1
|
Qela B, Damiani S, De Santis S, Groppi F, Pichiecchio A, Asteggiano C, Brondino N, Monteleone AM, Grassi L, Politi P, Fusar-Poli P, Fusar-Poli L. Predictive coding in neuropsychiatric disorders: A systematic transdiagnostic review. Neurosci Biobehav Rev 2025; 169:106020. [PMID: 39828236 DOI: 10.1016/j.neubiorev.2025.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The predictive coding framework postulates that the human brain continuously generates predictions about the environment, maximizing successes and minimizing failures based on prior experiences and beliefs. This PRISMA-compliant systematic review aims to comprehensively and transdiagnostically examine the differences in predictive coding between individuals with neuropsychiatric disorders and healthy controls. We included 72 articles including case-control studies investigating predictive coding as the primary outcome and reporting behavioral, neuroimaging, or electrophysiological findings. Thirty-three studies investigated predictive coding in the schizophrenia spectrum, 33 in neurodevelopmental disorders, 5 in mood disorders, 4 in neurocognitive disorders, 1 in post-traumatic stress disorder, and 1 in substance use disorders. Oddball and oddball-like paradigms were most frequently used to quantify predictive coding performance. Evidence showed heterogeneous impairments in the predictive coding abilities of the brain across neuropsychiatric disorders, particularly in schizophrenia and autism. Patients within the schizophrenia spectrum showed a consistent pattern of impaired non-social predictive coding. Conversely, predictive coding deficits were more selective for social cues in the autism spectrum. Predictive coding impairments were correlated with clinical symptom severity. These findings underscore the potential utility of predictive coding as a framework for understanding cognitive dysfunctions in the neuropsychiatric population, even though more evidence is needed on underexplored conditions, also considering potential confounders such as medication use and sex/gender. The potential role of predictive coding as a determinant of treatment response may also be considered to tailor personalized interventions.
Collapse
Affiliation(s)
- Brendon Qela
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Samanta De Santis
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Carlo Asteggiano
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, United Kingdom; Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy.
| |
Collapse
|
2
|
Marais AL, Roche-Labarbe N. Predictive coding and attention in developmental cognitive neuroscience and perspectives for neurodevelopmental disorders. Dev Cogn Neurosci 2025; 72:101519. [PMID: 39864185 PMCID: PMC11795830 DOI: 10.1016/j.dcn.2025.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Sensory prediction and repetition suppression are closely related cognitive mechanisms that allow the brain to form predictions about the environment, and guide perception in synergy with attention. Predictive coding is a theory of the fundamental role of predictive mechanisms in brain functions. Authors have proposed a central role of predictive impairments in autism and possibly other neurodevelopmental disorders. However, little is known about predictive mechanisms in typical development, and how they co-develop with attention. Here we review experimental support for predictive coding and its links with attention in healthy adults' brains, the first experimental works performed in typically developing children and infants, and theoretical accounts of neurodevelopmental disorders using a predictive coding framework. We propose future directions for predictive coding research in development. Finally, we describe the first predictive coding experiments in neonates and provide research perspectives for using this framework in searching for early markers of atypical neurodevelopment.
Collapse
Affiliation(s)
- Anne-Lise Marais
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, Caen 14000, France
| | | |
Collapse
|
3
|
Karakaş S. A Review of Childhood Developmental Changes in Attention as Indexed in the Electrical Activity of the Brain. Brain Sci 2024; 14:458. [PMID: 38790437 PMCID: PMC11117988 DOI: 10.3390/brainsci14050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
This review aims to present age-related changes in the neuroelectric responses of typically developing children (TDC) who are presumed to meet developmental stages appropriately. The review is based on findings from the frequently used neuropsychological tasks of active attention, where attention is deliberately focused versus passive attention where attention is drawn to a stimulus, facilitatory attention, which enhances the processing of a stimulus versus inhibitory attention, which suppresses the processing of a stimulus. The review discusses the early and late stages of attentional selectivity that correspond to early and late information processing. Age-related changes in early attentional selectivity were quantitatively represented in latencies of the event-related potential (ERP) components. Age-related changes in late attentional selectivity are also qualitatively represented by structural and functional reorganization of attentional processing and the brain areas involved. The purely bottom-up or top-down processing is challenged with age-related findings on difficult tasks that ensure a high cognitive load. TDC findings on brain oscillatory activity are enriched by findings from attention deficit hyperactivity disorder (ADHD). The transition from the low to fast oscillations in TDC and ADHD confirmed the maturational lag hypothesis. The deviant topographical localization of the oscillations confirmed the maturational deviance model. The gamma-based match and utilization model integrates all levels of attentional processing. According to these findings and theoretical formulations, brain oscillations can potentially display the human brain's wholistic-integrative functions.
Collapse
Affiliation(s)
- Sirel Karakaş
- Psychology Department, Doğuş University, İstanbul 34775, Turkey
| |
Collapse
|
4
|
Cañigueral R, Palmer J, Ashwood KL, Azadi B, Asherson P, Bolton PF, McLoughlin G, Tye C. Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD), and ASD+ADHD. J Child Psychol Psychiatry 2022; 63:745-761. [PMID: 34477232 DOI: 10.1111/jcpp.13514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) share impairments in top-down and bottom-up modulation of attention. However, it is not yet well understood if co-occurrence of ASD and ADHD reflects a distinct or additive profile of attention deficits. We aimed to characterise alpha oscillatory activity (stimulus-locked alpha desynchronisation and prestimulus alpha) as an index of integration of top-down and bottom-up attentional processes in ASD and ADHD. METHODS Children with ASD, ADHD, comorbid ASD+ADHD, and typically-developing children completed a fixed-choice reaction-time task ('Fast task') while neurophysiological activity was recorded. Outcome measures were derived from source-decomposed neurophysiological data. Main measures of interest were prestimulus alpha power and alpha desynchronisation (difference between poststimulus and prestimulus alpha). Poststimulus activity linked to attention allocation (P1, P3), attentional control (N2), and cognitive control (theta synchronisation, 100-600 ms) was also examined. ANOVA was used to test differences across diagnostics groups on these measures. Spearman's correlations were used to investigate the relationship between attentional control processes (alpha oscillations), central executive functions (theta synchronisation), early visual processing (P1), and behavioural performance. RESULTS Children with ADHD (ADHD and ASD+ADHD) showed attenuated alpha desynchronisation, indicating poor integration of top-down and bottom-up attentional processes. Children with ADHD showed reduced N2 and P3 amplitudes, while children with ASD (ASD and ASD+ADHD) showed greater N2 amplitude, indicating atypical attentional control and attention allocation across ASD and ADHD. In the ASD group, prestimulus alpha and theta synchronisation were negatively correlated, and alpha desynchronisation and theta synchronisation were positively correlated, suggesting an atypical association between attentional control processes and executive functions. CONCLUSIONS ASD and ADHD are associated with disorder-specific impairments, while children with ASD+ADHD overall presented an additive profile with attentional deficits of both disorders. Importantly, these findings may inform the improvement of transdiagnostic procedures and optimisation of personalised intervention approaches.
Collapse
Affiliation(s)
- Roser Cañigueral
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Jason Palmer
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, CoMIT, Suita, Japan.,Institute for Neural Computation, Univeristy of California San Diego, La Jolla, CA, USA
| | - Karen L Ashwood
- Department of Forensic and Neurodevelopmental Sciences, King's College London, London, UK
| | - Bahar Azadi
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Philip Asherson
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Gráinne McLoughlin
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Charlotte Tye
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| |
Collapse
|
5
|
Karakaş S. A comparative review of the psychophysiology of attention in typically developing children and children with attention deficit hyperactivity disorder. Int J Psychophysiol 2022; 177:43-60. [DOI: 10.1016/j.ijpsycho.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
|
6
|
Associations of Hyperactivity and Inattention Scores with Theta and Beta Oscillatory Dynamics of EEG in Stop-Signal Task in Healthy Children 7-10 Years Old. BIOLOGY 2021; 10:biology10100946. [PMID: 34681045 PMCID: PMC8533509 DOI: 10.3390/biology10100946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Most studies on ADHD have been focused on the comparisons between healthy subjects and clinical patients. The dimensional approaches propose that the main pathological behavioral domains are distributed in the normal population and not only in individual categories of people (as assumed in traditional schemes of comparisons between patients and controls). In the current study, we used a similar approach to identify potential markers of ADHD by studying the EEG dynamics of healthy children with a natural variability in hyperactivity and inattention scores during performance of the Stop-Signal task. We found that hyperactivity/inattention scores were positively associated with RT variability. Hyperactivity/inattention scores were negatively associated with an increase in beta spectral power in the first 200 ms and positively associated with an increase in theta rhythm at about 300 ms after presentation of the Go stimulus. It has been hypothesized that such results imply insufficient vigilance in the early stages of perception and subsequent compensatory enhancing of attention to the stimulus in children with higher hyperactivity and inattention scores. Abstract In the current study, we aimed to investigate the associations between the natural variability in hyperactivity and inattention scores, as well as their combination with EEG oscillatory responses in the Stop-Signal task in a sample of healthy children. During performance, the Stop-Signal task EEGs were recorded in 94 Caucasian children (40 girls) from 7 to 10 years. Hyperactivity/inattention and inattention scores positively correlated with RT variability. Hyperactivity/inattention and inattention scores negatively correlated with an increase in beta spectral power in the first 200 ms after presentation of the Go stimulus. Such results are in line with the lack of arousal model in ADHD children and can be associated with less sensory arousal in the early stages of perception in children with symptoms of inattention. The subsequent greater increase in theta rhythm at about 300 ms after presentation of the Go stimulus in children with higher inattention scores may be associated with increased attention processes and compensation for insufficient vigilance in the early stages of perception.
Collapse
|
7
|
Cross-sectional and prospective associations of P300, RewP, and ADHD symptoms in female adolescents. Int J Psychophysiol 2020; 158:215-224. [DOI: 10.1016/j.ijpsycho.2020.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 12/29/2022]
|
8
|
Zarka D, Leroy A, Cebolla AM, Cevallos C, Palmero-Soler E, Cheron G. Neural generators involved in visual cue processing in children with attention-deficit/hyperactivity disorder (ADHD). Eur J Neurosci 2020; 53:1207-1224. [PMID: 33169431 DOI: 10.1111/ejn.15040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Event-related potentials (ERP) studies report alterations in the ongoing visuo-attentional processes in children with attention-deficit/hyperactivity disorder (ADHD). We hypothesized that the neural generators progressively recruited after a cue stimulus imply executive-related areas well before engagement in executive processing in children with ADHD compared to typically developed children (TDC). We computed source localization (swLORETA) of the ERP and ERSP evoked by the Cue stimulus during a visual Cue-Go/Nogo paradigm in 15 ADHD compared to 16 TDC. A significant difference in N200/P200 amplitude over the right centro-frontal regions was observed between ADHD and TDC, supported by a stronger contribution of the left visuo-motor coordination area, premotor cortex, and prefrontal cortex in ADHD. In addition, we recorded a greater beta power spectrum in ADHD during the 80-230 ms interval, which was explained by increased activity in occipito-parieto-central areas and lower activity in the left supramarginal gyrus and prefrontal areas in ADHD. Successive analysis of the ERP generators (0-500 ms with successive periods of 50 ms) revealed significant differences beginning at 50 ms, with higher activity in the ventral anterior cingulate cortex, premotor cortex, and fusiform gyrus, and ending at 400-500 ms with higher activity of the dorsolateral prefrontal cortex and lower activity of the posterior cingulate cortex in ADHD compared to TDC. The areas contributing to ERP in ADHD and TDC differ from the early steps of visuo-attentional processing and reveal an overinvestment of the executive networks interfering with the activity of the dorsal attention network in children with ADHD.
Collapse
Affiliation(s)
- David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium.,Research Unit in Osteopathy, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium.,Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - Ernesto Palmero-Soler
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
9
|
Earlier versus later cognitive event-related potentials (ERPs) in attention-deficit/hyperactivity disorder (ADHD): A meta-analysis. Neurosci Biobehav Rev 2020; 112:117-134. [DOI: 10.1016/j.neubiorev.2020.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
|
10
|
Cooray GK, Sundgren M, Brismar T. Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and its relation to cognition. Clin Neurophysiol 2019; 131:361-367. [PMID: 31864125 DOI: 10.1016/j.clinph.2019.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To investigate if changes in brain network function and connectivity contribute to the abnormalities in visual event related potentials (ERP) in relapsing-remitting multiple sclerosis (RRMS), and explore their relation to a decrease in cognitive performance. METHODS We evaluated 72 patients with RRMS and 89 healthy control subjects in a cross-sectional study. Visual ERP were generated using illusory and non-illusory stimuli and recorded using 21 EEG scalp electrodes. The measured activity was modelled using Dynamic Causal Modelling. The model network consisted of 4 symmetric nodes including the primary visual cortex (V1/V2) and the Lateral Occipital Complex. Patients and controls were tested with a neuropsychological test battery consisting of 18 cognitive tests covering six cognitive domains. RESULTS We found reduced cortical connectivity in bottom-up and interhemispheric connections to the right lateral occipital complex in patients (p < 0.001). Furthermore, interhemispherical connections were related to cognitive dysfunction in several domains (attention, executive function, visual perception and organization, processing speed and global cognition) for patients (p < 0.05). No relation was seen between cortical network connectivity and cognitive function in the healthy control subjects. CONCLUSION Changes in the functional connectivity to higher cortical regions provide a neurobiological explanation for the changes of the visual ERP in RRMS. SIGNIFICANCE This study suggests that changes in connectivity to higher cortical regions partly explain visual network dysfunction in RRMS where a lower interhemispheric connectivity may contribute to impaired cognitive function.
Collapse
Affiliation(s)
- Gerald K Cooray
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Mathias Sundgren
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Neuro Department, Karolinska University Hospital, Stockholm, Sweden
| | - Tom Brismar
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Chi MH, Chu CL, Lee IH, Hsieh YT, Chen KC, Chen PS, Yang YK. Altered Auditory P300 Performance in Parents with Attention Deficit Hyperactivity Disorder Offspring. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:509-516. [PMID: 31671488 PMCID: PMC6852684 DOI: 10.9758/cpn.2019.17.4.509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/02/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
Objective Altered event-related potential (ERP) performances have been noted in attention deficit hyperactivity disorder (ADHD) patients and reflect neurocognitive dysfunction. Whether these ERP alterations and correlated dysfunctions exist in healthy parents with ADHD offspring is worth exploring. Methods Thirteen healthy parents with ADHD offspring and thirteen healthy controls matched for age, sex and years of education were recruited. The auditory oddball paradigm was used to evaluate the P300 wave complex of the ERP, and the Wechsler Adult Intelligence Scale-Revised, Wisconsin Card Sorting Test, and continuous performance test were used to measure neurocognitive performance. Results Healthy parents with ADHD offspring had significantly longer auditory P300 latency at Fz than control group. However, no significant differences were found in cognitive performance. Conclusion The presence of a subtle alteration in electro-neurophysiological activity without explicit neurocognitive dysfunction suggests potential candidate of biological marker for parents with ADHD offspring.
Collapse
Affiliation(s)
- Mei Hung Chi
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lin Chu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Educational Psychiatry & Counseling, National Pingtung University, Pingtung, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Hsieh
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ko Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| |
Collapse
|
12
|
Kaur S, Singh S, Arun P, Kaur D, Bajaj M. Event-Related Potential Analysis of ADHD and Control Adults During a Sustained Attention Task. Clin EEG Neurosci 2019; 50:389-403. [PMID: 30997836 DOI: 10.1177/1550059419842707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Event-related potentials (ERPs) of attention deficit hyperactivity disorder (ADHD) population have been extensively studied using the time-domain representation of signals but time-frequency domain techniques are less explored. Although, adult ADHD is a proven disorder, most of the electrophysiological studies have focused only on children with ADHD. Methods. ERP data of 35 university students with ADHD and 35 control adults were recorded during visual continuous performance task (CPT). Gray level co-occurrence matrix-based texture features were extracted from time-frequency (t-f) images of event-related EEG epochs. Different ERP components measures, that is, amplitudes and latencies corresponding to N1, N2, and P3 components were also computed relative to standard and target stimuli. Results. Texture analysis has shown that the mean value of contrast, dissimilarity, and difference entropy is significantly reduced in adults with ADHD than in control adults. The mean correlation and homogeneity in adults with ADHD were significantly increased as compared with control adults. ERP components analysis has reported that adults with ADHD have reduced N1 amplitude to target stimuli, reduced N2 and P3 amplitude to both standard and target stimuli than controls. Conclusions. The differences in texture features obtained from t-f images of ERPs point toward altered information processing in adults with ADHD during a cognitive task. Findings of reduction in N1, N2, and P3 components highlight deficits of early sensory processing, stimulus categorization, and attentional resources, respectively, in adults with ADHD.
Collapse
Affiliation(s)
- Simranjit Kaur
- 1 Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sukhwinder Singh
- 1 Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Priti Arun
- 2 Department of Psychiatry, Government Medical College and Hospital, Chandigarh, India
| | - Damanjeet Kaur
- 3 Department of Electrical and Electronics Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Manoj Bajaj
- 2 Department of Psychiatry, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
13
|
Cognitive and motor event-related potentials in Tourette syndrome and tic disorders: A systematic review. Clin Neurophysiol 2019; 130:1041-1057. [DOI: 10.1016/j.clinph.2018.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023]
|
14
|
Pasion R, Prata C, Fernandes M, Almeida R, Garcez H, Araújo C, Barbosa F. N2 amplitude modulation across the antisocial spectrum: a meta-analysis. Rev Neurosci 2019; 30:781-794. [DOI: 10.1515/revneuro-2018-0116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/08/2019] [Indexed: 02/04/2023]
Abstract
Abstract
Despite the accumulated knowledge on antisocial behavior and the positive event-related potential peaking around 300 ms (P3), less is known about the preceding negative electrophysiological response around 200 ms (N2). A systematic search of the literature was conducted to analyze the N2 modulation across the antisocial spectrum. Thirty-seven studies (n = 1199) were retrieved to the quantitative analysis. Reduced N2 amplitudes were found in the more severe antisocial manifestations (violent behavior and antisocial personality disorder), which is consistent with previous findings on P3 alterations and N2 reduced amplitudes in externalizing disorders. Findings on psychopathy were mixed, also in accordance with previous P3 results. From a dimensional lens, this supports the heterogeneity of the psychopathic personality structure: impulsivity features are a closer attribute of antisocial behavior and thus may be associated with N2 reduction, while adaptive psychopathic traits may be associated with intact (or even increased) N2 amplitude. The increased N2 amplitudes observed in impulsive behavior challenge, however, the previous meta-analytic findings. As most of the studies on impulsivity include subclinical samples, it leads to the hypothesis that some compensatory mechanisms can still occur at a subclinical level, reflecting the need for heightened allocation of brain resources to yield similar performances. Importantly, inhibition was the core deficit to explain N2 blunted amplitudes, alongside with deficits in the frontal brain region. From our findings, the reduction in P3 amplitude across the antisocial spectrum may be detected in the previous N2 time window.
Collapse
Affiliation(s)
- Rita Pasion
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto , Rua Alfredo Allen, 535 , 4200-135 Porto , Portugal
| | - Catarina Prata
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto , Rua Alfredo Allen, 535 , 4200-135 Porto , Portugal
| | - Marisa Fernandes
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto , Rua Alfredo Allen, 535 , 4200-135 Porto , Portugal
| | - Rita Almeida
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto , Rua Alfredo Allen, 535 , 4200-135 Porto , Portugal
| | - Helena Garcez
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto , Rua Alfredo Allen, 535 , 4200-135 Porto , Portugal
| | - Carolina Araújo
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto , Rua Alfredo Allen, 535 , 4200-135 Porto , Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto , Rua Alfredo Allen, 535 , 4200-135 Porto , Portugal
| |
Collapse
|
15
|
Riggins T, Scott LS. P300 development from infancy to adolescence. Psychophysiology 2019; 57:e13346. [PMID: 30793775 DOI: 10.1111/psyp.13346] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
This article provides an overview of P300 research from infancy through adolescence. First, a brief historical overview is provided highlighting seminal studies that began exploration of the P300 component in developmental groups. Overall, these studies suggest that the P300 can be detected in children and appears to reflect similar cognitive processes to those in adults; however, it is significantly delayed in its latency to peak. Second, two striking findings from developmental research are the lack of a clear P300 component in infancy and differential electrophysiological responses to novel, unexpected stimuli in children, adolescents, and adults. Third, contemporary questions are described, which include P300-like components in infancy, alteration of P300 in atypically developing groups, relations between P300 and behavior, individual differences of P300, and neural substrates of P300 across development. Finally, we conclude with comments regarding the power of a developmental perspective and suggestions for important issues that should be addressed in the next 50 years of P300 research.
Collapse
Affiliation(s)
- Tracy Riggins
- Department of Psychology, University of Maryland, College Park, Maryland
| | - Lisa S Scott
- Department of Psychology, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Duzcu H, Özkurt TE, Mapelli I, Hohenberger A. N1-P2: Neural markers of temporal expectation and response discrimination in interval timing. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Gustafson SJ, Key AP, Hornsby BWY, Bess FH. Fatigue Related to Speech Processing in Children With Hearing Loss: Behavioral, Subjective, and Electrophysiological Measures. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2018; 61:1000-1011. [PMID: 29635434 PMCID: PMC6194945 DOI: 10.1044/2018_jslhr-h-17-0314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/05/2017] [Accepted: 01/04/2018] [Indexed: 06/01/2023]
Abstract
PURPOSE The purpose of this study was to examine fatigue associated with sustained and effortful speech-processing in children with mild to moderately severe hearing loss. METHOD We used auditory P300 responses, subjective reports, and behavioral indices (response time, lapses of attention) to measure fatigue resulting from sustained speech-processing demands in 34 children with mild to moderately severe hearing loss (M = 10.03 years, SD = 1.93). RESULTS Compared to baseline values, children with hearing loss showed increased lapses in attention, longer reaction times, reduced P300 amplitudes, and greater reports of fatigue following the completion of the demanding speech-processing tasks. CONCLUSIONS Similar to children with normal hearing, children with hearing loss demonstrate reductions in attentional processing of speech in noise following sustained speech-processing tasks-a finding consistent with the development of fatigue.
Collapse
Affiliation(s)
- Samantha J Gustafson
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Nashville, TN
| | - Alexandra P Key
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Nashville, TN
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN
| | - Benjamin W Y Hornsby
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Nashville, TN
| | - Fred H Bess
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Nashville, TN
| |
Collapse
|
18
|
Jacobs M, Dykens EM, Key AP. Attentional rather than sensory differences characterize auditory processing in Williams syndrome. Brain Cogn 2018; 121:24-37. [DOI: 10.1016/j.bandc.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 01/23/2023]
|
19
|
Douglas PK, Gutman B, Anderson A, Larios C, Lawrence KE, Narr K, Sengupta B, Cooray G, Douglas DB, Thompson PM, McGough JJ, Bookheimer SY. Hemispheric brain asymmetry differences in youths with attention-deficit/hyperactivity disorder. Neuroimage Clin 2018; 18:744-752. [PMID: 29876263 PMCID: PMC5988460 DOI: 10.1016/j.nicl.2018.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/05/2022]
Abstract
Introduction Attention-deficit hyperactive disorder (ADHD) is the most common neurodevelopmental disorder in children. Diagnosis is currently based on behavioral criteria, but magnetic resonance imaging (MRI) of the brain is increasingly used in ADHD research. To date however, MRI studies have provided mixed results in ADHD patients, particularly with respect to the laterality of findings. Methods We studied 849 children and adolescents (ages 6-21 y.o.) diagnosed with ADHD (n = 341) and age-matched typically developing (TD) controls with structural brain MRI. We calculated volumetric measures from 34 cortical and 14 non-cortical brain regions per hemisphere, and detailed shape morphometry of subcortical nuclei. Diffusion tensor imaging (DTI) data were collected for a subset of 104 subjects; from these, we calculated mean diffusivity and fractional anisotropy of white matter tracts. Group comparisons were made for within-hemisphere (right/left) and between hemisphere asymmetry indices (AI) for each measure. Results DTI mean diffusivity AI group differences were significant in cingulum, inferior and superior longitudinal fasciculus, and cortico-spinal tracts (p < 0.001) with the effect of stimulant treatment tending to reduce these patterns of asymmetry differences. Gray matter volumes were more asymmetric in medication free ADHD individuals compared to TD in twelve cortical regions and two non-cortical volumes studied (p < 0.05). Morphometric analyses revealed that caudate, hippocampus, thalamus, and amygdala were more asymmetric (p < 0.0001) in ADHD individuals compared to TD, and that asymmetry differences were more significant than lateralized comparisons. Conclusions Brain asymmetry measures allow each individual to serve as their own control, diminishing variability between individuals and when pooling data across sites. Asymmetry group differences were more significant than lateralized comparisons between ADHD and TD subjects across morphometric, volumetric, and DTI comparisons.
Collapse
Affiliation(s)
- P K Douglas
- University of Central Florida, IST, Modeling and Simulation Department, FL, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, CA, USA.
| | - Boris Gutman
- Imaging Genetics Center, USC Keck School of Medicine, Marina del Rey, CA, USA
| | - Ariana Anderson
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, CA, USA
| | - C Larios
- University of Central Florida, IST, Modeling and Simulation Department, FL, USA
| | | | | | - Biswa Sengupta
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, UCL, London, UK
| | - Gerald Cooray
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, UCL, London, UK
| | - David B Douglas
- Nuclear Medicine and Molecular Imaging, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Keck School of Medicine, Marina del Rey, CA, USA
| | - James J McGough
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, CA, USA
| | - Susan Y Bookheimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, CA, USA
| |
Collapse
|
20
|
|
21
|
Yorbik Ö, Mutlu C, Özdağ MF, Olgun A, Eryilmaz G, Ayta S. Possible Effects of Copper and Ceruloplasmin Levels on Auditory Event Potentials in Boys with Attention Deficit Hyperactivity Disorder. Noro Psikiyatr Ars 2016; 53:321-327. [PMID: 28360806 DOI: 10.5152/npa.2016.12659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The aims of the present study were to investigate the relationship between levels of plasma copper (Cu) and ceruloplasmin (Cp) and amplitudes and latencies of P1, N2, and P3 in the parietal and frontal areas of children with attention deficit hyperactivity disorder (ADHD) as well as to compare these Cu levels and event-related potentials (ERPs) indices in controls. METHODS Boys (n=41) with ADHD were divided into two subgroups according to a median split of plasma Cu and Cp levels, separately. ERP indices from the parietal and frontal regions were recorded in children with ADHD and 24 normal boys (control group) using an auditory oddball paradigm. RESULTS Parietal P3 latency was significantly longer, and parietal P3 amplitude, frontal P3 amplitude, and frontal N2 amplitudes were smaller in children with ADHD than in controls (all p values <0.017). Parietal P1 and frontal P1 latencies were significantly shorter in the higher Cu group than in the lower Cu group (both p values <0.017). Decreased latency of parietal P1 was dependent on plasma levels of Cu (p<0.05). Frontal N2 and parietal N2 amplitudes were significantly lower in the ADHD group with lower Cp levels than in the ADHD group with higher Cp levels (both p values <0.017). Decreased frontal N2 and parietal N2 amplitudes were dependent on plasma levels of Cp (both p values <0.05). CONCLUSION Plasma Cu and Cp levels may have an effect on ERPs in ADHD, thus indicating the existence of effects on information processing. Cu levels may have a negative effect on the neuronal encoding of sound, whereas Cp levels may have a positive effect on the processes of cognitive control, conflict monitoring, and stimulus discrimination in children with ADHD.
Collapse
Affiliation(s)
- Özgür Yorbik
- Department of Child and Adolescent Psychiatry, Maltepe University School of Medicine, İstanbul, Turkey
| | - Caner Mutlu
- Department of Child and Adolescent Psychiatry, Bakırköy Prof. Dr. Mazhar Osman Psychiatric Training and Research Hospital, İstanbul, Turkey
| | - Mehmet Fatih Özdağ
- Department of Neurology, Gülhane Military Medical Academy Haydarpaşa Training and Research Hospital, İstanbul, Turkey
| | - Abdullah Olgun
- Biogerontology Laboratory, Akdeniz University, Antalya, Turkey
| | - Gül Eryilmaz
- Department of Psychology, Division of Psychiatry, Üsküdar University Faculty of Humanities and Social Sciences, İstanbul, Turkey
| | - Semih Ayta
- Clinic of Pediatrics, Child Neurology Unit, Haseki Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
22
|
Janssen T, Geladé K, van Mourik R, Maras A, Oosterlaan J. An ERP source imaging study of the oddball task in children with Attention Deficit/Hyperactivity Disorder. Clin Neurophysiol 2016; 127:1351-1357. [DOI: 10.1016/j.clinph.2015.10.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
|
23
|
Gonzalez-Gadea ML, Chennu S, Bekinschtein TA, Rattazzi A, Beraudi A, Tripicchio P, Moyano B, Soffita Y, Steinberg L, Adolfi F, Sigman M, Marino J, Manes F, Ibanez A. Predictive coding in autism spectrum disorder and attention deficit hyperactivity disorder. J Neurophysiol 2015; 114:2625-36. [PMID: 26311184 DOI: 10.1152/jn.00543.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022] Open
Abstract
Predictive coding has been proposed as a framework to understand neural processes in neuropsychiatric disorders. We used this approach to describe mechanisms responsible for attentional abnormalities in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). We monitored brain dynamics of 59 children (8-15 yr old) who had ASD or ADHD or who were control participants via high-density electroencephalography. We performed analysis at the scalp and source-space levels while participants listened to standard and deviant tone sequences. Through task instructions, we manipulated top-down expectation by presenting expected and unexpected deviant sequences. Children with ASD showed reduced superior frontal cortex (FC) responses to unexpected events but increased dorsolateral prefrontal cortex (PFC) activation to expected events. In contrast, children with ADHD exhibited reduced cortical responses in superior FC to expected events but strong PFC activation to unexpected events. Moreover, neural abnormalities were associated with specific control mechanisms, namely, inhibitory control in ASD and set-shifting in ADHD. Based on the predictive coding account, top-down expectation abnormalities could be attributed to a disproportionate reliance (precision) allocated to prior beliefs in ASD and to sensory input in ADHD.
Collapse
Affiliation(s)
- Maria Luz Gonzalez-Gadea
- Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; UDP-INECO Foundation Core on Neuroscience, Diego Portales University, Santiago, Chile
| | - Srivas Chennu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, United Kingdom
| | - Tristan A Bekinschtein
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Alexia Rattazzi
- Programa Argentino para Niños, Adolescentes y Adultos con Condiciones del Espectro Autista (PANAACEA), Buenos Aires, Argentina
| | - Ana Beraudi
- Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina
| | - Paula Tripicchio
- Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina
| | - Beatriz Moyano
- Centro Interdisciplinario de Tourette, TOC, TDAH, y Trastornos Asociados (CITTTA), Buenos Aires, Argentina
| | - Yamila Soffita
- Centro Interdisciplinario de Tourette, TOC, TDAH, y Trastornos Asociados (CITTTA), Buenos Aires, Argentina; Institute of Neurosciences, Favaloro University, Buenos Aires, Argentina
| | - Laura Steinberg
- Institute of Neurosciences, Favaloro University, Buenos Aires, Argentina
| | - Federico Adolfi
- Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina
| | | | - Julian Marino
- Facultad de Psicologia, Universidad Nacional de Córdoba, Cordoba, Argentina; and
| | - Facundo Manes
- Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; UDP-INECO Foundation Core on Neuroscience, Diego Portales University, Santiago, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research Council, New South Wales, Australia
| | - Agustin Ibanez
- Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; UDP-INECO Foundation Core on Neuroscience, Diego Portales University, Santiago, Chile; Universidad Autónoma del Caribe, Barranquilla, Colombia; Centre of Excellence in Cognition and its Disorders, Australian Research Council, New South Wales, Australia
| |
Collapse
|
24
|
Tamayo-Orrego L, Osorio Forero A, Quintero Giraldo LP, Parra Sánchez JH, Varela V, Restrepo F. [Differential effects of attention deficit/hyperactivity disorder subtypes in event-related potentials]. ACTA ACUST UNITED AC 2015; 44:77-86. [PMID: 26578329 DOI: 10.1016/j.rcp.2015.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/22/2014] [Accepted: 02/02/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND To better understand the neurophysiological substrates in attention deficit/hyperactivity disorder (ADHD), a study was performed on of event-related potentials (ERPs) in Colombian patients with inattentive and combined ADHD. METHODS A case-control, cross-sectional study was designed. The sample was composed of 180 subjects between 5 and 15 years of age (mean, 9.25±2.6), from local schools in Manizales. The sample was divided equally in ADHD or control groups and the subjects were paired by age and gender. The diagnosis was made using the DSM-IV-TR criteria, the Conners and WISC-III test, a psychiatric interview (MINIKID), and a medical evaluation. ERPs were recorded in a visual and auditory passive oddball paradigm. Latency and amplitude of N100, N200 and P300 components for common and rare stimuli were used for statistical comparisons. RESULTS ADHD subjects show differences in the N200 amplitude and P300 latency in the auditory task. The N200 amplitude was reduced in response to visual stimuli. ADHD subjects with combined symptoms show a delayed P300 in response to auditory stimuli, whereas inattentive subjects exhibited differences in the amplitude of N100 and N200. Combined ADHD patients showed longer N100 latency and smaller N200-P300 amplitude compared to inattentive ADHD subjects. CONCLUSIONS The results show differences in the event-related potentials between combined and inattentive ADHD subjects.
Collapse
Affiliation(s)
- Lukas Tamayo-Orrego
- Laboratorio de Neurofisiología, Universidad Autónoma de Manizales, Manizales, Colombia
| | | | | | | | - Vilma Varela
- Facultad de Ciencias Sociales y Humanas, Universidad de Manizales, Manizales, Colombia
| | - Francia Restrepo
- Laboratorio de Neurofisiología, Universidad Autónoma de Manizales, Manizales, Colombia.
| |
Collapse
|
25
|
Raz S, Dan O. Altered event-related potentials in adults with ADHD during emotional faces processing. Clin Neurophysiol 2015; 126:514-23. [DOI: 10.1016/j.clinph.2014.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022]
|
26
|
Kröger A, Hof K, Krick C, Siniatchkin M, Jarczok T, Freitag CM, Bender S. Visual processing of biological motion in children and adolescents with attention-deficit/hyperactivity disorder: an event related potential-study. PLoS One 2014; 9:e88585. [PMID: 24520402 PMCID: PMC3919797 DOI: 10.1371/journal.pone.0088585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD). However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion-recently discussed as a marker of social cognition-was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD.
Collapse
Affiliation(s)
- Anne Kröger
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katharina Hof
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Krick
- Department of Neuroradiology, Saarland University Hospital, Homburg an der Saar, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tomasz Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Johnstone SJ, Barry RJ, Clarke AR. Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clin Neurophysiol 2012; 124:644-57. [PMID: 23063669 DOI: 10.1016/j.clinph.2012.09.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022]
Abstract
This article reviews the event-related potential (ERP) literature in relation to attention-deficit/hyperactivity disorder (AD/HD) over the years 2002-2012. ERP studies exploring various aspects of brain functioning in children and adolescents with AD/HD are reviewed, with a focus on group effects and interpretations in the domains of attention, inhibitory control, performance monitoring, non-pharmacological treatments, and ERP/energetics interactions. There has been a distinct shift in research intensity over the past 10 years, with a large increase in ERP studies conducted in the areas of inhibitory control and performance monitoring. Overall, the research has identified a substantial number of ERP correlates of AD/HD. Robust differences from healthy controls have been reported in early orienting, inhibitory control, and error-processing components. These data offer potential to improve our understanding of the specific brain dysfunction(s) which contribute to the disorder. The literature would benefit from a more rigorous approach to clinical group composition and consideration of age effects, as well as increased emphasis on replication and extension studies using exacting participant, task, and analysis parameters.
Collapse
|