1
|
Song J, Bao R, Lin M, Li W, Zhao P, Liu X, Fu Q. Investigation of the dissolution rate and oral bioavailability of atenolol-irbesartan co-amorphous systems. Int J Pharm 2024; 665:124704. [PMID: 39312985 DOI: 10.1016/j.ijpharm.2024.124704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Irbesartan (IBS), a common drug to treat hypertension, has poor oral bioavailability because of its limited aqueous solubility. Recently, co-amorphous systems (CAMs) have demonstrated the ability to improve the solubility of poorly water-soluble drugs. In this study, IBS was co-amorphized with a pharmacologically relevant drug atenolol (ATL) by melt-quenching. The structures of the resulting ATL-IBS CAMs, which were formulated in molar ratios of 2:1, 1:1, 1:2 and 1:4, were characterized by the polarizing microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier-infrared transform spectroscopy. ATL-IBS CAM1:1 showed higher IBS dissolution than crystalline IBS, amorphous IBS (IBS AM) and the other CAMs. The results of the supersaturated solution stability showed that ATL enhanced the supersaturation maintenance of IBS by extensive interactions. The CAMs exhibited excellent physical stability at 25°C/60% RH. The pharmacokinetics experiments showed that the relative oral bioavailability of IBS was 2.78-fold higher than bulk IBS (p < 0.001) after oral administration of ATL-IBS CAM1:1 to rats. The results of this study demonstrate that CAMs provide an alternative option for the development of fixed dose combination of ATL and IBS.
Collapse
Affiliation(s)
- Jiaqi Song
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Rui Bao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meiqi Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wen Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaohong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Pu F, Wang S, Yang J, Yang J, Hong Y, Guo Y, He J, Lu S. Study on co-amorphous emerging solubilization behavior after gelation during dissolution: The importance of complexation and anti-crystallization. Int J Pharm 2024; 664:124592. [PMID: 39159855 DOI: 10.1016/j.ijpharm.2024.124592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Co-amorphous (CM) is a promising technology for enhancing the aqueous solubility of insoluble drugs, but the gelation phenomenon has often occurred during the dissolution process and seriously threatened their solubility/dissolution performance. Therefore, it's quite important to design favorable CM systems to alleviate or even avoid the adverse effects of gelation phenomenon. In this study, CM systems of taxifolin (TAX) and oxymatrine (OMT) (TAX-OMT CMs) were constructed to improve the solubility and dissolution properties of TAX. Interestingly, TAX-OMT CMs gradually aggregated and obviously gelled during dissolution, but the solubility and dissolution of TAX in TAX-OMT CMs were significantly enhanced compared to crystalline TAX. Consequently, the underlying solubilization mechanisms of TAX-OMT CMs after gelation were systematically explored. For one thing, the complexation between the two components in TAX-OMT CMs was verified by phase solubility, fluorescence spectroscopy and isothermal titration calorimetry. For another, the residual solids of TAX-OMT CMs after dissolution evaluation were thoroughly characterized by means of powder X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, which showed the anti-crystallization property of TAX-OMT CMs. Furthermore, molecular simulation demonstrated the intermolecular interactions of TAX-OMT CMs alone and TAX-OMT complexes in aqueous solution. Finally, pharmacokinetics study in rats suggested that the bioavailability of TAX in TAX-OMT CM (1:2) was approximately 5.5-fold higher than that of crystalline TAX after oral administration. Collectively, this study reveals the importance of complexation and anti-crystallization effects of CM systems on maintaining solubilization behavior after gelation, providing an effective strategy to improve the absorption performance of pharmaceutical CM systems.
Collapse
Affiliation(s)
- Feiyan Pu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shiqi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Juanzi Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Jinhao Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430065, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430065, PR China.
| |
Collapse
|
3
|
Strojewski D, Lalik S, Danède F, Górska N, Deptuch A, Marzec M, Willart JF, Krupa A. Bosentan monohydrate and sildenafil base as two companions in enabling formulations. Int J Pharm 2024; 661:124312. [PMID: 38876441 DOI: 10.1016/j.ijpharm.2024.124312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
HYPOTHESIS Sildenafil base and bosentan monohydrate are co-administered in a chronic therapy of pulmonary arterial hypertension (PAH). Both drugs are poorly soluble in water, and their bioavailability is limited to ca. 50 %. Since bosentan is a weak acid, whereas sildenafil is a weak base, we assumed that their co-amorphization could: (i) improve their solubility in the gastrointestinal fluids, (ii) enable to reach supersaturation and (iii) ensure stabilization of supersaturated solutions. If successful, this could accelerate the development of new fixed-dose combination drugs. EXPERIMENTS The co-amorphous formulations were prepared using high energy ball milling. Their solid state properties were assessed using XRD, DSC, FT-MIR, and dielectric spectroscopy. Particle size distribution and surface wetting were also analyzed. Polarizing optical microscopy and scanning electron microscopy were applied to assess the microstructure of these powders. A new HPLC-DAD method was developed for a simultaneous quantification of both drugs. FINDINGS It was shown that binary formulations in which bosentan was molecularly dispersed in sildenafil base (Tg = 64-78 °C) could be manufactured in the high energy ball milling process. When the sildenafil load was below 50 wt. %, the formulations showed the greatest thermal stability and formed long-lasting bosentan supersaturation in PBS.
Collapse
Affiliation(s)
- Dominik Strojewski
- Jagiellonian University, Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, PL-30688 Cracow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University in Cracow, PL-31530, Poland
| | - Sebastian Lalik
- Jagiellonian University, Institute of Physics, PL-30348 Cracow, Poland
| | - Florence Danède
- University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207, UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Natalia Górska
- Jagiellonian University, Faculty of Chemistry, PL-30387 Cracow, Poland
| | - Aleksandra Deptuch
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Cracow, Poland
| | - Monika Marzec
- Jagiellonian University, Institute of Physics, PL-30348 Cracow, Poland
| | - Jean-François Willart
- University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207, UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Anna Krupa
- Jagiellonian University, Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, PL-30688 Cracow, Poland; University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207, UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
| |
Collapse
|
4
|
Pardhi E, Tomar DS, Khemchandani R, Bazaz MR, Dandekar MP, Samanthula G, Singh SB, Mehra NK. Monophasic coamorphous sulpiride: a leap in physicochemical attributes and dual inhibition of GlyT1 and P-glycoprotein, supported by experimental and computational insights. J Biomol Struct Dyn 2024:1-30. [PMID: 38299571 DOI: 10.1080/07391102.2024.2308048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Devendra Singh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
5
|
Shelke R, Velagacherla V, Nayak UY. Recent advances in dual-drug co-amorphous systems. Drug Discov Today 2024; 29:103863. [PMID: 38141778 DOI: 10.1016/j.drudis.2023.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Poor solubility of drugs and therapeutic candidates poses a significant challenge in drug research and development. Biopharmaceutical class II drugs exhibit limited absorption because of their weak solubility and high permeability. Co-amorphous systems (CAMs) have been studied widely as a way to improve the solubility of drugs. This review summarizes recent advancements in dual-drug CAMs, including improvements in formulation, manufacturing, and solid-state characterization, and highlights the importance of enhancing solubility and stability. It emphasizes the potential synergistic effects of two drugs in CAMs and explores formulation strategies and challenges related to maintaining the amorphous state. Case studies demonstrate the successful application of CAMs in combination therapies that offer improved therapeutic efficacy.
Collapse
Affiliation(s)
- Rutuja Shelke
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Wang H, Zhao P, Ma R, Jia J, Fu Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov Today 2024; 29:103883. [PMID: 38219970 DOI: 10.1016/j.drudis.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage. Recently, drug-drug co-amorphous systems have emerged as a novel strategy to not only enable enhanced dissolution and physical stability of the individual drugs within the system but also to provide a strategy for combination therapy of the same or different clinical indications. This review serves to highlight advances in the methods used to manufacture and characterize drug-drug co-amorphous systems, summarize drug-drug co-amorphous applications reported in recent decades, and provide an outlook on future possibilities and perspectives.
Collapse
Affiliation(s)
- Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jirun Jia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Budiman A, Wardhana YW, Ainurofiq A, Nugraha YP, Qaivani R, Hakim SNAL, Aulifa DL. Drug-Coformer Loaded-Mesoporous Silica Nanoparticles: A Review of the Preparation, Characterization, and Mechanism of Drug Release. Int J Nanomedicine 2024; 19:281-305. [PMID: 38229702 PMCID: PMC10790662 DOI: 10.2147/ijn.s449159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Drug-coformer systems, such as coamorphous and cocrystal, are gaining recognition as highly effective strategies for enhancing the stability, solubility, and dissolution of drugs. These systems depend on the interactions between drug and coformer to prevent the conversion of amorphous drugs into the crystalline form and improve the solubility. Furthermore, mesoporous silica (MPS) is also a promising carrier commonly used for stabilization, leading to solubility improvement of poorly water-soluble drugs. The surface interaction of drug-MPS and the nanoconfinement effect prevent amorphous drugs from crystallizing. A novel method has been developed recently, which entails the loading of drug-coformer into MPS to improve the solubility, dissolution, and physical stability of the amorphous drug. This method uses the synergistic effects of drug-coformer interactions and the nanoconfinement effect within MPS. Several studies have reported successful incorporation of drug-coformer into MPS, indicating the potential for significant improvement in dissolution characteristics and physical stability of the drug. Therefore, this study aimed to discuss the preparation and characterization of drug-coformer within MPS, particularly the interaction in the nanoconfinement, as well as the impact on drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Central Java, 57126, Indonesia
| | - Yuda Prasetya Nugraha
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ridhatul Qaivani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Siti Nazila Awaliyyah Lukmanul Hakim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
8
|
Turek M, Różycka-Sokołowska E, Owsianik K, Bałczewski P. New Perspectives for Antihypertensive Sartans as Components of Co-crystals and Co-amorphous Solids with Improved Properties and Multipurpose Activity. Mol Pharm 2024; 21:18-37. [PMID: 38108281 DOI: 10.1021/acs.molpharmaceut.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sartans (angiotensin II receptor blockers, ARBs), drugs used in the treatment of hypertension, play a principal role in addressing the global health challenge of hypertension. In the past three years, their potential use has expanded to include the possibility of their application in the treatment of COVID-19 and neurodegenerative diseases (80 clinical studies worldwide). However, their therapeutic efficacy is limited by their poor solubility and bioavailability, prompting the need for innovative approaches to improve their pharmaceutical properties. This review discusses methods of co-crystallization and co-amorphization of sartans with nonpolymeric, low molecular, and stabilizing co-formers, as a promising strategy to synthesize new multipurpose drugs with enhanced pharmaceutical properties. The solid-state forms have demonstrated the potential to address the poor solubility limitations of conventional sartan formulations and offer new opportunities to develop dual-active drugs with broader therapeutic applications. The review includes an in-depth analysis of the co-crystal and co-amorphous forms of sartans, including their properties, possible applications, and the impact of synthetic methods on their pharmacokinetic properties. By shedding light on the solid forms of sartans, this article provides valuable insights into their potential as improved drug formulations. Moreover, this review may serve as a valuable resource for designing similar solid forms of sartans and other drugs, fostering further advances in pharmaceutical research and drug development.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
9
|
Li J, Wang X, Yu D, Zhoujin Y, Wang K. Molecular complexes of drug combinations: A review of cocrystals, salts, coamorphous systems and amorphous solid dispersions. Int J Pharm 2023; 648:123555. [PMID: 37890646 DOI: 10.1016/j.ijpharm.2023.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
As the advancements in the medical technology and healthcare develop through the years, combinational therapy has evolved to be an important treatment modality in many disease settings, including cancer, cardiovascular disease and infectious diseases. In an effort to alleviate "pill burden" and improve patient compliance, fixed dose combinations (FDCs) have been developed to be used as effective therapeutics. Among all FDCs, the category of drug-drug molecular complexes has been proven an efficient methodology in designing and treating diseases, with many drugs being approved. Among all drug-drug molecular complexes, drug-drug cocrystals, salts, coamorphous systems and solid dispersions have been successfully developed and many have been approved by the FDA. In this review, we dwell deeply into the molecular mechanisms behind the different types of drug-drug molecular complexes, including the key functional groups involved in the intermolecular interactions, the applications of each category of molecular complexes, as well as the advantages and challenges thereof. This comprehensive review provides useful insights into the practical design and manufacture of drug-drug molecular complexes and points out the future direction for the development of new advantageous combinational therapies that benefit more patients.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Xiyan Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08540, United States
| | - Yunping Zhoujin
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kunlin Wang
- BeBetter Med Inc., Guangzhou, 510663, PR China; College of Pharmacy, Jinan University, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Kapoor DU, Singh S, Sharma P, Prajapati BG. Amorphization of Low Soluble Drug with Amino Acids to Improve Its Therapeutic Efficacy: a State-of-Art-Review. AAPS PharmSciTech 2023; 24:253. [PMID: 38062314 DOI: 10.1208/s12249-023-02709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Low aqueous solubility of drug candidates is an ongoing challenge and pharmaceutical manufacturers pay close attention to amorphization (AMORP) technology to improve the solubility of drugs that dissolve poorly. Amorphous drug typically exhibits much higher apparent solubility than their crystalline form due to high energy state that enable them to produce a supersaturated state in the gastrointestinal tract and thereby improve bioavailability. The stability and augmented solubility in co-amorphous (COA) formulations is influenced by molecular interactions. COA are excellent carriers-based drug delivery systems for biopharmaceutical classification system (BCS) class II and class IV drugs. The three important critical quality attributes, such as co-formability, physical stability, and dissolution performance, are necessary to illustrate the COA systems. New amorphous-stabilized carriers-based fabrication techniques that improve drug loading and degree of AMORP have been the focus of emerging AMORP technology. Numerous low-molecular-weight compounds, particularly amino acids such as glutamic acid, arginine, isoleucine, leucine, valine, alanine, glycine, etc., have been employed as potential co-formers. The review focus on the prevailing drug AMORP strategies used in pharmaceutical research, including in situ AMORP, COA systems, and mesoporous particle-based methods. Moreover, brief characterization techniques and the application of the different amino acids in stabilization and solubility improvements have been related.
Collapse
Affiliation(s)
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Faculty of Pharmacy, Chiang Mai University, 50200, Chiang Mai, Thailand.
| | - Pratishtha Sharma
- School of Pharmacy, Raffles University, Neemrana, Rajasthan, 301020, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
11
|
Han J, Tang M, Yang Y, Sun W, Yue Z, Zhang Y, Zhu Y, Liu X, Wang J. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion. Int J Pharm 2023; 646:123490. [PMID: 37805146 DOI: 10.1016/j.ijpharm.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Solid dispersion (SD) system has been used as an effective formulation strategy to increase in vitro and in vivo performances of poorly water-soluble drugs, such as solubility/dissolution, stability and bioavailability. This review provides a comprehensive SD classification and identifies the most popular amorphous solid dispersions (ASDs). Meanwhile, this review further puts forward the systematic design strategy of satisfactory ASDs in terms of drug properties, carrier selection, preparation methods and stabilization mechanisms. In addition, hot melt extrusion (HME) as the continuous manufacturing technique is described including the principle and structure of HME instrument, key process parameters and production application, in order to guide the scale-up of ASDs and develop more ASD products to the market in pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
12
|
Rocha B, de Morais LA, Viana MC, Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin Drug Discov 2023; 18:615-627. [PMID: 37157841 DOI: 10.1080/17460441.2023.2211801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Oral administration of poorly water-soluble drugs (PWSDs) is generally related to low bioavailability, leading to high drug doses, multiple side effects, and low patient compliance. Thus, different strategies have been developed to increase drug solubility and dissolution in the gastrointestinal tract, opening new venues for these drugs. AREAS COVERED This review outlines the current challenges in PWSD formulation development and the strategies to overcome the oral barriers and increase their solubility and bioavailability. Conventional strategies include altering crystalline and molecular structures and modifying oral solid dosage forms. In contrast, novel strategies comprise micro- and nanostructured systems. Recent representative studies involving how these strategies have improved the oral bioavailability of PWSDs were also reviewed and reported. EXPERT OPINION New approaches to enhance PWSD bioavailability have sought to improve water solubility and dissolution rates, drug protection by overcoming biological barriers, and increased absorption. Still, only a handful of studies have focused on quantifying the increase in bioavailability. Improving the oral bioavailability of PWSDs remains an exciting unexplored field of research and has become an important issue for successfully developing pharmaceutical products.
Collapse
Affiliation(s)
- Bruna Rocha
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Letícia Aparecida de Morais
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Mateus Costa Viana
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
13
|
Data-Driven Prediction of the Formation of Co-Amorphous Systems. Pharmaceutics 2023; 15:pharmaceutics15020347. [PMID: 36839668 PMCID: PMC9968185 DOI: 10.3390/pharmaceutics15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Co-amorphous systems (COAMS) have raised increasing interest in the pharmaceutical industry, since they combine the increased solubility and/or faster dissolution of amorphous forms with the stability of crystalline forms. However, the choice of the co-former is critical for the formation of a COAMS. While some models exist to predict the potential formation of COAMS, they often focus on a limited group of compounds. Here, four classes of combinations of an active pharmaceutical ingredient (API) with (1) another API, (2) an amino acid, (3) an organic acid, or (4) another substance were considered. A model using gradient boosting methods was developed to predict the successful formation of COAMS for all four classes. The model was tested on data not seen during training and predicted 15 out of 19 examples correctly. In addition, the model was used to screen for new COAMS in binary systems of two APIs for inhalation therapy, as diseases such as tuberculosis, asthma, and COPD usually require complex multidrug-therapy. Three of these new API-API combinations were selected for experimental testing and co-processed via milling. The experiments confirmed the predictions of the model in all three cases. This data-driven model will facilitate and expedite the screening phase for new binary COAMS.
Collapse
|
14
|
Han J, Wei Y, Li L, Song Y, Pang Z, Qian S, Zhang J, Gao Y, Heng W. Gelation Elimination and Crystallization Inhibition by Co-Amorphous Strategy for Amorphous Curcumin. J Pharm Sci 2023; 112:182-194. [PMID: 35901945 DOI: 10.1016/j.xphs.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
In the previous study, the development of amorphous curcumin (CUR) aimed to enhance the solubility/dissolution of CUR by disrupting its crystal lattice, but it unexpectedly showed a decreased dissolution than its crystalline counterpart on account of gel formation in its dissolution process. Whether such gelation could be eliminated by co-amorphous strategy was answered in this study. Herein, CUR by co-amorphization with chlorogenic acid (CHA) was successfully prepared using quench cooling. The formed co-amorphous material (namely CUR-CHA CM) eliminated the gelation and hence performed superior dissolution performance than crystalline/amorphous CUR. Meanwhile, it exhibited higher physical stability than amorphous CUR during dissolution as well as under long-term/accelerated conditions. To further study the such enhancement mechanism, the internal molecular interactions were investigated for CUR-CHA CM in the solid state as well as in aqueous solution. FTIR and solid-state 13C NMR spectra confirmed that intermolecular hydrogen bonds formed between CUR and CHA after co-amorphization. Furthermore, the nucleation of CUR was significantly inhibited by CHA in an aqueous solution, thus maintaining the supersaturated dissolution for a long time. The present study offers a feasible strategy to eliminate gelation and enhance stability of amorphous solids by co-amorphization and crystallization inhibition.
Collapse
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yutong Song
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
15
|
Polymeric solid dispersion Vs co-amorphous technology: A critical comparison. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics 2022; 14:pharmaceutics14102003. [PMID: 36297439 PMCID: PMC9607342 DOI: 10.3390/pharmaceutics14102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Almost half of orally administered active pharmaceutical ingredients (APIs) have low solubility, which affects their bioavailability. In the last two decades, several alternatives have been proposed to modify the crystalline structure of APIs to improve their solubility; these strategies consist of inducing supramolecular structural changes in the active pharmaceutical ingredients, such as the amorphization and preparation of co-crystals or polymorphs. Since many APIs are thermosensitive, non-thermal emerging alternative techniques, such as mechanical activation by milling, have become increasingly common as a preparation method for drug formulations. This review summarizes the recent research in preparing pharmaceutical formulations (co-amorphous, co-crystals, and polymorphs) through ball milling to enhance the physicochemical properties of active pharmaceutical ingredients. This report includes detailed experimental milling conditions (instrumentation, temperature, time, solvent, etc.), as well as solubility, bioavailability, structural, and thermal stability data. The results and description of characterization techniques to determine the structural modifications resulting from transforming a pure crystalline API into a co-crystal, polymorph, or co-amorphous system are presented. Additionally, the characterization methodologies and results of intermolecular interactions induced by mechanical activation are discussed to explain the properties of the pharmaceutical formulations obtained after the ball milling process.
Collapse
|
17
|
Shi Q, Wang Y, Moinuddin SM, Feng X, Ahsan F. Co-amorphous Drug Delivery Systems: a Review of Physical Stability, In Vitro and In Vivo Performance. AAPS PharmSciTech 2022; 23:259. [PMID: 36123515 DOI: 10.1208/s12249-022-02421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, co-amorphous solids have been used as a promising approach for delivering poorly water-soluble drugs. Co-amorphous solids, comprising pharmacologically relevant drug substances or excipients, improve physical stability, solubility, dissolution, and bioavailability compared with single amorphous ingredients. In this review, we have summarized recent advances in physical stability and in vitro and in vivo performances of co-amorphous solids. We have highlighted the role of molar ratio, molecular interaction, and mobility that affects the physical stability of co-amorphous solids. This review delves deep as to how co-amorphous solids affect the physicochemical properties in vitro and in vivo. We also described the challenges to the formulation of co-amorphous solids. A better understanding of the mechanisms of the physical stability, in vitro and in vivo performance of co-amorphous solids, and proper selection of the co-former is likely to expedite the development of robust co-amorphous-based pharmaceutical formulations and can address the challenges associated with the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Sakib M Moinuddin
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA.,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA
| | - Xiaodong Feng
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA
| | - Fakhrul Ahsan
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA. .,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA.
| |
Collapse
|
18
|
Wang Z, Chen X, Li D, Bai E, Zhang H, Duan Y, Huang Y. Platensimycin-berberine chloride co-amorphous drug system: Sustained release and prolonged half-life. Eur J Pharm Biopharm 2022; 179:126-136. [PMID: 36087879 DOI: 10.1016/j.ejpb.2022.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Co-amorphous technology is an emerging approach for pharmaceutical engineering of drugs and drug leads with improved physicochemical properties and bioavailability. Platensimycin (PTM) is a promising natural antibiotic lead that acts on bacterial fatty acid synthase and exhibits excellent antibacterial activity. Despite great strides to improve its poor pharmacokinetics by medicinal chemistry and nanotechnology, there are no convenient oral delivery systems developed. Here, a co-amorphous system of PTM and berberine chloride (BCL) was developed for oral delivery of PTM. Co-amorphous PTM-BCL was prepared by rotary vacuum evaporation method, and systematically characterized by powder X-ray diffraction, temperature modulated differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Compared with PTM or BCL alone, the equilibrium solubility and dissolution rate of both of them in the co-amorphous systems decreased significantly, showing the characteristics of sustained release. The molecular interactions between PTM and BCL were mediated by strong charged-mediated hydrogen bonds, based on FTIR, XPS, and NMR-based techniques. The co-amorphous PTM-BCL system showed excellent physiochemical stability at room and elevated (40 °C) temperature under dry conditions. The combination of PTM and BCL showed increased killing of a clinical isolated methicillin-resistant Staphylococcus aureus strain in killing checkerboard assays. Finally, co-amorphous PTM-BCL exhibited 2- or 3-fold longer half-life in rats than that of crystalline and amorphous PTM upon oral administration, respectively. Our study suggests a rational approach to realize the full potential of potent antibiotic PTM, which may be conveniently adapted for engineering of other important pharmaceutics.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China; Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, PR China
| | - Enhe Bai
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, PR China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, PR China.
| |
Collapse
|
19
|
Hydrochlorothiazide/Losartan Potassium Tablet Prepared by Direct Compression. Pharmaceutics 2022; 14:pharmaceutics14081741. [PMID: 36015367 PMCID: PMC9415297 DOI: 10.3390/pharmaceutics14081741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrochlorothiazide (HCTZ)/losartan potassium (LOS-K) was used as a model drug to prepare compound tablets through the investigation of the compression and mechanical properties of mixed powders to determine the formulation and preparation factors, followed by D-optimal mixture experimental design to optimize the final parameters. The type and amount of lactose monohydrate (SuperTab®14SD, 19.53−26.91%), microcrystalline cellulose (MCC PH102, 32.86−43.31%), pre-gelatinized starch (Starch-1500, 10.96−15.91%), and magnesium stearate (0.7%) were determined according to the compressive work, stress relaxation curves, and Py value. Then, the compression mechanism of the mixed powder was investigated by the Kawakita equation, Shapiro equation, and Heckel analysis, and the mixed powder was classified as a Class-II powder. The compaction pressure (150−300 MPa) and tableting speed (1200−2400 Tab/h) were recommended. A D-optimal mixture experimental design was utilized to select the optimal formulation (No 1, 26.027% lactose monohydrate, 32.811% MCC PH102, and 15.462% pregelatinized starch) according to the drug dissolution rate, using Hyzaar® tablets as a control. Following oral administration in beagle dogs, there were no significant differences in bioavailability between the No. 1 tablet and the Hyzaar® tablet in HCTZ, losartan carboxylic acid (E-3174), and LOS-K (F < F0.05). Thus, formulation and preparation factors were determined according to the combination of the compression and mechanical properties of the mixed powder and quality of tablets, which was demonstrated to be a feasible method in direct powder compression.
Collapse
|
20
|
Bahetibieke S, Moinuddin SM, Baiyisaiti A, Liu X, Zhang J, Liu G, Shi Q, Peng A, Tao J, Di C, Cai T, Qi R. Co-Amorphous Formation of Simvastatin-Ezetimibe: Enhanced Physical Stability, Bioavailability and Cholesterol-Lowering Effects in LDLr-/-Mice. Pharmaceutics 2022; 14:pharmaceutics14061258. [PMID: 35745830 PMCID: PMC9230881 DOI: 10.3390/pharmaceutics14061258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hypercholesterolemia is one of the independent risk factors for the development of cardiovascular diseases such as atherosclerosis. The treatment of hypercholesterolemia is of great significance to reduce clinical cardiovascular events and patient mortality. Simvastatin (SIM) and ezetimibe (EZE) are commonly used clinically as cholesterol-lowering drugs; however, their treatment efficacy is severely affected by their poor water solubility and low bioavailability. In this study, SIM and EZE were made into a co-amorphous system to improve their dissolution, oral bioavailability, storage stability, and cholesterol-lowering effects. The SIM-EZE co-amorphous solids (CO) were prepared successfully using the melt-quenched technique, and the physicochemical properties of CO were characterized accordingly, which exhibited improved physical stability and faster dissolution release profiles than their physical mixture (PM). In the pharmacokinetic study, the SIM-EZE CO or PM was given once by oral gavage, and mouse blood samples were collected retro-orbitally at multiple time points to determine the plasma drug concentrations. In the pharmacodynamic study, low-density lipoprotein receptor-deficient (LDLr−/−) mice were fed with a high-fat diet (HFD) for two weeks to establish a mouse model of hypercholesterolemia. Using PM as a control, we investigated the regulation of CO on plasma lipid levels in mice. Furthermore, the mice feces were collected to determine the cholesterol contents. Besides, the effect of EZE on the NPC1L1 mRNA expression level in the mouse intestines was also investigated. The pharmacokinetics results showed that the SIM-EZE CO has improved bioavailability compared to the PM. The pharmacodynamic studies showed that SIM-EZE CO significantly increased the cholesterol-lowering effects of the drugs compared to their PM. The total cholesterol excretion in the mouse feces and inhibitory effect on NCP1L1 gene expression in the mouse intestines after being given the SIM-EZE CO were more dramatic than the PM. Our study shows that the SIM-EZE CO prepared by the melt-quenched method can significantly improve the stability, bioavailability, and cholesterol-lowering efficacy with excellent development potential as a new drug formulation.
Collapse
Affiliation(s)
- Shamuha Bahetibieke
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
| | - Sakib M. Moinuddin
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA
| | - Asiya Baiyisaiti
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
- School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xiaoang Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
- School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Jie Zhang
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Guomin Liu
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Qin Shi
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Ankang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
| | - Jun Tao
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
| | - Ting Cai
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
- Correspondence: (T.C.); (R.Q.); Tel./Fax: +86-25-86185516 (T.C.); +86-10-8280-5164 (R.Q.)
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
- School of Pharmacy, Shihezi University, Shihezi 832000, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Correspondence: (T.C.); (R.Q.); Tel./Fax: +86-25-86185516 (T.C.); +86-10-8280-5164 (R.Q.)
| |
Collapse
|
21
|
Manini G, Benali S, Mathew A, Napolitano S, Raquez JM, Goole J. Paliperidone palmitate as model of heat-sensitive drug for long-acting 3D printing application. Int J Pharm 2022; 618:121662. [PMID: 35292399 DOI: 10.1016/j.ijpharm.2022.121662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
In this work, two technologies were used to prepare long-acting implantable dosage forms in the treatment of schizophrenia. Hot-melt extrusion (HME) as well as fused deposition modelling (FDM) were used concomitantly to create personalized 3D printed implants. Different formulations were prepared using an amorphous PLA as matrix polymer and different solid-state plasticizers. Paliperidone palmitate (PP), a heat sensitive drug prescribed in the treatment of schizophrenia was chosen as model drug. After extrusion, different formulations were characterized using DSC and XRD. Then, an in vitro dissolution test was carried out to discriminate the formulation allowing a sustained drug release of PP. The formulation showing a sustained drug release of the drug was 3D printed as an implantable dosage form. By modulating the infill, the release profile was related to the proper design of tailored dosage form and not solely to the solubility of the drug. Indeed, different release profiles were achieved over 90 days using only one formulation. In addition, a stability test was performed on the 3D printed implants for 3 months. The results showed the stability of the amorphous state of PP, independently of the temperature as well as the integrity of the matrix and the drug.
Collapse
Affiliation(s)
- Giuseppe Manini
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium; Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium.
| | - Samira Benali
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Allen Mathew
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Jonathan Goole
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium
| |
Collapse
|
22
|
Alatas F, Mutmainah ES, Ratih H, Sutarna TH, Soewandhi SN. Identification of Candesartan Cilexetil-L-Arginine Co-amorphous Formation and Its Solubility Test. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i1.2942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The formation of co-amorphous is one alternative that can be attempted to enhance the solubility of drugs. The study aimed to identify the co-amorphous formation between candesartan cilexetil (CAN) and l-arginine (ARG) and to know its effect on the solubility and dissolution rate of candesartan cilexetil. Initial prediction of co-crystal formation was undertaken by observing differences in crystal morphology between the candesartan cilexetil-l-arginine (CAN-ARG) mixture and each of its initial components due to crystallization in ethanol. The CAN-ARG co-amorphous was produced by the liquid-assisted grinding (LAG) method with the same molar ratio of the CAN and ARG mixture using ethanol as solvent. The co-amorphous formation of CAN-ARG was identified by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) methods. The solubility and dissolution test was performed to know the impact of the co-amorphous CAN-ARG formation. The PXRD pattern of CAN-ARG of LAG result showed a very low peak intensity compared to pure CAN and ARG. The DSC thermogram of the CAN-ARG LAG result does not show any sharp endothermic peaks. The PXRD and DSC results reveal that CAN and ARG can form co-amorphous. The solubility and dissolution rate of candesartan cilexetil in co-amorphous CAN-ARG was better than that of pure CAN. It can be concluded, liquid-assisted grinding of CAN-ARG mixture is identified to form co-amorphous which has an impact on increasing the solubility and dissolution rate of candesartan cilexetil.
Collapse
|
23
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
24
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
25
|
Synthesis, Characterization, and Intrinsic Dissolution Studies of Drug-Drug Eutectic Solid Forms of Metformin Hydrochloride and Thiazide Diuretics. Pharmaceutics 2021; 13:pharmaceutics13111926. [PMID: 34834341 PMCID: PMC8620433 DOI: 10.3390/pharmaceutics13111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The mechanochemical synthesis of drug–drug solid forms containing metformin hydrochloride (MET·HCl) and thiazide diuretics hydrochlorothiazide (HTZ) or chlorothiazide (CTZ) is reported. Characterization of these new systems indicates formation of binary eutectic conglomerates, i.e., drug–drug eutectic solids (DDESs). Further analysis by construction of binary diagrams (DSC screening) exhibited the characteristic V-shaped form indicating formation of DDESs in both cases. These new DDESs were further characterized by different techniques, including thermal analysis (DSC), solid state NMR spectroscopy (SSNMR), powder X-ray diffraction (PXRD) and scanning electron microscopy–energy dispersive X-ray spectroscopy analysis (SEM–EDS). In addition, intrinsic dissolution rate experiments and solubility assays were performed. In the case of MET·HCl-HTZ (χMET·HCl = 0.66), we observed a slight enhancement in the dissolution properties compared with pure HTZ (1.21-fold). The same analysis for the solid forms of MET·HCl-CTZ (χMET·HCl = 0.33 and 0.5) showed an enhancement in the dissolved amount of CTZ accompanied by a slight improvement in solubility. From these dissolution profiles and saturation solubility studies and by comparing the thermodynamic parameters (ΔHfus and ΔSfus) of the pure drugs with these new solid forms, it can be observed that there was a limited modification in these properties, not modifying the free energy of the solution (ΔG) and thus not allowing an improvement in the dissolution and solubility properties of these solid forms.
Collapse
|
26
|
Zhang J, Shi Q, Qu T, Zhou D, Cai T. Crystallization kinetics and molecular dynamics of binary coamorphous systems of nimesulide and profen analogs. Int J Pharm 2021; 610:121235. [PMID: 34743960 DOI: 10.1016/j.ijpharm.2021.121235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Coamorphous drug delivery systems have emerged as a promising formulation technique for improving the solubility and oral bioavailability of poorly soluble drugs. The selection of a suitable coformer is the key to obtaining a successful coamorphous formulation. This study aims to investigate the impacts of coformers with similar chemical structures but different physical properties on the crystallization behavior and molecular dynamics of binary amorphous systems. The addition of three profen analogs, ibuprofen (IBU), ketoprofen (KETO) and indoprofen (INDO) leads to significantly different effects on the crystallization kinetics of amorphous nimesulide (NIME). The crystal growth rates for amorphous NIME are substantially accelerated in the presence of IBU, but drastically reduced in the presence of INDO, while the incorporation of KETO results in a negligible effect. Broadband dielectric spectroscopy is employed to characterize the molecular dynamics of neat amorphous NIME and coamorphous systems. The addition of three structural analogs alters the molecular mobility of amorphous NIME in different ways, which is consistent with the trend observed for their impacts on the crystallization kinetics, suggesting that the relative mobility between the components of coamorphous mixtures governs the physical stability. In addition, it is found that the temperature dependence of the α-relaxation times for NIME with and without coformers is superimposed once the temperature is scaled by Tg/T, whereas the crystallization kinetics do not overlap on a Tg/T scale. This deviation can result from a complex interplay of thermodynamic and kinetic factors involved in multicomponent amorphous systems. This study provides insights into the crystallization kinetics and molecular dynamics of coamorphous systems containing drug analogs, which can potentially offer more flexibility for the control of physical stability without sacrificing therapeutic efficacy.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tengfei Qu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Recent Technologies for Amorphization of Poorly Water-Soluble Drugs. Pharmaceutics 2021; 13:pharmaceutics13081318. [PMID: 34452279 PMCID: PMC8399234 DOI: 10.3390/pharmaceutics13081318] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Amorphization technology has been the subject of continuous attention in the pharmaceutical industry, as a means to enhance the solubility of poorly water-soluble drugs. Being in a high energy state, amorphous formulations generally display significantly increased apparent solubility as compared to their crystalline counterparts, which may allow them to generate a supersaturated state in the gastrointestinal tract and in turn, improve the bioavailability. Conventionally, hydrophilic polymers have been used as carriers, in which the amorphous drugs were dispersed and stabilized to form polymeric amorphous solid dispersions. However, the technique had its limitations, some of which include the need for a large number of carriers, the tendency to recrystallize during storage, and the possibility of thermal decomposition of the drug during preparation. Therefore, emerging amorphization technologies have focused on the investigation of novel amorphous-stabilizing carriers and preparation methods that can improve the drug loading and the degree of amorphization. This review highlights the recent pharmaceutical approaches utilizing drug amorphization, such as co-amorphous systems, mesoporous particle-based techniques, and in situ amorphization. Recent updates on these technologies in the last five years are discussed with a focus on their characteristics and commercial potential.
Collapse
|
28
|
Li W, Song J, Li J, Li M, Tian B, He Z, Liu X, Fu Q. Co-amorphization of atorvastatin by lisinopril as a co-former for solubility improvement. Int J Pharm 2021; 607:120971. [PMID: 34363915 DOI: 10.1016/j.ijpharm.2021.120971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
The co-amorphous (CAM) technology has attracted extensive attention in recent years because it can improve the solubility and provide a formulation strategy for fixed dose combination for poorly water-soluble drugs. Atorvastatin (ATR) is a poorly water-soluble drug and it has strong anti-hyperlipidemia activity, and it is usually used in combination with lisinopril (LNP), an anti-hypertension drug. The aim of this study is to test the feasibility to develop ATR/LNP co-amorphous formulation using a cryo-milling method. The solid-state behaviors of the CAM systems were characterized by polarizing light microscopy, differential scanning calorimetry and powder X-ray diffraction. The molecular interaction between ATR and LNP was confirmed by the analysis of glass transition temperature and Fourier transform infrared spectroscopy. Compared with crystalline ATR and neat amorphous ATR, the CAM systems showed significantly increased in vitro dissolution and intrinsic dissolution rate of ATR, because LNP enhanced the supersaturation maintenance of ATR and inhibited its solution-mediated recrystallization to a certain extent.
Collapse
Affiliation(s)
- Wen Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiaqi Song
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jianfeng Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaohong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; Sihuan Pharmaceutical Holdings Group Ltd., No. 13 Guangyuan West Street, Zhangjiawan Town Government, Tongzhou District, Beijing 100013, China.
| |
Collapse
|
29
|
Shi X, Zhou X, Shen S, Chen Q, Song S, Gu C, Wang C. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction. Eur J Pharm Sci 2021; 161:105773. [PMID: 33640500 DOI: 10.1016/j.ejps.2021.105773] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of this study is to improve in vitro and in vivo properties of an antihypertensive poorly soluble drug Telmisartan (TEL) by co-amorphization with a pharmacologically relevant drug Hydrochlorothiazide (HCT), and to improve the stability of single amorphous drugs. Herein, TEL-HCT co-amorphous systems (CAMs) (1:1, 2:3, 1:2, 1:3) were prepared by solvent evaporation. The apparent solubility and the dissolution of TEL in the TEL-HCT CAM (1:3) were increased by 79 times and 10 times compared to crystalline TEL, which showed the optimal properties. Cmax and AUC0-48h value of TEL-HCT CAM (1:3) were 10-fold and 3-fold as the crystalline state. Moreover, TEL-HCT CAM (1:3) remained stable in 60 °C, 0 % RH (30 days), 40 °C, 75 % RH (90 days) and 25 °C, 0 % RH (180 days). Positive ΔTgs were observed in all CAMs, suggesting the existence of potential intermolecular force. Fourier Transform-Infrared and Raman spectra were used to further prove the drug-drug interaction and predict potential mechanisms. Therefore, in the strategy of combined medication, CAM provides a promising way to transfer drugs with poor properties into systems with enhanced dissolution, greater bioavailability, and stabilized amorphous state, which has been proven in this study.
Collapse
Affiliation(s)
- Xiangjun Shi
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China.
| | - Xiyue Zhou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shuimei Shen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Qifeng Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shengjie Song
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chenru Gu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chao Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
30
|
Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, In Vitro and In Vivo Performance, and New Formulation Strategies. Pharmaceutics 2021; 13:pharmaceutics13030389. [PMID: 33804159 PMCID: PMC7999207 DOI: 10.3390/pharmaceutics13030389] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Co-amorphous drug delivery systems (CAMS) are characterized by the combination of two or more (initially crystalline) low molecular weight components that form a homogeneous single-phase amorphous system. Over the past decades, CAMS have been widely investigated as a promising approach to address the challenge of low water solubility of many active pharmaceutical ingredients. Most of the studies on CAMS were performed on a case-by-case basis, and only a few systematic studies are available. A quantitative analysis of the literature on CAMS under certain aspects highlights not only which aspects have been of great interest, but also which future developments are necessary to expand this research field. This review provides a comprehensive updated overview on the current published work on CAMS using a quantitative approach, focusing on three critical quality attributes of CAMS, i.e., co-formability, physical stability, and dissolution performance. Specifically, co-formability, molar ratio of drug and co-former, preparation methods, physical stability, and in vitro and in vivo performance were covered. For each aspect, a quantitative assessment on the current status was performed, allowing both recent advances and remaining research gaps to be identified. Furthermore, novel research aspects such as the design of ternary CAMS are discussed.
Collapse
|
31
|
Indomethacin co-amorphous drug-drug systems with improved solubility, supersaturation, dissolution rate and physical stability. Int J Pharm 2021; 600:120448. [PMID: 33675920 DOI: 10.1016/j.ijpharm.2021.120448] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023]
Abstract
In this study, new co-amorphous drug systems were designed using a pharmacologically relevant combination to improve the solubility and dissolution of indomethacin. Combinations of indomethacin-paracetamol (IND-PAR) as an anti-inflammatory/pain killer, and indomethacin-nicotinamide (IND-NCT) for prevention of gastric ulcers caused by IND, were developed for co-amorphization. The effect of PAR and NCT on the solubility, supersaturation, and dissolution of the poorly soluble counterpart, IND, was investigated. PAR and NCT were found to enhance the solubility and supersaturation of IND in biorelevant medium (FaSSIF) and in FaSSIF blank. Differential scanning calorimetry (DSC) showed capability of IND-PAR and IND-NCT binary mixtures to form eutectic mixture. Powder X-ray diffraction and DSC indicated the formation of a homogenous co-amorphous system with single Tg value. Hydrogen bonding between IND and each of PAR and NCT were found to stabilize the co-amorphous systems as supported by FTIR studies. The intrinsic dissolution rate under sink conditions was improved over that of plain amorphous IND both in FaSSIF and FaSSIF blank. IND-PAR 2:1 and IND-NCT 1:1 were extremely stable and remained amorphous for 7 months at 25 °C, while all co-amorphous formulations were stable at least up to one month at 40 °C under dry condition. The present work demonstrates an improved approach to combine IND-PAR and IND-NCT as promising co-amorphous systems for potential therapeutical applications.
Collapse
|
32
|
Abstract
Co-amorphous (CAM) systems are promising drug-delivery systems in the arena of therapeutic drug delivery, addressing the poor aqueous solubility of drugs by enhancing solubility and thereby improving the oral bioavailability and therapeutic effect of the drug. A CAM system is a single-phase homogeneous blend of two or more low molecular weight molecules that can be drug–drug or drug–co-former, stabilized via intermolecular interactions, adding the benefit of thermodynamic stability. This review covers the fundamentals of CAM systems and recent advances in formulation development. In particular, we strive to address the theoretical, molecular, technical and biopharmaceutical aspects, advantages over polymeric amorphous solid dispersions, mechanisms of stabilization of amorphous forms, insights into unexplored in silico tools in excipient selection and regulatory viewpoints.
Collapse
|
33
|
Sinomenine-phenolic acid coamorphous drug systems: Solubilization, sustained release, and improved physical stability. Int J Pharm 2021; 598:120389. [PMID: 33609724 DOI: 10.1016/j.ijpharm.2021.120389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Sinomenine (SIN), isolated from Caulis sinomenii, is a benzyltetrahydroisoquinoline-type alkaloid with potent anti-inflammatory and analgesic effects. SIN-HCl has been used in the forms of tablets or enteric-coated tablets in the treatment of rheumatoid arthritis in China for years, while its short half-life leads to attenuated therapeutic effects and serious side effects. In the current study, three phenolic acids, including salicylic acid (SAA), 2,3-dihydroxybenzoic acid (23DHB), and 2,4-dihydroxybenzoic acid (24DHB), were firstly employed as coamorphous coformers to prepare three binary SIN-phenolic acid coamorphous systems. These new coamorphous systems were characterized by powder X-ray diffraction (PXRD), modulated temperature differential scanning calorimetry (mDSC), and Fourier transform infrared spectroscopy (FTIR). The formation of SIN-phenolic acid coamorphous systems are supported by the absence of diffraction peaks in their PXRD spectra, as well as the single Tgs of three samples (i.e., SIN-SAA, SIN-23DHB, and SIN-24DHB) at 109.5 °C, 124.9 °C, and 135.3 °C. Importantly, the salt formation between SIN and phenolic acids was observed in FTIR. In three coamorphous systems, coamorphous SIN-24DHB shows superior physicochemical stability under both low humidity and accelerated storage conditions. They were also more soluble than crystalline SIN, while were released slower than the commercial SIN-HCl in dissolution experiments. Therefore, our study suggests that phenolic acids may be used as a new type of coformers in the preparation of coamorphous systems for active pharmaceutical ingredients.
Collapse
|
34
|
Voronin AP, Vasilev NA, Surov AO, Churakov AV, Perlovich GL. Exploring the solid form landscape of the antifungal drug isavuconazole: crystal structure analysis, phase transformation behavior and dissolution performance. CrystEngComm 2021. [DOI: 10.1039/d1ce01353j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phase transformation of ISV solid forms during dissolution.
Collapse
Affiliation(s)
- Alexander P. Voronin
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia
| | - Nikita A. Vasilev
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia
| | - Artem O. Surov
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia
| | - Andrei V. Churakov
- N. S. Kurnakov Institute of General and Inorganic Chemistry RAS, 31 Leninsky Prosp, 119991, Moscow, Russia
| | - German L. Perlovich
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia
| |
Collapse
|
35
|
Yu D, Kan Z, Shan F, Zang J, Zhou J. Triple Strategies to Improve Oral Bioavailability by Fabricating Coamorphous Forms of Ursolic Acid with Piperine: Enhancing Water-Solubility, Permeability, and Inhibiting Cytochrome P450 Isozymes. Mol Pharm 2020; 17:4443-4462. [PMID: 32926628 DOI: 10.1021/acs.molpharmaceut.0c00443] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a BCS IV drug, ursolic acid (UA) has low oral bioavailability mainly because of its poor aqueous solubility/dissolution, poor permeability, and metabolism by cytochrome P450 (CYP) isozymes, such as CYP3A4. Most UA preparations demonstrated a much higher dissolution than that of its crystalline form yet a low drug concentration in plasma due to their lower consideration or evaluation for the permeability and metabolism issues. In the current study, a supramolecular coamorphous system of UA with piperine (PIP) was prepared and characterized by powder X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. In comparison to crystalline UA and UA in physical mixture, such coamorphous system enhanced solubility (5.3-7-fold in the physiological solution) and dissolution (7-8-fold in the physiological solution within 2 h) of UA and exhibited excellent physical stability under 90-day storage conditions. More importantly, the pharmacokinetic study of coamorphous UA in rats exhibited 5.8-fold and 2.47-fold improvement in AUC0-∞ value, respectively, compared with its free and mixed crystalline counterparts. In order to further explore the mechanism of such improvement, the molecular interactions of a coamorphous system in the solid state were investigated. Fourier transform infrared spectroscopy, solid-state 13C nuclear magnetic resonance spectroscopy, and density functional theory modeling suggested that intermolecular hydrogen bonds with strong interactions newly formed between UA and PIP after coamorphization. The in vitro permeability studies across Caco-2 cell monolayer and metabolism studies by rat hepatic microsomes indicated that free PIP significantly increased the permeability of UA and inhibited the enzymatic metabolism of UA by CYP3A4. However, PIP in the coamorphous combination exhibited a much lower level in the bioenhancing than its free form arising from the synchronized dissolution characteristic of the preparation (only 60% of PIP released in comparison to its free counterpart in 2 h). The in situ loop study in rats proposed that the acid-sensitive dissolution in the stomach of the coamorphous preparation helped to improve the effective free drug concentration, thereby facilitating PIP to play its role in bioenhancing. The current study offers an exploratory strategy to overcome poor solubility/dissolution, poor permeability, and metabolism by cytochrome P450 isozymes of the BCS IV drug to improve its oral bioavailability.
Collapse
Affiliation(s)
- Danni Yu
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zigui Kan
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210093, PR China
| | - Fei Shan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jing Zang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianping Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
36
|
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv 2020; 17:1411-1435. [DOI: 10.1080/17425247.2020.1796631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yan Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
37
|
Ruponen M, Rusanen H, Laitinen R. Dissolution and Permeability Properties of Co-Amorphous Formulations of Hydrochlorothiazide. J Pharm Sci 2020; 109:2252-2261. [PMID: 32315662 DOI: 10.1016/j.xphs.2020.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
A biopharmaceutics classification system class IV drug, hydrochlorothiazide (HCT), was combined with co-formers of L-and d-arginine (ARG) and sodium lauryl sulphate (SLS) by cryomilling in 1:1 molar ratio. Co-amorphization was observed with L- and D-ARG. These mixtures showed a single glass transition, evidence of possible salt formation and improved physical stability at elevated temperatures and/or humidity when compared with amorphous HCT. The co-amorphous formulations, along with the combinations of HCT and HCT:L-ARG with polyvinylpyrrolidone (PVP) in 1:1 mass ratio, were investigated with a simultaneous dissolution/permeation setup using parallel artificial membrane permeability assay (PAMPA) or Madine Darby kidney cells (MDCKII) as the permeation barrier. It was observed that co-amorphization with L-ARG and D-ARG was able to induce a supersaturated state for HCT, possibly through intermolecular interactions, but there was virtually no difference between the dissolution properties of the mixtures formed with the 2 optical isomers of ARG. The permeability of HCT was found to be dependent on the dissolution properties of the formulations in both PAMPA and cellular barrier experiments. Thus, co-amorphization of HCT with L- and D-ARG demonstrated the possibility to enhance the dissolution and thereby the permeation potential of a BCS class IV drug.
Collapse
Affiliation(s)
- Marika Ruponen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Henna Rusanen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Riikka Laitinen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
38
|
Moinuddin SM, Shi Q, Tao J, Guo M, Zhang J, Xue Q, Ruan S, Cai T. Enhanced Physical Stability and Synchronized Release of Febuxostat and Indomethacin in Coamorphous Solids. AAPS PharmSciTech 2020; 21:41. [PMID: 31898765 DOI: 10.1208/s12249-019-1578-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
Coamorphous formulation, a homogeneous monophasic amorphous system composed of multiple components, has been demonstrated as an effective approach for delivering drugs with poor aqueous solubility. In this study, we prepared the coamorphous system composed of two poorly soluble drugs febuxostat (FEB) and indomethacin (IMC) by using cryogenic milling. The combination of these two drugs in the coamorphous form can attain a synergistic effect, especially on gout therapy. Coamorphous solid of FEB and IMC in 1:1 molar ratio exhibited superior physical stability compared with the individual amorphous components, as evidenced by X-ray powder diffractions after 30 days of storage at ambient and elevated temperature. In addition, the FEB-IMC coamorphous system has been demonstrated to show enhanced dissolution performance. The intrinsic dissolution rates of two components in the coamorphous system exhibited the synchronized drug release. Based on the FT-IR spectroscopy, the excellent physical stability and synchronized release of FEB-IMC coamorphous system could be attributed to the heterodimer structure formed by strong hydrogen bonding interactions between these drugs. Furthermore, the supersaturation potential of FEB-IMC coamorphous solids was also investigated through the cosolvent quenching method. The FEB-IMC coamorphous system can effectively inhibit the fast crystallization of FEB in the supersaturated solution. However, the maximum achievable supersaturation of IMC in the coamorphous system decreases to only one fifth of that achieved for the pure amorphous IMC. These results are relevant for understanding the physical stability and complex solution behaviors of the coamorphous formulation.
Collapse
|
39
|
Zhang M, Suo Z, Peng X, Gan N, Zhao L, Tang P, Wei X, Li H. Microcrystalline cellulose as an effective crystal growth inhibitor for the ternary Ibrutinib formulation. Carbohydr Polym 2019; 229:115476. [PMID: 31826488 DOI: 10.1016/j.carbpol.2019.115476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/28/2023]
Abstract
The objective of present study is to explore whether polysaccharide could be a crystal growth inhibitor in poorly soluble antitumor drug Ibrutinib (IBR) formulation. In this work, small molecular ligands (amino or organic acids) in co-amorphous system (CAS) were preliminarily screened. A polysaccharide, microcrystalline cellulose (MCC) was selected to stabilize amorphous drug and enhance pharmacokinetic properties. Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy confirmed the ionic interaction of the ternary IBR formulation. Moreover, the biosafety of the ternary formulation was the same as that of IBR while the in vitro performance advantage of the ternary formulation was converted into higher bioavailability in vivo experiments. Overall, MCC as an effective crystal growth inhibitor in the novel ternary IBR formulation is a promising approach to improve the dissolution rate of crystalline drugs and the stability of amorphous drugs, as well as providing a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- Laboratory Animal Centre, Sichuan University, Chengdu 610065, China
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xin Wei
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
40
|
Huang S, Xue Q, Xu J, Ruan S, Cai T. Simultaneously Improving the Physicochemical Properties, Dissolution Performance, and Bioavailability of Apigenin and Daidzein by Co-Crystallization With Theophylline. J Pharm Sci 2019; 108:2982-2993. [DOI: 10.1016/j.xphs.2019.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/15/2022]
|
41
|
Lodagekar A, Chavan RB, Mannava MKC, Yadav B, Chella N, Nangia AK, Shastri NR. Co amorphous valsartan nifedipine system: Preparation, characterization, in vitro and in vivo evaluation. Eur J Pharm Sci 2019; 139:105048. [PMID: 31446077 DOI: 10.1016/j.ejps.2019.105048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023]
Abstract
Co amorphous systems are supersaturated drug delivery systems which offer a basic platform for delivery of multicomponent adducts (combination of more than one active pharmaceutical ingredient (API)) and/or as a fixed dose combination therapy, in addition to their potential to improve the apparent solubility, dissolution rate and ultimately bioavailability of poorly water soluble APIs. In the present work, a new drug-drug co amorphous system namely valsartan-nifedipine was prepared by quench cooling technique. Prepared co amorphous system was characterized for its solid state behavior with the help of Fourier Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Powder X Ray Diffractometry (PXRD). The optimized co amorphous system was stable for 1 month when exposed to accelerated stability condition (40 ± 2 °C and 75 ± 5% RH). The improved stability of amorphous nifedipine in co amorphous system was attributed to improved miscibility and intra and intermolecular non-covalent interactions mainly due to presence of hydrogen bonding between valsartan and nifedipine which was studied by FTIR analysis. Co amorphous systems were evaluated by mainly in vitro dissolution and in vivo benefit. In vitro dissolution study showed nearly 5.66 folds and 1.61 folds improvement which was translated to 3.63 and 2.19 times enhancement in vivo Cmax for nifedipine and valsartan respectively.
Collapse
Affiliation(s)
- Anurag Lodagekar
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rahul B Chavan
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - M K Chaitanya Mannava
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O, Hyderabad 500046, India
| | - Balvant Yadav
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Naveen Chella
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O, Hyderabad 500046, India; CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Nalini R Shastri
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
42
|
Cruz-Angeles J, Videa M, Martínez LM. Highly Soluble Glimepiride and Irbesartan Co-amorphous Formulation with Potential Application in Combination Therapy. AAPS PharmSciTech 2019; 20:144. [PMID: 30887140 DOI: 10.1208/s12249-019-1359-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/03/2019] [Indexed: 11/30/2022] Open
Abstract
One-third of the population of the USA suffers from metabolic syndrome (MetS). Treatment of patients with MetS regularly includes drugs prescribed simultaneously to treat diabetes and cardiovascular diseases. Therefore, the development of novel multidrug formulations is recommended. However, the main problem with these drugs is their low solubility. The use of binary co-amorphous systems emerges as a promising strategy to increase drug solubility. In the present study, irbesartan (IBS) and glimepiride (GMP), class II active pharmaceutical ingredients (API), widely used in the treatment of arterial hypertension and diabetes, were selected to develop a novel binary co-amorphous system with remarkable enhancement in the dissolution of both APIs. The phase diagram of IBS-GMP was constructed and co-amorphous systems were prepared by melt-quench, in a wide range of compositions. Dissolution profile (studied at pH 1.2 and 37°C for mole fractions 0.01, 0.1, and 0.5) demonstrated that the xGMP = 0.01 formulation presents the highest enhancement in its dissolution. GMP went from being practically insoluble to reach 3.9 ± 0.9 μg/mL, and IBS showed a 12-fold increment with respect to the dissolution of its crystalline form. Infrared studies showed that the increase in the dissolution profile is related to the intermolecular interactions (hydrogen bonds), which were dependent of composition. Results of structural and thermal characterization performed by XRD and DSC showed that samples have remained in amorphous state for more than 10 months of storage. This work contributes to the development of a highly soluble co-amorphous drugs with potential used in the treatment of MetS.
Collapse
|
43
|
Wang R, Han J, Jiang A, Huang R, Fu T, Wang L, Zheng Q, Li W, Li J. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. Int J Pharm 2019; 561:9-18. [PMID: 30817985 DOI: 10.1016/j.ijpharm.2019.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Curcumin (CUR) has gained increasing interest worldwide due to multiple biological activities. However, the therapeutic application remains limited because of its low aqueous solubility, intestinal metabolism and poor membrane permeability. In present study, an excipient-free CUR solid dispersion co-formed with piperine (PIP), the absorption enhancer involving metabolism-permeability, was successfully prepared by melting and quench cooling (co-amorphous CUR-PIP). The co-amorphous CUR-PIP exhibited superior performance in non-sink dissolution compared with crystalline and amorphous CUR, and showed physically stable at least 3 months, attributing to the strong molecular interactions between CUR and PIP as evaluated by FTIR spectra. Furthermore, the combination of PIP with CUR in the co-amorphous formulation could inhibit the glucuronidation of CUR, as exhibited in the in vitro assay of rat intestinal microsomes. The co-amorphous CUR-PIP would also exhibit higher gastrointestinal membrane permeability of CUR, as confirmed by Papp of CUR in Caco-2 model. After administration of co-amorphous CUR-PIP, the AUC of CUR significantly increased by 2.16- and 1.92-fold those in crystalline and amorphous CUR, respectively. This study demonstrates that the developed co-amorphous CUR-PIP can enhance the bioavailability of CUR by increasing its dissolution, inhibiting metabolic processes, and facilitating membrane permeability.
Collapse
Affiliation(s)
- Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, China
| | - Jiawei Han
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, China
| | - Ai Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, China
| | - Rong Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, China
| | - Tingming Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lingchong Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, China
| | - Qin Zheng
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 18 Yunwan Road, Nanchang 330004, China
| | - Wen Li
- Department of Pharmacy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Junsong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, China.
| |
Collapse
|
44
|
Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B 2019; 9:19-35. [PMID: 30766775 PMCID: PMC6361732 DOI: 10.1016/j.apsb.2018.08.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
In recent years, the coamorphous drug delivery system has been established as a promising formulation approach for delivering poorly water-soluble drugs. The coamorphous solid is a single-phase system containing an active pharmaceutical ingredient (API) and other low molecular weight molecules that might be pharmacologically relevant APIs or excipients. These formulations exhibit considerable advantages over neat crystalline or amorphous material, including improved physical stability, dissolution profiles, and potentially enhanced therapeutic efficacy. This review provides a comprehensive overview of coamorphous drug delivery systems from the perspectives of preparation, physicochemical characteristics, physical stability, in vitro and in vivo performance. Furthermore, the challenges and strategies in developing robust coamorphous drug products of high quality and performance are briefly discussed.
Collapse
Key Words
- API, active pharmaceutical ingredient;
- AUC, area under plasma concentrations-time curve
- BCS, bio-pharmaceutics classification systems
- Bioavailability
- Characterization
- Cmax, maximum plasma concentration
- Coamorphous
- Css, plasma concentration at steady state
- DSC, differential scanning calorimetry
- DVS, dynamic vapor sorption
- Dc, relative degree of crystallization
- Dissolution
- FT-IR, fourier transform infrared spectroscopy
- HME, hot melt extrusion
- HPLC, high performance liquid chromatography
- IDR, intrinsic dissolution rate
- LFRS, low-frequency Raman spectroscopy
- LLPS, liquid—liquid phase separation
- MTDSC, modulated temperature differential scanning calorimetry
- NMR, nuclear magnetic resonance
- P-gp, P-glycoprotein
- PXRD, powder X-ray diffraction
- Physical stability
- Preparation
- RH, relative humidity
- SEM, scanning electron microscope
- TGA, thermogravimetric analysis
- Tg, glass transition temperature
- Tmax, time of maximum plasma concentration
- UV, ultraviolet spectroscopy
Collapse
Affiliation(s)
| | | | - Ting Cai
- Corresponding author. Tel.: +86 25 83271123.
| |
Collapse
|
45
|
Zhang M, Xiong X, Suo Z, Hou Q, Gan N, Tang P, Ding X, Li H. Co-amorphous palbociclib–organic acid systems with increased dissolution rate, enhanced physical stability and equivalent biosafety. RSC Adv 2019; 9:3946-3955. [PMID: 35518078 PMCID: PMC9060427 DOI: 10.1039/c8ra09710k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
The preparation of co-amorphous drug systems by adding a small molecular excipient is a promising formulation in the modern pharmaceutical industry to improve the solubility, dissolution rate, and bioavailability of poorly soluble drugs. In this study, palbociclib co-amorphous systems with organic acids (succinic, tartaric, citric, and malic acid) at molar ratios of 1 : 1 were prepared by co-milling and characterized by differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic resonance (SS-NMR). These solid-state investigations have confirmed the formation of co-amorphous salts between PAL and organic acids. The solubility, dissolution rate and stability of the four co-amorphous drug systems were significantly improved compared with these of crystalline and amorphous palbociclib. The biosafety of the co-amorphous drug systems was the same as that of palbociclib without affecting the efficacy of the drug and eliciting toxic side effects. These comprehensive approaches for the palbociclib–acid co-amorphous drug systems provided a theoretical basis for its clinical applications. The study of co-amorphous systems presented a safe and effective formulation technology for the development of new palbociclib solid forms with great dissolution rates, good physical stability, and high bioavailability.![]()
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Xinnuo Xiong
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Zili Suo
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Quan Hou
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Na Gan
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Peixiao Tang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Xiaohui Ding
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hui Li
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
46
|
Wang Z, Sun M, Liu T, Gao Z, Ye Q, Tan X, Hou Y, Sun J, Wang D, He Z. Co-amorphous solid dispersion systems of lacidipine-spironolactone with improved dissolution rate and enhanced physical stability. Asian J Pharm Sci 2019; 14:95-103. [PMID: 32104442 PMCID: PMC7032115 DOI: 10.1016/j.ajps.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022] Open
Abstract
Co-amorphous solid dispersion (C-ASD) systems have attracted great attention to improve the solubility of poorly soluble drugs, but the selection of an appropriate stabilizer to stabilize amorphous forms is still a huge challenge. Herein, C-ASD system of two clinical combined used drugs (lacidipine (LCDP) and spironolactone (SPL)) as stabilizers to each other, was prepared by solvent evaporation method. The effects of variation in molar ratio of LCDP and SPL (3:1, 1:1, 1:3, 1:6, and 1:9) on the drug release characteristics were explored. Polarized light microscopy (PLM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to evaluate the solid states. Prepared C-ASDs were further studied for their stability under the high humidity (RH 92.5%). Further analysis of C-ASDs via Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy confirmed that hydrogen bond interactions between the two drugs played a significant role in maintaining the stability of the C-ASDs systems. Moreover, molecular dynamic (MD) simulations provided a clear insight into the stability mechanism at the molecular level. This study demonstrated the novel drug-drug C-ASDs systems is a promising formulation strategy for improved dissolution rate and enhanced physical stability of poorly soluble drugs.
Collapse
Affiliation(s)
- Zhaomeng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zisen Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Ye
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Tan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanxian Hou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
47
|
Russo MG, Baldoni HA, Dávila YA, Brusau EV, Ellena JA, Narda GE. Rational Design of a Famotidine-Ibuprofen Coamorphous System: An Experimental and Theoretical Study. J Phys Chem B 2018; 122:8772-8782. [PMID: 30160964 DOI: 10.1021/acs.jpcb.8b06105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Famotidine (FMT) and ibuprofen (IBU) were used as model drugs to obtain coamorphous systems, where the guanidine moiety of the antacid and the carboxylic group of the nonsteroidal anti-inflammatory drug could potentially participate in H-bonds leading to a given structural motif. The systems were prepared in 3:7, 1:1, and 7:3 FMT and IBU molar ratios, respectively. The latter two became amorphous after 180 min of comilling. FMT-IBU (1:1) exhibited a higher physical stability in assays at 4, 25, and 40 °C up to 60 days. Fourier transform infrared spectroscopy accounted for important modifications in the vibrational behavior of those functional groups, allowing us to ascribe the skill of 1:1 FMT-IBU for remaining amorphous to equimolar interactions between both components. Density functional theory calculations followed by quantum theory of atoms in molecules analysis were then conducted to support the presence of the expected FMT-IBU heterodimer with consequent formation of a R228 structural motif. The electron density (ρ) and its Laplacian (∇2ρ) values suggested a high strength of the specific intermolecular interactions. Molecular dynamics simulations to build an amorphous assembly, followed by radial distribution function analysis on the modeled phase were further employed. The results demonstrate that it is a feasible rational design of a coamorphous system, satisfactorily stabilized by molecular-level interactions leading to the expected motif.
Collapse
Affiliation(s)
- Marcos G Russo
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis , Chacabuco 917 , D5700HOJ San Luis , Argentina.,Instituto de Investigación en Tecnología Química (INTEQUI-UNSL), CONICET , Almirante Brown 1455 , D5700HGC San Luis , Argentina
| | - Hector A Baldoni
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis , Chacabuco 917 , D5700HOJ San Luis , Argentina.,Instituto de Matemática Aplicada San Luis (IMASL-UNSL), CONICET , Italia 1556 , D5700HHW San Luis , Argentina
| | - Yamina A Dávila
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis , Chacabuco 917 , D5700HOJ San Luis , Argentina.,Instituto de Investigación en Tecnología Química (INTEQUI-UNSL), CONICET , Almirante Brown 1455 , D5700HGC San Luis , Argentina
| | - Elena V Brusau
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis , Chacabuco 917 , D5700HOJ San Luis , Argentina.,Instituto de Investigación en Tecnología Química (INTEQUI-UNSL), CONICET , Almirante Brown 1455 , D5700HGC San Luis , Argentina
| | - Javier A Ellena
- Instituto de Fisica de São Carlos , Universidad de São Paulo , CP 369, 13560-970 São Carlos , São Paulo , Brazil
| | - Griselda E Narda
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis , Chacabuco 917 , D5700HOJ San Luis , Argentina.,Instituto de Investigación en Tecnología Química (INTEQUI-UNSL), CONICET , Almirante Brown 1455 , D5700HGC San Luis , Argentina
| |
Collapse
|
48
|
Karagianni A, Kachrimanis K, Nikolakakis I. Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery. Pharmaceutics 2018; 10:pharmaceutics10030098. [PMID: 30029516 PMCID: PMC6161132 DOI: 10.3390/pharmaceutics10030098] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
The amorphous solid state offers an improved apparent solubility and dissolution rate. However, due to thermodynamic instability and recrystallization tendencies during processing, storage and dissolution, their potential application is limited. For this reason, the production of amorphous drugs with adequate stability remains a major challenge and formulation strategies based on solid molecular dispersions are being exploited. Co-amorphous systems are a new formulation approach where the amorphous drug is stabilized through strong intermolecular interactions by a low molecular co-former. This review covers several topics applicable to co-amorphous drug delivery systems. In particular, it describes recent advances in the co-amorphous composition, preparation and solid-state characterization, as well as improvements of dissolution performance and absorption are detailed. Examples of drug-drug, drug-carboxylic acid and drug-amino acid co-amorphous dispersions interacting via hydrogen bonding, π−π interactions and ionic forces, are presented together with corresponding final dosage forms.
Collapse
Affiliation(s)
- Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|