1
|
Kaur P, Muskan, Kriplani P. Quality by design for Niosome-Based nanocarriers to improve transdermal drug delivery from lab to industry. Int J Pharm 2024; 666:124747. [PMID: 39326474 DOI: 10.1016/j.ijpharm.2024.124747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Niosomes are essentially multilamellar or unilamellar vesicles based on non-ionic surfactants. They consist of surfactant macromolecules arranged in a bilayer, which surrounds an aqueous solute solution. Amphiphilic, biodegradable, biocompatible, and environmentally friendly materials are utilized for encapsulating the drugs in vesicles that enhance the bioavailability, therapeutic efficacy, penetration of drug via the skin, and drug release in a controlled or sustained manner, and are employed to target the anticipated area via modifying composition that acts to minimize undesirable effects. With cholesterol as the lipid, Tween 20, Span 60, and Tween 60 are mostly employed as surfactants. Many medications, including Glibenclamide for diabetic kidney disease and anti-cancer medications including gemcitabine, cisplatin, and nintedanib, have been effectively encapsulated into niosomes. The traditional approach for creating niosomes at the lab scale is a thin film hydration process. The ideal ratio between primary components as well as critical manufacturing process parameters is key component in creating the best niosomal formulations with substantial drug loading and nanometric form. Utilizing the Design of Experiments (DoE) and Response Surface Methodology (RSM) in conjunction with Quality by design (QbD) is essential for comprehending how these variables interact both during lab preparation and during the scale-up process. Research on the development of anti-aging cosmetics is being done by Loreal. Niosomal preparations like Lancome are sold in stores. An overview of niosomes, penetration mechanisms, and quality by design from laboratory to industrial scale is provided in this article.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Muskan
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India.
| |
Collapse
|
2
|
Ongtanasup T, Tawanwongsri W, Manaspon C, Srisang S, Eawsakul K. Comprehensive investigation of niosomal red palm wax gel encapsulating ginger (Zingiber officinale Roscoe): Network pharmacology, molecular docking, In vitro studies and phase 1 clinical trials. Int J Biol Macromol 2024; 277:134334. [PMID: 39094890 DOI: 10.1016/j.ijbiomac.2024.134334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Ginger, a Zingeberaceae family member, is notable for its anti-inflammatory properties. This study explores the pharmaceutical mechanisms of ginger and red palm wax co-extract, developing novel niosomal formulations for enhanced transdermal delivery. Evaluations included physical characteristics, drug loading, in vitro release, network pharmacology, molecular docking, and biocompatibility. The niosomal ginger with red palm wax gel (NGPW) exhibited non-Newtonian fluid properties. The optimized niosome formulation (cholesterol: Tween80: Span60 = 12.5: 20: 5 w/w) showed a high yield (93.23 %), high encapsulation efficiency (54.71 %), and small size (264.33 ± 5.84 nm), prolonging in vitro anti-inflammatory activity. Human skin irritation and biocompatibility tests on 1 % NGPW showed favorable cytotoxicity and hemocompatibility results (ISO10993). Network pharmacology identified potential targets, while molecular docking highlighted high affinities between gingerol and red palm wax compounds with TRPM8 and TRPV1 proteins, suggesting pain inhibition via serotonergic synapse pathways. NGPW presents a promising transdermal pain inhibitory drug delivery strategy.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriwan Srisang
- Energy Engineering Division, Department of Engineering, King Mongkut's Institute of Technology Lad-krabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Komgrit Eawsakul
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
3
|
Shalaby ES, Shalaby SI, AbouTaleb S. Cyclodextrin nano-organogels as a delivery vehicle for peppermint essential oil to enhance its physico-chemical properties and skin photoprotective performance. J DISPER SCI TECHNOL 2024:1-13. [DOI: 10.1080/01932691.2024.2382253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/07/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Eman S. Shalaby
- Pharmaceutical Technology Department, National Research Centre, Giza, Cairo, Egypt
| | - Samy I. Shalaby
- Animal Hygiene Department, National Research Centre, Giza, Cairo, Egypt
| | - Sally AbouTaleb
- Pharmaceutical Technology Department, National Research Centre, Giza, Cairo, Egypt
| |
Collapse
|
4
|
Karami H, Niavand MR, Haddadi R, Noriyan A, Vafaei SY. Development of a hydrogel containing bisabolol-loaded nanocapsules for the treatment of atopic dermatitis in a Balb/c mice model. Int J Pharm 2024; 656:124029. [PMID: 38527566 DOI: 10.1016/j.ijpharm.2024.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.
Collapse
Affiliation(s)
- Homa Karami
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Niavand
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Noriyan
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Niroumand U, Motazedian MH, Ahmadi F, Asgari Q, Bahreini MS, Ghasemiyeh P, Mohammadi-Samani S. Preparation and characterization of artemether-loaded niosomes in Leishmania major-induced cutaneous leishmaniasis. Sci Rep 2024; 14:10073. [PMID: 38698123 PMCID: PMC11065877 DOI: 10.1038/s41598-024-60883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Qasem Asgari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Schiavi PC, Svetaz L, Petenatti E, Sortino M, Tempesti TC, Funes M. Extracts of Trichocline sinuata (Asteraceae) as natural sensitizers in the photodynamic inactivation of Candida albicans. Photochem Photobiol 2024; 100:686-698. [PMID: 37877243 DOI: 10.1111/php.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Despite significant progress in the development of phototherapy drugs, it is widely recognized that natural products remain the primary source of new photoactive compounds. Exploring uncharted flora in the east-central region of Argentina may offer a vast array of opportunities to isolate new photoactive molecules or plant extracts with high potential for use in antimicrobial photodynamic therapy (aPDT) against Candida albicans. To assess the photofungicidal potential of T. sinuata ("contrayerba") against C. albicans, the extracts underwent spectroscopic and chromatographic analysis, resulting in the identification of furanocoumarin metabolites with similar spectrophotometric properties in all extracts. The extract profiles were created using UHPLC-DAD, and seven furanocoumarins (FCs) were detected. The highest photoinactivation against C. albicans was observed for dicholormethanic extracts (MFC = 62.5 μg/mL), equal to xanthotoxin employed as a positive control. Furthermore, we determine that photochemical mechanisms dependent on oxygen (type I and type II processes) and mechanisms independent of oxygen (photoadduct formation) are involved in the death of these yeasts. These results support the use of native plants of the east-central region of Argentina as potent sensitizers for aPDT and suggest that they can replace xanthotoxin in treating superficial yeast infections of the skin.
Collapse
Affiliation(s)
- Paulina Cardoso Schiavi
- Herbarium and Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Laura Svetaz
- Pharmacognosy, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina
| | - Elisa Petenatti
- Herbarium and Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-CONICET, Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Maximiliano Sortino
- Pharmacognosy, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina
| | - Tomas C Tempesti
- INFIQC (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Matías Funes
- Pharmacognosy, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina
- IMIBIO-CONICET, Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, San Luis, Argentina
| |
Collapse
|
7
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
8
|
Fouad SA, Khatab ST, Teaima MH, El-Nabarawi MA, Abdelmonem R. Nanosized ethosomal dispersions for enhanced transdermal delivery of nebivolol using intradermal/transfollicular sustained reservoir: in vitro evaluation, confocal laser scanning microscopy, and in vivo pharmacokinetic studies. Pharm Dev Technol 2024; 29:40-51. [PMID: 38078863 DOI: 10.1080/10837450.2023.2294278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Nebivolol (NBV), a BCS class II anti-hypertensive drug, suffers from limited solubility and oral bioavailability. Nanosized ethosomes were adopted as an approach to solubilize and deliver NBV transdermally, as a substitute to oral route. Ethosomal dispersions were prepared employing thin film hydration method. Formulation variables were adjusted to obtain entrapment efficiency; EE > 50%, particle size; PS < 100 nm, zeta potential; ZP > ±25 mV, and polydispersity index; PDI < 0.5. The optimized ethosomal dispersion (OED) showed accepted EE 86.46 ± 0.15%, PS 73.50 ± 0.08 nm, ZP 33.75 ± 1.20 mV, and PDI 0.31 ± 0.07. It also showed enhanced cumulative amount of NBV permeated at 8 h (Q8) 71.26 ± 1.46% and 24 h (Q24) 98.18 ± 1.02%. TEM images denoted spherical vesicles with light colored lipid bi-layer and dark core. Confocal laser scanning microscopy showed deeply localized intradermal and transfollicular permeation of the fluorolabelled OED (FL-OED). Nanosized FL-OED (<100 nm) can permeate through hair follicles creating a drug reservoir for enhanced systemic absorption. OED formulated into transdermal patch (OED-TP1) exhibited accepted physicochemical properties including; thickness 0.14 ± 0.01 mm, folding endurance 151 ± 0.07, surface pH 5.80 ± 0.15, drug content 98.64 ± 2.01%, mucoadhesion 8534 ± 0.03, Q8 87.61 ± 0.11%, and Q24 99.22 ± 0.24%. In vivo pharmacokinetic studies showed significantly enhanced bioavailability of OED-TP1 by 7.9 folds compared to oral Nevilob® tablets (p = 0.0002). It could be concluded that OED-TP1 can be a promising lipid nanocarrier TDDS for NBV and an efficacious alternative route of administration for hypertensive patients suffering from dysphagia.
Collapse
Affiliation(s)
- Shahinaze A Fouad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sara T Khatab
- The General Authority for Health Insurance, Giza, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| |
Collapse
|
9
|
Xu Y, Zhao M, Cao J, Fang T, Zhang J, Zhen Y, Wu F, Yu X, Liu Y, Li J, Wang D. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2023; 13:4417-4441. [PMID: 37969725 PMCID: PMC10638506 DOI: 10.1016/j.apsb.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 11/17/2023] Open
Abstract
Rheumatoid arthritis is a chronic, systemic autoimmune disease predominantly based on joint lesions with an extremely high disability and deformity rate. Several drugs have been used for the treatment of rheumatoid arthritis, but their use is limited by suboptimal bioavailability, serious adverse effects, and nonnegligible first-pass effects. In contrast, transdermal drug delivery systems (TDDSs) can avoid these drawbacks and improve patient compliance, making them a promising option for the treatment of rheumatoid arthritis (RA). Of course, TDDSs also face unique challenges, as the physiological barrier of the skin makes drug delivery somewhat limited. To overcome this barrier and maximize drug delivery efficiency, TDDSs have evolved in terms of the principle of transdermal facilitation and transdermal facilitation technology, and different generations of TDDSs have been derived, which have significantly improved transdermal efficiency and even achieved individualized controlled drug delivery. In this review, we summarize the different generations of transdermal drug delivery systems, the corresponding transdermal strategies, and their applications in the treatment of RA.
Collapse
Affiliation(s)
| | | | - Jinxue Cao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangling Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Aldawsari MF, Khafagy ES, Moglad EH, Selim Abu Lila A. Formulation optimization, in vitro and in vivo evaluation of niosomal nanocarriers for enhanced topical delivery of cetirizine. Saudi Pharm J 2023; 31:101734. [PMID: 37649675 PMCID: PMC10462889 DOI: 10.1016/j.jsps.2023.101734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 μg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 μg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.
Collapse
Affiliation(s)
- Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ehssan H. Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
11
|
Castillo E, González-Rosende ME, Martínez-Solís I. The Use of Herbal Medicine in the Treatment of Vitiligo: An Updated Review. PLANTA MEDICA 2023; 89:468-483. [PMID: 36379447 DOI: 10.1055/a-1855-1839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vitiligo is a chronic disease of unknown etiology that causes progressive cutaneous depigmentation. Current pharmacological treatments have limited success and present significant risks. Many efforts have been made in recent years to explore new anti-vitiligo therapeutic strategies, including herbal-based therapies. The objective of the present review is to provide an updated overview on the most frequently used medicinal plants in the treatment of vitiligo. A bibliographical search was carried out in scientific databases Pubmed, Scifinder, Scopus, Google Scholar, and Medline up to October 2021 using the descriptors vitiligo, herbal, medicinal plants, and alternative therapies. In our search, the highest number of published studies comprise plants commonly used in traditional herbal medicine, highlighting the usefulness of ethnopharmacology in the discovery of new therapeutic agents. The review outlines current understanding and provides an insight into the role of psoralens and khellin (photosensitizing agents obtained from plants such as Cullen corylifolium or Ammi visnaga). The paper also describes other traditional herbs such as Ginkgo biloba, Phlebodium aureum, Piper nigrum, Picrorhiza kurroa, and Baccharoides anthelmintica that can likewise act as potential therapeutical agents. Based on our findings, photosensitizing agents in combination with phototherapy, the association of oral Phebodium aureum with phototherapies as well as oral G. biloba in monotherapy showed greater scientific evidence as therapeutic options. The research results emphasize that further investigation in this area is merited. More long-term follow up clinical trials and higher quality randomized trials are needed.
Collapse
Affiliation(s)
- Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, University CEU-Cardenal Herrera, CEU Universities, Alfara del Patriarca, Valencia (Spain)
| | - María Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, University CEU-Cardenal Herrera, CEU Universities, Alfara del Patriarca, Valencia (Spain)
| | - Isabel Martínez-Solís
- Department of Pharmacy, Faculty of Health Sciences, University CEU-Cardenal Herrera, CEU Universities, Alfara del Patriarca, Valencia (Spain)
| |
Collapse
|
12
|
Elmotasem H, El-Marasy SA, Mohamed AL. Benzocaine mesoporous silica nanoparticles/bio polysaccharides-based hydrogels loaded cotton bandage as a platform for topical anesthesia. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
13
|
Eita AS, M. A. Makky A, Anter A, Khalil IA. Repurposing of atorvastatin emulsomes as a topical antifungal agent. Drug Deliv 2022; 29:3414-3431. [DOI: 10.1080/10717544.2022.2149898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alaa S. Eita
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Amna M. A. Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| |
Collapse
|
14
|
Eita AS, Makky AM, Anter A, Khalil IA. Atorvastatin-loaded emulsomes foam as a topical antifungal formulation. Int J Pharm X 2022; 4:100140. [DOI: 10.1016/j.ijpx.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
|
15
|
Wu A, Lu J, Zhong G, Lu L, Qu Y, Zhang C. Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity. Phytother Res 2022; 36:3805-3832. [PMID: 35913174 DOI: 10.1002/ptr.7577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.
Collapse
Affiliation(s)
- Anxin Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Lu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guofeng Zhong
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ling Lu
- Chengdu University of Technology, Chengdu, PR China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
16
|
Kadukkattil Ramanunny A, Wadhwa S, Kumar Singh S, Kumar B, Gulati M, Kumar A, Almawash S, Al Saqr A, Gowthamrajan K, Dua K, Singh H, Vishwas S, Khursheed R, Rahana Parveen S, Venkatesan A, Paudel KR, Hansbro PM, Kumar Chellappan D. Topical non-aqueous nanoemulsion of Alpinia galanga extract for effective treatment in psoriasis: in vitro and in vivo evaluation. Int J Pharm 2022; 624:121882. [PMID: 35671853 DOI: 10.1016/j.ijpharm.2022.121882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Non-aqueous nanoemulsion (NANE) of Alpinia galanga extract (AGE) was prepared using Palmester 3595 (MCT oil) as oil phase, Cremophor RH 40-Transcutol P® as surfactant-co-surfactant (Smix), and glycerin as non-aqueous polar continuous phase. The composition was optimized by applying three-level, four factor Box-Behnken design (BBD). The mean droplet size and zeta potential of the optimized AGE NANE was found to be 60.81 ± 18.88 nm and -7.99 ± 4.14 mV, respectively. The ex vivo permeation studies of AGE NANE and AGE per se on porcine skin reported flux of 125.58 ± 8.36 µg/cm2 h-1 and 12.02 ± 1.64 µg/cm2h-1, respectively. Therefore, the enhancement ratio has shown 10-folds increase in the flux for AGE NANE when compared to extract per se. Later, confocal laser scanning microcopy confirmed that AGE NANE were able to penetrate into skin's stratum by trans-follicular transport mechanism. The stability studies of AGE NANE confirmed its stability at 30 ± 2℃ /75 ± 5 % RH and 5 ± 3℃. The efficacy of AGE NANE was evaluated in vivo on imiquimod (IMQ) induced mouse model. The mice treated with low and high doses of AGE NANE (groups VI and VII) showed significant (p<0.05) amelioration of psoriasis. Results of histopathology indicated reduction in psoriasis area severity index in AGE NANE treated mice (group VI and group VII).
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Kuppusamy Gowthamrajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Harpreet Singh
- Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shaik Rahana Parveen
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
17
|
Needleless administration of advanced therapies into the skin via the appendages using a hypobaric patch. Proc Natl Acad Sci U S A 2022; 119:e2120340119. [PMID: 35482922 PMCID: PMC9170139 DOI: 10.1073/pnas.2120340119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Needleless delivery into the skin would overcome a major barrier to efficient clinical utilization of advanced therapies such as nanomaterials and macromolecules. This study demonstrates that controlled skin stretching (in porcine, rat, and mouse models) using a patch comprising a hypobaric chamber, to open the skin appendages, can increase the permeability of the tissue and provide a means to enable direct delivery of advanced therapies directly into the skin without the use of a needle or injection system. This technology can facilitate the self-administration of therapeutics including vaccines, RNA, and antigens, thus improving the translation of these products into effective clinical use. Advanced therapies are commonly administered via injection even when they act within the skin tissue, and this increases the chances of off-target effects. Here we report the use of a skin patch containing a hypobaric chamber that induces skin dome formation to enable needleless delivery of advanced therapies directly into porcine, rat, and mouse skin. Finite element method modeling showed that the hypobaric chamber in the patch opened the skin appendages by 32%, thinned the skin, and compressed the appendage wall epithelia. These changes allowed direct delivery of an H1N1 vaccine antigen and a diclofenac nanotherapeutic into the skin. Fluorescence imaging and infrared mapping of the skin showed needleless delivery via the appendages. The in vivo utility of the patch was demonstrated by a superior immunoglobulin G response to the vaccine antigen in mice compared to intramuscular injection and a 70% reduction in rat paw swelling in vivo over 5 h with diclofenac without skin histology changes.
Collapse
|
18
|
Li D, Martini N, Wu Z, Chen S, Falconer JR, Locke M, Zhang Z, Wen J. Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin. Pharmaceutics 2022; 14:pharmaceutics14040726. [PMID: 35456560 PMCID: PMC9029719 DOI: 10.3390/pharmaceutics14040726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 01/06/2023] Open
Abstract
Among green tea catechins, epigallocatechin gallate (EGCG) is the most abundant and has the highest biological activities. This study aims to develop and statistically optimise an EGCG-loaded niosomal system to overcome the cutaneous barriers and provide an antioxidant effect. EGCG-niosomes were prepared by thin film hydration method and statistically optimised. The niosomes were characterised for size, zeta potential, morphology and entrapment efficiency. Ex vivo permeation and deposition studies were conducted using full-thickness human skin. Cell viability, lipid peroxidation, antioxidant enzyme activities after UVA-irradiation and cellular uptake were determined. The optimised niosomes were spherical and had a relatively uniform size of 235.4 ± 15.64 nm, with a zeta potential of −45.2 ± 0.03 mV and an EE of 53.05 ± 4.46%. The niosomes effectively prolonged drug release and demonstrated much greater skin penetration and deposition than free EGCG. They also increased cell survival after UVA-irradiation, reduced lipid peroxidation, and increased the antioxidant enzymes’ activities in human dermal fibroblasts (Fbs) compared to free EGCG. Finally, the uptake of niosomes was via energy-dependent endocytosis. The optimised niosomes have the potential to be used as a dermal carrier for antioxidants and other therapeutic compounds in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Danhui Li
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - Nataly Martini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - James Robert Falconer
- Department of Plastic, School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, QLD 4102, Australia;
| | - Michelle Locke
- Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Auckland 2104, New Zealand;
| | - Zhiwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
- Correspondence:
| |
Collapse
|
19
|
Kashani-Asadi-Jafari F, Hadjizadeh A. Niosome-encapsulated Doxycycline hyclate for Potentiation of Acne Therapy: Formulation and Characterization. Pharm Nanotechnol 2022; 10:56-68. [PMID: 35209832 DOI: 10.2174/2211738510666220224103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acne is the pilosebaceous units' disorder. The most important cause of acne is the colonization of bacteria in the follicles. Among antibiotics, doxycycline hyclate kills a wide range of bacteria. OBJECTIVES To prevent oral administration's side effects, overcome the barriers of conventional topical treatment, and improve the therapeutic effectiveness, this drug was loaded into niosomal nanocarriers for topical application. METHODS Doxycycline hyclate was loaded into four niosomal formulations prepared by the thin-film hydration method with different percentages of constituents. Drug-containing niosomal systems were evaluated for morphological properties via scanning electron microscopy, particle size, drug entrapment efficiency, zeta potential, in vitro drug release, physical stability after 60 days, in vitro drug permeation through rat skin, in vitro drug deposition in rat skin, toxicity on human dermal fibroblasts (HDF) by MTT method after 72 hours, and antibacterial properties against the main acne-causing bacteria via antibiogram test. RESULTS The best formulation had the appropriate particle size of 362.88 ± 13.05 nm to target follicles, entrapment efficiency of 56.3 ± 2.1%, the zeta potential of - 24.46±1.39 mV, in vitro drug release of 54.93 ± 1.99% after 32 hours, and the lowest permeation of the drug through the rat skin among all other formulations. Improved cell viability, increased antibacterial activity, and an approximately three-fold increase in drug deposition were the optimal niosomal formulation features relative to the free drug. CONCLUSION This study demonstrated the ability of nano-niosomes containing doxycycline hyclate to treat skin acne compared with the free drug.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| |
Collapse
|
20
|
Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Mahmoud DB, ElMeshad AN, Fadel M, Tawfik A, Ramez SA. Photodynamic therapy fortified with topical oleyl alcohol-based transethosomal 8-methoxypsoralen for ameliorating vitiligo: Optimization and clinical study. Int J Pharm 2022; 614:121459. [PMID: 35026313 DOI: 10.1016/j.ijpharm.2022.121459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Vitiligo is a common autoimmune skin disorder that is characterized by patchy depigmentation of the skin due to melanocytes and melanin loss. Herein, photodynamic therapy mediated 8-methoxypsoralen (8-MOP), has been used fortified with topical oleyl alcohol-based transethosomes; to overcome the poor solubility and adverse effects associated with 8-MOP oral delivery. A 23 factorial design was used to study the formulation variables. In vitro and ex-vivo characterization besides a clinical study were conducted to assess therapeutic efficacy of the formulation. Results revealed that transethosomes were superior to transfersomes regarding drug protection from degradation. The optimized transethosomal formulation, composed of 50 mg oleyl alcohol, 10 mg Tween 80® and 20% v/v ethanol, exhibited high entrapment efficiency (83.87 ± 4.1%) and drug loading (105.0 ± 0.2%). Moreover, it showed small vesicular size (265.0 ± 2.9 nm) and PDI (0.19). The formulation depicted core and shell structure, high deformability index (12.45 ± 0.7 mL/s) and high ex-vivo skin permeation. The topical application of the developed 8-MOP transethosomal gel enhanced the effect of NB UVB radiation in the treatment of vitiligo patients and exhibited no side effects. Hence, it can be used as a future strategy for delivering 8-MOP without the need of systemic application.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Pharmaceutics Department, Egyptian Drug Authority formerly known as National Organization of Drug Control and Research, Egypt; Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Leipzig 04317, Germany.
| | - Aliaa N ElMeshad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, The Egyptian Chinese University, Gesr El Suez St., PO 11786, Cairo, Egypt.
| | - Maha Fadel
- Department of Medical Applications of Laser, Pharmaceutical Nanotechnology Unit, National Institute of Laser Enhanced Sciences, Cairo University, Cairo 12613, Egypt
| | - Abeer Tawfik
- Department of Medical Applications of Laser, Dermatology Unit, National Institute of Laser Enhanced Sciences, Cairo University, Cairo 12613, Egypt
| | - Shahenda A Ramez
- Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
22
|
Singh A. A Comprehensive Review of Therapeutic Approaches Available for the Treatment of Dermatitis. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:172-197. [PMID: 34365934 DOI: 10.2174/1872210515666210806143015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dermatitis or eczema is a prevalent skin disorder worldwide and is also very common as a pediatric inflammatory skin disorder. Its succession gets worse with the multiple comorbidities which exhibit mechanisms that are poorly understood. Its management further becomes a challenge due to the limited effective treatment options available. However, the Novel Drug Delivery Systems (NDDS) along with new targeting strategies can easily bypass the issues associated with dermatitis management. If we compare the active constituents against phytoconstituents effective against dermatitis then phytoconstituents can be perceived to be more safe and gentle. OBJECTIVE Administration of NDDS of plant extract or actives displays improved absorption behavior, which helps them to permeate through lipid-rich biological membrane leading to increased bioavailability. The newer efficient discoveries related to eczema can face various exploitations. This can be intervened by the subjection of patent rights, which not only safeguard the novel works of individual(s) but also give them the opportunity to share details of their inventions with people globally. CONCLUSION The present review focuses on the available research about the use of nanoformulations in the topical delivery. It further elaborates the use of different animal models as the basis to characterize the different features of dermatitis. The review also highlights the recent nanoformulations which have the ability to amplify the delivery of active agents through their incorporation in transfersomes, ethosomes, niosomes or phytosomes, etc.
Collapse
Affiliation(s)
- Apoorva Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
23
|
Chaudhari P, Naik R, Sruthi Mallela L, Roy S, Birangal S, Ghate V, Balladka Kunhanna S, Lewis SA. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int J Pharm 2021; 613:121409. [PMID: 34952148 DOI: 10.1016/j.ijpharm.2021.121409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The incidence of corneal fungal infections continues to be a growing concern worldwide. Ocular delivery of anti-fungal drugs is challenging due to the anatomical and physiological barriers of the eye. The ocular bioavailability of ketoconazole (KTZ), a widely prescribed antifungal agent, is hampered by its limited aqueous solubility and permeation. In the study, the physicochemical properties of KTZ were improved by complexation with sulfobutylether-β-cyclodextrin (SBE-β-CD).KTZ-SBE-β-CD complex was studied in silico with docking and dynamics simulations, followed by wet-lab experiments.The optimized KTZ-SBE-β-CD complex was loaded into a thermosensitivein situ gel to increase corneal bioavailability. The supramolecular complex increased the solubility of KTZ by 5-folds and exhibited a 10-fold increment in drug release compared to the pure KTZ. Owing to the diffusion, thein situ gel exhibited a more sustained drug release profile. Theex vivocorneal permeation studies showed higher permeation from KTZ-SBE-β-CD in situ gel (flux of ∼19.11 µg/cm2/h) than KTZin situ gel (flux of ∼1.17 µg/cm2/h). The cytotoxicity assays and the hen's egg chorioallantoic membrane assay (HET-CAM) confirmed the formulations' safety and non-irritancy. In silico guided design of KTZ-SBE-β-CD inclusion complexes successfully modified the physicochemical properties of KTZ. In addition, the loading of the KTZ-SBE-β-CD complex into an in situ gel significantly increased the precorneal retention and permeation of KTZ, indicating that the developed formulation is a viable modality to treat fungal keratitis.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ranjitha Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sarojini Balladka Kunhanna
- Department of Industrial Chemistry, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
24
|
Asfour MH, Abd El-Alim SH, Awad GEA, Kassem AA. Chitosan/β-glycerophosphate in situ forming thermo-sensitive hydrogel for improved ocular delivery of moxifloxacin hydrochloride. Eur J Pharm Sci 2021; 167:106041. [PMID: 34655737 DOI: 10.1016/j.ejps.2021.106041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023]
Abstract
The aim of the current work is to develop a thermo-sensitive hydrogel system of moxifloxacin hydrochloride (MOX) for improved ocular delivery. Fifteen formulations were prepared at different concentrations of β-glycerophosphate disodium salt (β-GP) 12-20% (w/v) and chitosan (CS) 1.7-1.9% (w/v). The optimized MOX loaded thermo-sensitive hydrogel system (F8), consisting of CS (1.8%, w/v) and β-GP (16%, w/v), showed optimum gelation temperature (35 °C) and gelation time (2 min), thus was selected for further investigations. It showed a significant decrease (p < 0.05) in the zeta potential value compared to CS solution with a favorable pH value (7.1) and confirmed thermoreversible behavior. MOX loaded F8 displayed a porous structure under scanning electron microscopy. Rheological investigation of MOX loaded F8 revealed the presence of a strong hydrogel network with high elasticity along with a small loss factor of 0.08 indicating a great ease of gel formation. The release of MOX from F8 was found to be governed by a combined mechanism of diffusion and relaxation. Biological assessment of two concentrations of MOX loaded F8 (0.25 and 0.5%) was conducted using healthy and infected male albino New Zealand rabbits, where an improved and prolonged antibacterial activity against Staphylococcus aureus compared to plain MOX (0.5%), marketed MOX eye drops (0.5%), was shown. Moreover, histopathological examination of ocular tissues confirmed the antibacterial efficacy of the optimized formulation eight days post topical therapy. Consequently, the developed CS/β-GP thermo-sensitive hydrogel system (F8) reveals a promising potential for enhancing the ocular delivery of MOX for treatment of bacterial infections.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| | - Ghada Elsayed Ahmed Awad
- Chemistry of Natural and Microbial Products Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
25
|
Mehta CH, Narayan R, Acharya S, Nayak UY. Design and development of surface modified epigallocatechin 3-gallate NanoCubogel for localized delivery to oral submucous fibrosis therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mishra P, Handa M, Ujjwal RR, Singh V, Kesharwani P, Shukla R. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf B Biointerfaces 2021; 208:112050. [PMID: 34418723 DOI: 10.1016/j.colsurfb.2021.112050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
In recent times, more than 50 % of the global population is facing hair-related issues (alopecia) which is seen mostly amongst the people in the age group of 30-40 years. The conventional topical dosage forms available in the market falls short in effectively managing alopecia. Despite various advancements in topical dosage forms, it is still disposed to limited clinical application and provides poor penetration of drug molecules into the skin. The exact etiology of alopecia is still unknown and various researchers link lifestyle, hereditary, and auto immune-based events with its existence. Nanoparticulate-based delivery are hence brought in use to enhance the permeability properties of the drug. In comparison to conventional methods nanotechnology-based drug delivery system tames drug molecules to a specific site with much better efficacy. This review is engrossed in the journey and role of nano technological-based drug delivery in the management of alopecia and its clinical application.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India
| | - Rewati R Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India
| | - Vanshikha Singh
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India.
| |
Collapse
|
28
|
Kamel R, Elmotasem H, Abdelsalam E, Salama A. Lepidium sativum seed oil 3D nano-oleogel for the management of diabetic wounds: GC/MS analysis, in-vitro and in-vivo studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Biswasroy P, Pradhan D, Kar B, Ghosh G, Rath G. Recent Advancement in Topical Nanocarriers for the Treatment of Psoriasis. AAPS PharmSciTech 2021; 22:164. [PMID: 34041632 DOI: 10.1208/s12249-021-02057-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a life-threatening autoimmune inflammatory skin disease, triggered by T lymphocyte. Recently, the drugs most commonly used for the treatment of psoriasis include methotrexate (MTX), cyclosporine (CsA), acitretin, dexamethasone, and salicylic acid. However, conventional formulations due to poor absorptive capacity, inconsistent drug release characteristics, poor capability of selective targeting, poor retention of drug molecules in target tissue, and unintended skin reactions restrict the clinical efficacy of drugs. Advances in topical nanocarriers allow the development of prominent drug delivery platforms can be employed to address the critical issues associated with conventional formulations. Advances in nanocarriers design, nano-dimensional configuration, and surface functionalization allow formulation scientists to develop formulations for a more effective treatment of psoriasis. Moreover, interventions in the size distribution, shape, agglomeration/aggregation potential, and surface chemistry are the significant aspects need to be critically evaluated for better therapeutic results. This review attempted to explore the opportunities and challenges of current revelations in the nano carrier-based topical drug delivery approach used for the treatment of psoriasis.
Collapse
|
30
|
Sinico C, Maria Fadda A, Valenti D, Pireddu R, Corrias F, Schlich M, Pitzanti G, Lai F. Nanoliposomes@Transcutol for In Vitro Skin Delivery of 8-Methoxypsoralen. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2901-2906. [PMID: 33653456 DOI: 10.1166/jnn.2021.19047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
8-methoxypsoralen is the most common drug in psoralen plus ultraviolet light irradiation therapy for the treatment of severe psoriasis. Despite of the efficacy, its classic oral administration leads to several serious adverse effects. However, the topical psoralen application produces a drug skin accumulation lower than that obtained by oral administration, due to the drug low skin permeability. In this paper, 8-methoxypsoralen loaded Penetration Enhancer-containing Vesicles were prepared using soy phosphatidylcholine and the penetration enhancer Transcutol® (5% or 10%) and characterized in terms of size, polydispersity index, zeta potential and encapsulation efficiency. No statistically significant differences in both size (~135 nm) and encapsulation efficiency (~65%) were found for different Transcutol® concentration. Transdermal delivery study assessed by Franz diffusion cells, showed that the 8-methoxypsoralen mainly accumulated into the stratum corneum. Moreover, after Penetration Enhancer-containing Vesicles application, the drug recovered in this layer is almost double of that delivered by conventional liposomes, while no significant difference was found from the different Transcutol® concentrations. Finally, biocompatibility checked by an MTT assay, demonstrated that the incubation of human keratinocytes for 24 h with 8-methoxypsoralen loaded Penetration Enhancer-containing Vesicles did not significantly reduce cell viability.
Collapse
Affiliation(s)
- Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Donatella Valenti
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Francesco Corrias
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Giulia Pitzanti
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
31
|
Xie J, Huang S, Huang H, Deng X, Yue P, Lin J, Yang M, Han L, Zhang DK. Advances in the Application of Natural Products and the Novel Drug Delivery Systems for Psoriasis. Front Pharmacol 2021; 12:644952. [PMID: 33967781 PMCID: PMC8097153 DOI: 10.3389/fphar.2021.644952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Psoriasis, an incurable autoimmune skin disease, is one of the most common immune-mediated disorders. Presently, numerous clinical research studies are underway, and treatment options are available. However, these treatments focus on improving symptoms of the disease and fail to achieve a radical cure; they also have certain toxic side effects. In recent years, natural products have increasingly gained attention because of their high efficiency and low toxicity. Despite their obvious therapeutic effects, natural products’ biological activity was limited by their instability, poor solubility, and low bioavailability. Novel drug delivery systems, including liposomes, lipospheres, nanostructured lipid carriers, niosomes, nanoemulsions, nanospheres, microneedles, ethosomes, nanocrystals, and foams could potentially overcome the limitations of poor water solubility and permeability in traditional drug delivery systems. Thus, to achieve a therapeutic effect, the drug can reach the epidermis and dermis in psoriatic lesions to interact with the immune cells and cytokines.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Yue
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
32
|
|
33
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
34
|
Sharma PK, Kushwaha A, Repka MA, Murthy SN. Formulation development and pharmacokinetic investigation of self-assembled hybrid niosomes for oral delivery of 17-Hydroxyprogesterone caproate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Mirtaleb MS, Shahraky MK, Ekrami E, Mirtaleb A. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Ammar NM, Hassan HA, Mohammed MA, Serag A, Abd El-Alim SH, Elmotasem H, El Raey M, El Gendy AN, Sobeh M, Abdel-Hamid AHZ. Metabolomic profiling to reveal the therapeutic potency of Posidonia oceanica nanoparticles in diabetic rats. RSC Adv 2021; 11:8398-8410. [PMID: 35423335 PMCID: PMC8695213 DOI: 10.1039/d0ra09606g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Posidonia oceanica is a sea grass belonging to the family Posidoniaceae, which stands out as a substantial reservoir of bioactive compounds. In this study, the secondary metabolites of the P. oceanica rhizome were annotated using UPLC-HRESI-MS/MS, revealing 86 compounds including simple phenolic acids, flavonoids, and their sulphated conjugates. Moreover, the P. oceanica butanol extract exhibited substantial antioxidant and antidiabetic effects in vitro. Thus, a reliable, robust drug delivery system was developed through the encapsulation of P. oceanica extract in gelatin nanoparticles to protect active constituents, control their release and enhance their therapeutic activity. To confirm these achievements, untargeted GC-MS metabolomics analysis together with biochemical evaluation was employed to investigate the in vivo anti-diabetic potential of the P. oceanica nano-extract. The results of this study demonstrated that the P. oceanica gelatin nanoparticle formulation reduced the serum fasting blood glucose level significantly (p < 0.05) in addition to improving the insulin level, together with the elevation of glucose transporter 4 levels. Besides, multivariate/univariate analyses of the GC-MS metabolomic dataset revealed several dysregulated metabolites in diabetic rats, which were restored to normalized levels after treatment with the P. oceanica gelatin nanoparticle formulation. These metabolites mainly originate from the metabolism of amino acids, fatty acids and carbohydrates, indicating that this type of delivery was more effective than the plain extract in regulating these altered metabolic processes. Overall, this study provides novel insight for the potential of P. oceanica butanol extract encapsulated in gelatin nanoparticles as a promising and effective antidiabetic therapy. The potential of P. oceanica butanol extract encapsulated in gelatin nanoparticles as a promising and effective antidiabetic therapy has been investigated via metabolomics.![]()
Collapse
Affiliation(s)
- Naglaa M. Ammar
- Therapeutic Chemistry Department
- National Research Centre
- Cairo
- Egypt
| | - Heba A. Hassan
- Therapeutic Chemistry Department
- National Research Centre
- Cairo
- Egypt
| | - Mona A. Mohammed
- Department of Medicinal and Aromatic Plants Research
- National Research Centre
- Cairo
- Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | | | - Heba Elmotasem
- Pharmaceutical Technology Department
- National Research Centre
- Cairo, 12622
- Egypt
| | - Mohamed El Raey
- Department of Phytochemistry and Plant Systematics
- National Research Center
- Cairo 12622
- Egypt
| | - Abdel Nasser El Gendy
- Department of Medicinal and Aromatic Plants Research
- National Research Centre
- Cairo
- Egypt
| | - Mansour Sobeh
- AgroBioSciences
- Mohammed VI Polytechnic University
- Ben-Guerir 43150
- Morocco
| | | |
Collapse
|
39
|
Nigro F, Cerqueira Pinto CDS, dos Santos EP, Mansur CRE. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fiammetta Nigro
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Colchicine mesoporous silica nanoparticles/hydrogel composite loaded cotton patches as a new encapsulator system for transdermal osteoarthritis management. Int J Biol Macromol 2020; 164:1149-1163. [DOI: 10.1016/j.ijbiomac.2020.07.133] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023]
|
41
|
Abdel-Megeed RM, Abd El-Alim SH, Arafa AF, Matloub AA, Farrag AERH, Darwish AB, Abdel- Hamid AHZ, Kadry MO. Crosslink among phosphatidylinositol-3 kinase/Akt, PTEN and STAT-5A signaling pathways post liposomal galactomannan hepatocellular carcinoma therapy. Toxicol Rep 2020; 7:1531-1541. [PMID: 33251120 PMCID: PMC7683274 DOI: 10.1016/j.toxrep.2020.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022] Open
Abstract
Liposomal drug-delivery systems (LDDs) provide a promising opportunity to precisely target organs, improve drug bioavailability and reduce systemic toxicity. On the other hand, PI3K/Akt signaling pathways control various intracellular functions including apoptosis, invasion and cell growth. Hyper activation of PI3K and Akt is detected in some types of cancer that posses defect in PTEN. Tracking the crosstalk between PI3K/Akt, PTEN and STAT 5A signaling pathways, in cancer could result in identifying new therapeutic agents. The current study, identified an over view on PI3K/Akt, PTEN and STAT-5A networks, in addition to their biological roles in hepatocellular carcinoma (HCC). In the current study galactomannan was extracted from Caesalpinia gilliesii seeds then loaded in liposomes. Liposomes were prepared employing phosphatidyl choline and different concentrations of cholesterol. HCC was then induced in Wistar albino rats followed by liposomal galactomannan (700 ± 100 nm) treatment. Liver enzymes as well as antioxidants were assessed and PI3K/Akt, PTEN and STAT-5A gene expression were investigated. The prepared vesicles revealed entrapment efficiencies ranging from 23.55 to 69.17%, and negative zeta potential values. The optimum formulation revealed spherical morphology as well as diffusion controlled in vitro release pattern. Liposomal galactomannan elucidated a significant reduction in liver enzymes and MDA as well as PI3K/Akt, PTEN and STAT 5A gene expression. A significant elevation in GST and GSH were deduced. In conclusion, Liposomal galactomannan revealed a promising candidate for HCC therapy.
Collapse
Key Words
- AFP, α-fetoprotein
- ALP, alkaline phasphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Akt, serine/threonine kinase
- Bad, Bcl-2-associated death promoter
- C. gilliesii, Caesalpinia gilliesii
- CCl4, carbon tetrachloride
- DDs, drug-delivery systems
- DEN, diethylnitrosamine
- FOXO1, fork-head box protein O1
- GM, galactomannan
- GSH, glutathione
- GSK3, glycogen synthase kinase
- GST, glutathione S-transferase
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- LDDs, liposomal drug-delivery systems
- LPs, liposomes
- Liposomal galactomannan
- PI3K, phosphoinositide 3-kinase
- PI3K/Akt
- PIP2, phosphatidylinositol bisphosphate
- PIP3, phosphatidylinositol trisphosphate
- PTEN
- PTEN, phosphatase and tensin homolog
- STAT 5A
- STAT-5A, signal transducer and activator of transcription-5A
- TEM, transmission electron microscopy
- VS, vesicle size
Collapse
Affiliation(s)
- Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, National Research Centre, El-Buhouth St., Cairo, 12622, Egypt
- Corresponding author at: Therapeutic Chemistry Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| | - Sameh H. Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Cairo, 12622, Egypt
| | - Azza F. Arafa
- Therapeutic Chemistry Department, National Research Centre, El-Buhouth St., Cairo, 12622, Egypt
| | - Azza A. Matloub
- Pharmacognosy D Department, National Research Centre, El-Buhouth St., Cairo, 12622, Egypt
| | | | - Asmaa B. Darwish
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Cairo, 12622, Egypt
| | | | - Mai O. Kadry
- Therapeutic Chemistry Department, National Research Centre, El-Buhouth St., Cairo, 12622, Egypt
| |
Collapse
|
42
|
Transcutol ® P Containing SLNs for Improving 8-Methoxypsoralen Skin Delivery. Pharmaceutics 2020; 12:pharmaceutics12100973. [PMID: 33076355 PMCID: PMC7602665 DOI: 10.3390/pharmaceutics12100973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
Topical psoralens plus ultraviolet A radiation (PUVA) therapy consists in the topical application of 8-methoxypsoralen (8-MOP) followed by the skin irradiation with ultraviolet A radiation. The employment of classical 8-MOP vehicles in topical PUVA therapy is associated with poor skin deposition and weak skin permeability of psoralens, thus requiring frequent drug administration. The aim of the present work was to formulate solid lipid nanoparticles (SLNs) able to increase the skin permeation of 8-MOP. For this purpose, the penetration enhancer Transcutol® P (TRC) was added to the SLN formulation. SLNs were characterized with respect to size, polydispersity index, zeta potential, entrapment efficiency, morphology, stability, and biocompatibility. Finally, 8-MOP skin diffusion and distribution within the skin layers was investigated using Franz cells and newborn pig skin. Freshly prepared nanoparticles showed spherical shape, mean diameters ranging between 120 and 133 nm, a fairly narrow size distribution, highly negative ζ potential values, and high entrapment efficiency. Empty and loaded formulations were almost stable over 30 days. In vitro penetration and permeation studies demonstrated a greater 8-MOP accumulation in each skin layer after SLN TRC 2% and TRC 4% application than that after SLN TRC 0% application. Finally, the results of experiments on 3T3 fibroblasts showed that the incorporation of TRC into SLNs could enhance the cellular uptake of nanoparticles, but it did not increase their cytotoxicity.
Collapse
|
43
|
Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Aboali FA, Habib DA, Elbedaiwy HM, Farid RM. Curcumin-loaded proniosomal gel as a biofreindly alternative for treatment of ocular inflammation: In-vitro and in-vivo assessment. Int J Pharm 2020; 589:119835. [PMID: 32890654 DOI: 10.1016/j.ijpharm.2020.119835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
Ocular inflammation is a natural defensive phenomenon, but, it results in discomfort in the eye; as well as makes the eye vulnerable to other diseases. The aim of this work is to investigate that Curcumin (CUR) could be an effective safer biofreindly alternative for treatment of ocular inflammation. Complete in-vitro characterization of proniosomal gel loading-CUR using different surfactants was studied. A comparative in-vivo evaluation of selected formulation to a marketed corticosteroid drops in induced-eye inflammation model in rabbits was assessed. The selected formulation (FCr 300) composed of Cremophore RH surfactant, lecithin and cholesterol (9:9:1) loading CUR (1.2% w/w). The formulation showed mean PS(212.0 ± 0.1)nm, PDI (0.3 ± 0.1) , ZP(-5.1 ± 0.2)mV and % EE (96.0 ± 0.1). TEM showed multilamellar circular shaped niosomes with smooth surface. SEM showed ruptured vesicles for the lyophilized formula. Selected proniosomal gel showed enhanced permeability 3.22-fold and 1.76-fold higher than CUR dispersion and its lyophilized form respectively. Both proniosomal gel (FCr300) and corticosteroid drops reduced the induced inflammatory signs effectively by 40% on day-one and complete recovery on day-four. This anti-inflammatory result was confirmed by histopathological analysis after treatment. Assessment of cumulative IOP as a predicted side effect verified the goal of this work. In conclusion, the use of CUR as a natural biofreindly alternative to the current chemical conventional ocular anti-inflammatory treatment protocols is comparable as an anti-inflammatory drug with much less side effects.
Collapse
Affiliation(s)
| | - Doaa A Habib
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
45
|
Provesicular elastic carriers of Simvastatin for enhanced wound healing activity: An in-vitro/in-vivo study. Int J Pharm 2020; 585:119470. [DOI: 10.1016/j.ijpharm.2020.119470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022]
|
46
|
Ramanunny AK, Wadhwa S, Thakur D, Singh SK, Kumar R. Treatment Modalities of Psoriasis: A Focus on Requisite for Topical Nanocarrier. Endocr Metab Immune Disord Drug Targets 2020; 21:418-433. [PMID: 32496998 DOI: 10.2174/1871530320666200604162258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Psoriasis is an autoimmune skin disease involving cascading release of cytokines activated by the innate and acquired immune system. The increasing prevalence rate of psoriasis demands for more appropriate therapy. The existing chemical moiety is promising for better therapeutic outcome, but the selection of a proper channel for administration has to be reviewed. Hence there is a need to select the most appropriate dosage form and route of administration for improving the curative rate of psoriasis. RESULTS A total of 108 systematic reviews of research and review articles were conducted to make the manuscript comprehensible. The role of inflammatory mediators in the pathogenesis of the disease is discussed for a better understanding of the selection of pharmacotherapy. The older and newer therapeutic moiety with its mode of administration for psoriasis treatment has been discussed. With a comparative review on topical and oral administration of first-line drugs such as methotrexate (MTX), cyclosporine (CsA), and betamethasone, its benefits-liabilities in the selected routes were accounted for. Emphasis has also been paid on advanced nanocarriers for dermatologic applications. CONCLUSION For a better therapeutic outcome, proper selection of drug moiety with its appropriate administration is the major requisite. With the advent of nanotechnology, the development of nanocarrier for dermatologic application has been successfully demonstrated in positioning the systemically administrated drug into topical targeted delivery. In a nutshell, to achieve successful treatment strategies towards psoriasis, there is a need to focus on the development of stable, non-toxic nanocarrier for topical delivery. Inclusion of the existing orally administered drug moiety into nanocarriers for topical delivery is proposed in order to enhance therapeutics payload with reduced side effects which serves as a better treatment approach for relief of the psoriasis condition.
Collapse
Affiliation(s)
- Arya K Ramanunny
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Divya Thakur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
47
|
Asfour MH, Kassem AA, Salama A, Abd El-Alim SH. Hydrophobic ion pair loaded self-emulsifying drug delivery system (SEDDS): A novel oral drug delivery approach of cromolyn sodium for management of bronchial asthma. Int J Pharm 2020; 585:119494. [PMID: 32505578 DOI: 10.1016/j.ijpharm.2020.119494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023]
Abstract
The aim of the present study is to develop a self-emulsifying drug delivery system (SEDDS) for the hydrophobic ion pair (HIP) complex of cromolyn sodium (CS), in order to enhance its intestinal absorption and biological activity. Two ion pairing agents (IPAs) were investigated: hexadecyl pyridininum chloride (HPC) and myristyl trimethyl ammonium bromide (MTAB). The optimum binding efficiency for complexation between investigated IPAs and CS was observed at a molar ratio of 1.5:1, where CS binding efficiency was found to be 76.10 ± 2.12 and 91.37 ± 1.73% for MTAB and HPC, respectively. The two prepared complexes exhibited a significant increase in partition coefficient indicating increased lipophilicity. The optimized CS-HIP complex was incorporated into SEDDS formulations. SEDDS formulations F2 (40% oleic acid, 40% BrijTM98, 20% propylene glycol) and F3 (25% oleic acid, 50% BrijTM98, 25% propylene glycol) exhibited nanometric droplet diameters with monodisperse distribution and nearly neutral zeta potential values. Ex vivo intestinal permeation study, using the non-everted gut sac technique, revealed a significantly higher cumulative amount of permeated drug, after 2 h, for F2 and F3 (53.836 and 77.617 µg/cm2, respectively) compared to 8.649 µg/cm2 for plain CS solution. The in vivo evaluation of plain CS solution compared to F2 and F3 was conducted in an ovalbumin sensitization-induced bronchial asthma rat model. Lung function parameters (tidal volume and peak expiratory flow), biochemical parameters (interleukin-5, immunoglobulin-E, myeloperoxidase and airway remodelling parameters) were assessed in addition to histopathological examination. The results indicated the superiority of F3 followed by F2 compared to plain CS solution for prophylaxis of bronchial asthma in rats.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt.
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| |
Collapse
|
48
|
Ammar HO, Ghorab MM, Mostafa DM, Abd El-Alim SH, Kassem AA, Salah S, Shalaby ES. Development of folic acid-loaded nanostructured lipid carriers for topical delivery: preparation, characterisation and ex vivo investigation. J Microencapsul 2020; 37:366-383. [PMID: 32338149 DOI: 10.1080/02652048.2020.1761904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present work is designed to achieve efficient localised skin delivery of folic acid (FA)-loaded nanostructured lipid carriers (NLCs) to infer efficient treatment of skin photoageing conditions induced via excessive exposure to ultraviolet (UV) radiation. FA NLCs were prepared by high-speed homogenisation followed by ultrasonication. The obtained NLCs revealed high encapsulation efficiencies (89.42-99.26%) with nanometric particle sizes (27.06-85.36 nm) of monodisperse distribution (PDI = 0.137-0.442), zeta potential values >|27| mV, pseudoplastic rheological behaviour, good spreadability (2.25-3.30 cm) and promoted occlusive properties throughout 48 h. Optimised NLC formulations appeared as sphere-shaped particles using transmission electron microscopy, showed improved photostability of FA and prolonged in vitro release profile best fitted to Higuchi diffusion model. Ex vivo permeation and deposition of FA, employing Wistar rat skins, depicted enhanced permeability and existence of FA in skin layers after 6 h. Based on the obtained results, FA-loaded NLC formulations demonstrate a promising modality for anti-photoageing therapy.
Collapse
Affiliation(s)
- Hussein Osman Ammar
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt.,Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, New Cairo, Egypt
| | - Mahmoud Mohamed Ghorab
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | - Salwa Salah
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
49
|
AL Qtaish N, Gallego I, Villate-Beitia I, Sainz-Ramos M, López-Méndez TB, Grijalvo S, Eritja R, Soto-Sánchez C, Martínez-Navarrete G, Fernández E, Puras G, Pedraz JL. Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues. Pharmaceutics 2020; 12:E198. [PMID: 32106545 PMCID: PMC7150807 DOI: 10.3390/pharmaceutics12030198] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
Non-viral vectors have emerged as a promising alternative to viral gene delivery systems due to their safer profile. Among non-viral vectors, recently, niosomes have shown favorable properties for gene delivery, including low toxicity, high stability, and easy production. The three main components of niosome formulations include a cationic lipid that is responsible for the electrostatic interactions with the negatively charged genetic material, a non-ionic surfactant that enhances the long-term stability of the niosome, and a helper component that can be added to improve its physicochemical properties and biological performance. This review is aimed at providing recent information about niosome-based non-viral vectors for gene delivery purposes. Specially, we will discuss the composition, preparation methods, physicochemical properties, and biological evaluation of niosomes and corresponding nioplexes that result from the addition of the genetic material onto their cationic surface. Next, we will focus on the in situ application of such niosomes to deliver the genetic material into immune-privileged tissues such as the brain cortex and the retina. Finally, as future perspectives, non-invasive administration routes and different targeting strategies will be discussed.
Collapse
Affiliation(s)
- Nuseibah AL Qtaish
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Tania Belén López-Méndez
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Santiago Grijalvo
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain; (S.G.); (R.E.)
- Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramón Eritja
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain; (S.G.); (R.E.)
- Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Cristina Soto-Sánchez
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
| | - Gema Martínez-Navarrete
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-03202 Elche, Spain
| | - Eduardo Fernández
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-03202 Elche, Spain
| | - Gustavo Puras
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
50
|
Current and Future Therapies for Psoriasis with a Focus on Serotonergic Drugs. Mol Neurobiol 2020; 57:2391-2419. [DOI: 10.1007/s12035-020-01889-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|