1
|
Lin Z, Cabello B, Kossor C, Davé R. Facilitating direct compaction tableting of fine cohesive APIs using dry coated fine excipients: Effect of the excipient size and amount of coated silica. Int J Pharm 2024; 660:124359. [PMID: 38901539 DOI: 10.1016/j.ijpharm.2024.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The possibility of attaining direct compression (DC) tableting using silica coated fine particle sized excipients was examined for high drug loaded (DL) binary blends of APIs. Three APIs, very-cohesive micronized acetaminophen (mAPAP, 7 μm), cohesive acetaminophen (cAPAP, 23 μm), and easy-flowing ibuprofen (IBU, 53 μm), were selected. High DL (60 wt%) binary blends were prepared with different fine-milled MCC-based excipients (ranging 20- 37 μm) with or without A200 silica coating during milling. The blend flowability (flow function coefficient -FFC) and bulk density (BD) of the blends for all three APIs were significantly improved by 1 wt% A200 dry coated MCCs; reaching FFC of 4.28 from 2.14, 7.82 from 2.96, and > 10 from 5.57, for mAPAP, cAPAP, and IBU blends, respectively, compared to the uncoated MCC blends. No negative impact was observed on the tablet tensile strength (TS) by using dry coated MCCs despite lower surface energy of silica. Instead, the desired tablet TS levels were reached or exceeded, even above that for the blends with uncoated milled MCCs. The novelty here is that milled and silica coated fine MCCs could promote DC tableting for cAPAP and IBU blends at 60 wt% DL through adequate flowability and tensile strength, without having to dry coat the APIs. The effect of the silica amount was investigated, indicating lesser had a positive impact on TS, whereas the higher amount had a positive impact on flowability. Thus, the finer excipient size and silica amounts may be adjusted to potentially attain blend DC processability for high DL blends of fine APIs.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Bian Cabello
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Bade I, Karde V, Schenck L, Solomos M, Figus M, Chen C, Axnanda S, Heng JYY. Process-Induced Crystal Surface Anisotropy and the Impact on the Powder Properties of Odanacatib. Pharmaceutics 2024; 16:883. [PMID: 39065580 PMCID: PMC11279451 DOI: 10.3390/pharmaceutics16070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Crystalline active pharmaceutical ingredients with comparable size and surface area can demonstrate surface anisotropy induced during crystallization or downstream unit operations such as milling. To the extent that varying surface properties impacts bulk powder properties, the final drug product performance such as stability, dissolution rates, flowability, and dispersibility can be predicted by understanding surface properties such as surface chemistry, energetics, and wettability. Here, we investigate the surface properties of different batches of Odanacatib prepared through either jet milling or fast precipitation from various solvent systems, all of which meet the particle size specification established to ensure equivalent biopharmaceutical performance. This work highlights the use of orthogonal surface techniques such as Inverse Gas Chromatography (IGC), Brunauer-Emmett-Teller (BET) surface area, contact angle, and X-ray Photoelectron Spectroscopy (XPS) to demonstrate the effect of processing history on particle surface properties to explain differences in bulk powder properties.
Collapse
Affiliation(s)
- Isha Bade
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (I.B.); (V.K.)
| | - Vikram Karde
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (I.B.); (V.K.)
| | - Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (L.S.)
| | - Marina Solomos
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (L.S.)
| | - Margaret Figus
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (M.F.); (C.C.)
| | - Chienhung Chen
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (M.F.); (C.C.)
| | - Stephanus Axnanda
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (M.F.); (C.C.)
| | - Jerry Y. Y. Heng
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (I.B.); (V.K.)
| |
Collapse
|
3
|
Alam AI, Rahman MH, Zia A, Lowry N, Chakraborty P, Hassan MR, Khoda B. In-situ particle analysis with heterogeneous background: a machine learning approach. Sci Rep 2024; 14:10609. [PMID: 38719876 PMCID: PMC11079076 DOI: 10.1038/s41598-024-59558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
We propose a novel framework that combines state-of-the-art deep learning approaches with pre- and post-processing algorithms for particle detection in complex/heterogeneous backgrounds common in the manufacturing domain. Traditional methods, like size analyzers and those based on dilution, image processing, or deep learning, typically excel with homogeneous backgrounds. Yet, they often fall short in accurately detecting particles against the intricate and varied backgrounds characteristic of heterogeneous particle-substrate (HPS) interfaces in manufacturing. To address this, we've developed a flexible framework designed to detect particles in diverse environments and input types. Our modular framework hinges on model selection and AI-guided particle detection as its core, with preprocessing and postprocessing as integral components, creating a four-step process. This system is versatile, allowing for various preprocessing, AI model selections, and post-processing strategies. We demonstrate this with an entrainment-based particle delivery method, transferring various particles onto substrates that mimic the HPS interface. By altering particle and substrate properties (e.g., material type, size, roughness, shape) and process parameters (e.g., capillary number) during particle entrainment, we capture images under different ambient lighting conditions, introducing a range of HPS background complexities. In the preprocessing phase, we apply image enhancement and sharpening techniques to improve detection accuracy. Specifically, image enhancement adjusts the dynamic range and histogram, while sharpening increases contrast by combining the high pass filter output with the base image. We introduce an image classifier model (based on the type of heterogeneity), employing Transfer Learning with MobileNet as a Model Selector, to identify the most appropriate AI model (i.e., YOLO model) for analyzing each specific image, thereby enhancing detection accuracy across particle-substrate variations. Following image classification based on heterogeneity, the relevant YOLO model is employed for particle identification, with a distinct YOLO model generated for each heterogeneity type, improving overall classification performance. In the post-processing phase, domain knowledge is used to minimize false positives. Our analysis indicates that the AI-guided framework maintains consistent precision and recall across various HPS conditions, with the harmonic mean of these metrics comparable to those of individual AI model outcomes. This tool shows potential for advancing in-situ process monitoring across multiple manufacturing operations, including high-density powder-based 3D printing, powder metallurgy, extreme environment coatings, particle categorization, and semiconductor manufacturing.
Collapse
Affiliation(s)
- Adeeb Ibne Alam
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, United States
| | - Md Hafizur Rahman
- Department of Electrical & Computer Engineering, University of Maine, Orono, ME, 04473, USA
| | - Akhter Zia
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, United States
| | - Nate Lowry
- Department of Electrical & Computer Engineering, University of Maine, Orono, ME, 04473, USA
| | - Prabuddha Chakraborty
- Department of Electrical & Computer Engineering, University of Maine, Orono, ME, 04473, USA
| | - Md Rafiul Hassan
- Computer Science, University of Maine at Presque Isle, Presque Isle, ME, 04769, USA
| | - Bashir Khoda
- Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, United States.
| |
Collapse
|
4
|
Lin Z, Cabello B, Davé RN. Impact of dry coating lactose as a brittle excipient on multi-component blend processability. Int J Pharm 2024; 653:123921. [PMID: 38382769 DOI: 10.1016/j.ijpharm.2024.123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Previous work demonstrated the benefits of dry coating fine-grade microcrystalline cellulose (MCC) for enabling direct compression (DC), a favored tablet manufacturing method, due to enhanced flowability while retaining good compactability of placebo and binary blends of cohesive APIs. Here, fine brittle excipients, Pharmatose 450 (P450, 19 μm) and Pharmatose 350 (P350, 29 μm), having both poor flowability and compactability are dry coated with silica A200 or R972P to assess DC capability of multi-component cohesive API (coarse acetaminophen, 22 μm, and ibuprofen50, 47 μm) blends. Dry coated P450 and P350 not only attained excellent flowability and high bulk density but also heightened tensile strength hence processability, which contrasts with reported reduction for dry coated ductile MCC. Although hydrophobic R972P imparted better flowability, hydrophilic A200 better enhanced tensile strength, hence selected for dry coating P450 in multi-component blends that included fine Avicel PH-105. For coarse acetaminophen blends, substantial bulk density and flowability increase without any detrimental effect on tensile strength were observed; a lesser amount of dry coated P450 was better. Increased flowability, bulk density, and tensile strength, hence enhanced processability by reaching DC capability, were observed for 60 wt% ibuprofen50, using only 18 wt% of the dry coated P450, i.e. 0.18 wt% silica in the blend.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Bian Cabello
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Fujinuma K, Okada S, Hayashi K, Ito M, Suzuki H, Sugano K, Noguchi S. Triboelectrification of Active Pharmaceutical Ingredients: Amines and Their Hydrochloride Salts. Chem Pharm Bull (Tokyo) 2024; 72:817-825. [PMID: 39313386 DOI: 10.1248/cpb.c24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The triboelectric properties of active pharmaceutical ingredients (APIs) contribute to problems during the manufacturing of pharmaceuticals. However, the triboelectric properties of APIs have not been comprehensively characterized. In this study, the effect of salt formulation on the triboelectric properties of APIs was investigated. The triboelectric properties of three groups of amines, namely tertiary amines, purine bases, and amino acids, and their hydrochlorides were evaluated using a suction-type Faraday cage meter. Most of the hydrochloride salts exhibited more negative charges than the corresponding free bases, and the degree by which the triboelectric property changed upon hydrochlorination depended on the structural groups of the compounds. In the case of tertiary amines, the change in the zero-charge margin upon hydrochlorination was negatively correlated with the zero-charge margin of the free base. In contrast, hydrochlorination of the amino acids led to a significant change in the zero-charge margin. In most cases, salt formation also affected the triboelectric properties of API powders. Controlling the triboelectric properties of APIs solves various problems caused by the electrification of raw material powders and granules during the production of pharmaceuticals, thereby increasing the quality of produced pharmaceuticals.
Collapse
Affiliation(s)
- Kenta Fujinuma
- Faculty of Pharmaceutical Sciences, Toho University
- Pharmaceutical Technology Development Department, Nippon Chemiphar Co., Ltd
| | - Shota Okada
- Faculty of Pharmaceutical Sciences, Toho University
| | - Kyu Hayashi
- Faculty of Pharmaceutical Sciences, Toho University
| | - Masataka Ito
- Faculty of Pharmaceutical Sciences, Toho University
| | | | | | | |
Collapse
|
6
|
Kunnath KT, Tripathi S, Kim SS, Chen L, Zheng K, Davé RN. Selection of Silica Type and Amount for Flowability Enhancements via Dry Coating: Contact Mechanics Based Predictive Approach. Pharm Res 2023; 40:2917-2933. [PMID: 37468827 DOI: 10.1007/s11095-023-03561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE To investigate the effect of dry coating the amount and type of silica on powder flowability enhancement using a comprehensive set of 19 pharmaceutical powders having different sizes, surface roughness, morphology, and aspect ratios, as well as assess flow predictability via Bond number estimated using a mechanistic multi-asperity particle contact model. METHOD Particle size, shape, density, surface energy and area, SEM-based morphology, and FFC were assessed for all powders. Hydrophobic (R972P) or hydrophilic (A200) nano-silica were dry coated for each powder at 25%, 50%, and 100% surface area coverage (SAC). Flow predictability was assessed via particle size and Bond number. RESULTS Nearly maximal flow enhancement, one or more flow category, was observed for all powders at 50% SAC of either type of silica, equivalent to 1 wt% or less for both the hydrophobic R972P or hydrophilic A200, while R972P generally performed slightly better. Silica amount as SAC better helped understand the relative performance. The power-law relation between FFC and Bond number was observed. CONCLUSION Significant flow enhancements were achieved at 50% SAC, validating previous models. Most uncoated very cohesive powders improved by two flow categories, attaining easy flow. Flowability could not be predicted for both the uncoated and dry coated powders via particle size alone. Prediction was significantly better using Bond number computed via the mechanistic multi-asperity particle contact model accounting for the particle size, surface energy, roughness, and the amount and type of silica. The widely accepted 200 nm surface roughness was not valid for most pharmaceutical powders.
Collapse
Affiliation(s)
- Kuriakose T Kunnath
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Siddharth Tripathi
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Liang Chen
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
7
|
Markeev VB, Tishkov SV, Vorobei AM, Parenago OO, Blynskaya EV, Alekseev KV, Marakhova AI, Vetcher AA. Modeling of the Aqueous Solubility of N-butyl-N-methyl-1-phenylpyrrolo[1,2-a] pyrazine-3-carboxamide: From Micronization to Creation of Amorphous-Crystalline Composites with a Polymer. Polymers (Basel) 2023; 15:4136. [PMID: 37896380 PMCID: PMC10611044 DOI: 10.3390/polym15204136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
N-butyl-N-methyl-1-phenylpyrrole[1,2-a] pyrazine-3-carboxamide (GML-3) is a potential candidate for combination drug therapy due to its anxiolytic and antidepressant activity. The anxiolytic activity of GML-3 is comparable to diazepam. The antidepressant activity of GML-3 is comparable to amitriptyline. GML-3 is an 18 kDa mitochondrial translocator protein (TSPO) ligand and is devoid of most of the side effects of diazepam, which makes the research on the creation of drugs based on it promising. However, its low water solubility and tendency to agglomerate prevented its release. This research aimed to study the effect of dry grinding, the rapid expansion of a supercritical solution (RESS), and the eutectic mixture (composite) of GML-3 with polyvinylpyrrolidone (PVP) on the particle size, dissolution rate, and lattice retention of GML-3. The use of supercritical CO2 in the RESS method was promising in terms of particle size reduction, resulting in a reduction in the particle size of GML-3 to 20-40 nm with a 430-fold increase in dissolution rate. However, in addition to particle size reduction after RESS, GML-3 began to show signs of a polymorphism phenomenon, which was also studied in this article. It was found that coarse grinding reduced particle size by a factor of 2 but did not significantly affect solubility or crystal structure. Co-milling with the polymer made it possible to level the effect of the appearance of a residual electrostatic charge on the particles, as in the case of grinding, and the increased solubility in the resulting mechanical mixtures of GML-3 with the polymer may also indicate the dissolving properties of polymers (an increase in 400-800 times). The best result in terms of GML-3 solubility was demonstrated by the resulting GML-3:PVP composite at a ratio of 1:4, which made it possible to achieve a solubility of about 80% active pharmaceutical ingredient (API) within an hour with an increase in the dissolution rate by 1600 times. Thus, the creation of composites is the most effective method for improving the solubility of GML-3, superior to micronization.
Collapse
Affiliation(s)
- Vladimir B. Markeev
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (S.V.T.); (E.V.B.); (K.V.A.)
| | - Sergey V. Tishkov
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (S.V.T.); (E.V.B.); (K.V.A.)
| | - Anton M. Vorobei
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31Leninsky Pr., 119071 Moscow, Russia; (A.M.V.); (O.O.P.)
| | - Olga O. Parenago
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31Leninsky Pr., 119071 Moscow, Russia; (A.M.V.); (O.O.P.)
| | - Evgenia V. Blynskaya
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (S.V.T.); (E.V.B.); (K.V.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Konstantin V. Alekseev
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (S.V.T.); (E.V.B.); (K.V.A.)
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
8
|
Kim SS, Seetahal A, Amores N, Kossor C, Davé RN. Impact of Silica Dry Coprocessing with API and Blend Mixing Time on Blend Flowability and Drug Content Uniformity. J Pharm Sci 2023; 112:2124-2136. [PMID: 37230252 DOI: 10.1016/j.xphs.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
This paper considers two fine-sized (d50 ∼10 µm) model drugs, acetaminophen (mAPAP) and ibuprofen (Ibu), to examine the effect of API dry coprocessing on their multi-component medium DL (30 wt%) blends with fine excipients. The impact of blend mixing time on the bulk properties such as flowability, bulk density, and agglomeration was studied. The hypothesis tested is that blends with fine APIs at medium DL require good blend flowability to have good blend uniformity (BU). Moreover, the good flowability could be achieved through dry coating with hydrophobic (R972P) silica, which reduces agglomeration of not only fine API, but also of its blends while using fine excipients. For uncoated APIs, the blend flowability was poor, i.e. cohesive regime at all mixing times, and the blends failed to achieve acceptable BU. In contrast, for dry coated APIs, their blend flowability improved to easy-flow regime or better, improving with mixing time, and as hypothesized, all blends consequently achieved desired BU. All dry coated API blends exhibited improved bulk density and reduced agglomeration, attributed to mixing induced synergistic property enhancements, likely due to silica transfer. Despite coating with hydrophobic silica, tablet dissolution was improved, attributed to the reduced agglomeration of fine API.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ameera Seetahal
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Nicholas Amores
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Shah DS, Moravkar KK, Jha DK, Lonkar V, Amin PD, Chalikwar SS. A concise summary of powder processing methodologies for flow enhancement. Heliyon 2023; 9:e16498. [PMID: 37292344 PMCID: PMC10245010 DOI: 10.1016/j.heliyon.2023.e16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
The knowledge of powder properties has been highlighted since the 19th century since most formulations focus on solid dosage forms, and powder flow is essential for various manufacturing operations. A poor powder flow may generate problems in the manufacturing processes and cause the plant's malfunction. Hence these problems should be studied and rectified beforehand by various powder flow techniques to improve and enhance powder flowability. The powder's physical properties can be determined using compendial and non-compendial methods. The non-compendial practices generally describe the powder response under the stress and shear experienced during their processing. The primary interest of the current report is to summarize the flow problems and enlist the techniques to eliminate the issues associated with the powder's flow properties, thereby increasing plant output and minimizing the production process inconvenience with excellent efficiency. In this review, we discuss powder flow and its measurement techniques and mainly focus on various approaches to improve the cohesive powder flow property.
Collapse
Affiliation(s)
- Devanshi S. Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Kailas K. Moravkar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dhule 425405, India
- Regeron INC 103 BIO-2, Chuncheon BioTown, Chuncheon, South Korea
| | - Durgesh K. Jha
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- DelNova Healthcare, An Innovation Center of ViRACS Healthcare, Thane, India
| | - Vijay Lonkar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dhule 425405, India
| | - Purnima D. Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Shailesh S. Chalikwar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dhule 425405, India
| |
Collapse
|
10
|
Ibuprofen solubility and cytotoxic study of deep eutectic solvents formed by xylitol, choline chloride and water. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Kim SS, Castillo C, Cheikhali M, Darweesh H, Kossor C, Davé RN. Enhanced blend uniformity and flowability of low drug loaded fine API blends via dry coating: The effect of mixing time and excipient size. Int J Pharm 2023; 635:122722. [PMID: 36796658 DOI: 10.1016/j.ijpharm.2023.122722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Although previous research demonstrated improved flowability, packing, fluidization, etc. of individual powders via nanoparticle dry coating, none considered its impact on very low drug loaded blends. Here, fine ibuprofen at 1, 3, and 5 wt% drug loadings (DL) was used in multi-component blends to examine the impact of the excipients size, dry coating with hydrophilic or hydrophobic silica, and mixing times on the blend uniformity, flowability and drug release rates. For uncoated active pharmaceutical ingredients (API), the blend uniformity (BU) was poor for all blends regardless of the excipient size and mixing time. In contrast, for dry coated API having low agglomerate ratio (AR), BU was dramatically improved, more so for the fine excipient blends, at lesser mixing times. For dry coated API, the fine excipient blends mixed for 30 min had enhanced flowability and lower AR; better for the lowest DL having lesser silica, likely due to mixing induced synergy of silica redistribution. For the fine excipient tablets, dry coating led to fast API release rates even with hydrophobic silica coating. Remarkably, the low AR of the dry coated API even at very low DL and amounts of silica in the blend led to the enhanced blend uniformity, flow, and API release rate.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chelsea Castillo
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Mirna Cheikhali
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Hadeel Darweesh
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
12
|
Advanced image analytics to study powder mixing in a novel laboratory scale agitated filter dryer. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Capece M, Larson J. Improving the Effectiveness of the Conical Screen Mill as a Dry-Coating Process at Lab and Manufacturing Scale. Pharm Res 2022; 39:3175-3184. [PMID: 35178662 DOI: 10.1007/s11095-022-03196-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
The conical screen mill (comill) is investigated as a dry-coating process for flowability and bulk density enhancement of pharmaceutical powders. In this study, the effectiveness of the comill is improved by using modified screens with reduced open area. In comparison to the screens provided by the comill manufacturer, the modified screens increase mean residence time of the process and improve the extent of flowability and bulk density enhancement. The effectiveness of the comill as a dry-coating process is demonstrated using Avicel PH 105, a fine grade of microcrystalline cellulose, as a model cohesive powder. The process is evaluated thoroughly using a lab scale comill and scalability is demonstrated using a manufacturing scale model. The use of the modified screens is also compared against the so-called "multi-pass" approach in which material is passed through the comill, collected, and passed through once or several times. While the "multi-pass" approach is offered as a simple method to increase mean residence time and to improve process effectiveness, the use of the modified screens is shown to be the superior approach. Due to the ubiquitous use of the comill and the improvement in effectiveness attained in this study, dry-coating is shown to be a practical and readily implemented process for the pharmaceutical industry.
Collapse
Affiliation(s)
- Maxx Capece
- Drug Product Development, Research and Development, AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL, 60064, USA.
| | - Jeffery Larson
- Drug Product Development, Research and Development, AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| |
Collapse
|
14
|
Kim SS, Castillo C, Sayedahmed M, Davé RN. Reduced Fine API Agglomeration After Dry Coating for Enhanced Blend Uniformity and Processability of Low Drug Loaded Blends. Pharm Res 2022; 39:3155-3174. [PMID: 35882741 DOI: 10.1007/s11095-022-03343-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The impact of dry coating on reduced API agglomeration remains underexplored. Therefore, this work quantified fine cohesive API agglomeration reduction through dry coating and its impact on enhanced blend uniformity and processability, i.e., flowability and bulk density of multi-component blends API loading as low as 1 wt%. METHODS The impact of dry coating with two different types and amounts of silica was assessed on cohesion, agglomeration, flowability, bulk density, wettability, and surface energy of fine milled ibuprofen (~ 10 µm). API agglomeration, measured using Gradis/QicPic employing gentler gravity-based dispersion, resulted in excellent size resolution. Multi-component blends with fine-sized excipients, selected for reduced segregation potential, were tested for bulk density, cohesion, flowability, and blend content uniformity. Tablets formed using these blends were tested for tensile strength and dissolution. RESULT All dry coated ibuprofen powders exhibited dramatic agglomeration reduction, corroborated by corresponding decreased cohesion, unconfined yield strength, and improved flowability, regardless of the type and amount of silica coating. Their blends exhibited profound enhancement in flowability and bulk density even at low API loadings, as well as the content uniformity for the lowest drug loading. Moreover, hydrophobic silica coating improved drug dissolution rate without appreciably reducing tablet tensile strength. CONCLUSION The dry coating based reduced agglomeration of fine APIs for all three low drug loadings improved overall blend properties (uniformity, flowability, API release rate) due to the synergistic impact of a minute amount of silica (0.007 wt %), potentially enabling direct compression tableting and aiding manufacturing of other forms of solid dosing.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Chelsea Castillo
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Muhammad Sayedahmed
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
15
|
Kim S, Cheikhali M, Davé RN. Decoding Fine API Agglomeration as a Key Indicator of Powder Flowability and Dissolution: Impact of Particle Engineering. Pharm Res 2022; 39:3079-3098. [PMID: 35698012 DOI: 10.1007/s11095-022-03293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Fine API agglomeration and its mitigation via particle engineering, i.e., dry coating, remains underexplored. The purpose was to investigate agglomeration before and after dry coating of fine cohesive APIs and impact on powder processability, i.e., flowability (FFC), bulk density (BD), and dissolution of BCS Class II drugs. METHOD Ibuprofen (three sizes), fenofibrate, and griseofulvin (5-20 µm), before and after dry coating with varying amounts of hydrophobic (R972P) or hydrophilic (A200) nano- silica, were assessed for agglomeration, FFC, BD, surface energy, wettability, and dissolution. The granular Bond number (Bog), a dimensionless parameter, evaluated through material-sparing particle-scale measures and particle-contact models, was used to express relative powder cohesion. RESULTS Significant powder processability improvements after dry coating were observed: FFC increased by multiple flow regimes, BD increased by 25-100%, agglomerate ratio (AR) reduction by over an order of magnitude, and greatly enhanced API dissolution rate even with hydrophobic (R972P) silica coating. Scrutiny of particle-contact models revealed non-triviality in estimating API surface roughness, which was managed through the assessment of measured bulk properties. A power-law correlation was identified between AR and Bog and subsequently, between AR and FFC & bulk density; AR below 5 ensured improved processability and dissolution. CONCLUSION Agglomeration, an overlooked material-sparing measure for powder cohesiveness, was a key indicator of powder processability and dissolution. The significant agglomerate reduction was possible via dry coating with either silica type at adequate surface area coverage. Reduced agglomeration after dry coating also countered the adverse impact of increased surface hydrophobicity on dissolution.
Collapse
Affiliation(s)
- Sangah Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Mirna Cheikhali
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| |
Collapse
|
16
|
Davé R, Kim S, Kunnath K, Tripathi S. A concise treatise on model-based enhancements of cohesive powder properties via dry particle coating. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
17
|
Chen FC, Liu WJ, Zhu WF, Yang LY, Zhang JW, Feng Y, Ming LS, Li Z. Surface Modifiers on Composite Particles for Direct Compaction. Pharmaceutics 2022; 14:pharmaceutics14102217. [PMID: 36297653 PMCID: PMC9612340 DOI: 10.3390/pharmaceutics14102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Direct compaction (DC) is considered to be the most effective method of tablet production. However, only a small number of the active pharmaceutical ingredients (APIs) can be successfully manufactured into tablets using DC since most APIs lack adequate functional properties to meet DC requirements. The use of suitable modifiers and appropriate co-processing technologies can provide a promising approach for the preparation of composite particles with high functional properties. The purpose of this review is to provide an overview and classification of different modifiers and their multiple combinations that may improve API tableting properties or prepare composite excipients with appropriate co-processed technology, as well as discuss the corresponding modification mechanism. Moreover, it provides solutions for selecting appropriate modifiers and co-processing technologies to prepare composite particles with improved properties.
Collapse
Affiliation(s)
- Fu-Cai Chen
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jun Liu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Wei-Feng Zhu
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ling-Yu Yang
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Ji-Wen Zhang
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Feng
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang-Shan Ming
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| | - Zhe Li
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| |
Collapse
|
18
|
Dandignac M, Lacerda SP, Chamayou A, Galet L. Comparison study of physicochemical and biopharmaceutics properties of hydrophobic drugs ground by two dry milling processes. Pharm Dev Technol 2022; 27:816-828. [PMID: 36062973 DOI: 10.1080/10837450.2022.2121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
1. AbstractThis study focuses on the dry milling of BCS (Biopharmaceutical Classification System) class II molecules. These molecules have a limited bioavailability because of their low aqueous solubility, poor water wettability and low dissolution rate. In order to improve these properties, indomethacin (IND) and niflumic acid (NIF) were milled using two different types of equipment: Pulverisette 0® and CryoMill®. Milled samples were characterized and compared to commercial molecules. IND shows a modified solid state, like surface crystallinity reduction and an increase in water vapor adsorption from to 2 up to 5-fold due to milling processes. The obtained solubility data resulted in an improvement in solubility up to 1.2-fold and an increase in initial dissolution kinetics: 2% of dissolved drug for original crystals against 25% for milled samples. For NIF no crystallinity reduction, no change of surface properties and no solubility improvement after milling were noticed. In addition, milled particles seemed more agglomerated resulting in no changes in dissolution rate compared to the original drug. IND solubility and dissolution enhancement can be attributed to the modification of surface area, drug crystallinity reduction and water sorption increase due to specific behaviour related to the drug crystal disorder induced by milling process.
Collapse
Affiliation(s)
- M Dandignac
- Université de Toulouse, IMT Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, Albi Cedex 09 F-81013, France
| | - S P Lacerda
- Université de Toulouse, IMT Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, Albi Cedex 09 F-81013, France
| | - A Chamayou
- Université de Toulouse, IMT Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, Albi Cedex 09 F-81013, France
| | - L Galet
- Université de Toulouse, IMT Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, Albi Cedex 09 F-81013, France
| |
Collapse
|
19
|
Zhang Z, Chen S, Wen M, He H, Zhang Y, Yin T, Gou J, Tang X. Alleviating the Influence of Circadian Rhythms and Drug Properties to the Release of Paliperidone Gel Matrix Tablets with Compression Coating Technology and Microenvironment Shaping. AAPS PharmSciTech 2022; 23:228. [PMID: 35974217 DOI: 10.1208/s12249-022-02388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The influence of circadian rhythms is an important content in oral dosage form study which is shown as different pH conditions and gastrointestinal dynamics in the gastrointestinal tract. The purpose of this study was to alleviate the influence of circadian rhythms and drug properties to the release of gel matrix tablets in vitro and in vivo. In this study, the compression coating technology and microenvironment shaping were utilized to achieve the alleviation of the influence of circadian rhythms and drug properties. The compression coating technology was used to alleviate the influence of gastrointestinal dynamics, and microenvironment shaping was used to alleviate the interference of different pH condition variations. The self-made compression coating tablet could maintain a consistent release rate in different pH conditions and different dynamic environments in vitro for 24 h. In vivo, the pharmacokinetic parameters Cmax and Tmax were 3701.675 ng/mL and 24 h, respectively, and the release effect in vivo was similar to the paliperidone osmotic pump tablet with the ability to alleviate the influence of circadian rhythms. The correlation coefficient R2 was 0.9914 for the self-made paliperidone compression coating tablet in vitro-in vivo correlation. The interference caused by circadian rhythms was alleviated so that the compression coating technology with microenvironment shaping could replace the osmotic pump technology with easier preparation process and cheaper costs in vitro and in vivo and achieve the effect of alleviating the interference of circadian rhythms.
Collapse
Affiliation(s)
- Zherui Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Shumin Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Man Wen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
20
|
Dixit K, Karde V, Jauhari A, Bhattacharyya S, Ghoroi C. Flow improvement of fine oxidizer using nano-additives. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
21
|
Shovon SMN, Alam A, Gramlich W, Khoda B. Micro-particle entrainment from density mismatched liquid carrier system. Sci Rep 2022; 12:9806. [PMID: 35697827 PMCID: PMC9192781 DOI: 10.1038/s41598-022-14162-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Micro-scale inorganic particles (d > 1 µm) have reduced surface area and higher density, making them negatively buoyant in most dip-coating mixtures. Their controlled delivery in hard-to-reach places through entrainment is possible but challenging due to the density mismatch between them and the liquid matrix called liquid carrier system (LCS). In this work, the particle transfer mechanism from the complex density mismatching mixture was investigated. The LCS solution was prepared and optimized using a polymer binder and an evaporating solvent. The inorganic particles were dispersed in the LCS by stirring at the just suspending speed to maintain the pseudo suspension characteristics for the heterogeneous mixture. The effect of solid loading and the binder volume fraction on solid transfer has been reported at room temperature. Two coating regimes are observed (i) heterogeneous coating where particle clusters are formed at a low capillary number and (ii) effective viscous regime, where full coverage can be observed on the substrate. 'Zero' particle entrainment was not observed even at a low capillary number of the mixture, which can be attributed to the presence of the binder and hydrodynamic flow of the particles due to the stirring of the mixture. The critical film thickness for particle entrainment is [Formula: see text] for 6.5% binder and [Formula: see text] for 10.5% binder, which are smaller than previously reported in literature. Furthermore, the transferred particle matrices closely follow the analytical expression (modified LLD) of density matching suspension which demonstrate that the density mismatch effect can be neutralized with the stirring energy. The findings of this research will help to understand this high-volume solid transfer technique and develop novel manufacturing processes.
Collapse
Affiliation(s)
- S M Naser Shovon
- Department of Mechanical Engineering, The University of Maine, Orono, ME, USA
| | - Adeeb Alam
- Department of Mechanical Engineering, The University of Maine, Orono, ME, USA
| | - William Gramlich
- Department of Chemistry, The University of Maine, Orono, ME, USA
| | - Bashir Khoda
- Department of Mechanical Engineering, The University of Maine, Orono, ME, USA.
| |
Collapse
|
22
|
Wang C, Wang Z, Friedrich A, Calvin Sun C. Effect of deaeration on processability of poorly flowing powders by roller compaction. Int J Pharm 2022; 621:121803. [DOI: 10.1016/j.ijpharm.2022.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
|
23
|
A Continuous Conical-Mill Operation for Dry Coating of Pharmaceutical Powders: The Role of Processing Time. Processes (Basel) 2022. [DOI: 10.3390/pr10030540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over the last decade, the conical mill has emerged as a potential piece of equipment to use for continuous dry coating pharmaceutical powders. In this work, silicon dioxide was used as a guest particle on two excipients, fast flow lactose (FFL) and grade PH200 microcrystalline cellulose (MCC), for dry coating by a conical mill with a modified screen that permitted batch and continuous mode operation. Samples were pre-processed in a V-blender. SEM images, particle size distribution, and EDS mapping were used to characterise the treated powders. Pre-processed samples showed some discrete coating of the host particle. After batch processing, the samples were covered with a complete coating. When processed at high impeller speed, coating of FFL was a mix of A200P and FFL fines generated by attrition. Continuous mode processed samples, which had a lower processing time, were coated discretely and showed a better coating than the pre-processed samples. Increasing guest/host mass ratio with FFL host particle had a positive impact on the quality of the coating. These results help to build the case that the processing time of the conical mill is a key parameter to the success of the conical mill as dry coating equipment in the pharmaceutical industry.
Collapse
|
24
|
Insight into the dust explosion hazard of pharmaceutical powders in the presence of flow aids. J Loss Prev Process Ind 2022. [DOI: 10.1016/j.jlp.2021.104655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Investigating sizing induced surface alterations in crystalline powders using surface energy heterogeneity determination. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Grinding aid additives for dry fine grinding processes – Part II: Continuous and industrial grinding. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Sharma R, Setia G. Enhancing flowability of fine cohesive active pharmaceutical ingredients. Drug Dev Ind Pharm 2021; 47:1140-1152. [PMID: 34591719 DOI: 10.1080/03639045.2021.1988093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The effectiveness of pharmaceutical excipients and hydrophobic nano-silica as flow aid/regulator was studied and two active pharmaceutical ingredients, i.e. paracetamol and ibuprofen were used to gauge the effectiveness. Avicel PH-101 and Avicel PH-102 were chosen as pharmaceutical excipients and Aerosil R972 Pharma was used as hydrophobic nano-silica, the API's and the excipients were micro-sized. SIGNIFICANCE Fine powders lead to many operational difficulties in the pharmaceutical industry which need to be alleviated. The reliability and repeatability of the Powder Flow Tester need to be established. METHODS Flow function, wall friction, and bulk density tests to gauge the said effect were conducted on Brookfield Powder Flow Tester. The samples for testing were prepared by blending (rigorous mixing) to ascertain the capability of inexpensive mixing in comparison to expensive blenders and machines. RESULTS The study undertook shows that blending (rigorous mixing) was sufficient in improving the flow of active pharmaceutical ingredient powders. Blending with excipients Avicel PH-101 and Avicel PH-102 improved the flow substantially but the maximum improvement was seen in the nano blended samples. CONCLUSIONS The study conducted underlined the efficacy of the blending process by showing significant improvement in flow properties. The Powder Flow Tester confirmed the anticipated results of the powder blends indicative of its reliability. Moreover, repeatable results were obtained which established the repeatability of the instrument.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Gautam Setia
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
28
|
Kim S, Bilgili E, Davé RN. Impact of altered hydrophobicity and reduced agglomeration on dissolution of micronized poorly water-soluble drug powders after dry coating. Int J Pharm 2021; 606:120853. [PMID: 34252519 DOI: 10.1016/j.ijpharm.2021.120853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
The impact of dry coating with hydrophobic or hydrophilic nano-silica at 25-100% surface area coverage on dissolution of micronized poorly water-soluble drugs was investigated by examining their agglomeration and surface hydrophobicity. Ibuprofen (20 µm and 10 µm) and griseofulvin (10 µm) were selected having differing solubility, hydrophobicity, and surface morphology. Characterization involved particle agglomeration via two dry dispersion methods, drug dissolution using the USP IV method, cohesion reduction through shear testing, and powder wettability via the modified Washburn method. Dry coating dramatically reduced the cohesion hence agglomerate size of both the coated ibuprofen particles, but less for griseofulvin, attributed to its surface morphology. For hydrophobic silica, agglomerate size reduction outweighed the adverse impact of increased surface hydrophobicity for ibuprofen. For griseofulvin, the agglomerate reduction was much lower, not able to overcome the effect of increased drug particle hydrophobicity with hydrophobic silica coating. Hydrophilic silica coating reduced hydrophobicity for all three drug powders, leading to the synergistic improvement in the dissolution along with agglomerate size reduction. Overall, the combined effect of the drug particle surface hydrophobicity and agglomerate size, represented by specific surface area, could explain the dissolution behavior of these poorly water-soluble drugs.
Collapse
Affiliation(s)
- Sangah Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ecevit Bilgili
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
29
|
Texture and surface feature-mediated striking improvements on multiple direct compaction properties of Zingiberis Rhizoma extracted powder by coprocessing with nano-silica. Int J Pharm 2021; 603:120703. [PMID: 33989749 DOI: 10.1016/j.ijpharm.2021.120703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The study aims to markedly improve direct compaction (DC) properties of Zingiberis Rhizoma extracted powder (ZR) by modifying its texture and surface properties with nano-silica (NS). A wet coprocessing method was applied to evenly distribute up to 33.3% NS to ZR. To clarify uniqueness of NS, microcrystalline cellulose (MCC), a superior filler-binder in DC, was used as control. Coprocessed particles and physical mixtures (PMs) were comprehensively evaluated for surface features, micromeritic properties, and texture and compacting parameters. Compared to MCC, NS could more significantly modify the texture and surface features of ZR (e.g., hardness, cohesiveness, yield pressure, and nanoscaled surface roughness) via coprocessing, resulting in more striking improvements on multiple DC properties of ZR, including tabletability, flowability, lubricant sensitivity, hygroscopicity, etc. Especially, tensile strength (σt) of coprocessed ZR-NS (1:0.5) tablets was 4.62 and 3.22 times that of ZR and ZR-MCC counterparts pressed at 210 MPa, respectively. Moreover, percolation thresholds of σt enhancement were observed for ZR-NSs, but not for ZR-MCCs. Evaluation by the SeDeM expert system indicated that some ZR-NSs (but no ZR-MCCs) were qualified for DC. Collectively, coprocessing with NS by liquid dispersion appears to be a novel, effective, and pragmatic option for DC of drugs like ZR.
Collapse
|
30
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Improving the effectiveness of the Comil as a dry-coating process: Enabling direct compaction for high drug loading formulations. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Kunnath K, Chen L, Zheng K, Davé RN. Assessing predictability of packing porosity and bulk density enhancements after dry coating of pharmaceutical powders. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Exploring tablet design options for tailoring drug release and dose via fused deposition modeling (FDM) 3D printing. Int J Pharm 2020; 591:119987. [DOI: 10.1016/j.ijpharm.2020.119987] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 01/22/2023]
|
34
|
Prziwara P, Kwade A. Grinding aids for dry fine grinding processes – Part I: Mechanism of action and lab-scale grinding. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Influence of interparticle structuring on the surface energetics of a binary powder system. Int J Pharm 2020; 581:119295. [DOI: 10.1016/j.ijpharm.2020.119295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/19/2022]
|
36
|
Zheng K, Kunnath K, Ling Z, Chen L, Davé RN. Influence of guest and host particle sizes on dry coating effectiveness: When not to use high mixing intensity. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Peng T, Shi Y, Zhu C, Feng D, Ma X, Yang P, Bai X, Pan X, Wu CY, Tan W, Wu C. Data on the drug release profiles and powder characteristics of the ethyl cellulose based microparticles prepared by the ultra-fine particle processing system. Data Brief 2020; 29:105269. [PMID: 32095496 PMCID: PMC7033531 DOI: 10.1016/j.dib.2020.105269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 11/18/2022] Open
Abstract
Ethyl cellulose (EC) based microparticles (MPs) could provide sustained release for Huperzine A. The drug release mechanism of MPs was exploited to achieve an ideal drug release profile. We previously found that the wettability of MPs greatly contributed to facilitating drug release, which was detailed in a research article entitled “Huperzine A loaded multiparticulate disintegrating tablet: Drug release mechanism of ethyl cellulose microparticles and pharmacokinetic study” (Peng et al., 2019) [1]. In this article, the influence of different polymers and drugs on the drug release behavior was investigated to broaden or compensate this finding. Besides, powder characterization of MPs was used to evaluate the further application of MPs for tablets.
Collapse
Affiliation(s)
- Tingting Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yin Shi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chune Zhu
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Disang Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangyu Ma
- College of Pharmacy, University of Texas at Austin, Austin, 78712, USA
| | - Peipei Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xuequn Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chuan-Yu Wu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Wen Tan
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
38
|
Han X, Shan X, Du Y, Pang S, Hu L. Development and evaluation of novel innovative multi-channel aripiprazole orally disintegrating tablets. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv 2020; 17:77-96. [PMID: 31815554 PMCID: PMC6981243 DOI: 10.1080/17425247.2020.1702643] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Dry powder inhalers (DPIs) are popular for pulmonary drug delivery. Various techniques have been employed to produce inhalation drug particles and improve the delivery efficiency of DPI formulations. Physical stability of these DPI formulations is critical to ensure the delivery of a reproducible dose to the airways over the shelf-life.Areas covered: This review focuses on the impact of solid-state stability on aerosolization performance of DPI drug particles manufactured by powder production approaches and particle-engineering techniques. It also highlights the different analytical tools that can be used to characterize the physical instability originating from production and storage.Expert opinion: A majority of the DPI literature focuses on the effects of physico-chemical properties such as size, morphology, and density on aerosolization. While little has been reported on the physical stability, particularly the stability of engineered drug particles for use in DPIs. Literature data have shown that different particle-engineering methods and storage conditions may cause physical instability of dry powders for inhalation and can significantly change the aerosol performance. A systematic examination of physical instability mechanisms in DPI formulations is necessary during formulation development in order to select the optimum formulation with satisfactory stability. In addition, the use of appropriate characterization tools is critical to detect and understand physical instability during the development of DPI formulations.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - David Cipolla
- Insmed Incorporated, Bridgewater, NJ 08807-3365, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Kudo Y, Yasuda M, Matsusaka S. Effect of particle size distribution on flowability of granulated lactose. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
He J, Chen Z, Gu Y, Li Y, Wang R, Gao Y, Feng W, Wang T. Hydrophilic co-assemblies of two hydrophobic biomolecules improving the bioavailability of silybin. Food Funct 2020; 11:10828-10838. [DOI: 10.1039/d0fo01882a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefitting from the versatility and biocompatibility of food sourced materials, the construction of hybrid structures via their molecular interplay generates novel platforms with unexpected properties.
Collapse
Affiliation(s)
- Jian He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Ya'nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yuan Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
42
|
Design of swellable ordered-mixed spherical drug particles (Swell-OM-spheres) using a dry powder milling and coating technique to improve dissolution behavior. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Sharma R, Setia G. Mechanical dry particle coating on cohesive pharmaceutical powders for improving flowability - A review. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Roopwani R, Buckner IS. Co-Processed Particles: An Approach to Transform Poor Tableting Properties. J Pharm Sci 2019; 108:3209-3217. [DOI: 10.1016/j.xphs.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
45
|
Comparative Study of Different Crystallization Methods in the Case of Cilostazol Crystal Habit Optimization. CRYSTALS 2019. [DOI: 10.3390/cryst9060295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The therapeutic usage of cilostazol is limited owing to its poor aqueous solubility and oral bioavailability. Our aim was to produce cilostazol crystals with small average particle size; besides suitable roundness, narrow particle size distribution and stable polymorphic form to increase its dissolution rate and improve processability. Different conventional crystallization methods with or without sonication were compared with impinging jet crystallization combined with cooling, and the optimization of the various parameters was also implemented. The effects of post-mixing time and temperature difference were studied by means of a full factorial design. The physical properties of powder particles were characterized by, i.a., XRPD, DSC and SEM. The dissolution rate and the contact angle of solid surfaces were also determined to elucidate the relationship between wettability and dissolution. It was observed that impinging jet crystallization combined with cooling is a very effective and reproducible method for reducing the particle size of cilostazol. This method resulted in significantly smaller particle size (d(0.5) = 3–5 μm) and more uniform crystals compared to the original ground material (d(0.5) = 24 μm) or the conventional methods (d(0.5) = 8–14 μm), and it also resulted in a stable polymorphic form and enhanced the dissolution rate.
Collapse
|
46
|
Wang Y, Brasseur JG. Enhancement of mass transfer from particles by local shear‐rate and correlations with application to drug dissolution. AIChE J 2019. [DOI: 10.1002/aic.16617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanxing Wang
- School of Aerospace EngineeringGeorgia Institute of Technology Atlanta Georgia
| | - James G. Brasseur
- Smead Aerospace Engineering SciencesUniversity of Colorado Boulder Colorado
- Mechanical EngineeringPennsylvania State University University Park Pennsylvania
| |
Collapse
|
47
|
A predictive transport model for convective drying of polymer strip films loaded with a BCS Class II drug. Eur J Pharm Biopharm 2019; 137:164-174. [PMID: 30826474 DOI: 10.1016/j.ejpb.2019.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/22/2022]
Abstract
Drying is an important unit operation in the manufacturing of polymer strip films as it affects various film quality attributes. Optimal design and control of convective drying process require models that capture the impact of critical process parameters such as air temperature and velocity on the temporal evolution of film thickness and moisture. Here, a detailed transport model was presented to capture moisture diffusion, heat transfer and moving boundary in convective drying of polymer strip films loaded with griseofulvin (GF), a poorly water-soluble drug. It incorporates a solvent diffusivity model based on free-volume theory. Experimentally, film precursor suspensions were prepared by mixing silica-coated and micronized GF powder with an aqueous solution of hydroxypropyl methylcellulose (HPMC)-glycerin. Films were cast and moisture-time variation during drying was measured. The transport model, whose diffusivity parameters were estimated using drying data at a reference condition, was validated at different drying conditions and wet film thicknesses. It delineates underlying mechanisms of drying kinetics and demarcates a smooth transition from constant-rate to falling-rate period. Overall, our results suggest that the transport model is capable of predicting the temporal evolution of moisture and final film thickness at different drying air velocities and temperatures with reasonable accuracy.
Collapse
|
48
|
Chen L, He Z, Kunnath KT, Fan S, Wei Y, Ding X, Zheng K, Davé RN. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. Int J Pharm 2019; 557:354-365. [DOI: 10.1016/j.ijpharm.2018.12.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
49
|
Naseri AT, Cetindag E, Forte J, Bilgili E, Davé RN. Convective Drying Kinetics of Polymer Strip Films Loaded with a BCS Class II Drug. AAPS PharmSciTech 2019; 20:40. [PMID: 30610396 DOI: 10.1208/s12249-018-1241-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Polymer strip film is a promising dosage form for oral delivery of poorly water-soluble drugs. Drying is an important step in the production of polymer strip films with significant effects on critical quality attributes (CQAs). In this study, a custom-made batch drying setup was used to study convective drying kinetics of wet polymer strip films loaded with dry-coated micronized griseofulvin (GF) at various drying conditions. A rate-based semi-empirical model was formulated and parameters were estimated by integral method of analysis using a coupled optimizer-ordinary differential equation solver. Despite its simplicity with three parameters, the model could fit the experimental data very well for all drying conditions, which enabled us to examine the effects of air velocity, temperature, and initial wet film thickness on drying kinetics quantitatively. The modeling results clearly delineate a drying mechanism with constant-rate and falling-rate periods. One set of kinetic parameter estimates reasonably predicted the drying kinetics for two different wet film thicknesses in the selected process conditions, which demonstrates the predictive capability of the model. After reporting the limitations of the semi-empirical model, upon future modification and refinement, its potential use in drying process development and process control was highlighted.
Collapse
|
50
|
Shi NQ, Jin Y, Zhang Y, Che XX, Xiao X, Cui GH, Chen YZ, Feng B, Li ZQ, Qi XR. The Influence of Cellulosic Polymer's Variables on Dissolution/Solubility of Amorphous Felodipine and Crystallization Inhibition from a Supersaturated State. AAPS PharmSciTech 2018; 20:12. [PMID: 30560388 DOI: 10.1208/s12249-018-1266-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
The collective impact of cellulosic polymers on the dissolution, solubility, and crystallization inhibition of amorphous active pharmaceutical ingredients (APIs) is still far from being adequately understood. The goal of this research was to explore the influence of cellulosic polymers and incubation conditions on enhancement of solubility and dissolution of amorphous felodipine, while inhibiting crystallization of the drug from a supersaturated state. Variables, including cellulosic polymer type, amount, ionic strength, and viscosity, were evaluated for effects on API dissolution/solubility and crystallization processes. Water-soluble cellulosic polymers, including HPMC E15, HPMC E5, HPMC K100-LV, L-HPC, and MC, were studied. All cellulosic polymers could extend API dissolution and solubility to various extents by delaying crystallization and prolonging supersaturation duration, with their effectiveness ranked from greatest to least as HPMC E15 > HPMC E5 > HPMC K100-LV > L-HPC > MC. Decreased polymer amount, lower ionic strength, or higher polymer viscosity tended to decrease dissolution/solubility and promote crystal growth to accelerate crystallization. HPMC E15 achieved greatest extended API dissolution and maintenance of supersaturation from a supersaturated state; this polymer thus had the greatest potential for maintaining sustainable API absorption within biologically relevant time frames.
Collapse
|