1
|
Pietrzak D, Łuczak JW, Wiśniewski M. Beyond Tradition: Exploring Cutting-Edge Approaches for Accurate Diagnosis of Human Filariasis. Pathogens 2024; 13:447. [PMID: 38921745 PMCID: PMC11206659 DOI: 10.3390/pathogens13060447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Filariasis is recognised as a global public health threat, particularly in tropical and subtropical regions. It is caused by infection with a nematode parasite of the superfamily Filarioidea, including Wuchereria bancrofti, Brugia malayi, Onchocerca volvulus, and Onchocerca lupi. Three main types of filariasis have been classified: lymphatic filariasis, subcutaneous filariasis, and serous cavity filariasis. The symptoms exhibited by individuals afflicted with filariasis are diverse and contingent upon several variables, including the species of parasite, the host's health and immune response, and the stage of infection. While many classical parasitological techniques are considered indispensable tools for the diagnosis of parasitic infections in humans, alternative methods are being sought due to their limitations. Novel tests based on host-parasite interactions offer a rapid, simple, sensitive, and specific diagnostic tool in comparison to traditional parasitological methods. This article presents methods developed in the 21st century for the diagnosis of filariasis caused by invasion from W. bancrofti, B. malayi, O. volvulus, and O. lupi, as well as techniques that are currently in use. The development of modern diagnostic methods based on molecular biology constitutes a significant advancement in the fight against filariasis.
Collapse
Affiliation(s)
- Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| | - Julia Weronika Łuczak
- Faculty of Animal Breeding, Bioengineering and Conservation, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| | - Marcin Wiśniewski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| |
Collapse
|
2
|
Jardim Poli P, Fischer-Carvalho A, Tahira AC, Chan JD, Verjovski-Almeida S, Sena Amaral M. Long Non-Coding RNA Levels Are Modulated in Schistosoma mansoni following In Vivo Praziquantel Exposure. Noncoding RNA 2024; 10:27. [PMID: 38668385 PMCID: PMC11053911 DOI: 10.3390/ncrna10020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ.
Collapse
Affiliation(s)
- Pedro Jardim Poli
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Ana Carolina Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - John D. Chan
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53792, USA;
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| |
Collapse
|
3
|
Chowdhury S, Sais D, Donnelly S, Tran N. The knowns and unknowns of helminth-host miRNA cross-kingdom communication. Trends Parasitol 2024; 40:176-191. [PMID: 38151361 DOI: 10.1016/j.pt.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that oversee gene modulation. They are integral to cellular functions and can migrate between species, leading to cross-kingdom gene suppression. Recent breakthroughs in helminth genome studies have sparked curiosity about helminth RNA regulators and their ability to regulate genes across species. Growing data indicate that helminth miRNAs have a significant impact on the host's immune system. Specific miRNAs from helminth parasites can merge with the host's miRNA system, implying that parasites could exploit their host's regulatory machinery and function. This review highlights the role of cross-kingdom helminth-derived miRNAs in the interplay between host and parasite, exploring potential routes for their uptake, processing, and consequences in host interaction.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
4
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
5
|
Grecco A, Macchiaroli N, Pérez MG, Casulli A, Cucher MA, Rosenzvit MC. microRNA silencing in a whole worm cestode model provides insight into miR-71 function. Int J Parasitol 2023; 53:699-710. [PMID: 37699506 DOI: 10.1016/j.ijpara.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023]
Abstract
Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.
Collapse
Affiliation(s)
- Andrés Grecco
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Macchiaroli
- Laboratorio de Genómica y Bioinformática de Patógenos, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Gastón Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; European Reference Laboratory for Parasites. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marcela Alejandra Cucher
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Mitra I, Bhattacharya A, Paul J, Anisuzzaman. Present status with impacts and roles of miRNA on Soil Transmitted Helminthiosis control: A review. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100162. [PMID: 37520661 PMCID: PMC10371793 DOI: 10.1016/j.crphar.2023.100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Soil-Transmitted Helminthiasis (STH) is one of the most widespread Neglected Tropical Diseases (NTDs), and almost 1.5 billion of the global population is affected, mostly in the indigent, countryside sectors of tropics/subtropics. STH, commonly caused by various nematodes, adversely affects the hosts' growth, cognatic development, and immunity. Albendazole is most commonly used against STH (Soil-Transmitted Helminths) but resistance has already been reported in different countries. To date, no effective vaccine is present against STH. miRNAs are a unique class of small non-coding RNA, regulating various biological activities indulging host immune responses in host-pathogen interaction of STH. Dysregulation of miRNAs are being considered as one of the most important aspect of host-parasite interactions. Thus, it is the prime importance to identify and characterize parasite-specific as well as host-derived miRNAs to understand the STH infection at the molecular level. Systematic bibliometric analysis reveals a huge knowledge gap in understanding the disease by using both host and parasitic miRNAs as a potential biomarker. In this study, we addressed the present status of the STH prevalence, and therapy under the light of miRNAs. This would further help in designing new inhibitors and therapeutic strategies to control STH.
Collapse
Affiliation(s)
- Imon Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Arijit Bhattacharya
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Joydeep Paul
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Anisuzzaman
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
7
|
miR-34c-3p Regulates Protein Kinase A Activity Independent of cAMP by Dicing prkar2b Transcripts in Theileria annulata-Infected Leukocytes. mSphere 2023; 8:e0052622. [PMID: 36847534 PMCID: PMC10117149 DOI: 10.1128/msphere.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that can play critical roles in regulating various cellular processes, including during many parasitic infections. Here, we report a regulatory role for miR-34c-3p in cAMP-independent regulation of host cell protein kinase A (PKA) activity in Theileria annulata-infected bovine leukocytes. We identified prkar2b (cAMP-dependent protein kinase A type II-beta regulatory subunit) as a novel miR-34c-3p target gene and demonstrate how infection-induced upregulation of miR-34c-3p repressed PRKAR2B expression to increase PKA activity. As a result, the disseminating tumorlike phenotype of T. annulata-transformed macrophages is enhanced. Finally, we extend our observations to Plasmodium falciparum-parasitized red blood cells, where infection-induced augmentation in miR-34c-3p levels led to a drop in the amount of prkar2b mRNA and increased PKA activity. Collectively, our findings represent a novel cAMP-independent way of regulating host cell PKA activity in infections by Theileria and Plasmodium parasites. IMPORTANCE Small microRNA levels are altered in many diseases, including those caused by parasites. Here, we describe how infection by two important animal and human parasites, Theileria annulata and Plasmodium falciparum, induce changes in infected host cell miR-34c-3p levels to regulate host cell PKA kinase activity by targeting mammalian prkar2b. Infection-induced changes in miR-34c-3p levels provide a novel epigenetic mechanism for regulating host cell PKA activity independent of fluxes in cAMP to both aggravate tumor dissemination and improve parasite fitness.
Collapse
|
8
|
Ste-Croix DT, Bélanger RR, Mimee B. Characterization of microRNAs in the cyst nematode Heterodera glycines identifies possible candidates involved in cross-kingdom interactions with its host Glycine max. RNA Biol 2023; 20:614-628. [PMID: 37599428 PMCID: PMC10443972 DOI: 10.1080/15476286.2023.2244790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The soybean cyst nematode (SCN - Heterodera glycines) is one of the most damaging pests to the cultivated soybean worldwide. Using a wide array of stylet-secreted effector proteins, this nematode can restructure its host cells into a complex and highly active feeding structure called the syncytium. Tight regulation of these proteins is thought to be essential to the successful formation of this syncytium. To date, multiple mechanisms have been proposed to regulate the expression of these proteins including through post-transcriptional regulation. MicroRNAs (miRNAs) are a class of small, roughly 22-nucleotide-long, non-coding RNA shown to regulate gene expression through its interaction with the 3' untranslated region of genes. These same small RNAs have also been hypothesized to be able to cross over kingdom barriers and regulate genes in other species in a process called cross-kingdom interactions. In this study, we characterized the miRNome of the SCN via sequencing of small-RNAs isolated from whole nematodes and exosomes representing all developmental stages. We identified 121 miRNA loci encoding 96 distinct miRNA families including multiple lineage- and species-specific candidates. Using a combination of plant- and animal-specific miRNA target predictors, we generated a unique repertoire of miRNA:mRNA interacting partners in the nematode and its host plant leading to the identification of a set of nine probable cross-kingdom miRNA candidates.
Collapse
Affiliation(s)
- Dave T. Ste-Croix
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
- Département de Phytologie, Université Laval, Québec, Canada
| | - Richard R. Bélanger
- Département de Phytologie, Université Laval, Québec, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Benjamin Mimee
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
| |
Collapse
|
9
|
microRNAs: Critical Players during Helminth Infections. Microorganisms 2022; 11:microorganisms11010061. [PMID: 36677353 PMCID: PMC9861972 DOI: 10.3390/microorganisms11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.
Collapse
|
10
|
Ullah H, Tian Y, Arbab S, Li K, Khan MIU, Rahman SU, Qadeer A, Muhammad N, Suleman, Hassan IU. Circulatory microRNAs in helminthiases: Potent as diagnostics biomarker, its potential role and limitations. Front Vet Sci 2022; 9:1018872. [PMID: 36387413 PMCID: PMC9650547 DOI: 10.3389/fvets.2022.1018872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 08/08/2023] Open
Abstract
Infections caused by helminths are responsible for severe public health problems and economic burden on continental scale. Well-timed and precise diagnosis of helminth infections is critical for taking by appropriate approaches for pathogen control. Circulating miRNAs are stable diagnostic tool for different diseases found in a variety of body fluid. As diagnostic biomarkers in infectious diseases, miRNAs detection in body fluids of helminth infected hosts is growing promptly. Uncovering miRNAs is a relatively new tool, used for early-stage detection of helminth infection from experimental or non-invasive clinical samples. miRNAs can be detected in body fluids such as serum, saliva, urine, and tissues of helminth infected host, mainly blood offering important benefits for diagnosis accurately. In this review, we discuss different characteristics of helminth parasite-derived circulating and EV miRNAs, supporting its potential uses in for helminth diagnosis and treatment efficiency.
Collapse
Affiliation(s)
- Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Yali Tian
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Abdul Qadeer
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nehaz Muhammad
- Department of Zoology, University of Swabi, Swabi, Pakistan
| | - Suleman
- Department of Zoology, University of Swabi, Swabi, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| |
Collapse
|
11
|
Pomari E, Malerba G, Veschetti L, Franceschi A, Moron Dalla Tor L, Deiana M, Degani M, Mistretta M, Patuzzo C, Ragusa A, Mori A, Bisoffi Z, Buonfrate D. Identification of miRNAs of Strongyloides stercoralis L1 and iL3 larvae isolated from human stool. Sci Rep 2022; 12:9957. [PMID: 35705621 PMCID: PMC9200769 DOI: 10.1038/s41598-022-14185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Strongyloidiasis is a neglected tropical disease caused by the soil-transmitted nematode by Strongyloides stercoralis, that affects approximately 600 million people worldwide. In immunosuppressed individuals disseminated strongyloidiasis can rapidly lead to fatal outcomes. There is no gold standard for diagnosing strongyloidiasis, and infections are frequently misdiagnosed. A better understanding of the molecular biology of this parasite can be useful for example for the discovery of potential new biomarkers. Interestingly, recent evidence showed the presence of small RNAs in Strongyloididae, but no data was provided for S. stercoralis. In this study, we present the first identification of miRNAs of both L1 and iL3 larval stages of S. stercoralis. For our purpose, the aims were: (i) to analyse the miRNome of L1 and iL3 S. stercoralis and to identify potential miRNAs of this nematode, (ii) to obtain the mRNAs profiles in these two larval stages and (iii) to predict potential miRNA target sites in mRNA sequences. Total RNA was isolated from L1 and iL3 collected from the stool of 5 infected individuals. For the miRNAs analysis, we used miRDeep2 software and a pipeline of bio-informatic tools to construct a catalog of a total of 385 sequences. Among these, 53% were common to S. ratti, 19% to S. papillosus, 1% to Caenorhabditis elegans and 44% were novel. Using a differential analysis between the larval stages, we observed 6 suggestive modulated miRNAs (STR-MIR-34A-3P, STR-MIR-8397-3P, STR-MIR-34B-3P and STR-MIR-34C-3P expressed more in iL3, and STR-MIR-7880H-5P and STR-MIR-7880M-5P expressed more in L1). Along with this analysis, we obtained also the mRNAs profiles in the same samples of larvae. Multiple testing found 81 statistically significant mRNAs of the total 1553 obtained (FDR < 0.05; 32 genes expressed more in L1 than iL3; 49 genes expressed more in L3 than iL1). Finally, we found 33 predicted mRNA targets of the modulated miRNAs, providing relevant data for a further validation to better understand the role of these small molecules in the larval stages and their valuein clinical diagnostics.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy.
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Laura Veschetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alessandra Franceschi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Michela Deiana
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Monica Degani
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Manuela Mistretta
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Ragusa
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Dora Buonfrate
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
12
|
Mourenza Á, Lorente-Torres B, Durante E, Llano-Verdeja J, Aparicio JF, Fernández-López A, Gil JA, Mateos LM, Letek M. Understanding microRNAs in the Context of Infection to Find New Treatments against Human Bacterial Pathogens. Antibiotics (Basel) 2022; 11:356. [PMID: 35326819 PMCID: PMC8944844 DOI: 10.3390/antibiotics11030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The development of RNA-based anti-infectives has gained interest with the successful application of mRNA-based vaccines. Small RNAs are molecules of RNA of <200 nucleotides in length that may control the expression of specific genes. Small RNAs include small interference RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), or microRNAs (miRNAs). Notably, the role of miRNAs on the post-transcriptional regulation of gene expression has been studied in detail in the context of cancer and many other genetic diseases. However, it is also becoming apparent that some human miRNAs possess important antimicrobial roles by silencing host genes essential for the progress of bacterial or viral infections. Therefore, their potential use as novel antimicrobial therapies has gained interest during the last decade. The challenges of the transport and delivery of miRNAs to target cells are important, but recent research with exosomes is overcoming the limitations in RNA-cellular uptake, avoiding their degradation. Therefore, in this review, we have summarised the latest developments in the exosomal delivery of miRNA-based therapies, which may soon be another complementary treatment to pathogen-targeted antibiotics that could help solve the problem caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Elena Durante
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- L’Università di Urbino Carlo Bo, Via Aurelio Saffi, 2, 61029 Urbino, Italy
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Jesús F. Aparicio
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Arsenio Fernández-López
- Departamento de Biología Molecular, Área de Biología Celular, Universidad de León, 24071 León, Spain;
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Neural Therapies SL, Campus de Vegazana s/n, 24071 León, Spain
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
13
|
Comparative characterization of microRNAs of Schistosoma japonicum from SCID mice and BALB/c mice: Clues to the regulation of parasite growth and development. Acta Trop 2022; 225:106200. [PMID: 34740636 DOI: 10.1016/j.actatropica.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Schistosomiasis, caused by a parasite with a wide range of mammalian hosts, remains one of the most prevailing parasitic diseases in the world. While numerous studies have reported that the growth and reproduction of schistosomes in immunodeficient mice was significantly retarded, the underlying molecular mechanisms have yet to be revealed. In this study, we comparatively analyzed the microRNA expression of Schistosoma japonicum derived from SCID and BALB/c mice on the 35th day post-infection by high-throughput RNA sequencing as prominent morphological abnormalities had been observed in schistosomes from SCID mice when compared with those from BALB/c mice. The results revealed that more than 72% and 61% of clean reads in the small RNA libraries of female and male schistosomes, respectively, could be mapped to the selected miRs in the miRBase or the sequences of species-specific genomes. Further analysis identified 122 miRNAs using TPM >0.01 as the threshold value, including 75 known and 47 novel miRNAs, 96 of which were commonly expressed across all the four tested schistosome libraries. Comparative analysis of the libraries of schistosomes from SCID and BALB/c mice identified 15 differentially expressed miRNAs (5 up-regulated and 10 down-regulated) among females and 16 among males (9 up-regulated and 7 down-regulated). Integrated analysis of the two sets of differentially expressed miRNAs of female and male worms identified 2 miRNAs (sja-miR-3488 and sja-miR-novel_29) that overlapped between female and male datasets. Prediction of miRNA targets and Gene Ontology (GO) term enrichment analysis of the predicted target genes revealed that these genes were involved in some important biological processes, such as nucleic acid metabolic process, macromolecule modification, and cellular aromatic compound metabolic process. The predicted target genes were further matched to the differentially expressed genes in male and female schistosomes from the above two hosts, obtaining 7 genes that may be responsible for regulating the growth, development and sex maturation of schistosomes. Taken together, this study provides the first identification of differentially expressed miRNAs in schistosomes from SCID and BALB/c mice. These miRNAs and their predicted target mRNAs are probably involved in the regulation of development, growth, and maturation of schistosomes. Therefore, this study expands our understanding of schistosome development regulation and host-parasite relationship, and also provides a valuable set of potential anti-schistosomal targets for prevention and control of schistosomiasis.
Collapse
|
14
|
Alizadeh Z, Mahami-Oskouei M, Spotin A, Ahmadpour E, Cai P, Sandoghchian Shotorbani S, Pashazadeh F, Ansari F, Mohammadi H. MicroRNAs in helminth parasites: a systematic review. Curr Mol Med 2021; 22:779-808. [PMID: 34749620 DOI: 10.2174/1566524021666211108114009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are about 22-nucleotide, small, non-coding RNAs that control gene expression post-transcriptionally. Helminth parasites usually express a unique repertoire of genes, including miRNAs, across different developmental stages with subtle regulatory mechanisms. OBJECTIVE There is a necessity to investigate the involvement of miRNAs in the development of parasites, host-parasite interaction, immune evasion and their abilities to govern infection in hosts. miRNAs present in helminth parasites have been summarized in the current systematic review (SR). METHODS Electronic databases, including PubMed, Scopus, ProQuest, Embase, and Google Scholar search engine, were searched to identify helminth miRNA studies published from February 1993 till December 2019. Only the published articles in English were included in the study. RESULTS A total of 1769 articles were preliminarily recorded. Following the strict inclusion and exclusion criteria, 105 studies were included in this SR. Most of these studies focused on the identification of miRNAs in helminth parasites and/or probing of differentially expressed host miRNA profiles in specific relevant tissues, while 12 studies aimed to detect parasite-derived miRNAs in host circulating system and 15 studies characterized extracellular vesicles (EV)-derived miRNAs secreted by parasites. CONCLUSION In the current SR, information regarding all miRNAs expressed in helminth parasites has been comprehensively provided and the utility of helminth parasites-derived miRNAs in diagnosis and control of parasitic infections has been discussed. Furthermore, functional studies on helminth-derived miRNAs have also been presented.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Adel Spotin
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsan Ahmadpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane. Australia
| | | | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Fereshteh Ansari
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Science, Karaj. Iran
| |
Collapse
|
15
|
Taghipour A, Ghaffarifar F, Horton J, Dalimi A, Sharifi Z. Silybum marianum ethanolic extract: in vitro effects on protoscolices of Echinococcus granulosus G1 strain with emphasis on other Iranian medicinal plants. Trop Med Health 2021; 49:71. [PMID: 34496975 PMCID: PMC8424884 DOI: 10.1186/s41182-021-00363-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE), is a parasitic zoonosis caused by Echinococcus granulosus (E. granulosus) larvae in liver and lungs of both humans and animals. Surgical intervention is the mainstay for CE treatment, using scolicidal agents that inactivate live protoscolices. This study evaluated the scolicidal effects of Silybum marianum ethanolic extract and its combination with albendazole in vitro for the first time. Moreover, in a literature review, we investigated the effects of a wide range of Iranian medicinal plants on protoscolices of E. granulosus. METHODS S. marianum ethanolic extract was prepared and high-performance liquid chromatography (HPLC) analysis was used to establish the proportions of its component compounds in the extract. Cytotoxicity was evaluated in mouse macrophage cells (J774A.1 cell line) using MTT method. Next, the scolicidal activity of the extract alone and combined with albendazole was tested as triplicate at various concentrations incubated for 5, 10, 20, 30, and 60 min. Finally, protoscolex viability was determined using 0.1% eosin as a vital stain. PCR-RFLP and DNA sequencing techniques were used to characterize the genotype of E. granulosus. RESULTS HPLC analysis showed that S. marianum ethanolic extract contained mostly silydianin (14.41%), isosilybin A (10.50%), and silychristin (10.46%). The greatest scolicidal effects were obtained with the combination of S. marianum with albendazole (79%), S. marianum ethanolic extract alone (77%) and albendazole (69%), at a concentration of 500 μg/ml for 60 min, respectively (P < 0.05). Molecular analysis showed that all the cysts used were G1 genotype. CONCLUSION The data suggest that S. marianum ethanolic extract is a potential scolicide in vitro; however, further investigations are required to determine its efficacy in vivo.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
16
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
17
|
Wang L, Liu T, Chen G, Li Y, Zhang S, Mao L, Liang P, Fasihi Harandi M, Li T, Luo X. Exosomal microRNA let-7-5p from Taenia pisiformis Cysticercus Prompted Macrophage to M2 Polarization through Inhibiting the Expression of C/EBP δ. Microorganisms 2021; 9:microorganisms9071403. [PMID: 34209741 PMCID: PMC8307393 DOI: 10.3390/microorganisms9071403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022] Open
Abstract
Cysticercus pisiformis, the larval stage of Taenia pisiformis, causes serious illness in rabbits that severely impacts the rabbit breeding industry. An inhibitive Th2 immune response can be induced by let-7-enriched exosomes derived from T. pisiformis cysticercus. However, the underlying molecular mechanisms are not completely understood. Here, we report that exosomal miR-let-7-5p released by T. pisiformis cysticercus played a critical role in the activation of M2 macrophages. We found that overexpression of let-7-5p in M1 macrophages decreased M1 phenotype expression while promoting polarization to the M2 phenotype, which is consistent with experimental data in exosome-treated macrophages alone. In contrast, knockdown of let-7-5p in exosome-like vesicles promoted M1 polarization and decreased M2 phenotype expression. Furthermore, down-regulation of transcription factor CCAAT/enhancer-binding protein (C/EBP)-δ resulted in the decrease of M1 phenotype markers and increase of M2 phenotype markers. These results suggested that let-7 enriched in exosome-like vesicles from T. pisiformis metacestodes can induce M2 macrophage polarization via targeting C/EBP δ, which may be involved in macrophage polarization induced by T. pisiformis metacestodes. The finding helps to expand our knowledge of the molecular mechanism of immunosuppression and Th2 immune response induced by metacestodes.
Collapse
Affiliation(s)
- Liqun Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Tingli Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Guoliang Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Yanping Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Li Mao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Panhong Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman 7616914115, Iran;
| | - Taoshan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730046, China; (L.W.); (T.L.); (G.C.); (Y.L.); (S.Z.); (L.M.); (P.L.); (T.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
18
|
Eroglu F, Dokur M, Ulu Y. MicroRNA profile in immune response of alveolar and cystic echinococcosis patients. Parasite Immunol 2021; 43:e12817. [PMID: 33410199 DOI: 10.1111/pim.12817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/27/2022]
Abstract
It is known that miRNAs are effective in immune response in the diagnosis and treatment of many infectious diseases. However, the miRNAs profile is unknown in Alveolar and Cystic Echinococcosis which can be fatal if left untreated. The miRNAs profile that activates the T and B cells forming the immune system in Alveolar and Cystic Echinococcosis patients was investigated in this study. A total of 50 liver tissue samples were obtained from Alveolar and Cystic Echinococcosis patients in Kilis State Hospital Pathology Laboratory in southeast of Turkey. The circulating cell-free miRNAs were evaluated by a quantitative real-time polymerase chain reaction, statistically calculated within ΔΔCt values and fold changes were evaluated by Welch T test, in which P < .05 was considered to be significant. Twenty-five microRNAs, including let-7a-5p, let-7c, let-7e-5p, miR-15b-5p, miR16, miR-17-5p, miR-23a-5p, miR-24-3p, miR-25-3p, miR-26a-3p, miR-26b-3p, miR-29b-3p, miR-29c-3p, miR-30a-5p, miR-30b-5p, miR-30c-5p, miR-30d-5p, miR-30e-5p, miR-98-5p, miR-101-3p, miR-106b-5p, miR-125b-5p, miR-142-5p, miR-222-3p and miR-223-3p, were found as down-regulated in Alveolar and Cystic Echinococcosis patients than control groups. Twelve miRNAs, including miR-15a-5p, miR-21-5p, miR-27a-3p, miR-29a-3p, miR-146a-5p, miR-181a-5p, miR-181b-5p, miR-181d, miR-181c-5p, miR-195-5p, miR-214-3p and miR-365-3p, were found as up-regulated in Alveolar and Cystic Echinococcosis patients than healthy person. It has been shown that T- and B-cell activities are related in the progressive of both Alveolar and Cystic Echinococcosis in this study. The miRNA panel activated by T and B cells may be important for exploring the mechanisms underlying early development in Alveolar and Cystic Echinococcosis providing novel information that may be used to discover new therapeutics for these diseases.
Collapse
Affiliation(s)
- Fadime Eroglu
- Faculty of Medicine, Department of Parasitology, Aksaray University, Aksaray, Turkey.,FaBiyosit Microbiology-Biotechnology R&D Co., Adana, Turkey
| | - Mehmet Dokur
- Faculty of Medicine, Department of Emergency Medicine, Biruni University, Istanbul, Turkey
| | - Yüksel Ulu
- Department of Medical Pathology, Kilis State Hospital, Kilis, Turkey.,Department of Medical Pathology, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
19
|
Fasciola hepatica hijacks host macrophage miRNA machinery to modulate early innate immune responses. Sci Rep 2021; 11:6712. [PMID: 33762636 PMCID: PMC7990952 DOI: 10.1038/s41598-021-86125-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Fasciola hepatica, a global worm parasite of humans and their livestock, regulates host innate immune responses within hours of infection. Host macrophages, essential to the first-line defence mechanisms, are quickly restricted in their ability to initiate a classic protective pro-inflammatory immune response. We found that macrophages from infected animals are enriched with parasite-derived micro(mi)RNAs. The most abundant of these miRNAs, fhe-miR-125b, is released by the parasite via exosomes and is homologous to a mammalian miRNA, hsa-miR-125b, that is known to regulate the activation of pro-inflammatory M1 macrophages. We show that the parasite fhe-miR-125b loads onto the mammalian Argonaut protein (Ago-2) within macrophages during infection and, therefore, propose that it mimics host miR-125b to negatively regulate the production of inflammatory cytokines. The hijacking of the miRNA machinery controlling innate cell function could be a fundamental mechanism by which worm parasites disarm the early immune responses of their host to ensure successful infection.
Collapse
|
20
|
Expression profiling of Echinococcus multilocularis miRNAs throughout metacestode development in vitro. PLoS Negl Trop Dis 2021; 15:e0009297. [PMID: 33750964 PMCID: PMC8016320 DOI: 10.1371/journal.pntd.0009297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/01/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
The neglected zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode stage of the tapeworm parasite Echinococcus multilocularis. MicroRNAs (miRNAs) are small non-coding RNAs with a major role in regulating gene expression in key biological processes. We analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro, determined the spatial expression of miR-71 in metacestodes cultured in vitro and predicted miRNA targets. Small cDNA libraries from different samples of E. multilocularis were sequenced. We confirmed the expression of 37 miRNAs in E. multilocularis being some of them absent in the host, such as miR-71. We found a few miRNAs highly expressed in all life cycle stages and conditions analyzed, whereas most miRNAs showed very low expression. The most expressed miRNAs were miR-71, miR-9, let-7, miR-10, miR-4989 and miR-1. The high expression of these miRNAs was conserved in other tapeworms, suggesting essential roles in development, survival, or host-parasite interaction. We found highly regulated miRNAs during the different transitions or cultured conditions analyzed, which might suggest a role in the regulation of developmental timing, host-parasite interaction, and/or in maintaining the unique developmental features of each developmental stage or condition. We determined that miR-71 is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. MiRNA target prediction of the most highly expressed miRNAs and in silico functional analysis suggested conserved and essential roles for these miRNAs in parasite biology. We found relevant targets potentially involved in development, cell growth and death, lifespan regulation, transcription, signal transduction and cell motility. The evolutionary conservation and expression analyses of E. multilocularis miRNAs throughout metacestode development along with the in silico functional analyses of their predicted targets might help to identify selective therapeutic targets for treatment and control of AE. Alveolar echinococcosis (AE) is a zoonotic disease caused by the metacestode stage of the helminth parasite Echinococcus multilocularis. Current treatment requires surgery and/or prolonged drug therapy. Thus, novel strategies for the treatment of AE are needed. MicroRNAs (miRNAs), a class of small ~22-nucleotide (nt) non-coding RNAs with a major role in regulating gene expression, have been suggested as potential therapeutic targets for treatment and control of helminth parasite infections. In this work, we analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro. We predicted functional roles for highly expressed miRNAs and found that they could be involved in essential roles for survival and development in the host. We determined that E. multilocularis miR-71, a highly expressed miRNA that is absent in the human host, is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. Germinative cells are a relevant cell type to target for anti-echinococcosis drug development. MiRNAs that are absent in the human host, involved in essential functions, highly expressed and/or expressed in germinative cells in E. multilocularis metacestodes may represent selective therapeutic targets for treatment and control of AE.
Collapse
|
21
|
Ricafrente A, Nguyen H, Tran N, Donnelly S. An Evaluation of the Fasciola hepatica miRnome Predicts a Targeted Regulation of Mammalian Innate Immune Responses. Front Immunol 2021; 11:608686. [PMID: 33584684 PMCID: PMC7878377 DOI: 10.3389/fimmu.2020.608686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding mechanisms by which parasitic worms (helminths) control their hosts’ immune responses is critical to the development of effective new disease interventions. Fasciola hepatica, a global scourge of humans and their livestock, suppresses host innate immune responses within hours of infection, ensuring that host protective responses are quickly incapacitated. This allows the parasite to freely migrate from the intestine, through the liver to ultimately reside in the bile duct, where the parasite establishes a chronic infection that is largely tolerated by the host. The recent identification of micro(mi)RNA, small RNAs that regulate gene expression, within the extracellular vesicles secreted by helminths suggest that these non-coding RNAs may have a role in the parasite-host interplay. To date, 77 miRNAs have been identified in F. hepatica comprising primarily of ancient conserved species of miRNAs. We hypothesized that many of these miRNAs are utilized by the parasite to regulate host immune signaling pathways. To test this theory, we first compiled all of the known published F. hepatica miRNAs and critically curated their sequences and annotations. Then with a focus on the miRNAs expressed by the juvenile worms, we predicted gene targets within human innate immune cells. This approach revealed the existence of targets within every immune cell, providing evidence for the universal management of host immunology by this parasite. Notably, there was a high degree of redundancy in the potential for the parasite to regulate the activation of dendritic cells, eosinophils and neutrophils, with multiple miRNAs predicted to act on singular gene targets within these cells. This original exploration of the Fasciola miRnome offers the first molecular insight into mechanisms by which F. hepatica can regulate the host protective immune response.
Collapse
Affiliation(s)
- Alison Ricafrente
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Hieu Nguyen
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Nham Tran
- Faculty of Engineering and Information Technology, School of Biomedical Engineering, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
22
|
Long non-coding RNA levels can be modulated by 5-azacytidine in Schistosoma mansoni. Sci Rep 2020; 10:21565. [PMID: 33299037 PMCID: PMC7725772 DOI: 10.1038/s41598-020-78669-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.
Collapse
|
23
|
Taenia solium and Taenia crassiceps: miRNomes of the larvae and effects of miR-10-5p and let-7-5p on murine peritoneal macrophages. Biosci Rep 2020; 39:220730. [PMID: 31694049 PMCID: PMC6863767 DOI: 10.1042/bsr20190152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/04/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
Neurocysticercosis (NCC), a major cause of neurological morbidity worldwide, is caused by the larvae of Taenia solium. Cestodes secrete molecules that block the Th1 response of their hosts and induce a Th2 response permissive to their establishment. Mature microRNAs (miRs) are small noncoding RNAs that regulate gene expression and participate in immunological processes. To determine the participation of Taenia miRs in the immune response against cysticercosis, we constructed small RNA (sRNA) libraries from larvae of Taenia solium and Taenia crassiceps. A total of 12074504 and 11779456 sequencing reads for T. solium and T. crassiceps, respectively, were mapped to the genomes of T. solium and other helminths. Both larvae shared similar miRNome, and miR-10-5p was the most abundant in both species, followed by let-7-5p in T. solium and miR-4989-3p in T. crassiceps, whereas among the genus-specific miRs, miR-001-3p was the most abundant in both, followed by miR-002-3p in T. solium and miR-003a-3p in T. crassiceps. The sequences of these miRs were identical in both. Structure and target prediction analyses revealed that these pre-miRs formed a hairpin and had more than one target involved in immunoregulation. Culture of macrophages, RT-PCR and ELISA assays showed that cells internalized miR-10-5p and let-7-5p into the cytoplasm and the miRs strongly decreased interleukin 16 (Il6) expression, tumor necrosis factor (TNF) and IL-12 secretion, and moderately decreased nitric oxide synthase inducible (Nos2) and Il1b expression (pro-inflammatory cytokines) in M(IFN-γ) macrophages and expression of Tgf1b, and the secretion of IL-10 (anti-inflammatory cytokines) in M(IL-4) macrophages. These findings could help us understand the role of miRs in the host–Taenia relationship.
Collapse
|
24
|
Ovchinnikov VY, Kashina EV, Mordvinov VA, Fromm B. EV-transported microRNAs of Schistosoma mansoni and Fasciola hepatica: Potential targets in definitive hosts. INFECTION GENETICS AND EVOLUTION 2020; 85:104528. [PMID: 32891875 DOI: 10.1016/j.meegid.2020.104528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Trematodes are widespread parasitic flatworms that significantly affect mankind either directly as human parasites, or indirectly via the infection of livestock and the related economic damage. The two most important trematode taxa are the blood flukes Schistosoma and the liver flukes Fasciola, but detection and differentiation of these parasites remains a challenge. Recently, microRNAs (miRNAs) were described from extracellular vesicles (EV) for both parasites secreted into respective hosts. These molecules have been proposed as mediators of parasite-host communication, and potential biomarkers for the detection of parasitic infections from host blood. Our aim here was to study similarities and differences in the miRNA complements of Schistosoma mansoni and Fasciola hepatica, EV-load in particular, to predict their targets and potential functions in the parasite-host interaction. We reanalyzed the known miRNA complements of S. mansoni and F. hepatica and found 16 and 4 previously overlooked, but deeply conserved miRNAs, respectively, further moving their complements closer together. We found distinct miRNA enrichment patterns in EVs both showing high levels of flatworm miRNAs with potential for the detection of an infection from blood. Two miRNAs of the protostome specific MIR-71 and MIR-277 families were highly expressed in EVs and could, therefore, have potential as biomarkers for trematode infection. Curiously, we identified nucleotide differences in the sequence of Mir-277-P2 between S. mansoni and F. hepatica that hold great promise for the distinction of both parasites. To test whether the EV-miRNAs of S. mansoni and F. hepatica could be modulating the expression of host genes, we predicted miRNA targets in 321 human and cattle messenger RNAs that overlapped between both hosts. Of several predicted targets, wnt signaling pathway genes stood out and their suppression likely leads to changes in the glucose concentration in host blood and the reduction of inflammatory and immune responses.
Collapse
Affiliation(s)
- Vladimir Y Ovchinnikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elena V Kashina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| |
Collapse
|
25
|
Bischofsberger M, Winkelmann F, Rabes A, Reisinger EC, Sombetzki M. Pathogen-host interaction mediated by vesicle-based secretion in schistosomes. PROTOPLASMA 2020; 257:1277-1287. [PMID: 32462473 PMCID: PMC7449993 DOI: 10.1007/s00709-020-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
As part of the parasite's excretory/secretory system, extracellular vesicles (EVs) represent a potent communication tool of schistosomes with their human host to strike the balance between their own survival in a hostile immunological environment and a minimal damage to the host tissue. Their cargo consists of functional proteins, lipids, and nucleic acids that facilitate biological processes like migration, nutrient acquisition, or reproduction. The most important impact of the vesicle-mediated communication, however, is the promotion of the parasite survival via mimicking host protein function and directly or indirectly modulating the immune response of the host. Overcoming this shield of immunological adaption in the schistosome-host relation is the aim of current research activities in this field and crucial for the development of a reliable anti-schistosomal therapy. Not least because of their prospective use in clinical applications, research on EVs is now a rapidly expanding field. We herein focus on the current state of knowledge of vesicle-based communication of schistosomes and discussing the role of EVs in facilitating biological processes and immune modulatory properties of EVs considering the different life stages of the parasite.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Franziska Winkelmann
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Anne Rabes
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Emil C Reisinger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
26
|
Ma G, Gasser RB, Wang T, Korhonen PK, Young ND. Toward integrative 'omics of the barber's pole worm and related parasitic nematodes. INFECTION GENETICS AND EVOLUTION 2020; 85:104500. [PMID: 32795511 DOI: 10.1016/j.meegid.2020.104500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Advances in nucleic acid sequencing, mass spectrometry and computational biology have facilitated the identification, annotation and analysis of genes, transcripts, proteins and metabolites in model nematodes (Caenorhabditis elegans and Pristionchus pacificus) and socioeconomically important parasitic nematodes (Clades I, III, IV and V). Significant progress has been made in genomics and transcriptomics as well as in the proteomics and lipidomics of Haemonchus contortus (the barber's pole worm) - one of the most pathogenic representatives of the order Strongylida. Here, we review salient aspects of genomics, transcriptomics, proteomics, lipidomics, glycomics and functional genomics, and discuss the rise of integrative 'omics of this economically important parasite. Although our knowledge of the molecular biology, genetics and biochemistry of H. contortus and related species has progressed significantly, much remains to be explored, particularly in areas such as drug resistance, unique/unknown genes, host-parasite interactions, parasitism and the pathogenesis of disease, by integrating the use of multiple 'omics methods. This approach should lead to a better understanding of H. contortus and its relatives at a 'systems biology' level, and should assist in developing new interventions against these parasites.
Collapse
Affiliation(s)
- Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
27
|
Al-Rawi NH, Al-Marzooq F, Al-Nuaimi AS, Hachim MY, Hamoudi R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS One 2020; 15:e0237004. [PMID: 32756589 PMCID: PMC7406085 DOI: 10.1371/journal.pone.0237004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulated expression of MicroRNAs (miRNAs) plays substantial role in the initiation and progression of both diabetes and periodontitis. The aim of the present study was to validate four miRNAs in saliva as potential predictive biomarkers of periodontal disease among patients with and without diabetes mellitus (DM). MiRNAs were extracted from the saliva of 24 adult subjects with DM and 29 healthy controls. Each group was subdivided into periodontally healthy or having periodontitis. In silico analysis identified 4 miRNAs (miRNA 155, 146 a/b and 203) as immune modulators. The expression of miRNAs-146a/b, 155, and 203 was tested using quantitative PCR. The expression levels in the study groups were compared to explore the effect of diabetes on periodontal status and vice versa. In our cohort, the four miRNAs expression were higher in patients with periodontitis and/or diabetes. miRNA-155 was the most reliable predictors of periodontitis among non-diabetics with an optimum cut-off value of < 8.97 with accuracy = 82.6%. MiRNA 146a, on the other hand, was the only reliable predictor of periodontitis among subjects with diabetes with optimum cut-off value of ≥11.04 with accuracy = 86.1%. The results of the present study concluded that MiRNA-146a and miRNA155 in saliva provide reliable, non-invasive, diagnostic and prognostic biomarkers that can be used to monitor periodontal health status among diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Natheer H. Al-Rawi
- Department of Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Farah Al-Marzooq
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, UAE
| | | | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Drurey C, Coakley G, Maizels RM. Extracellular vesicles: new targets for vaccines against helminth parasites. Int J Parasitol 2020; 50:623-633. [PMID: 32659278 PMCID: PMC8313431 DOI: 10.1016/j.ijpara.2020.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
The hunt for effective vaccines against the major helminth diseases of humans has yet to bear fruit despite much effort over several decades. No individual parasite antigen has proved to elicit full protective immunity, suggesting that combinatorial strategies may be required. Recently it has been discovered that extracellular vesicles released by parasitic helminths contain multiple potential immune modulators, which could together be targeted by a future vaccine. Increasing knowledge of helminth extracellular vesicle components, both enclosed by and exposed on the membrane, will open up a new field of targets for an effective vaccine. This review discusses the interactions between helminth extracellular vesicles and the immune system discovered thus far, and the advantages of targeting these lipid-bound packages with a vaccine. In addition, we also comment upon specific antigens that may be the best targets for an anti-helminth vaccine. In the future, extensive knowledge of the parasites' full arsenal in controlling their host may finally provide us with the ideal target for a fully effective vaccine.
Collapse
Affiliation(s)
- Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
29
|
Boubaker G, Strempel S, Hemphill A, Müller N, Wang J, Gottstein B, Spiliotis M. Regulation of hepatic microRNAs in response to early stage Echinococcus multilocularis egg infection in C57BL/6 mice. PLoS Negl Trop Dis 2020; 14:e0007640. [PMID: 32442168 PMCID: PMC7244097 DOI: 10.1371/journal.pntd.0007640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
We present a comprehensive analysis of the hepatic miRNA transcriptome at one month post-infection of experimental primary alveolar echinococcosis (AE), a parasitic infection caused upon ingestion of E. multilocularis eggs. Liver tissues were collected from infected and non-infected C57BL/6 mice, then small RNA libraries were prepared for next-generation sequencing (NGS). We conducted a Stem-loop RT-qPCR for validation of most dysregulated miRNAs. In infected mice, the expression levels of 28 miRNAs were significantly altered. Of these, 9 were up-regulated (fold change (FC) ≥ 1.5) and 19 were down-regulated (FC ≤ 0.66) as compared to the non-infected controls. In infected livers, mmu-miR-148a-3p and mmu-miR-101b-3p were 8- and 6-fold down-regulated, respectively, and the expression of mmu-miR-22-3p was reduced by 50%, compared to non-infected liver tissue. Conversely, significantly higher hepatic levels were noted for Mus musculus (mmu)-miR-21a-5p (FC = 2.3) and mmu-miR-122-5p (FC = 1.8). In addition, the relative mRNA expression levels of five genes (vegfa, mtor, hif1-α, fasn and acsl1) that were identified as targets of down-regulated miRNAs were significantly enhanced. All the five genes exhibited a higher expression level in livers of E. multilocularis infected mice compared to non-infected mice. Finally, we studied the issue related to functionally mature arm selection preference (5p and/or 3p) from the miRNA precursor and showed that 9 pre-miRNAs exhibited different arm selection preferences in normal versus infected liver tissues. In conclusion, this study provides first evidence that miRNAs are regulated early in primary murine AE. Our findings raise intriguing questions such as (i) how E. multilocularis affects hepatic miRNA expression;(ii) what are the alterations in miRNA expression patterns in more advanced AE-stages; and (iii) which hepatic cellular, metabolic and/or immunologic processes are modulated through altered miRNAs in AE. Thus, further research on the regulation of miRNAs during AE is needed, since miRNAs constitute an attractive potential option for development of novel therapeutic approaches against AE. Various infectious diseases in humans have been associated with altered expression patterns of microRNAs (miRNAs), a class of small non-coding RNAs involved in negative regulation of gene expression. Herein, we revealed that significant alteration of miRNAs expression occurred in murine liver subsequently to experimental infection with E. multilocularis eggs when compared to non-infected controls. At the early stage of murine AE, hepatic miRNAs were mainly down-regulated. Respective target genes of the most extensively down-regulated miRNAs were involved in angiogenesis and fatty acid synthesis. Furthermore, we found higher mRNA levels of three angiogenic and two lipogenic genes in E. multilocularis infected livers compared to non-infected controls. Angiogenesis and fatty acid biosynthesis may be beneficial for development of the E. multilocularis metacestodes. In fact the formation of new blood vessels in the periparasitic area may ensure that parasites are supplied with oxygen and nutrients and get rid of waste products. Additionally, E. multilocularis is not able to undertake de novo fatty acid synthesis, thus lipids must be scavenged from its host. More research on the regulation of the hepatic miRNA transcriptome at more advanced stages of AE is needed.
Collapse
Affiliation(s)
- Ghalia Boubaker
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Department of Clinical Biology B, Laboratory of Parasitology and Mycology, University of Monastir, Monastir, Tunisia
- * E-mail: (GB); (BG)
| | | | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Norbert Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Junhua Wang
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Bruno Gottstein
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Institute of Infectious Diseases, Faculty of Medicine, University of Berne, Berne, Switzerland
- * E-mail: (GB); (BG)
| | - Markus Spiliotis
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
de Souza W, Barrias ES. Membrane-bound extracellular vesicles secreted by parasitic protozoa: cellular structures involved in the communication between cells. Parasitol Res 2020; 119:2005-2023. [PMID: 32394001 DOI: 10.1007/s00436-020-06691-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The focus of this review is a group of structures/organelles collectively known as extracellular vesicles (EVs) that are secreted by most, if not all, cells, varying from mammalian cells to protozoa and even bacteria. They vary in size: some are small (100-200 nm) and others are larger (> 200 nm). In protozoa, however, most of them are small or medium in size (200-400 nm). These include vesicles from different origins. We briefly review the biogenesis of this distinct group that includes (a) exosome, which originates from the multivesicular bodies, an important component of the endocytic pathway; (b) ectosome, formed from a budding process that takes place in the plasma membrane of the cells; (c) vesicles released from the cell surface following a process of patching and capping of ligand/receptor complexes; (d) other processes where tubules secreted by the parasite subsequently originate exosome-like structures. Here, special emphasis is given to EVs secreted by parasitic protozoa such as Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Cryptosporidium, Trichomonas, and Giardia. Most of them have been characterized as exosomes that were isolated using several approaches and characterized by electron microscopy, proteomic analysis, and RNA sequencing. The results obtained show clearly that they present several proteins and different types of RNAs. From the functional point of view, it is now clear that the secreted exosomes can be incorporated by the parasite itself as well as by mammalian cells with which they interact. As a consequence, there is interference both with the parasite (induction of differentiation, changes in infectivity, etc.) and with the host cell. Therefore, the EVs constitute a new system of transference of signals among cells. On the other hand, there are suggestions that exosomes may constitute potential biotechnology tools and are important players of what has been designated as nanobiotechnology. They may constitute an important delivery system for gene therapy and molecular-displaying cell regulation capabilities when incorporated into other cells and even by interfering with the exosomal membrane during its biogenesis, targeting the vesicles via specific ligands to different cell types. These vesicles may reach the bloodstream, overflow through intercellular junctions, and even pass through the central nervous system blood barrier. There is evidence that it is possible to interfere with the composition of the exosomes by interfering with multivesicular body biogenesis.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-900, Brazil. .,Instituto Nacional de Ciência e Tecnologia and Núcleo de Biologia Estrutural e Bioimagens, CENABIO, Rio de Janeiro, Brazil.
| | - Emile S Barrias
- Instituto Nacional de Ciência e Tecnologia and Núcleo de Biologia Estrutural e Bioimagens, CENABIO, Rio de Janeiro, Brazil.,Laboratorio de Metrologia Aplicada à Ciências da Vida, Diretoria de Metrologia Aplicada à Ciências da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Zheng WB, Zou Y, Zhu XQ, Liu GH. Toxocara "omics" and the promises it holds for medicine and veterinary medicine. ADVANCES IN PARASITOLOGY 2020; 109:89-108. [PMID: 32381233 DOI: 10.1016/bs.apar.2020.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxocariasis is one of the most neglected worldwide zoonoses that is caused by larval nematode parasites of the genus Toxocara, Toxocara canis, and to a lesser extent, Toxocara cati, whose migration mechanism is still largely unknown. Fortunately, some advanced tools have been employed, such as genomics, transcriptomics, and proteomics, to better understand the molecular biology and regulatory mechanisms of Toxocara. Using genomics and transcriptomics, we can identify a large number of genes that participate in the development of Toxocara and the interaction of parasites and their hosts and can predict the functions of unknown genes by comparing them with other relevant species. Using proteomics, we can identify somatic proteins and excretory and secretory (ES) proteins that perform specific biological functions in tissue degradation, pathogen invasion, immune evasion or modulation. These "omics" techniques also can contribute enormously to the development of new drugs, vaccines and diagnostic tools for toxocariasis. In a word, by utilizing "omics", we can better understand the Toxocara and toxocariasis. In this review, we summarized the representative achievements in Toxocara and the interaction between Toxocara spp. and their hosts based on expressed sequence tags (ESTs), microarray gene expression, next-generation sequencing (NGS) technologies and liquid chromatography-tandem mass spectrometry (LC-MS/MS), hoping to better understand the molecular biology of Toxocara, and contribute to new progress in the application areas of new drugs, vaccines and diagnostic tool for toxocariasis in the future.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
32
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
33
|
Budak H, Kaya SB, Cagirici HB. Long Non-coding RNA in Plants in the Era of Reference Sequences. FRONTIERS IN PLANT SCIENCE 2020; 11:276. [PMID: 32226437 PMCID: PMC7080850 DOI: 10.3389/fpls.2020.00276] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2020] [Indexed: 05/04/2023]
Abstract
The discovery of non-coding RNAs (ncRNAs), and the subsequent elucidation of their functional roles, was largely delayed due to the misidentification of non-protein-coding parts of DNA as "junk DNA," which forced ncRNAs into the shadows of their protein-coding counterparts. However, over the past decade, insight into the important regulatory roles of ncRNAs has led to rapid progress in their identification and characterization. Of the different types of ncRNAs, long non-coding RNAs (lncRNAs), has attracted considerable attention due to their mRNA-like structures and gene regulatory functions in plant stress responses. While RNA sequencing has been commonly used for mining lncRNAs, a lack of widespread conservation at the sequence level in addition to relatively low and highly tissue-specific expression patterns challenges high-throughput in silico identification approaches. The complex folding characteristics of lncRNA molecules also complicate target predictions, as the knowledge about the interaction interfaces between lncRNAs and potential targets is insufficient. Progress in characterizing lncRNAs and their targets from different species may hold the key to efficient identification of this class of ncRNAs from transcriptomic and potentially genomic resources. In wheat and barley, two of the most important crops, the knowledge about lncRNAs is very limited. However, recently published high-quality genomes of these crops are considered as promising resources for the identification of not only lncRNAs, but any class of molecules. Considering the increasing demand for food, these resources should be used efficiently to discover molecular mechanisms lying behind development and a/biotic stress responses. As our understanding of lncRNAs expands, interactions among ncRNA classes, as well as interactions with the coding sequences, will likely define novel functional networks that may be modulated for crop improvement.
Collapse
Affiliation(s)
- Hikmet Budak
- Montana BioAgriculture, Inc., Bozeman, MT, United States
- *Correspondence: Hikmet Budak,
| | - Sezgi Biyiklioglu Kaya
- Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabancı University, Istanbul, Turkey
| | - Halise Busra Cagirici
- Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabancı University, Istanbul, Turkey
| |
Collapse
|
34
|
Pérez MG, Spiliotis M, Rego N, Macchiaroli N, Kamenetzky L, Holroyd N, Cucher MA, Brehm K, Rosenzvit MC. Deciphering the role of miR-71 in Echinococcus multilocularis early development in vitro. PLoS Negl Trop Dis 2019; 13:e0007932. [PMID: 31881019 PMCID: PMC6957206 DOI: 10.1371/journal.pntd.0007932] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/13/2020] [Accepted: 11/17/2019] [Indexed: 01/25/2023] Open
Abstract
Echinococcosis represents a major public health problem worldwide and is considered a neglected disease by the World Health Organization. The etiological agents are Echinococcus tapeworms, which display elaborate developmental traits that imply a complex control of gene expression. MicroRNAs (miRNAs), a class of small regulatory RNAs, are involved in the regulation of many biological processes such as development and metabolism. They act through the repression of messenger RNAs (mRNAs) usually by binding to the 3’ untranslated region (3’UTR). Previously, we described the miRNome of several Echinococcus species and found that miRNAs are highly expressed in all life cycle stages, suggesting an important role in gene expression regulation. However, studying the role of miRNAs in helminth biology remains a challenge. To develop methodology for functional analysis of miRNAs in tapeworms, we performed miRNA knockdown experiments in primary cell cultures of Echinococcus multilocularis, which mimic the development of metacestode vesicles from parasite stem cells in vitro. First, we analysed the miRNA repertoire of E. multilocularis primary cells by small RNA-seq and found that miR-71, a bilaterian miRNA absent in vertebrate hosts, is one of the top five most expressed miRNAs. Using genomic information and bioinformatic algorithms for miRNA binding prediction, we found a high number of potential miR-71 targets in E. multilocularis. Inhibition of miRNAs can be achieved by transfection of antisense oligonucleotides (anti-miRs) that block miRNA function. To this end, we evaluated a variety of chemically modified anti-miRs for miR-71 knockdown. Electroporation of primary cells with 2’-O-methyl modified anti-miR-71 led to significantly reduced miR-71 levels. Transcriptomic analyses showed that several predicted miR-71 targets were up-regulated in anti-miR-treated primary cells, including genes potentially involved in parasite development, host parasite interaction, and several genes of as yet unknown function. Notably, miR-71-silenced primary cell cultures showed a strikingly different phenotype from control cells and did not develop into fully mature metacestodes. These findings indicate an important function of miR-71 in Echinococcus development and provide, for the first time, methodology to functionally study miRNAs in a tapeworm. Echinococcosis, caused by the larval stages of tapeworms of the genus Echinococcus, is a neglected disease that affects millions of people world-wide. These parasites show elaborate developmental features that rely on a complex control of gene expression. microRNAs are small molecules which have been discovered in the last decades and control gene expression in animals, plants and viruses. microRNAs are highly expressed in several tapeworms but their biological function in these parasites is unknown. Assuming that microRNAs will be important for parasite development, we analysed the function of these molecules in Echinococcus multilocularis, employing an in vitro model that mimics the first developmental transitions which occur in the human host. By artificially decreasing the concentration of the highest expressed microRNA, we observed phenotypic alterations and inhibition of development. In addition, we identified possible mRNA molecules targeted by microRNAs and found that some of these are known for being involved in developmental processes in other organisms. This work provides novel methodology to study microRNA function in tapeworms. Furthermore, highly expressed parasite microRNAs that are absent in the host but fulfil an important role in parasite developmental processes can serve as selective drug targets against the underlying diseases.
Collapse
Affiliation(s)
- Matías Gastón Pérez
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Markus Spiliotis
- University of Würzburg, Institute for Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| | - Natalia Rego
- Institut Pasteur de Montevideo, Unidad de Bioinformática, Montevideo, Uruguay
| | - Natalia Macchiaroli
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Laura Kamenetzky
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Marcela Alejandra Cucher
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Klaus Brehm
- University of Würzburg, Institute for Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
- * E-mail: (KB); (MCR)
| | - Mara Cecilia Rosenzvit
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- * E-mail: (KB); (MCR)
| |
Collapse
|
35
|
Marks ND, Winter AD, Gu HY, Maitland K, Gillan V, Ambroz M, Martinelli A, Laing R, MacLellan R, Towne J, Roberts B, Hanks E, Devaney E, Britton C. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development. Sci Rep 2019; 9:17594. [PMID: 31772378 PMCID: PMC6879476 DOI: 10.1038/s41598-019-54154-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.
Collapse
Affiliation(s)
- Neil D Marks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- West of Scotland Genetic Services, Level 2B, Laboratory Medicine, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Henry Y Gu
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Martin Ambroz
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Axel Martinelli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10, Kita-ku, Sapporo, Japan
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Rachel MacLellan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Jessica Towne
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Brett Roberts
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University Avenue, Glasgow, G12 8QQ, UK
| | - Eve Hanks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
36
|
Tran DH, Phung HTT. Detecting Fasciola hepatica and Fasciola gigantica microRNAs with loop-mediated isothermal amplification (LAMP). J Parasit Dis 2019; 44:364-373. [PMID: 32508411 DOI: 10.1007/s12639-019-01164-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022] Open
Abstract
Fascioliasis is a parasitic infection typically caused by two common parasites of class Trematodo, genus Fasciola, namely Fasciola hepatica and Fasciola gigantica. The widespread of these species in water and food makes fascioliasis become a global zoonotic disease that affects 2.4 million people in more than 75 countries worldwide. Typically, F. hepatica and F. gigantica can be recognized by parasitological techniques to detect Fasciola spp. eggs, immunological techniques to detect worm-specific antibodies, or by molecular techniques such as PCR to detect parasitic genomic DNA. Recently, miRNAs have been raised as a key regulator and potential diagnostic biomarkers of diseases, including parasitic infection. An isothermal PCR called loop-mediated isothermal amplification (LAMP) is rapid, sensitive, and its amplification process is so extensive that making LAMP well-suited for field diagnostics. LAMP reactions for miRNA detection have been introduced and were able to detect the target miRNA amounts in the wide range of 1.0 amol to 1.0 pmol, exhibiting high selectivity to differentiate one-base between miRNA sequences. Here, we introduced a modified LAMP to detect a species-specific miRNA of F. hepatica and F. gigantica. Our method did not demand an initial heating step and the reactions had a high sensitivity that greater than 1000 times in comparison to that reported in previous studies. Most importantly, the technique could perform well with parasitic miRNA presenting in bovine serum samples without sophisticated equipment required. These results create a promising technique basis for some novel and simple device to diagnose fascioliasis and other parasitic infection diseases at point-of-care.
Collapse
Affiliation(s)
- Diem Hong Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, 700000 Vietnam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
37
|
Macchiaroli N, Cucher M, Kamenetzky L, Yones C, Bugnon L, Berriman M, Olson PD, Rosenzvit MC. Identification and expression profiling of microRNAs in Hymenolepis. Int J Parasitol 2019; 49:211-223. [PMID: 30677390 DOI: 10.1016/j.ijpara.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Tapeworms (cestodes) of the genus Hymenolepis are the causative agents of hymenolepiasis, a neglected zoonotic disease. Hymenolepis nana is the most prevalent human tapeworm, especially affecting children. The genomes of Hymenolepis microstoma and H. nana have been recently sequenced and assembled. MicroRNAs (miRNAs), a class of small non-coding RNAs, are principle regulators of gene expression at the post-transcriptional level and are involved in many different biological processes. In previous work, we experimentally identified miRNA genes in the cestodes Echinococcus, Taenia and Mesocestoides. However, current knowledge about miRNAs in Hymenolepis is limited. In this work we described for the first known time the expression profile of the miRNA complement in H. microstoma, and discovered miRNAs in H. nana. We found a reduced complement of 37 evolutionarily conserved miRNAs, putatively reflecting their low morphological complexity and parasitic lifestyle. We found high expression of a few miRNAs in the larval stage of H. microstoma that are conserved in other cestodes, suggesting that these miRNAs may have important roles in development, survival and for host-parasite interplay. We performed a comparative analysis of the identified miRNAs across the Cestoda and showed that most of the miRNAs in Hymenolepis are located in intergenic regions, implying that they are independently transcribed. We found a Hymenolepis-specific cluster composed of three members of the mir-36 family. Also, we found that one of the neighboring genes of mir-10 was a Hox gene as in most bilaterial species. This study provides a valuable resource for further experimental research in cestode biology that might lead to improved detection and control of these neglected parasites. The comprehensive identification and expression analysis of Hymenolepis miRNAs can help to identify novel biomarkers for diagnosis and/or novel therapeutic targets for the control of hymenolepiasis.
Collapse
Affiliation(s)
- Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Cristian Yones
- Research Institute for Signals, Systems and Computational Intelligence, (sinc(i)), FICH-UNL-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina
| | - Leandro Bugnon
- Research Institute for Signals, Systems and Computational Intelligence, (sinc(i)), FICH-UNL-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina
| | - Matt Berriman
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Peter D Olson
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
38
|
MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci 2018; 10:24. [PMID: 30078842 PMCID: PMC6080405 DOI: 10.1038/s41368-018-0025-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15a, miR-29b, miR-125a, miR-146a, miR-148/148a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.
Collapse
|
39
|
Stroehlein AJ, Young ND, Korhonen PK, Hall RS, Jex AR, Webster BL, Rollinson D, Brindley PJ, Gasser RB. The small RNA complement of adult Schistosoma haematobium. PLoS Negl Trop Dis 2018; 12:e0006535. [PMID: 29813122 PMCID: PMC5993326 DOI: 10.1371/journal.pntd.0006535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/08/2018] [Accepted: 05/17/2018] [Indexed: 01/24/2023] Open
Abstract
Background Blood flukes of the genus Schistosoma cause schistosomiasis—a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium—the causative agent of urogenital schistosomiasis of humans. Methodology MicroRNAs (miRNAs) and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses. Principal findings In total, 89 transcribed miRNAs were identified in S. haematobium—a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64) exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21), biogenesis of other RNAs (n = 3) or ribozyme functions (n = 16), whereas most others (n = 3798) were novel (‘orphans’) with unknown functions. Conclusions This study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk. Human schistosomiasis is a chronic, neglected tropical disease (NTD) that is predominantly caused by the blood flukes Schistosoma haematobium, S. mansoni and S. japonicum. Infections by S. haematobium and/or S. mansoni are highly prevalent in Africa, affecting ~ 200 million people. The decoding of schistosome draft genomes has, to some extent, improved our understanding of the molecular biology of these parasites and now allows for non-protein-coding regions in these genomes to be characterised. Here, we explored small RNAs in adult S. haematobium by deep sequencing, reference genome mapping and detailed bioinformatic analyses. This study provides the first genome-wide miRNA and sncRNA resource for S. haematobium, extending earlier work on schistosomes and facilitating future curation efforts and functional investigations of schistosome sncRNAs. These efforts should enable a better understanding of post-transcriptional RNA modifications, gene regulation and novel aspects of parasite development, parasite-host cross-talk and disease at the molecular level.
Collapse
Affiliation(s)
- Andreas J. Stroehlein
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AJS); (RBG)
| | - Neil D. Young
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Bonnie L. Webster
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
| | - David Rollinson
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
| | - Paul J. Brindley
- School of Medicine & Health Sciences, Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States of America
| | - Robin B. Gasser
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AJS); (RBG)
| |
Collapse
|
40
|
Vesicle-based secretion in schistosomes: Analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Sci Rep 2018; 8:3286. [PMID: 29459722 PMCID: PMC5818524 DOI: 10.1038/s41598-018-21587-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 01/16/2023] Open
Abstract
Exosomes are small vesicles of endocytic origin, which are released into the extracellular environment and mediate a variety of physiological and pathological conditions. Here we show that Schistosoma mansoni releases exosome-like vesicles in vitro. Vesicles were purified from culture medium by sucrose gradient fractionation and fractions containing vesicles verified by western blot analyses and electron microscopy. Proteomic analyses of exosomal contents unveiled 130 schistosome proteins. Among these proteins are common exosomal markers such as heat shock proteins, energy-generating enzymes, cytoskeletal proteins, and others. In addition, the schistosome extracellular vesicles contain proteins of potential importance for host-parasite interaction, notably peptidases, signaling proteins, cell adhesion proteins (e.g., integrins) and previously described vaccine candidates, including glutathione-S-transferase (GST), tetraspanin (TSP-2) and calpain. S. mansoni exosomes also contain 143 microRNAs (miRNA), of which 25 are present at high levels, including miRNAs detected in sera of infected hosts. Quantitative PCR analysis confirmed the presence of schistosome-derived miRNAs in exosomes purified from infected mouse sera. The results provide evidence of vesicle-mediated secretion in these parasites and suggest that schistosome-derived exosomes could play important roles in host-parasite interactions and could be a useful tool in the development of vaccines and therapeutics.
Collapse
|
41
|
Excretory/secretory products from the gastrointestinal nematode Trichuris muris. Exp Parasitol 2017; 178:30-36. [DOI: 10.1016/j.exppara.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
|
42
|
Macchiaroli N, Maldonado LL, Zarowiecki M, Cucher M, Gismondi MI, Kamenetzky L, Rosenzvit MC. Genome-wide identification of microRNA targets in the neglected disease pathogens of the genus Echinococcus. Mol Biochem Parasitol 2017; 214:91-100. [PMID: 28385564 DOI: 10.1016/j.molbiopara.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in biological processes such as development. MiRNAs silence target mRNAs by binding to complementary sequences in the 3'untranslated regions (3'UTRs). The parasitic helminths of the genus Echinococcus are the causative agents of echinococcosis, a zoonotic neglected disease. In previous work, we performed a comprehensive identification and characterization of Echinococcus miRNAs. However, current knowledge about their targets is limited. Since target prediction algorithms rely on complementarity between 3'UTRs and miRNA sequences, a major limitation is the lack of accurate sequence information of 3'UTR for most species including parasitic helminths. We performed RNA-seq and developed a pipeline that integrates the transcriptomic data with available genomic data of this parasite in order to identify 3'UTRs of Echinococcus canadensis. The high confidence set of 3'UTRs obtained allowed the prediction of miRNA targets in Echinococcus through a bioinformatic approach. We performed for the first time a comparative analysis of miRNA targets in Echinococcus and Taenia. We found that many evolutionarily conserved target sites in Echinococcus and Taenia may be functional and under selective pressure. Signaling pathways such as MAPK and Wnt were among the most represented pathways indicating miRNA roles in parasite growth and development. Genome-wide identification and characterization of miRNA target genes in Echinococcus provide valuable information to guide experimental studies in order to understand miRNA functions in the parasites biology. miRNAs involved in essential functions, especially those being absent in the host or showing sequence divergence with respect to host orthologs, might be considered as novel therapeutic targets for echinococcosis control.
Collapse
Affiliation(s)
- Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Lucas L Maldonado
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Magdalena Zarowiecki
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | | | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
43
|
Lagatie O, Batsa Debrah L, Debrah A, Stuyver LJ. Plasma-derived parasitic microRNAs have insufficient concentrations to be used as diagnostic biomarker for detection of Onchocerca volvulus infection or treatment monitoring using LNA-based RT-qPCR. Parasitol Res 2017; 116:1013-1022. [PMID: 28111713 PMCID: PMC5313568 DOI: 10.1007/s00436-017-5382-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 01/30/2023]
Abstract
River blindness, caused by infection with the filarial nematode Onchocerca volvulus, is a neglected tropical disease affecting millions of people. There is a clear need for diagnostic tools capable of identifying infected patients, but that can also be used for monitoring disease progression and treatment efficacy. Plasma-derived parasitic microRNAs have been suggested as potential candidates for such diagnostic tools. We have investigated whether these parasitic microRNAs are present in sufficient quantity in plasma of Onchocerca-infected patients to be used as a diagnostic biomarker for detection of O. volvulus infection or treatment monitoring. Plasma samples were collected from different sources (23 nodule-positive individuals and 20 microfilaridermic individuals), microRNAs (miRNAs) were extracted using Qiagen miRNeasy kit, and a set of 17 parasitic miRNAs was evaluated on these miRNA extracts using miRCURY Locked Nucleic Acid (LNA) Universal RT microRNA PCR system. Of the 17 miRNAs evaluated, only 7 miRNAs were found to show detectable signal in a number of samples: bma-miR-236-1, bma-miR-71, ov-miR71-22nt, ov-miR-71-23nt, ov-miR-100d, ov-bantam-a, and ov-miR-87-3p. Subsequent melting curve analysis, however, indicated that the signals observed for ov-miR-71 variants and ov-miR-87-3p are non-specific. The other miRNAs only showed positive signal in one or few samples with Cq values just below the cutoff. Our data indicate that parasitic miRNAs are not present in circulation at a sufficiently high level to be used as biomarker for O. volvulus infection or treatment monitoring using LNA-based RT-qPCR analysis.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Diagnostics, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lieven J Stuyver
- Janssen Diagnostics, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
44
|
Ramm SA. Exploring the sexual diversity of flatworms: Ecology, evolution, and the molecular biology of reproduction. Mol Reprod Dev 2016; 84:120-131. [PMID: 27292123 DOI: 10.1002/mrd.22669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Flatworms exhibit huge diversity in their reproductive biology, making this group an excellent model system for exploring how differences among species in reproductive ecology are reflected in the physiological and molecular details of how reproduction is achieved. In this review, I consider five key "lifestyle choices" (i.e., alternative evolutionary/developmental outcomes) that collectively encompass much of flatworm sexual diversity, beginning with the decisions: (i) whether to be free-living or parasitic; (ii) whether to reproduce asexually or sexually; and (iii) whether to be gonochoristic (separate-sexed) or hermaphroditic. I then examine two further decisions involving hermaphroditism: (iv) outcrossing versus selfing and (v) the balance of investment into the male versus the female sex function (sex allocation). Collectively, these lifestyle choices set the basic rules for how reproduction occurs, but as I emphasize in the second part of the review, the reproductive biology of flatworms is also greatly impacted by the near-pervasive and powerful pressure of sexual selection, together with the related phenomena of sperm competition and sexual conflict. Exactly how this plays out, however, is strongly affected by the particular combination of reproductive strategies adopted by each species. Mol. Reprod. Dev. 84: 120-131, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
45
|
Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
|
46
|
Ma G, Luo Y, Zhu H, Luo Y, Korhonen PK, Young ND, Gasser RB, Zhou R. MicroRNAs of Toxocara canis and their predicted functional roles. Parasit Vectors 2016; 9:229. [PMID: 27108220 PMCID: PMC4842261 DOI: 10.1186/s13071-016-1508-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
Background Toxocara canis is the causative agent of toxocariasis of humans and other animals. This parasitic nematode (roundworm) has a complex life cycle, in which substantial developmental changes and switches occur. As small non-coding RNAs (sRNAs) are key regulators of gene expression in a wide range of organisms, we explored these RNAs in T. canis to provide a basis for future studies of its developmental biology as well as host interactions and disease at the molecular level. Methods We conducted high-throughput RNA sequencing and bioinformatic analyses to define sRNAs in individual male and female adults of T. canis. Results Apart from snRNA and snoRNA, 560 and 619 microRNAs (miRNAs), including 5 and 2 novel miRNAs, were identified in male and female worms, respectively, without piRNAs being detected in either sex. An analysis of transcriptional profiles showed that, of 564 miRNAs predicted as being differentially transcribed between male and female individuals of T. canis, 218 miRNAs were transcribed exclusively in male and 277 in female worms. Functional enrichment analysis predicted that both male and female miRNAs were mainly involved in regulating embryonic morphogenesis, hemidesmosome assembly and genetic information processing. The miRNAs differentially transcribed between the sexes were predicted to be associated with sex determination, embryonic morphogenesis and nematode larval development. The roles of miRNAs were predicted based on gene ontology (GO) and KEGG pathway annotations. The miRNAs Tc-miR-2305 and Tc-miR-6090 are proposed to have roles in reproduction, embryo development and larval development, and Tc-let-7-5p, Tc-miR-34 and Tc-miR-100 appear to be involved in host-parasite interactions. Together with published information from previous studies, some miRNAs (such as Tc-miR-2861, Tc-miR-2881 and Tc-miR-5126) are predicted to represent drug targets and/or associated with drug resistance. Conclusions This is the first exploration of miRNAs in T. canis, which could provide a basis for fundamental investigations of the developmental biology of the parasite, parasite-host interactions and toxocariasis as well as applied areas, such as the diagnosis of infection/disease, drug target discovery and drug resistance detection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1508-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yongfang Luo
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China
| | - Honghong Zhu
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China
| | - Yongli Luo
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Rongqiong Zhou
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China.
| |
Collapse
|
47
|
Rosani U, Pallavicini A, Venier P. The miRNA biogenesis in marine bivalves. PeerJ 2016; 4:e1763. [PMID: 26989613 PMCID: PMC4793324 DOI: 10.7717/peerj.1763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova , Padova , Italy
| | | | - Paola Venier
- Department of Biology, University of Padova , Padova , Italy
| |
Collapse
|
48
|
Fontenla S, Dell'Oca N, Smircich P, Tort JF, Siles-Lucas M. The miRnome of Fasciola hepatica juveniles endorses the existence of a reduced set of highly divergent micro RNAs in parasitic flatworms. Int J Parasitol 2015; 45:901-13. [PMID: 26432296 DOI: 10.1016/j.ijpara.2015.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/27/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022]
Abstract
The liver fluke Fasciola hepatica is a foodborne zoonotic parasite affecting livestock worldwide, with increasing relevance in human health. The first developmental stage that the host meets after ingestion of the parasite is the newly excysted juvenile, that actively transverses the gut wall and migrates to its final location in the liver. The regulation of the early developmental events in newly excysted juveniles is still poorly understood and a relevant target for control strategies. Here we investigated the putative involvement of small regulatory RNAs in the invasion process. The small RNA population of the newly excysted juvenile fall into two classes, one represented by micro (mi)RNAs and a secondary group of larger (32-33 nucleotides) tRNA-derived sequences. We identified 40 different miRNAs, most of those belonging to ancient miRNAs conserved in protostomes and metazoans, notably with a highly predominant miR-125b variant. Remarkably, several protostomian and metazoan conserved families were not detected in consonance with previous reports of drastic miRnome reduction in parasitic flatworms. Additionally, a set of five novel miRNAs was identified, probably associated with specific gene regulation expression needs in F. hepatica. While sequence conservation in mature miRNA is high across the metazoan tree, we observed that flatworm miRNAs are more divergent, suggesting that mutation rates in parasitic flatworms could be high. Finally, the distinctive presence of tRNA-derived sequences, mostly 5' tRNA halves of selected tRNAs in the small RNA population of newly excysted juveniles, raises the possibility that both miRNA and tRNA fragments participate in the regulation of gene expression in this parasite.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Nicolás Dell'Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay; Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - Mar Siles-Lucas
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| |
Collapse
|
49
|
Human Trichuriasis: Whipworm Genetics, Phylogeny, Transmission and Future Research Directions. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0062-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Britton C, Winter AD, Marks ND, Gu H, McNeilly TN, Gillan V, Devaney E. Application of small RNA technology for improved control of parasitic helminths. Vet Parasitol 2015; 212:47-53. [PMID: 26095949 PMCID: PMC4535316 DOI: 10.1016/j.vetpar.2015.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/26/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
MicroRNAs and siRNAs in helminth post-transcriptional gene regulation are reviewed. Many parasitic helminth miRNAs are unique and developmentally expressed. miRNAs released by parasites have diagnostic potential, particularly for filarial and schistosome spp. Parasite and host miRNAs may regulate immune responses. Improvements to siRNA-mediated gene silencing are important for functional genomics.
Over the last decade microRNAs (miRNAs) and small interfering RNAs (siRNAs) have emerged as important regulators of post-transcriptional gene expression. miRNAs are short, non-coding RNAs that regulate a variety of processes including cancer, organ development and immune function. This class of small RNAs bind with partial complementarity to their target mRNA sequences, most often in the 3′UTR, to negatively regulate gene expression. In parasitic helminths, miRNAs are being increasingly studied for their potential roles in development and host-parasite interactions. The availability of genome data, combined with small RNA sequencing, has paved the way to profile miRNAs expressed at particular developmental stages for many parasitic helminths. While some miRNAs are conserved across species, others appear to be unique to specific parasites, suggesting important roles in adaptation and survival in the host environment. Some miRNAs are released from parasites, in exosomes or in protein complexes, and the potential effects of these on host immune function are being increasingly studied. In addition, release of miRNAs from schistosome and filarial parasites into host plasma can be exploited for the development of specific and sensitive diagnostic biomarkers of infection. Interfering with miRNA function, as well as silencing key components of the pathways they regulate, will progress our understanding of parasite development and provide a novel approach to therapeutic control. RNA interference (RNAi) by siRNAs has proven to be inconsistent in parasitic nematodes. However, the recent successes reported for schistosome and liver fluke RNAi, encourage further efforts to enhance delivery of RNA and improve in vitro culture systems and assays to monitor phenotypic effects in nematodes. These improvements are important for the establishment of reliable functional genomic platforms for novel drug and vaccine development. In this review we focus on the important roles of miRNAs and siRNAs in post-transcriptional gene regulation in veterinary parasitic helminths and the potential value of these in parasite diagnosis and control.
Collapse
Affiliation(s)
- Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Neil D Marks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Henry Gu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|