canada
| | - Anne Lespine
- grid.508721.9INTHERES, INRAE, ENVT, Université de Toulouse, 31027 Toulouse Cedex 3, France
| |
Collapse
|
18
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
19
|
Drug efficacy on zoonotic nematodes of the Anisakidae family - new metabolic data. Parasitology 2022; 149:1065-1077. [PMID: 35443901 PMCID: PMC10090616 DOI: 10.1017/s0031182022000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the Anisakidae family, there are nematodes, most of which are parasitic for important commercial fish species. Both public health risks and socio-economic problems are attributed to these parasites. Despite these concerns, knowledge of the metabolism of these parasites remains unknown. Therefore, the main objective of this study was to investigate the receptors of drugs and oxidative metabolic status of two Anisakidae species, Pseudoterranova decipiens (s. s.) and Contracaecum osculatum (s. s.), under the influence of anthelminthic drugs, ivermectin (IVM) and pyrantel (PYR), at different concentrations: 1.56, 3.125 and 6.25 μg mL−1 of culture medium for 3, 6, 9, 12 and 72 h. The mRNA expressions of the γ-aminobutyric acid receptor, acetylcholine receptor subunits, adenosine triphosphate-binding cassette transporters and antioxidative enzymes were determined. The total antioxidant capacity and glutathione S-transferase activity were also examined. To the best of the authors' knowledge, this is the first time that IVM and PYR have been tested against these parasitic nematodes.
Collapse
|
20
|
Liu Y, Luo X, Li J, Wang P, Teng B, Wang R, Wang X, Yang X. Using feeding and motility patterns for ivermectin resistance detecting in Haemonchus contortus larvae. Exp Parasitol 2022; 238:108230. [DOI: 10.1016/j.exppara.2022.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
|
21
|
Shabbir MZ, Yang X, Batool R, Yin F, Kendra PE, Li ZY. Bacillus thuringiensis and Chlorantraniliprole Trigger the Expression of Detoxification-Related Genes in the Larval Midgut of Plutella xylostella. Front Physiol 2021; 12:780255. [PMID: 34966290 PMCID: PMC8710669 DOI: 10.3389/fphys.2021.780255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Diamondback moth (DBM), Plutella xylostella (L.), has developed resistance to many insecticides. The molecular mechanism of DBM resistance to Bt-G033A combined with chlorantraniliprole (CL) remains undefined. Methods: In this study, field-resistant strains of Plutella xylostella to three pesticides, namely, Bacillus thuringiensis (Bt) toxin (Bt-G033A), CL, and a mixture of Bt + CL, were selected to evaluate the resistance level. Additionally, transcriptomic profiles of a susceptible (SS-DBM), field-resistant (FOH-DBM), Bt-resistant (Bt-DBM), CL-resistant (CL-DBM), and Bt + CL-resistant (BtC-DBM) strains were performed by comparative analysis to identify genes responsible for detoxification. Results: The Bt-G033A was the most toxic chemical to all the DBM strains among the three insecticides. The comparative analysis identified 25,518 differentially expressed genes (DEGs) between pairs/combinations of strains. DEGs were enriched in pathways related to metabolic and catalytic activity and ABC transporter in resistant strains. In total, 17 metabolic resistance-related candidate genes were identified in resistance to Bt-G033A, CL, and Bt + CL by co-expression network analysis. Within candidate genes, the majority was upregulated in key genes including cytochrome P450, glutathione S-transferase (GST), carboxylesterase, and acetylcholinesterase in CL- and BtC-resistant strains. Furthermore, aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin, trypsin, and ABC transporter genes were eminent as Bt-resistance-related genes. Expression patterns of key genes by the quantitative real-time PCR (qRT-PCR) proved the credibility of transcriptome data and suggest their association in the detoxification process. Conclusion: To date, this study is the most comprehensive research presenting functional transcriptome analysis of DBM using Bt-G033A and CL combined insecticidal activity.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Xiangbing Yang
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
22
|
Yu Y, Li J, Wang W, Wang T, Qi W, Zheng X, Duan L, Chen J, Li S, Han X, Zhang W, Duan L. Transcriptome analysis uncovers the key pathways and candidate genes related to the treatment of Echinococcus granulosus protoscoleces with the repurposed drug pyronaridine. BMC Genomics 2021; 22:534. [PMID: 34256697 PMCID: PMC8276484 DOI: 10.1186/s12864-021-07875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystic echinococcosis (CE) is a life-threatening zoonosis caused by the larval form of Echinococcus granulosus tapeworm. Our previous study showed that an approved drug pyronaridine (PND) is highly effective against CE, both in vitro and in an animal model. To identify possible target genes, transcriptome analysis was performed with E. granulosus sensu stricto protoscoleces treated with PND. Results A total of 1,321 genes were differentially expressed in protoscoleces treated with PND, including 541 upregulated and 780 downregulated genes. Gene ontology and KEGG analyses revealed that the spliceosome, mitogen-activated protein kinase (MAPK) pathway and ATP-binding cassette (ABC) transporters were the top three enriched pathways. Western blot analysis showed that PND treatment resulted in a dose-dependent increase in protein expression levels of EgMKK1 (MKK3/6-like) and EgMKK2 (MEK1/2-like), two members of MAPK cascades. Interestingly, several heat shock protein (HSP) genes were greatly downregulated including stress-inducible HSPs and their constitutive cognates, and some of them belong to Echinococcus-specific expansion of HSP70. Conclusions PND has a great impact on the spliceosome, MAPK pathway and ABC transporters, which may underline the mechanisms by which PND kills E. granulosus protoscoleces. In addition, PND downregulates HSPs expression, suggesting a close relationship between the drug and HSPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07875-w.
Collapse
Affiliation(s)
- Yingfang Yu
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Weisi Wang
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Tian Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Wenjing Qi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Xueting Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Lei Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Shizhu Li
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Xiumin Han
- Qinghai Provincial People's Hospital, 810007, Xining, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China.
| | - Liping Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China. .,Qinghai Provincial People's Hospital, 810007, Xining, China.
| |
Collapse
|
23
|
Mathachan SR, Sardana K, Khurana A. Current Use of Ivermectin in Dermatology, Tropical Medicine, and COVID-19: An Update on Pharmacology, Uses, Proven and Varied Proposed Mechanistic Action. Indian Dermatol Online J 2021; 12:500-514. [PMID: 34430453 PMCID: PMC8354388 DOI: 10.4103/idoj.idoj_298_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ivermectin is a broad-spectrum antiparasitic drug with anti-inflammatory, anti-viral, anti-bacterial, and anti-tumor effects. In this review, we discuss the history, pharmacology, multimodal actions, indications in dermatology and tropical medicine, therapeutic and prophylactic use of ivermectin in COVID-19, safety, adverse effects, special considerations, and drug interactions of ivermectin.
Collapse
Affiliation(s)
- Sinu Rose Mathachan
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kabir Sardana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
24
|
Lima AS, Costa Junior HNP, Costa-Junior LM, Monteiro OS, Maia JGS, da Rocha CQ. Anthelmintic effect of essential rhizome oil from Hedychium coronarium Koenig (Zingiberaceae) introduced in Northeastern Brazil. Acta Trop 2021; 218:105912. [PMID: 33826931 DOI: 10.1016/j.actatropica.2021.105912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/04/2023]
Abstract
Hedychium coronarium is native to Tropical Asia and has been introduced into several Brazilian biomes. Significant biological properties described for the essential oil (EO) from this species' rhizomes include antimicrobial, larvicidal, anti-inflammatory, antioxidant, phytotoxic, and anthelmintic activities. The primary constituents identified in this study by GC-MS in the EO were monoterpenes 1,8-cineole (33.5%), β-pinene (17.0%), α-terpineol (7.7%), α-pinene (7.3%), limonene (5.2%), and p-cymene (4.9%), comprising 75.6% of total oil compounds. The main monoterpenes' EO and standards were tested against N2 (susceptible) and UVR15 (resistant) adult nematode Caenorhabditis elegans strains, with varying dead rates in motility tests.. Nematocidal activity was not attributed to 1,8-cineole and β-pinene, the main H. coronarium rhizome oil components, as both exhibited an inhibitory concentration (IC50) ≥ 5 mg/mL. On the other hand, the α-pinene (IC50, 1.69 mg/mL) and (S)-(-)-limonene (IC50, 1.66 mg/mL) standards demonstrated more efficient action than rhizome oil in motility tests, with significant adult C. elegans nematode mortality rates. These results support the hypothesis that the combination of H. coronarium EO constituents can be helpful as a nematicidal product, due to their synergistic action.
Collapse
Affiliation(s)
- Aldilene S Lima
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil.
| | | | - Lívio M Costa-Junior
- Departamento de Patologia, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil.
| | - Odair S Monteiro
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil.
| | - Claudia Q da Rocha
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil.
| |
Collapse
|
25
|
Gao Y, Kim JH, Jeong IH, Clark JM, Lee SH. Transcriptomic identification and characterization of genes commonly responding to sublethal concentrations of six different insecticides in the common fruit fly, Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104852. [PMID: 33993970 DOI: 10.1016/j.pestbp.2021.104852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Pretreatment with sublethal concentrations (LC10) of six insecticides (chlorantraniliprole, cypermethrin, dinotefuran, indoxacarb, ivermectin, and spinosad) significantly elevated tolerance of the common fruit fly Drosophila melanogaster to lethal concentration of the respective insecticide. Commonly responding genes to sublethal treatments of the six insecticides were identified by transcriptome analysis based on a fold change >1.5 or < -1.5, and p < 0.05 as selection criteria. Following treatment with all the six insecticides, 26 transcripts were commonly over-transcribed, whereas 30 transcripts were commonly under-transcribed. Reliability of the transcriptome data was confirmed by quantitative PCR. A majority of the over-transcribed genes included those related to olfactory behavior, such as odorant-binding proteins, as well as immune-related genes, including attacin, diptericin, and immune-induced molecule 18. In contrast, genes belonging to the mitochondrial respiratory chain, such as mitochondrial NADH-ubiquinone oxidoreductase chain 1/3/4/5 and mitochondrial cytochrome b/c, were commonly under-transcribed. Furthermore, genes related to eggshell formation and motion were also under-transcribed, which may indicate a possible energy trade-off for xenobiotic stress. In summary, most of the differentially expressed genes were not directly related to well-known detoxification genes, suggesting that the roles of commonly expressed tolerance-related genes are not likely related to direct metabolic detoxification, but rather are associated with restoration of homeostasis.
Collapse
Affiliation(s)
- Yue Gao
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyeon Kim
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - In Hong Jeong
- Division of Crop Protection, National Institute of Agricultural Science, Rural Development Administration, Republic of Korea
| | - J Marshall Clark
- Department of Veterinary & Animal Sciences, University of Massachusetts at Amherst, MA, USA
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Langeland A, Jetter H, O'Halloran DM. The diversity of ABC transporter genes across the Phylum Nematoda. Parasitol Int 2021; 83:102357. [PMID: 33901678 DOI: 10.1016/j.parint.2021.102357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/25/2022]
Abstract
It is estimated that one billion people globally are infected by parasitic nematodes, with children, pregnant women, and the elderly particularly susceptible to morbidity from infection. Control methods are limited to de-worming, which is hampered by rapid re-infection and the inevitable development of anthelmintic resistance. One family of proteins that has been implicated in nematode anthelmintic resistance are the ATP binding cassette (ABC) transporters. ABC transporters are characterized by a highly conserved ATP-binding domain and variable transmembrane regions. A growing number of studies have associated ABC transporters in anthelmintic resistance through a protective mechanism of drug efflux. Genetic deletion of P glycoprotein type ABC transporters in Caenorhabditis elegans demonstrated increased sensitivity to anthelmintics, while in the livestock parasite, Haemonchus contortus, anthelmintic use has been shown to increase the expression of ATP transporter genes. These studies as well as others, provide evidence for a potential role of ABC transporters in drug resistance in nematodes. In order to understand more about the family of ABC transporters, we used hidden Markov models to predict ABC transporter proteins from 108 species across the phylum Nematoda and use these data to analyze patterns of diversification and loss in diverse nematode species. We also examined temporal patterns of expression for the ABC transporter family within the filarial nematode Brugia malayi and identify cases of differential expression across diverse life-cycle stages. Taken together, our data provide a comprehensive overview of ABC transporters in diverse nematode species and identify examples of gene loss and diversification in nematodes based on lifestyle and taxonomy.
Collapse
Affiliation(s)
- Andrea Langeland
- Department of Biological Sciences, The George Washington University, Bell Hall 307, 2029 G Street NW, Washington, DC 20052, USA
| | - Haley Jetter
- Department of Biological Sciences, The George Washington University, Bell Hall 307, 2029 G Street NW, Washington, DC 20052, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Bell Hall 307, 2029 G Street NW, Washington, DC 20052, USA.
| |
Collapse
|
27
|
Metabolism and interactions of Ivermectin with human cytochrome P450 enzymes and drug transporters, possible adverse and toxic effects. Arch Toxicol 2021; 95:1535-1546. [PMID: 33719007 PMCID: PMC7956433 DOI: 10.1007/s00204-021-03025-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The review presents metabolic properties of Ivermectin (IVM) as substrate and inhibitor of human P450 (P450, CYP) enzymes and drug transporters. IVM is metabolized, both in vivo and in vitro, by C-hydroxylation and O-demethylation reactions catalyzed by P450 3A4 as the major enzyme, with a contribution of P450 3A5 and 2C9. In samples from both in vitro and in vivo metabolism, a number of metabolites were detected and as major identified metabolites were 3″-O-demethylated, C4-methyl hydroxylated, C25 isobutyl-/isopropyl-hydroxylated, and products of oxidation reactions. Ivermectin inhibited P450 2C9, 2C19, 2D6, and CYP3A4 with IC50 values ranging from 5.3 μM to no inhibition suggesting that it is no or weak inhibitor of the enzymes. It is suggested that P-gp (MDR1) transporter participate in IVM efflux at low drug concentration with a slow transport rate. At the higher, micromolar concentration range, which saturates MDR1 (P-gp), MRP1, and to a lesser extent, MRP2 and MRP3 participate in IVM transport across physiological barriers. IVM exerts a potent inhibition of P-gp (ABCB1), MRP1 (ABCC1), MRP2 (ABCC2), and BCRP1 (ABCG2), and medium to weak inhibition of OATP1B1 (SLC21A6) and OATP1B3 (SLCOB3) transport activity. The metabolic and transport properties of IVM indicate that when IVM is co-administered with other drugs/chemicals that are potent inhibitors/inducers P4503A4 enzyme and of MDR1 (P-gp), BCRP or MRP transporters, or when polymorphisms of the drug transporters and P450 3A4 exist, drug–drug or drug–toxic chemical interactions might result in suboptimal response to the therapy or to toxic effects.
Collapse
|
28
|
Vicente B, López-Abán J, Chaccour J, Hernández-Goenaga J, Nicolas P, Fernández-Soto P, Muro A, Chaccour C. The effect of ivermectin alone and in combination with cobicistat or elacridar in experimental Schistosoma mansoni infection in mice. Sci Rep 2021; 11:4476. [PMID: 33627744 PMCID: PMC7904857 DOI: 10.1038/s41598-021-84009-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Schistosoma mansoni is less susceptible to the antiparasitic drug ivermectin than other helminths. By inhibiting the P-glycoprotein or cytochrome P450 3A in mice host or parasites in a murine model, we aimed at increasing the sensitivity of S. mansoni to the drug and thus preventing infection. We assigned 124 BALB/c mice to no treatment, treatment with ivermectin only or a combination of ivermectin with either cobicistat or elacridar once daily for three days before infecting them with 150 S. mansoni cercariae each. The assignment was done by batches without an explicit randomization code. Toxicity was monitored. At eight weeks post-infection, mice were euthanized. We determined number of eggs in intestine and liver, adult worms in portal and mesenteric veins. Disease was assessed by counting granulomas/cm2 of liver and studying organ weight indices and total weight. IgG levels in serum were also considered. No difference between groups treated with ivermectin only or in combination with cobicistat or elacridar compared with untreated, infected controls. Most mice treated with ivermectin and elacridar suffered severe neurological toxicity. In conclusion, systemic treatment with ivermectin, even in the presence of pharmacological inhibition of P-glycoprotein or cytochrome P450 3A, did not result in effective prophylaxis for S. mansoni infection in an experimental murine model.
Collapse
Affiliation(s)
- Belén Vicente
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | | | - Juan Hernández-Goenaga
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Patricia Nicolas
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Carlos Chaccour
- Clinica Universidad de Navarra, Pamplona, Spain. .,ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain. .,Ifakara Health Institute, Ifakara, 67501, United Republic of Tanzania.
| |
Collapse
|
29
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
30
|
Kooliyottil R, Rao Gadhachanda K, Solo N, Dandurand LM. ATP-Binding Cassette (ABC) Transporter Genes in Plant-Parasitic Nematodes: An Opinion for Development of Novel Control Strategy. FRONTIERS IN PLANT SCIENCE 2020; 11:582424. [PMID: 33329645 PMCID: PMC7715011 DOI: 10.3389/fpls.2020.582424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Affiliation(s)
- Rinu Kooliyottil
- Citrus Budwood Registration Program, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, La Crosse, FL, United States
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | | | - Nejra Solo
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
31
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
32
|
Gao Y, Kim MJ, Kim JH, Jeong IH, Clark JM, Lee SH. Transcriptomic identification and characterization of genes responding to sublethal doses of three different insecticides in the western flower thrips, Frankliniella occidentalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104596. [PMID: 32527442 DOI: 10.1016/j.pestbp.2020.104596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Pretreatment with sublethal concentrations (LC10) of three insecticides (chlorfenapyr, dinotefuran, and spinosad) enhanced tolerance to a lethal dose of the respective insecticide in the Western flower thrips, Frankliniella occidentalis. To identify genes responding to sublethal treatment with insecticides, transcriptome analysis was conducted for thrips treated with LC10 of the three insecticides. When based on a fold change >1.5 or < -1.5 as a selection criterion, 199 transcripts were commonly up-regulated, whereas 31 transcripts were commonly down-regulated following all three insecticide treatments. The differential expression levels of representative genes were validated by quantitative PCR. Most over-transcribed transcripts could be categorized as basic biological processes, such as proteolysis and lipid metabolism. Detoxification genes, such as one glutathione S transferase S1, three UDP-glucuronosyltransferases, four CYP450s, and one ABC transporter G family member 20, were commonly overexpressed in all three insecticide-treated groups. Knockdown of the five representative commonly overexpressed genes via ingestion RNA interference increased mortalities to all the three test insecticides, supporting their common role in tolerance induction. In contrast, three C2H2-type zinc finger-containing proteins were significantly down-regulated in all insecticide-treated thrip groups. Since the tested insecticides have distinct structures and modes of action, the roles of commonly expressed genes in tolerance were discussed.
Collapse
Affiliation(s)
- Yue Gao
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Min Ju Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyeon Kim
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - In Hong Jeong
- Division of Crop Protection, National Institute of Agricultural Science, Rural Development Administration, Republic of Korea
| | - J Marshall Clark
- Department of Veterinary & Animal Sciences, University of Massachusetts at Amherst, MA, USA
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
The ABCB Multidrug Resistance Proteins Do Not Contribute to Ivermectin Detoxification in the Colorado Potato Beetle, Leptinotarsa decemlineata (Say). INSECTS 2020; 11:insects11020135. [PMID: 32093187 PMCID: PMC7074147 DOI: 10.3390/insects11020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a significant agricultural pest that has developed resistance to many insecticides that are used to control it. Investigating the mechanisms of insecticide detoxification in this pest is important for ensuring its continued control, since they may be contributors to such resistance. Multidrug resistance (MDR) genes that code for the ABCB transmembrane efflux transporters are one potential source of insecticide detoxification activity that have not been thoroughly examined in L. decemlineata. In this study, we annotated the ABCB genes found in the L. decemlineata genome and then characterized the expression profiles across midgut, nerve, and Malpighian tubule tissues of the three full transporters identified. To investigate if these genes are involved in defense against the macrocyclic lactone insecticide ivermectin in this insect, each gene was silenced using RNA interference or MDR protein activity was inhibited using a chemical inhibitor, verapamil, before challenging the insects with a dose of ivermectin. Survival of the insects did not significantly change due to gene silencing or protein inhibition, suggesting that MDR transporters do not significantly contribute to defense against ivermectin in L. decemlineata.
Collapse
|
34
|
Rostang A, Devos J, Chartier C. Review of the Eprinomectin effective doses required for dairy goats: Where do we go from here? Vet Parasitol 2019; 277:108992. [PMID: 31835054 DOI: 10.1016/j.vetpar.2019.108992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Eprinomectin (EPM) has been recently granted a marketing authorisation in the European Union for use in goats, with a zero-day milk withdrawal period. Considering the high prevalence of benzimidazole resistance worldwide and the economic implications of managing milk residues, EPM may today be considered the main (or even the only) affordable treatment option, at least in dairy goats in the EU. However, the chosen dose (1 mg/kg) seems to be suboptimal, especially for lactating goats, and the chosen route of administration (Pour-on) highly subject to inter-individual variability. Considering the scarcity of anthelmintic resources, such a dosage regimen might threat the sustainability of this crucial drug in goat milk production and needs to be urgently discussed and reassessed.
Collapse
Affiliation(s)
- Antoine Rostang
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', 69280, Marcy l'Etoile, France.
| | - Jacques Devos
- French SNGTV Parasitology Committee (National Society of Veterinary Technical Groups), 42360 Panissières, France
| | | |
Collapse
|
35
|
Genome-wide identification of ABC transporters in monogeneans. Mol Biochem Parasitol 2019; 234:111234. [PMID: 31715209 DOI: 10.1016/j.molbiopara.2019.111234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 01/05/2023]
Abstract
ATP-Binding Cassette (ABC) transporters are proteins that actively mediate the transport of a wide variety of molecules, including drugs. Thus, in parasitology, ABC transporters have gained attention as potential targets for therapeutic drugs. Among the parasitic Platyhelminthes, ABC transporters have been identified and classified in a few species of Trematoda and Cestoda but not in Monogenea. Monogeneans are mainly ectoparasites of marine and freshwater fish, although they can also be found on other aquatic organisms. Severe epizootics caused by monogeneans have been reported around the world, mainly in confined and/or overcrowded fish. The purpose of this study was to identify the ABC transporters in four species of monogeneans (Gyrodactylus salaris, Protopolystoma xenopodis, Eudiplozoon nipponicum and Neobenedenia melleni) for which genomic resources are publicly available. For comparative purposes, ABC transporters were also identified in endoparasitic (Schistosoma mansoni and Echinococcus granulosus) and free-living (Macrostomun lignano and Schmidtea mediterranea) platyhelminths. Thirty-two putative ABC transporters were identified in the genome of G. salaris, 40 in the genome of P. xenopodis, 46 in the transcriptome of E. nipponicum and 9 in a rather limited ESTs set available for N. melleni. Of the eight ABC subfamilies (A-H) known in metazoans, subfamily H was the only one not found in any monogenean species. In contrast, ABCC was the best represented subfamily. Phylogenetic analyses showed a few cases of one-to-one orthologous relationships, which agree with results from other metazoan species. We found some monogenean ABC members related to subfamilies B, C and G involved in drug resistance in humans. This information may be useful for future functional studies on ABC transporters in monogeneans.
Collapse
|
36
|
Kellerová P, Matoušková P, Lamka J, Vokřál I, Szotáková B, Zajíčková M, Pasák M, Skálová L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet Parasitol 2019; 273:24-31. [DOI: 10.1016/j.vetpar.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022]
|
37
|
Kitchen S, Ratnappan R, Han S, Leasure C, Grill E, Iqbal Z, Granger O, O'Halloran DM, Hawdon JM. Isolation and characterization of a naturally occurring multidrug-resistant strain of the canine hookworm, Ancylostoma caninum. Int J Parasitol 2019; 49:397-406. [PMID: 30771359 DOI: 10.1016/j.ijpara.2018.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Soil-transmitted nematodes infect over a billion people and place several billion more at risk of infection. Hookworm disease is the most significant of these soil-transmitted nematodes, with over 500 million people infected. Hookworm infection can result in debilitating and sometimes fatal iron-deficiency anemia, which is particularly devastating in children and pregnant women. Currently, hookworms and other soil-transmitted nematodes are controlled by administration of a single dose of a benzimidazole to targeted populations in endemic areas. While effective, people are quickly re-infected, necessitating frequent treatment. Widespread exposure to anthelmintic drugs can place significant selective pressure on parasitic nematodes to generate resistance, which has severely compromised benzimidazole anthelmintics for control of livestock nematodes in many areas of the world. Here we report, to our knowledge, the first naturally occurring multidrug-resistant strain of the canine hookworm Ancylostoma caninum. We reveal that this isolate is resistant to fenbendazole at the clinical dosage of 50 mg/kg for 3 days. Our data shows that this strain harbors a fixed, single base pair mutation at amino acid 167 of the β-tubulin isotype 1 gene, and by using CRISPR/Cas9 we demonstrate that introduction of this mutation into the corresponding amino acid in the orthologous β-tubulin gene of Caenorhabditis elegans confers a similar level of resistance to thiabendazole. We also show that the isolate is resistant to the macrocyclic lactone anthelmintic ivermectin. Understanding the mechanism of anthelmintic resistance is important for rational design of control strategies to maintain the usefulness of current drugs, and to monitor the emergence of resistance. The isolate we describe represents the first multidrug-resistant strain of A. caninum reported, and our data reveal a resistance marker that can emerge naturally in response to heavy anthelminthic treatment.
Collapse
Affiliation(s)
- Shannon Kitchen
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Ramesh Ratnappan
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Suhao Han
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Caitlyn Leasure
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Emilia Grill
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Zahra Iqbal
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Olivia Granger
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, SEH 6000, 800 22nd St NW, Washington, DC 20052, USA
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, Ross Hall, 2300 I St. NW, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
38
|
Ménez C, Alberich M, Courtot E, Guegnard F, Blanchard A, Aguilaniu H, Lespine A. The transcription factor NHR-8: A new target to increase ivermectin efficacy in nematodes. PLoS Pathog 2019; 15:e1007598. [PMID: 30759156 PMCID: PMC6391013 DOI: 10.1371/journal.ppat.1007598] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/26/2019] [Accepted: 01/27/2019] [Indexed: 11/18/2022] Open
Abstract
Resistance to the anthelmintic macrocyclic lactone ivermectin (IVM) has a great impact on the control of parasitic nematodes. The mechanisms by which nematodes adapt to IVM remain to be deciphered. We have identified NHR-8, a nuclear hormone receptor involved in the xenobiotic response in Caenorhabditis elegans, as a new regulator of tolerance to IVM. Loss-of-function nhr-8(ok186) C. elegans mutants subjected to larval development assays and electropharyngeogram measurements, displayed hypersensitivity to IVM, and silencing of nhr-8 in IVM-resistant worms increased IVM efficacy. In addition, compared to wild-type worms, nhr-8 mutants under IVM selection pressure failed to acquire tolerance to the drug. In addition, IVM-hypersensitive nhr-8(ok186) worms displayed low transcript levels of several genes from the xenobiotic detoxification network and a concomitant low Pgp-mediated drug efflux activity. Interestingly, some pgp and cyp genes known to impact IVM tolerance in many nematode species, were down regulated in nhr-8 mutants and inversely upregulated in IVM-resistant worms. Moreover, pgp-6 overexpression in nhr-8(ok186) C. elegans increased tolerance to IVM. Importantly, NHR-8 function was rescued in nhr-8(ok186) C. elegans with the homolog of the parasitic nematode Haemonchus contortus, and silencing of Hco-nhr-8 by RNAi on L2 H. contortus larvae increased IVM susceptibility in both susceptible and resistant H. contortus isolates. Thus, our data show that NHR-8 controls the tolerance and development of resistance to IVM in C. elegans and the molecular basis for this relates to the NHR-8-mediated upregulation of IVM detoxification genes. Since our results show that Hco-nhr-8 functions similarly to Cel-nhr-8, this study helps to better understand mechanisms underlying failure in drug efficacy and open perspectives in finding new compounds with NHR-8 antagonist activity to potentiate IVM efficacy. IVM is the most important broad-spectrum deworming drug used today but resistance to this drug has appeared in parasites of both animals and humans. This seriously jeopardizes the success of current parasite control. Preserving IVM efficacy is a public health issue, whose outcome depends on the understanding of the molecular basis of selection for resistance to these drugs. We unambiguously show that the nuclear hormone receptor NHR-8, is crucial for protection of the nematode model Caenorhabditis elegans against IVM toxicity. Worms deficient in NHR-8 are hypersensitive to IVM and fail to become resistant to IVM under drug pressure. NHR-8 functions in the parasitic nematode of ruminants Haemonchus contortus and similar mechanisms could occur in other target pathogens. By controlling the xenobiotic detoxification network, NHR-8 may contribute to the biotransformation and elimination of IVM and help to desensitize the worm to the drug. This provides novel molecular targets involved in IVM drug tolerance in parasitic nematodes. Such findings could be exploited for targeted therapeutic intervention to treat parasitic nematode infections and delay the process of resistance development to anthelmintic drugs.
Collapse
Affiliation(s)
- Cécile Ménez
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (CM); (AL)
| | | | - Elise Courtot
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Fabrice Guegnard
- INRA, UMR 1282 Infectiology and Public Health, Nouzilly, Université François Rabelais de Tours, France
| | - Alexandra Blanchard
- INRA, UMR 1282 Infectiology and Public Health, Nouzilly, Université François Rabelais de Tours, France
| | - Hugo Aguilaniu
- CNRS, detached to the Serrapilheira Institute, Rio de Janeiro, Brazil
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (CM); (AL)
| |
Collapse
|
39
|
Detection and quantification of Parascaris P-glycoprotein drug transporter expression with a novel mRNA hybridization technique. Vet Parasitol 2019; 267:75-83. [PMID: 30878090 DOI: 10.1016/j.vetpar.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/23/2022]
Abstract
Macrocyclic lactone-resistant Parascaris have been reported throughout the world. In part, the drug resistant phenotype is hypothesized to be associated with ATP-binding cassette transporters known as P-glycoproteins. In many systems, P-glycoproteins efflux drugs out of cells thereby precluding drug binding to target receptors. Parascaris may evade macrocyclic lactone-mediated death by effluxing drugs away from target receptors in the nervous system. Alternatively, P-glycoprotein expression in the gut or body wall could prevent penetration of drugs into the body of the parasite altogether. In the present study, we evaluate expression of Peq-pgp-11 and Peq-pgp-16 using a novel multiple nucleic acid hybridization method. This method allowed for visualization of individual mRNA transcripts within fixed tissue sections of Parascaris adults. Our investigation revealed expression of Peq-pgp-11 and Peq-pgp-16 in the intestine, body wall, nerves, lateral cords, and reproductive tissues of male and female parasites. These results suggest that Pgp could efflux drugs locally at the level of parasite neuronal tissue as well as at sites of entry for drugs such as the hypodermis and intestine. The multiple nucleic acid hybridization method could be useful for providing tissue context for gene expression in a variety of nematode parasites.
Collapse
|
40
|
Sousa DM, Cunha NMFD, Silva DRD, Aragão PDTTDD, Aguiar MVDA, Lobo MDP, Moreira ACDOM, Cunha RMSD, Miranda RRCD, Bevilaqua CML. Differences in protein expression associated with ivermectin resistance in Caenorhabditis elegans. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2019; 28:105-112. [PMID: 30916256 DOI: 10.1590/s1984-29612019013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The indiscriminate administration of synthetic anthelmintics such as ivermectin contributes to the selection of subpopulations capable of resisting the drugs' effects. To understand the mechanisms of ivermectin resistance in Caenorhabditis elegans, this study attempted to identify molecular targets. C. elegans lineages that were sensitive and resistant to ivermectin were used. Collected nematodes were added to an extraction buffer and macerated in liquid nitrogen for protein extraction. The extracted proteins were separated according to molecular weight by SDS-PAGE to verify their integrity. Subsequently, proteins from both lineages were separated using two-dimensional electrophoresis. The gels were analyzed and the relevant spots were excised and identified by mass spectrometry (NanoESI-Q-TOF and MASCOT®) and subsequently assessed by GO enrichment and STRING® analyses. The increased expression of proteins associated with high metabolic activity, such as ATP-2 and ENOL-1, which are responsible for ATP synthesis, was observed. Furthermore, proteins with involvement in mediating muscular function (MLC-1, ACT-1, and PDI-2), signaling (FAR-1 and FAR-2), and embryo development (VHA-2) were identified. Protein interaction analysis indicated that the majority of the identified proteins in the resistant lineages participated in the same reaction triggered by ivermectin.
Collapse
Affiliation(s)
- Dauana Mesquita Sousa
- Laboratório de Doenças Parasitárias, Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará - UECE, Fortaleza, CE, Brasil
| | - Nivea Maria Ferreira da Cunha
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | - Deisianne Rodrigues da Silva
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | - Paulo de Tarso Teles Dourado de Aragão
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Programa de Pós-graduação em Biotecnologia, Universidade Federal do Ceará - UFC, Sobral, CE, Brasil
| | - Mônica Valéria de Almeida Aguiar
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | | | - Rodrigo Maranguape Silva da Cunha
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | - Claudia Maria Leal Bevilaqua
- Laboratório de Doenças Parasitárias, Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará - UECE, Fortaleza, CE, Brasil
| |
Collapse
|
41
|
Maté L, Ballent M, Cantón C, Ceballos L, Lifschitz A, Lanusse C, Alvarez L, Liron J. Assessment of P-glycoprotein gene expression in adult stage of Haemonchus contortus in vivo exposed to ivermectin. Vet Parasitol 2018; 264:1-7. [DOI: 10.1016/j.vetpar.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/04/2018] [Accepted: 10/13/2018] [Indexed: 01/19/2023]
|
42
|
Kim JH, Moreau JA, Ali Y, Razo P, Hong KB, Yoon KS, Clark JM. RNA interference validation of detoxification genes involved in ivermectin tolerance in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2018; 27:651-660. [PMID: 29888824 DOI: 10.1111/imb.12512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Previously, we observed increased transcription levels of specific cytochrome P450 monooxygenase (P450) and adenosine triphosphate binding cassette (ABC) transporter genes in human body lice, Pediculus humanus humanus, following exposure to ivermectin using the non-invasive induction assay, which resulted in tolerance. To confirm the roles of these genes in induction and tolerance, the robust genetic model insect Drosophila melanogaster was chosen. Orthologous genes corresponding to the body louse P450 (Cyp9f2, Cyp6g2 and Cyp9h1) and ABC transporter (Mrp1, GC1824 as an ABCB type and CG3327 as an ABCG type) genes were selected for in vivo bioassay. Following a brief treatment with a sublethal dose of ivermectin, the mortality response was significantly slower, indicating the presence of tolerance. Concurrently, the transcription levels of Cyp9f2 and Mrp1 at 3 h and those of Cyp6g2, Cyp9h1, Mrp1, CG1824 and CG3327 at 6 h post-treatment were upregulated, indicating gene induction. In behavioural bioassay using GAL4/UAS-RNA interference transgenic fly lines, increased susceptibility to ivermectin was observed following heat shock in the Cyp9f2 , Cyp6g2 , Cyp9h1 , Mrp1 or CG3327-knockdown flies. Considering that these five genes are orthologous to those which had the largest over-expression level following ivermectin-induced tolerance in the body louse, the current results suggest that they are also associated with ivermectin detoxification in D. melanogaster and that body lice and D. melanogaster are likely to share, in part, similar mechanisms of tolerance to ivermectin.
Collapse
Affiliation(s)
- J H Kim
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - J A Moreau
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Y Ali
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL, USA
| | - P Razo
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL, USA
| | - K B Hong
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL, USA
| | - K S Yoon
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL, USA
| | - J M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
43
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
44
|
Fontaine P, Choe K. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:312-319. [PMID: 29793058 PMCID: PMC6039320 DOI: 10.1016/j.ijpddr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 11/29/2022]
Abstract
Parasitic nematodes infect over 1/4 th of the human population and are a major burden on livestock and crop production. Benzimidazole class anthelmintics are widely used to treat infections, but resistance is a widespread problem. Mutation of genes encoding the benzimidazole target β-tubulin is a well-established mechanism of resistance, but recent evidence suggests that metabolism of the drugs may also occur. Our objective was to investigate contributions of the detoxification-response transcription factor SKN-1 to anthelmintic drug resistance using C. elegans. We find that skn-1 mutations alter EC50 of the common benzimidazole albendazole in motility assays by 1.5–1.7 fold. We also identify ugt-22 as a detoxification gene associated with SKN-1 that influences albendazole efficacy. Mutation and overexpression of ugt-22 alter albendazole EC50 by 2.3–2.5-fold. The influence of a nematode UGT on albendazole efficacy is consistent with recent studies demonstrating glucose conjugation of benzimidazoles.
Collapse
Affiliation(s)
- Pauline Fontaine
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Keith Choe
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
45
|
David M, Lebrun C, Duguet T, Talmont F, Beech R, Orlowski S, André F, Prichard RK, Lespine A. Structural model, functional modulation by ivermectin and tissue localization of Haemonchus contortus P-glycoprotein-13. Int J Parasitol Drugs Drug Resist 2018; 8:145-157. [PMID: 29571165 PMCID: PMC6114108 DOI: 10.1016/j.ijpddr.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Haemonchus contortus, one of the most economically important parasites of small ruminants, has become resistant to the anthelmintic ivermectin. Deciphering the role of P-glycoproteins in ivermectin resistance is desirable for understanding and overcoming this resistance. In the model nematode, Caenorhabditis elegans, P-glycoprotein-13 is expressed in the amphids, important neuronal structures for ivermectin activity. We have focused on its ortholog in the parasite, Hco-Pgp-13. A 3D model of Hco-Pgp-13, presenting an open inward-facing conformation, has been constructed by homology with the Cel-Pgp-1 crystal structure. In silico docking calculations predicted high affinity binding of ivermectin and actinomycin D to the inner chamber of the protein. Following in vitro expression, we showed that ivermectin and actinomycin D modulated Hco-Pgp-13 ATPase activity with high affinity. Finally, we found in vivo Hco-Pgp-13 localization in epithelial, pharyngeal and neuronal tissues. Taken together, these data suggest a role for Hco-Pgp-13 in ivermectin transport, which could contribute to anthelmintic resistance.
Collapse
Affiliation(s)
- Marion David
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France; Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, Canada
| | - Chantal Lebrun
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Thomas Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, Canada
| | - Franck Talmont
- Institute of Pharmacology and Structural Biology, UMR 5089, CNRS, Toulouse, France
| | - Robin Beech
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, Canada
| | - Stéphane Orlowski
- CEA, Institut de Biologie Frédéric Joliot, Centre de Saclay, SB2SM, UMR9198 CNRS, I2BC; 91191 Gif-sur-Yvette Cedex, France
| | - François André
- CEA, Institut de Biologie Frédéric Joliot, Centre de Saclay, SB2SM, UMR9198 CNRS, I2BC; 91191 Gif-sur-Yvette Cedex, France
| | - Roger K Prichard
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, Canada.
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.
| |
Collapse
|
46
|
Khangembam R, Singh H, Jyoti, Rath SS, Singh NK. Effect of synergists on ivermectin resistance in field populations of Rhipicephalus (Boophilus) microplus from Punjab districts, India. Ticks Tick Borne Dis 2018; 9:682-686. [DOI: 10.1016/j.ttbdis.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/22/2023]
|
47
|
Figueiredo LA, Rebouças TF, Ferreira SR, Rodrigues-Luiz GF, Miranda RC, Araujo RN, Fujiwara RT. Dominance of P-glycoprotein 12 in phenotypic resistance conversion against ivermectin in Caenorhabditis elegans. PLoS One 2018; 13:e0192995. [PMID: 29474375 PMCID: PMC5825046 DOI: 10.1371/journal.pone.0192995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/03/2018] [Indexed: 12/16/2022] Open
Abstract
While diseases caused by nematodes remains a considerable drawback for the livestock, agriculture and public health, anthelmintics drug resistance has been observed over the past years and is a major concern for parasite control. Ivermectin, initially considered as a highly potent drug, currently presents a reduced anti-helminthic efficacy, which is influenced by expression of several ATP-binding cassette transporters (ABC), among them the P-glycoproteins (Pgps). Here we present some evidences of Pgps dominance during Ivermectin resistance/susceptibility using Pgps double silencing in C. elegans and the phylogenetic relationship of Pgps among nematodes, which strengthen the use of this model for study of drug resistance in nematodes. Firstly, we evaluated the quantitative gene expression of 12 out the 15 known Pgps from resistant and WT strains of C. elegans, we demonstrated the upregulation of Pgps 12 and 13 and downregulation of all remaining Pgps in ivermectin resistant strain. By using an RNAi loss-of-function approach we observed that Pgp 12 gene silencing reverts the resistance phenotype to ivermectin, while Pgp 4 gene silencing does not alter the resistance phenotype but induces a resistance in wild type strain. Interestingly, the dual silencing of Pgp 12 and Pgp 4 expression demonstrates the dominance of phenotype promoted by Pgp 12 silencing. Finally, in silico analysis reveals a close relationship between Pgps from C. elegans and several nematodes parasites. Taken together, our results indicate that Pgp 12 is crucial for the resistance to ivermectin and thus a good candidate for further studies aiming to develop specific inhibitors to this transporter, allowing the continuous use of ivermectin to control the burden on animal and human health inflicted by nematode parasites globally.
Collapse
Affiliation(s)
- Luiza Almeida Figueiredo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thais Fuscaldi Rebouças
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sebastião Rodrigo Ferreira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Flavia Rodrigues-Luiz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
48
|
Luo YL, Ma GX, Luo YF, Kuang CY, Jiang AY, Li GQ, Zhou RQ. Tissue expression pattern of ABCG transporter indicates functional roles in reproduction of Toxocara canis. Parasitol Res 2018; 117:775-782. [PMID: 29423531 DOI: 10.1007/s00436-018-5751-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023]
Abstract
Toxocara canis is a zoonotic parasite with worldwide distribution. ATP-binding cassette (ABC) transporters are integral membrane proteins which involve in a range of biological processes in various organisms. In present study, the full-length coding sequence of abcg-5 gene of T. canis (Tc-abcg-5) was cloned and characterized. A 633 aa polypeptide containing two conserved Walker A and Walker B motifs was predicted from a continuous 1902 nt open reading frame. Quantitative real-time PCR was employed to determine the transcriptional levels of Tc-abcg-5 gene in adult male and female worms, which indicated high mRNA level of Tc-abcg-5 in the reproductive tract of adult female T. canis. Tc-abcg-5 was expressed to produce rabbit polyclonal antiserum against recombinant TcABCG5. Indirect-fluorescence immunohistochemical assays were carried out to detect the tissue distribution of TcABCG5, which showed predominant distribution of TcABCG5 in the uterus (especially in the germ cells) of adult female T. canis. Tissue transcription and expression pattern of Tc-abcg-5 indicated that Tc-abcg-5 might play essential roles in the reproduction of this parasitic nematode.
Collapse
Affiliation(s)
- Yong-Li Luo
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Guang-Xu Ma
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yong-Fang Luo
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Ce-Yan Kuang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Ai-Yun Jiang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Guo-Qing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Rong-Qiong Zhou
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.
| |
Collapse
|
49
|
Zuo YY, Huang JL, Wang J, Feng Y, Han TT, Wu YD, Yang YH. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2018; 27:36-45. [PMID: 28753233 DOI: 10.1111/imb.12338] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
P-glycoprotein [P-gp or the ATP-binding cassette transporter B1 (ABCB1)] is an important participant in multidrug resistance of cancer cells, yet the precise function of this arthropod transporter is unknown. The aim of this study was to determine the importance of P-gp for susceptibility to insecticides in the beet armyworm (Spodoptera exigua) using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology. We cloned an open reading frame (ORF) encoding the S. exigua P-gp protein (SeP-gp) predicted to display structural characteristics common to P-gp and other insect ABCB1 transporters. A knockout line with a frame shift deletion of four nucleotides in the SeP-gp ORF was established using the CRISPR/Cas9 gene-editing system to test its potential role in determining susceptibility to chemical insecticides or insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Results from comparative bioassays demonstrate that knockout of SeP-gp significantly increases susceptibility of S. exigua by around threefold to abamectin and emamectin benzoate (EB), but not to spinosad, chlorfenapyr, beta-cypermethrin, carbosulfan indoxacarb, chlorpyrifos, phoxim, diafenthiuron, chlorfluazuron, chlorantraniliprole or two Bt toxins (Cry1Ca and Cry1Fa). Our data support an important role for SeP-gp in susceptibility of S. exigua to abamectin and EB and imply that overexpression of SeP-gp may contribute to abamectin and EB resistance in S. exigua.
Collapse
Affiliation(s)
- Y-Y Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J-L Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Feng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - T-T Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y-D Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y-H Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Kim JH, Gellatly KJ, Lueke B, Kohler M, Nauen R, Murenzi E, Yoon KS, Clark JM. Detoxification of ivermectin by ATP binding cassette transporter C4 and cytochrome P450 monooxygenase 6CJ1 in the human body louse, Pediculus humanus humanus. INSECT MOLECULAR BIOLOGY 2018; 27:73-82. [PMID: 28960749 DOI: 10.1111/imb.12348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We previously observed that ivermectin-induced detoxification genes, including ATP binding cassette transporter C4 (PhABCC4) and cytochrome P450 6CJ1 (CYP6CJ1) were identified from body lice following a brief exposure to a sublethal dose of ivermectin using a non-invasive induction assay. In this current study, the functional properties of PhABCC4 and CYP6CJ1 were investigated after expression in either X. laevis oocytes or using a baculovirus expression system, respectively. Efflux of [3 H]-9-(2-phosphonomethoxyethyl) adenine ([3 H]-PMEA), a known ABCC4 substrate in humans, was detected from PhABCC4 cRNA-injected oocytes by liquid scintillation spectrophotometric analysis and PhABCC4 expression in oocytes was confirmed using ABC transporter inhibitors. Efflux was also determined to be ATP-dependent. Using a variety of insecticides in a competition assay, only co-injection of ivermectin and dichlorodiphenyltrichloroethane led to decreased efflux of [3 H]-PMEA. PhABCC4-expressing oocytes also directly effluxed [3 H]-ivermectin, which increased over time. In addition, ivermectin appeared to be oxidatively metabolized and/or sequestered, although at low levels, following functional expression of CYP6CJ1 along with cytochrome P450 reductase in Sf9 cells. Our study suggests that PhABCC4 and perhaps CYP6CJ1 are involved in the Phase III and Phase I xenobiotic metabolism of ivermectin, respectively, and may play an important role in the evolution of ivermectin resistance in lice and other insects as field selection occurs.
Collapse
Affiliation(s)
- J H Kim
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - K J Gellatly
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - B Lueke
- Crop Science Division, R&D, Bayer AG, Monheim, Germany
| | - M Kohler
- Crop Science Division, R&D, Bayer AG, Monheim, Germany
| | - R Nauen
- Crop Science Division, R&D, Bayer AG, Monheim, Germany
| | - E Murenzi
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA
| | - K S Yoon
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University, Edwardsville, IL, USA
| | - J M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|