1
|
Liu R, Zhao E, Wang Y, Zuo H, Li L, Xia Q, He H. Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming. J Nanobiotechnology 2025; 23:11. [PMID: 39794773 PMCID: PMC11724578 DOI: 10.1186/s12951-024-03055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/30/2024] [Indexed: 01/13/2025] Open
Abstract
Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin. This innovative reactive oxygen species (ROS) scavenging material not only effectively eliminates free radicals and hydrogen peroxide but also readily self-assembles into nanoparticle forms (TPSN). In vitro experiments have demonstrated that TPSN exhibits significant anti-inflammatory activities and cytoprotective effects against ROS-mediated damage. Consistently, in murine models of acute lung and kidney injury, TPSN outperforms the small-molecule antioxidant NAC, exhibiting superior therapeutic efficacy. Mechanistically, TPSN has the capability to reprogram M1-like macrophages toward an M2-like state. Importantly, biocompatibility assays confirm that TPSN has good safety profiles. Consequently, TPSN, characterized by its favorable protective effects and excellent biocompatibility, exhibits considerable promise as a therapeutic intervention for inflammation-related diseases. This innovative strategy, which incorporates multifunctional antioxidant components into the silk fibroin matrix, effectively addresses oxidative stress and acute inflammation. Furthermore, it highlights the potential of modified silk fibroin materials in the management and mitigation of inflammation-led tissue damage.
Collapse
Affiliation(s)
- Renfeng Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Erkang Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yejing Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Manufacturing, Southwest University, Chongqing, 400715, China.
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Huawei He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Manufacturing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Day BJ. Oxidative Stress: An Intersection Between Radiation and Sulfur Mustard Lung Injury. Disaster Med Public Health Prep 2024; 18:e86. [PMID: 38706344 PMCID: PMC11218645 DOI: 10.1017/dmp.2023.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Nuclear and chemical weapons of mass destruction share both a tragic and beneficial legacy in mankind's history and health. The horrific health effects of ionizing radiation and mustard gas exposures unleashed during disasters, wars, and conflicts have been harnessed to treat human health maladies. Both agents of destruction have been transformed into therapies to treat a wide range of cancers. The discovery of therapeutic uses of radiation and sulfur mustard was largely due to observations by clinicians treating victims of radiation and sulfur mustard gas exposures. Clinicians identified vulnerability of leukocytes to these agents and repurposed their use in the treatment of leukemias and lymphomas. Given the overlap in therapeutic modalities, it goes to reason that there may be common mechanisms to target as protective strategies against their damaging effects. This commentary will highlight oxidative stress as a common mechanism shared by both radiation and sulfur mustard gas exposures and discuss potential therapies targeting oxidative stress as medical countermeasures against the devastating lung diseases wrought by these agents.
Collapse
Affiliation(s)
- Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
3
|
Chen YY, Wang M, Zuo CY, Mao MX, Peng XC, Cai J. Nrf-2 as a novel target in radiation induced lung injury. Heliyon 2024; 10:e29492. [PMID: 38665580 PMCID: PMC11043957 DOI: 10.1016/j.heliyon.2024.e29492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common and fatal complication of chest radiotherapy. The underlying mechanisms include radiation-induced oxidative stress caused by damage to the deoxyribonucleic acid (DNA) and production of reactive oxygen species (ROS), resulting in apoptosis of lung and endothelial cells and recruitment of inflammatory cells and myofibroblasts expressing NADPH oxidase to the site of injury, which in turn contribute to oxidative stress and cytokine production. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a vital transcription factor that regulates oxidative stress and inhibits inflammation. Studies have shown that Nrf-2 protects against radiation-induced lung inflammation and fibrosis. This review discusses the protective role of Nrf-2 in RILI and its possible mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Chen-Yang Zuo
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| |
Collapse
|
4
|
Satyamitra MM, Andres DK, Bergmann JN, Hoffman CM, Hogdahl T, Homer MJ, Hu TC, Rios CI, Yeung DT, DiCarlo AL. Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures: Overlapping science in radiation and sulfur mustard injuries to lung and skin. Disaster Med Public Health Prep 2023; 17:e552. [PMID: 37852927 PMCID: PMC10843005 DOI: 10.1017/dmp.2023.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
PURPOSE To summarize presentations and discussions from the 2022 trans-agency workshop titled "Overlapping science in radiation and sulfur mustard (SM) exposures of skin and lung: Consideration of models, mechanisms, organ systems, and medical countermeasures." METHODS Summary on topics includes: (1) an overview of the radiation and chemical countermeasure development programs and missions; (2) regulatory and industry perspectives for drugs and devices; 3) pathophysiology of skin and lung following radiation or SM exposure; 4) mechanisms of action/targets, biomarkers of injury; and 5) animal models that simulate anticipated clinical responses. RESULTS There are striking similarities between injuries caused by radiation and SM exposures. Primary outcomes from both types of exposure include acute injuries, while late complications comprise chronic inflammation, oxidative stress, and vascular dysfunction, which can culminate in fibrosis in both skin and lung organ systems. This workshop brought together academic and industrial researchers, medical practitioners, US Government program officials, and regulators to discuss lung-, and skin- specific animal models and biomarkers, novel pathways of injury and recovery, and paths to licensure for products to address radiation or SM injuries. CONCLUSIONS Regular communications between the radiological and chemical injury research communities can enhance the state-of-the-science, provide a unique perspective on novel therapeutic strategies, and improve overall US Government emergency preparedness.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | | | - Julie N. Bergmann
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Corey M. Hoffman
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | | | - Mary J. Homer
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Tom C. Hu
- Chemical Medical Countermeasures Program, BARDA
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - David T. Yeung
- Chemical Countermeasures Research Program (CCRP), NIAID, NIH
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| |
Collapse
|
5
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
6
|
Wu T, Orschell CM. The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures. Int J Radiat Biol 2023; 99:1066-1079. [PMID: 36862990 PMCID: PMC10330482 DOI: 10.1080/09553002.2023.2187479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE. CONCLUSIONS Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
The Use of Thiocyanate Formulations to Create Manganese Porphyrin Antioxidants That Supplement Innate Immunity. Antioxidants (Basel) 2022; 11:antiox11071252. [PMID: 35883743 PMCID: PMC9311894 DOI: 10.3390/antiox11071252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023] Open
Abstract
The innate immune response to infection results in inflammation and oxidative damage, creating a paradox where most anti-inflammatory and antioxidant therapies can further suppress an already inadequate immune response. We have previously reported the beneficial effects of the exogenous supplementation of innate immunity with small pseudohalide thiocyanate (−SCN) in a mouse model of a cystic fibrosis (CF) lung infection and inflammation. The object of this study was to evaluate the use of −SCN as a counter anion for cationic manganese porphyrin (MnP) catalytic antioxidants, which could increase the parent compound’s antioxidant spectrum against hypohalous acids while supplementing innate immunity. The antioxidant activities of the parent compound were examined, as its chloride salt was compared with the −SCN-anion exchanged compound, (MnP(SCN) versus MnP(Cl)). We measured the superoxide dismutase activity spectrophotometrically and performed hydrogen peroxide scavenging using oxygen and hydrogen peroxide electrodes. Peroxidase activity was measured using an amplex red assay. The inhibition of lipid peroxidation was assessed using a thiobarbituric acid reactive species (TBARS) assay. The effects of the MnP compounds on macrophage phagocytosis were assessed by flow cytometry. The abilities of the MnP(Cl) formulations to protect human bronchiolar epithelial cells against hypochlorite (HOCl) and glycine chloramine versus their MnP(SCN) formulations were assessed using a cell viability assay. We found that anions exchanging out the chloride for −SCN improved the cellular bioavailability but did not adversely affect the cell viability or phagocytosis and that they switched hydrogen-peroxide scavenging from a dismutation reaction to a peroxidase reaction. In addition, the −SCN formulations improved the ability of MnPs to protect human bronchiolar epithelial cells against hypochlorous acid (HOCl) and glycine chloramine toxicity. These novel types of antioxidants may be more beneficial in treating lung disease that is associated with chronic infections or acute infectious exacerbations.
Collapse
|
8
|
Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 12:794997. [PMID: 35126133 PMCID: PMC8815729 DOI: 10.3389/fphar.2021.794997] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by an abnormal reepithelialisation, an excessive tissue remodelling and a progressive fibrosis within the alveolar wall that are not due to infection or cancer. Oxidative stress has been proposed as a key molecular process in pulmonary fibrosis development and different components of the redox system are altered in the cellular actors participating in lung fibrosis. To this respect, several activators of the antioxidant machinery and inhibitors of the oxidant species and pathways have been assayed in preclinical in vitro and in vivo models and in different clinical trials. This review discusses the role of oxidative stress in the development and progression of IPF and its underlying mechanisms as well as the evidence of oxidative stress in human IPF. Finally, we analyze the mechanism of action, the efficacy and the current status of different drugs developed to inhibit the oxidative stress as anti-fibrotic therapy in IPF.
Collapse
Affiliation(s)
- Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
9
|
Zhang Z, Zhou J, Verma V, Liu X, Wu M, Yu J, Chen D. Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Front Immunol 2021; 12:774807. [PMID: 34925345 PMCID: PMC8672113 DOI: 10.3389/fimmu.2021.774807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a form of radiation damage to normal lung tissue caused by radiotherapy (RT) for thoracic cancers, which is most commonly comprised of radiation pneumonitis (RP) and radiation pulmonary fibrosis (RPF). Moreover, with the widespread utilization of immunotherapies such as immune checkpoint inhibitors as first- and second-line treatments for various cancers, the incidence of immunotherapy-related lung injury (IRLI), a severe immune-related adverse event (irAE), has rapidly increased. To date, we know relatively little about the underlying mechanisms and signaling pathways of these complications. A better understanding of the signaling pathways may facilitate the prevention of lung injury and exploration of potential therapeutic targets. Therefore, this review provides an overview of the signaling pathways of RILI and IRLI and focuses on their crosstalk in diverse signaling pathways as well as on possible mechanisms of adverse events resulting from combined radiotherapy and immunotherapy. Furthermore, this review proposes potential therapeutic targets and avenues of further research based on signaling pathways. Many new studies on pyroptosis have renewed appreciation for the value and importance of pyroptosis in lung injury. Therefore, the authors posit that pyroptosis may be the common downstream pathway of RILI and IRLI; discussion is also conducted regarding further perspectives on pyroptosis as a crucial signaling pathway in lung injury treatment.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jialin Zhou
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Vivek Verma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xu Liu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Wu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dawei Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Lindsay SE, Lindsay HG, Kallet J, Weaver MR, Curran-Everett D, Crapo JD, Regan EA. MnTE-2-PyP disrupts Staphylococcus aureus biofilms in a novel fracture model. J Orthop Res 2021; 39:2439-2445. [PMID: 33347639 DOI: 10.1002/jor.24967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 02/04/2023]
Abstract
Biofilm-associated infections in orthopedic surgery lead to worse clinical outcomes and greater morbidity and mortality. The scope of the problem encompasses infected total joints, internally fixed fractures, and implanted devices. Diagnosis is difficult. Cultures are often negative, and antibiotic treatments are ineffective. The infections resist killing by the immune system and antibiotics. The organized matrix structure of extracellular polymeric substances within the biofilm shields and protects the bacteria from identification and immune cell action. Bacteria in biofilms actively modulate their redox environment and can enhance the matrix structure by creating an oxidizing environment. We postulated that a potent redox-active metalloporphyrin MnTE-2-PyP (chemical name: manganese (II) meso-tetrakis-(N-methylpyridinium-2-yl) porphyrin) that scavenges reactive species and modulates the redox state to a reduced state, would improve the effect of antibiotic treatment for a biofilm-associated infection. An infected fracture model with a midshaft femoral osteotomy was created in C57B6 mice, internally fixed with an intramedullary 23-gauge needle and seeded with a biofilm-forming variant of Staphylococcus aureus. Animals were divided into three treatment groups: control, antibiotic alone, and combined antibioticplus MnTE-2-PyP. The combined treatment group had significantly decreased bacterial counts in harvested bone, compared with antibiotic alone. In vitro crystal violet assay of biofilm structure and corresponding nitroblue tetrazolium assay for reactive oxygen species (ROS) demonstrated that MnTE-2-PyP decreased the biofilm structure and reduced ROS in a correlated and dose-dependent manner. The biofilm structure is redox-sensitive in S. aureus and an ROS scavenger improved the effect of antibiotic therapy in model of biofilm-associated infections.
Collapse
|
11
|
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 20:689-709. [PMID: 34194012 PMCID: PMC8243062 DOI: 10.1038/s41573-021-00233-1] [Citation(s) in RCA: 1218] [Impact Index Per Article: 304.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California Merced, Merced, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Cassatt DR, Gorovets A, Karimi-Shah B, Roberts R, Price PW, Satyamitra MM, Todd N, Wang SJ, Marzella L. A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury. Radiat Res 2021; 197:415-433. [PMID: 34342637 DOI: 10.1667/rade-21-00127.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Research and development of medical countermeasures (MCMs) for radiation-induced lung injury relies on the availability of animal models with well-characterized pathophysiology, allowing effective bridging to humans. To develop useful animal models, it is important to understand the clinical condition, advantages and limitations of individual models, and how to properly apply these models to demonstrate MCM efficacy. On March 20, 2019, a meeting sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) within the National Institute of Allergy and Infectious Diseases (NIAID) brought together medical, scientific and regulatory communities, including academic and industry subject matter experts, and government stakeholders from the Food and Drug Administration (FDA) and the Biomedical Advanced Research and Development Authority (BARDA), to identify critical research gaps, discuss current clinical practices for various forms of pulmonary damage, and consider available animal models for radiation-induced lung injury.
Collapse
Affiliation(s)
- David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Alex Gorovets
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Banu Karimi-Shah
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Rosemary Roberts
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Nushin Todd
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| |
Collapse
|
13
|
Abstract
Radiation-induced lung injury encompasses radiation-induced pneumonitis, inflammation of the lung which may manifest as a dose-limiting acute or subacute toxicity, and radiation-induced lung fibrosis, a late effect of lung exposure to radiation. This review aims to highlight developments in molecular radiation biology of radiation-induced lung injury and their implications in clinical practice.
Collapse
Affiliation(s)
- Soumyajit Roy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Kilian E Salerno
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD.
| |
Collapse
|
14
|
Zhang J, Li K, Zhang Q, Zhu Z, Huang G, Tian H. Polycysteine as a new type of radio-protector ameliorated tissue injury through inhibiting ferroptosis in mice. Cell Death Dis 2021; 12:195. [PMID: 33602915 PMCID: PMC7977147 DOI: 10.1038/s41419-021-03479-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Amifostine has been the only small molecule radio-protector approved by FDA for decades; however, the serious adverse effects limit its clinical use. To address the toxicity issues and maintain the good potency, a series of modified small polycysteine peptides had been prepared. Among them, compound 5 exhibited the highest radio-protective efficacy, the same as amifostine, but much better safety profile. To confirm the correlation between the radiation-protective efficacy and the DNA binding capability, each of the enantiomers of the polycysteine peptides had been prepared. As a result, the L-configuration compounds had obviously higher efficacy than the corresponding D-configuration enantiomers; among them, compound 5 showed the highest DNA binding capability and radiation-protective efficacy. To our knowledge, this is the first study that has proved their correlations using direct comparison. Further exploration of the mechanism revealed that the ionizing radiation (IR) triggered ferroptosis inhibition by compound 5 could be one of the pathways for the protection effect, which was different from amifostine. In summary, the preliminary result showed that compound 5, a polycysteine as a new type of radio-protector, had been developed with good efficacy and safety profile. Further study of the compound for potential use is ongoing.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | - Kui Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | - Qianru Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | - Zhimei Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | | | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China.
| |
Collapse
|
15
|
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020; 8:E461. [PMID: 33142986 PMCID: PMC7692399 DOI: 10.3390/biomedicines8110461] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The development of protective agents against harmful radiations has been a subject of investigation for decades. However, effective (ideal) radioprotectors and radiomitigators remain an unsolved problem. Because ionizing radiation-induced cellular damage is primarily attributed to free radicals, radical scavengers are promising as potential radioprotectors. Early development of such agents focused on thiol synthetic compounds, e.g., amifostine (2-(3-aminopropylamino) ethylsulfanylphosphonic acid), approved as a radioprotector by the Food and Drug Administration (FDA, USA) but for limited clinical indications and not for nonclinical uses. To date, no new chemical entity has been approved by the FDA as a radiation countermeasure for acute radiation syndrome (ARS). All FDA-approved radiation countermeasures (filgrastim, a recombinant DNA form of the naturally occurring granulocyte colony-stimulating factor, G-CSF; pegfilgrastim, a PEGylated form of the recombinant human G-CSF; sargramostim, a recombinant granulocyte macrophage colony-stimulating factor, GM-CSF) are classified as radiomitigators. No radioprotector that can be administered prior to exposure has been approved for ARS. This differentiates radioprotectors (reduce direct damage caused by radiation) and radiomitigators (minimize toxicity even after radiation has been delivered). Molecules under development with the aim of reaching clinical practice and other nonclinical applications are discussed. Assays to evaluate the biological effects of ionizing radiations are also analyzed.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - José M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit in Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute IISLaFe, 46026 Valencia, Spain
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
16
|
Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4278658. [PMID: 30881591 PMCID: PMC6381575 DOI: 10.1155/2019/4278658] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.
Collapse
|
17
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|
18
|
Zhang XR, Zhou WX, Zhang YX. Improvements in SOD mimic AEOL-10150, a potent broad-spectrum antioxidant. Mil Med Res 2018; 5:30. [PMID: 30185231 PMCID: PMC6125955 DOI: 10.1186/s40779-018-0176-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023] Open
Abstract
AEOL-10150 is a broad-spectrum metalloporphyrin superoxidase dismutase (SOD) mimic specifically designed to neutralize reactive oxygen and nitrogen species. Research has shown that AEOL-10150 is a potent medical countermeasure against national security threats including sulfur mustard (SM), nerve agent exposure and radiation pneumonitis following a radiological/nuclear incident sufficient to cause acute radiation syndrome (ARS). AEOL-10150 performed well in animal safety studies, and two completed phase 1 safety studies in patients demonstrated that the drug was safe and well tolerated, indicating that AEOL-10150 has potential as a new catalytic antioxidant drug. In this article, we review improvements in AEOL-10150 in preclinical pharmacodynamic studies, especially regarding anti-SM, chlorine gas and radiation exposure studies.
Collapse
Affiliation(s)
- Xiao-Rui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wen-Xia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Yong-Xiang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
19
|
Abstract
Normal tissue injury from irradiation is an unfortunate consequence of radiotherapy. Technologic improvements have reduced the risk of normal tissue injury; however, toxicity causing treatment breaks or long-term side effects continues to occur in a subset of patients. The molecular events that lead to normal tissue injury are complex and span a variety of biologic processes, including oxidative stress, inflammation, depletion of injured cells, senescence, and elaboration of proinflammatory and profibrogenic cytokines. This article describes selected recent advances in normal tissue radiobiology.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Insights on Localized and Systemic Delivery of Redox-Based Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2468457. [PMID: 29636836 PMCID: PMC5832094 DOI: 10.1155/2018/2468457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside.
Collapse
|
21
|
Schiavone S, Trabace L. Small Molecules: Therapeutic Application in Neuropsychiatric and Neurodegenerative Disorders. Molecules 2018; 23:molecules23020411. [PMID: 29438357 PMCID: PMC6017408 DOI: 10.3390/molecules23020411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, an increasing number of studies have been published, focusing on the potential therapeutic use of small catalytic agents with strong biological properties. So far, most of these works have only regarded specific clinical fields, such as oncology, infectivology and general pathology, in particular with respect to the treatment of significant inflammatory processes. However, interesting data on possible therapeutic applications of small molecules for the treatment of neuropsychiatric and neurodegenerative illnesses are emerging, especially with respect to the possibility to modulate the cellular redox state. Indeed, a crucial role of redox dysregulation in the pathogenesis of these disorders has been widely demonstrated by both pre-clinical and clinical studies, being the reduction of the total amount of free radicals a promising novel therapeutic approach for these diseases. In this review, we focused our interest on studies published during the last ten years reporting therapeutic potential of small molecules for the treatment of neuropsychiatric and neurodegenerative disorders, also based on the biological efficiency of these compounds in detecting intracellular disturbances induced by increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| |
Collapse
|
22
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
23
|
Rajan Radha R, Chandrasekharan G. Pulmonary injury associated with radiation therapy - Assessment, complications and therapeutic targets. Biomed Pharmacother 2017; 89:1092-1104. [PMID: 28298070 DOI: 10.1016/j.biopha.2017.02.106] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary injury is more common in patients undergoing radiation therapy for lungs and other thoracic malignancies. Recently with the use of most-advanced technologies powerful doses of radiation can be delivered directly to tumor site with exquisite precision. The awareness of technical and clinical parameters that influence the chance of radiation induced lung injury is important to guide patient selection and toxicity minimization strategies. At the cellular level, radiation activates free radical production, leading to DNA damage, apoptosis, cell cycle changes, and reduced cell survival. Preclinical research shows the potential for therapies targeting transforming growth factor-β (TGF-B), Toll like receptor (TLRs), Tumour necrosis factor-alpha (TNF-alpha), Interferon gamma (IFN-γ) and so on that may restore lung function. At present Amifostine (WR-2721) is the only approved broad spectrum radioprotector in use for patients undergoing radiation therapy. Newer techniques also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects of lung damage.
Collapse
Affiliation(s)
- Rasmi Rajan Radha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Trivandrum 695 011, Kerala, India
| | - Guruvayoorappan Chandrasekharan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Trivandrum 695 011, Kerala, India.
| |
Collapse
|
24
|
MacVittie TJ, Gibbs A, Farese AM, Barrow K, Bennett A, Taylor-Howell C, Kazi A, Prado K, Parker G, Jackson W. AEOL 10150 Mitigates Radiation-Induced Lung Injury in the Nonhuman Primate: Morbidity and Mortality are Administration Schedule-Dependent. Radiat Res 2017; 187:298-318. [PMID: 28208025 DOI: 10.1667/rr4413.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pneumonitis and fibrosis are potentially lethal, delayed effects of acute radiation exposure. In this study, male rhesus macaques received whole-thorax lung irradiation (WTLI) with a target dose of 10.74 Gy prescribed to midplane at a dose rate of 0.80 ± 0.05 Gy/min using 6 MV linear accelerator-derived photons. The study design was comprised of four animal cohorts: one control and three treated with AEOL 10150 (n = 20 animals per cohort). AEOL 10150, a metalloporphyrin antioxidant, superoxide dismutase mimetic was administered by daily subcutaneous injection at 5 mg/kg in each of three schedules, beginning 24 ± 2 h postirradiation: from day 1 to day 28, day 1 to day 60 or a divided regimen from day 1 to day 28 plus day 60 to day 88. Control animals received 0.9% saline injections from day 1 to day 28. All animals received medical management and were followed for 180 days. Computed tomography (CT) scan and baseline hematology values were assessed prior to WTLI. Postirradiation monthly CT scans were collected, and images were analyzed for evidence of lung injury (pneumonitis, fibrosis, pleural and pericardial effusion) based on differences in radiodensity characteristics of the normal versus damaged lung. The primary end point was survival to 180 days based on all-cause mortality. The latency, incidence and severity of lung injury were assessed through clinical, radiographic and histological parameters. A clear survival relationship was observed with the AEOL 10150 treatment schedule and time after lethal WTLI. The day 1-60 administration schedule increased survival from 25 to 50%, mean survival time of decedents and the latency to nonsedated respiratory rate to >60 or >80 breaths/min and diminished quantitative radiographic lung injury as determined by CT scans. It did not affect incidence or severity of pneumonitis/fibrosis as determined by histological evaluation, pleural effusion or pericardial effusion as determined by CT scans. Analysis of the Kaplan-Meier survival curves suggested that treatment efficacy could be increased by extending the treatment schedule to 90 days or longer after WTLI. No survival improvement was noted in the AEOL 10150 cohorts treated from day 1-28 or using the divided schedule of day 1-28 plus day 60-88. These results suggest that AEOL 10150 may be an effective medical countermeasure against severe and lethal radiation-induced lung injury.
Collapse
Affiliation(s)
- Thomas J MacVittie
- a Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland
| | - Allison Gibbs
- a Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland
| | - Ann M Farese
- a Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland
| | | | - Alexander Bennett
- a Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland
| | | | - Abdul Kazi
- d VA Maryland Health Care System, Baltimore, Maryland
| | - Karl Prado
- a Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland
| | - George Parker
- e Charles River Laboratories, Durham, North Carolina
| | | |
Collapse
|
25
|
Raber J, Davis MJ, Pfankuch T, Rosenthal R, Doctrow SR, Moulder JE. Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav Brain Res 2016; 320:457-463. [PMID: 27789343 DOI: 10.1016/j.bbr.2016.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
The brain could be exposed to irradiation as part of a nuclear accident, radiological terrorism (dirty bomb scenario) or a medical radiological procedure. In the context of accidents or terrorism, there is considerable interest in compounds that can mitigate radiation-induced injury when treatment is initiated a day or more after the radiation exposure. As it will be challenging to determine the radiation exposure an individual has received within a relatively short time frame, it is also critical that the mitigating agent does not negatively affect individuals, including emergency workers, who might be treated, but who were not exposed. Alterations in hippocampus-dependent cognition often characterize radiation-induced cognitive injury. The catalytic ROS scavenger EUK-207 is a member of the class of metal-containing salen manganese (Mn) complexes that suppress oxidative stress, including in the mitochondria, and have been shown to mitigate radiation dermatitis, promote wound healing in irradiated skin, and mitigate vascular injuries in irradiated lungs. As the effects of EUK-207 against radiation injury in the brain are not known, we assessed the effects of EUK-207 on sham-irradiated animals and the ability of EUK-207 to mitigate radiation-induced cognitive injury. The day following irradiation or sham-irradiation, the mice started to receive EUK-207 and were cognitively tested 3 months following exposure. Mice irradiated at a dose of 15Gy showed cognitive impairments in the water maze probe trial. EUK-207 mitigated these impairments while not affecting cognitive performance of sham-irradiated mice in the water maze probe trial. Thus, EUK-207 has attractive properties and should be considered an ideal candidate to mitigate radiation-induced cognitive injury.
Collapse
Affiliation(s)
- J Raber
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, L470, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | - M J Davis
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - T Pfankuch
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - R Rosenthal
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - S R Doctrow
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - J E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
McElroy CS, Min E, Huang J, Loader JE, Hendry-Hofer TB, Garlick RB, Rioux JS, Veress LA, Smith R, Osborne C, Anderson DR, Holmes WW, Paradiso DC, White CW, Day BJ. From the Cover: Catalytic Antioxidant Rescue of Inhaled Sulfur Mustard Toxicity. Toxicol Sci 2016; 154:341-353. [PMID: 27605419 DOI: 10.1093/toxsci/kfw170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sulfur mustard (bis 2-chloroethyl ethyl sulfide, SM) is a powerful bi-functional vesicating chemical warfare agent. SM tissue injury is partially mediated by the overproduction of reactive oxygen species resulting in oxidative stress. We hypothesized that using a catalytic antioxidant (AEOL 10150) to alleviate oxidative stress and secondary inflammation following exposure to SM would attenuate the toxic effects of SM inhalation. Adult male rats were intubated and exposed to SM (1.4 mg/kg), a dose that produces an LD50 at approximately 24 h. Rats were randomized and treated via subcutaneous injection with either sterile PBS or AEOL 10150 (5 mg/kg, sc, every 4 h) beginning 1 h post-SM exposure. Rats were euthanized between 6 and 48 h after exposure to SM and survival and markers of injury were determined. Catalytic antioxidant treatment improved survival after SM inhalation in a dose-dependent manner, up to 52% over SM PBS at 48 h post-exposure. This improvement was sustained for at least 72 h after SM exposure when treatments were stopped after 48 h. Non-invasive monitoring throughout the duration of the studies also revealed blood oxygen saturations were improved by 10% and clinical scores were reduced by 57% after SM exposure in the catalytic antioxidant treatment group. Tissue analysis showed catalytic antioxidant therapy was able to decrease airway cast formation by 69% at 48 h post-exposure. To investigate antioxidant induced changes at the peak of injury, several biomarkers of oxidative stress and inflammation were evaluated at 24 h post-exposure. AEOL 10150 attenuated SM-mediated lung lipid oxidation, nitrosative stress and many proinflammatory cytokines. The findings indicate that catalytic antioxidants may be useful medical countermeasure against inhaled SM exposure.
Collapse
Affiliation(s)
- Cameron S McElroy
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045.,Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Joan E Loader
- Department of Pediatrics, University of Colorado, Aurora, Colorado 80045
| | | | - Rhonda B Garlick
- Department of Pediatrics, University of Colorado, Aurora, Colorado 80045
| | - Jackie S Rioux
- Department of Pediatrics, University of Colorado, Aurora, Colorado 80045
| | - Livia A Veress
- Department of Pediatrics, University of Colorado, Aurora, Colorado 80045
| | - Russell Smith
- Department of Pediatrics, University of Colorado, Aurora, Colorado 80045
| | - Chris Osborne
- Department of Pediatrics, University of Colorado, Aurora, Colorado 80045
| | - Dana R Anderson
- Analytical Toxicology Division, Proving Grounds United States Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen, Maryland 21010
| | - Wesley W Holmes
- Analytical Toxicology Division, Proving Grounds United States Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen, Maryland 21010
| | - Danielle C Paradiso
- Analytical Toxicology Division, Proving Grounds United States Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen, Maryland 21010
| | - Carl W White
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045.,Department of Pediatrics, University of Colorado, Aurora, Colorado 80045
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045 .,Department of Medicine, National Jewish Health, Denver, Colorado 80206
| |
Collapse
|
27
|
Murigi FN, Mohindra P, Hung C, Salimi S, Goetz W, Pavlovic R, Jackson IL, Vujaskovic Z. Dose Optimization Study of AEOL 10150 as a Mitigator of Radiation-Induced Lung Injury in CBA/J Mice. Radiat Res 2015; 184:422-32. [PMID: 26414508 DOI: 10.1667/rr14110.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AEOL 10150 is a catalytic metalloporphyrin superoxide dismutase mimic being developed as a medical countermeasure for radiation-induced lung injury (RILI). The efficacy of AEOL 10150 against RILI through a reduction of oxidative stress, hypoxia and pro-apoptotic signals has been previously reported. The goal of this study was to determine the most effective dose of AEOL 10150 (daily subcutaneous injections, day 1-28) in improving 180-day survival in CBA/J mice after whole-thorax lung irradiation (WTLI) to a dose of 14.6 Gy. Functional and histopathological assessments were performed as secondary end points. Estimated 180-day survival improved from 10% in WTLI alone to 40% with WTLI-AEOL 10150 at 25 mg/kg (P = 0.065) and to 30% at 40 mg/kg (P = 0.023). No significant improvement was seen at doses of 5 and 10 mg/kg or at doses between 25 and 40 mg/kg. AEOL 10150 treatment at 25 mg/kg lowered the respiratory function parameter of enhanced pause (Penh) significantly, especially at week 16 and 18 (P = 0.044 and P = 0.025, respectively) compared to vehicle and other doses. Pulmonary edema/congestion were also significantly reduced at the time of necropsy among mice treated with 25 and 40 mg/kg AEOL 10150 compared to WTLI alone (P < 0.02). In conclusion, treatment with AEOL 10150 at a dose of 25 mg/kg/day for a total of 28 days starting 24 h after WTLI in CBA/J mice was found to be the optimal dose with improvement in survival and lung function. Future studies will be required to determine the optimal duration and therapeutic window for drug delivery at this dose.
Collapse
Affiliation(s)
- Francis N Murigi
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Pranshu Mohindra
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Chiwei Hung
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Shabnam Salimi
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Wilfried Goetz
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Radmila Pavlovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
28
|
Krivokrysenko VI, Toshkov IA, Gleiberman AS, Krasnov P, Shyshynova I, Bespalov I, Maitra RK, Narizhneva NV, Singh VK, Whitnall MH, Purmal AA, Shakhov AN, Gudkov AV, Feinstein E. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates. PLoS One 2015; 10:e0135388. [PMID: 26367124 PMCID: PMC4569586 DOI: 10.1371/journal.pone.0135388] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters.
Collapse
Affiliation(s)
| | - Ilia A. Toshkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Peter Krasnov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Inna Shyshynova
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ivan Bespalov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ratan K. Maitra
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Vijay K. Singh
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Mark H. Whitnall
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Andrei A. Purmal
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Andrei V. Gudkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- Department of Cell Stress Biology, Roswell Park Cancer Institute (RPCI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| | - Elena Feinstein
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| |
Collapse
|
29
|
Johnke RM, Sattler JA, Allison RR. Radioprotective agents for radiation therapy: future trends. Future Oncol 2015; 10:2345-57. [PMID: 25525844 DOI: 10.2217/fon.14.175] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Only two radioprotective compounds, amifostine and palifermin, currently have the US FDA approval for use in radiation therapy. However, several agents have been reported that show therapeutic promise. Many of these agents are free radical scavengers/antioxidants. Superoxide dismutase and superoxide dismutase mimetics, nitroxides and dietary antioxidants are all being investigated. Recently, alternative strategies of drug development have been evolving, which focus on targeting the series of cellular insult recognition/repair responses initiated following radiation. These agents, which include cytokines/growth factors, angiotensin-converting enzyme inhibitors and apoptotic modulators, show promise of having significant impact on the mitigation of radiation injury. Herein, we review current literature on the development of radioprotectors with emphasis on compounds with proven or potential usefulness in radiation therapy.
Collapse
Affiliation(s)
- Roberta M Johnke
- Department of Radiation Oncology, East Carolina University Brody School of Medicine, Greenville, NC 27834, USA
| | | | | |
Collapse
|
30
|
Antonic V, Rabbani ZN, Jackson IL, Vujaskovic Z. Subcutaneous administration of bovine superoxide dismutase protects lungs from radiation-induced lung injury. Free Radic Res 2015; 49:1259-1268. [PMID: 26110460 DOI: 10.3109/10715762.2015.1066501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The objective of the present study was to determine whether single administration of the antioxidant enzyme bovine superoxide dismutase (bSOD) after radiation therapy (RT) mitigates development of pulmonary toxicity in rats. METHODS Female F344 rats (n = 60) were divided among six experimental groups: (1) RT, single dose of 21 Gy to the right hemithorax; (2) RT + 5 mg/kg bSOD; (3) RT + 15 mg/kg bSOD; (4) No RT; (5) sham RT + 5 mg/kg bSOD; and (6) sham RT + 15 mg/kg bSOD. A single subcutaneous injection of bSOD (5 or 15 mg/kg) was administered 24 h post-radiation. The effects of bSOD on radiation-induced lung injury were assessed by measurement of body weight, breathing frequency, and histopathological changes. Immunohistochemistry was used to evaluate oxidative stress (8-OHdG(+), NOX4(+), nitrotyrosine(+), and 4HNE(+) cells), macrophage activation (ED1(+)), and expression of profibrotic transforming growth factor-β or TGF-β in irradiated tissue. RESULTS Radiation led to an increase in all the evaluated parameters. Treatment with 15 mg/kg bSOD significantly decreased levels of all the evaluated parameters including tissue damage and breathing frequency starting 6 weeks post-radiation. Animals treated with 5 mg/kg bSOD trended toward a suppression of radiation-induced lung damage but did not reach statistical significance. CONCLUSIONS The single application of bSOD (15 mg/kg) ameliorates radiation-induced lung injury through suppression of reactive oxygen species/reactive nitrogen species or ROS/RNS-dependent tissue damage.
Collapse
Affiliation(s)
- Vlado Antonic
- University of Maryland School of Medicine, Department of Radiation Oncology, Division of Translational Radiation Sciences, Baltimore, MD, USA
| | - Zahid N Rabbani
- Duke University Medical Center, Department of Radiation Oncology, Durham, NC, USA
| | - Isabel L Jackson
- University of Maryland School of Medicine, Department of Radiation Oncology, Division of Translational Radiation Sciences, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- University of Maryland School of Medicine, Department of Radiation Oncology, Division of Translational Radiation Sciences, Baltimore, MD, USA
| |
Collapse
|
31
|
The extent of irradiation-induced long-term visceral organ damage depends on cranial/brain exposure. PLoS One 2015; 10:e0122900. [PMID: 25836679 PMCID: PMC4383625 DOI: 10.1371/journal.pone.0122900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
In case of high-dose radiation exposure, mechanisms controlling late visceral organ damage are still not completely understood and may involve the central nervous system. To investigate the influence of cranial/brain irradiation on late visceral organ damage in case of high-dose exposure, Wistar rats were irradiated at 12 Gy, with either the head and fore limbs or the two hind limbs protected behind a lead wall (head- and hind limbs-protected respectively), which allows long-term survival thanks to bone marrow protection. Although hind limbs- and head-protected irradiated rats exhibited similar hematopoietic and spleen reconstitution, a late body weight loss was observed in hind limbs-protected rats only. Histological analysis performed at this time revealed that late damages to liver, kidney and ileum were attenuated in rats with head exposed when compared to animals whose head was protected. Plasma measurements of inflammation biomarkers (haptoglobin and the chemokine CXCL1) suggest that the attenuated organ damage in hind limbs-protected rats may be in part related to reduced acute and chronic inflammation. Altogether our results demonstrate the influence of cranial/brain exposure in the onset of organ damage.
Collapse
|
32
|
Slosky LM, Vanderah TW. Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opin Ther Pat 2015; 25:443-66. [PMID: 25576197 DOI: 10.1517/13543776.2014.1000862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Peroxynitrite is a cytotoxic oxidant species implicated in a host of pathologies, including inflammatory and neurodegenerative diseases, cancer, radiation injury and chronic pain. With the recognition of the role of peroxynitrite in disease, numerous experimental and therapeutic tools have arisen to probe peroxyntirite's pathophysiological contribution and attenuate its oxidative damage. Peroxynitrite decomposition catalysts (PNDCs) are redox-active compounds that detoxify peroxynitrite by catalyzing its isomerization or reduction to nitrate or nitrite. AREAS COVERED This review discusses recent research articles and patents published 1995 - 2014 on the development and therapeutic use of PNDCs. Iron and manganese metalloporphyrin PNDCs attenuate the toxic effects of peroxynitrite and are currently being developed for clinical applications. Additionally, some Mn porphyrin-based PNDCs have optimized pharmaceutical properties such that they exhibit greater peroxynitrite selectivity. Other classes of PNDC agents, including bis(hydroxyphenyl)dipyrromethenes and metallocorroles, have demonstrated preclinical efficacy, oral availability and reduced toxicity risk. EXPERT OPINION Interest in the drug-like properties of peroxynitrite-neutralizing agents has grown with the realization that PNDCs will be powerful tools in the treatment of disease. The design of compounds with enhanced oral availability and peroxynitrite selectivity is a critical step toward the availability of safe, effective and selective redox modulators for the treatment of peroxynitrite-associated pathologies.
Collapse
Affiliation(s)
- Lauren M Slosky
- University of Arizona, Department of Pharmacology , Life Science North Rm 621, 1501 North Campbell Ave., Tucson, AZ 85721 , USA
| | | |
Collapse
|
33
|
Haber A, Gross Z. Catalytic antioxidant therapy by metallodrugs: lessons from metallocorroles. Chem Commun (Camb) 2015; 51:5812-27. [DOI: 10.1039/c4cc08715a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article provides a perspective on the utility of metal-based catalytic antioxidants for disease prevention or treatment, with focus on their mode of action and its dependence (DCA) or independence (ICA) on the involvement of cofactors.
Collapse
Affiliation(s)
- Adi Haber
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Technion City
- Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Technion City
- Israel
| |
Collapse
|
34
|
Batinic-Haberle I, Tovmasyan A, Roberts ERH, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014; 20:2372-415. [PMID: 23875805 PMCID: PMC4005498 DOI: 10.1089/ars.2012.5147] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Emily R. H. Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
35
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
36
|
Radioprotection of normal tissue cells. Strahlenther Onkol 2014; 190:745-52. [DOI: 10.1007/s00066-014-0637-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022]
|
37
|
Gauter-Fleckenstein B, Reboucas JS, Fleckenstein K, Tovmasyan A, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP(5+). Redox Biol 2014; 2:400-10. [PMID: 24624330 PMCID: PMC3949096 DOI: 10.1016/j.redox.2013.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
With the goal to enhance the distribution of cationic Mn porphyrins within mitochondria, the lipophilic Mn(III)meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) has been synthesized and tested in several different model of diseases, where it shows remarkable efficacy at as low as 50 µg/kg single or multiple doses. Yet, in a rat lung radioprotection study, at higher 0.6-1 mg/kg doses, due to its high accumulation and micellar character, it became toxic. To avoid the toxicity, herein the pulmonary radioprotection of MnTnHex-2-PyP(5+) was assessed at 50 µg/kg. Fischer rats were irradiated to their right hemithorax (28 Gy) and treated with 0.05 mg/kg/day of MnTnHex-2-PyP(5+) for 2 weeks by subcutaneously-implanted osmotic pumps, starting at 2 h post-radiation. The body weights and breathing frequencies were followed for 10 weeks post-radiation, when the histopathology and immunohistochemistry were assessed. Impact of MnTnHex-2-PyP(5+) on macrophage recruitment (ED-1), DNA oxidative damage (8-OHdG), TGF-β1, VEGF(A) and HIF-1α were measured. MnTnHex-2-PyP(5+) significantly decreased radiation-induced lung histopathological (H&E staining) and functional damage (breathing frequencies), suppressed oxidative stress directly (8-OHdG), or indirectly, affecting TGF-β1, VEGF (A) and HIF-1α pathways. The magnitude of the therapeutic effects is similar to the effects demonstrated under same experimental conditions with 120-fold higher dose of ~5000-fold less lipophilic Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+).
Collapse
Key Words
- 8-OHdG, 8-hydroxy-2'-deoxyguanosine
- AKT, protein kinase B (PKB), a serine/threonine-specific protein kinase
- ALS, amyotrophic laterial sclerosis
- AP-1, activator protein-1
- AT, ataxia telangiectasia
- BBB, blood brain barrier
- Breathing frequencies
- CNS, central nervous system
- CO3−, carbonate radical
- ClO−, hypochlorite
- ETC, mitochondrial electron transport chain
- Fischer rats
- GMP, good manufacturing practice
- GS−, monodeprotonated glutathione
- HIF-1α, hypoxia inducible factor-1
- HO2−, monodeprotonated hydrogen peroxide
- Histopathology
- I/R, ischemia reperfusion
- Immunohistochemistry
- Lung injury
- MCAO, middle cerebral artery occlusion
- Manganese porphyrins
- MnP, Mn porphyrin
- MnTDE-2-ImP5+, Mn(III) tetrakis[N,N'-diethylimidazolium-2-yl)porphyrin, AEOL10150
- MnTE-2-PyP5+
- MnTE-2-PyP5+, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (AEOL10113)
- MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis(N-(n-butoxyethyl)pyridinium-2-yl)porphyrin
- MnTnHex-2-PyP5+
- MnTnHex-2-PyP5+, Mn(III) meso-tetrakis(N-(n-hexyl)pyridinium-2-yl)porphyrin (AEOL10113)
- NF-κB, nuclear factor κB
- NHE, normal hydrogen electrode
- NO, nitric oxide
- NOX4, NADPH oxidase, isoform 4 E1/2, Half-wave metal-centered reduction potential
- Nrf-2, nuclear factor-erythroid-derived 2-like 2
- O2−, superoxide
- ONOO−, peroxynitrite
- PI3K, phosphatidylinositide 3-kinase
- PTEN, phosphoinositide 3-phosphatase
- Radioprotection
- Redox-modulators
- SAH, subarachnoid hemorrhage
- SOD, superoxide dismutase
- SP-1, specificity protein-1
- TF, transcription factor
- TGF-β1, one of the 3 members of the TGF-β transforming growth factor-β family
- VEGF, vascular endothelial growth factor
- mTOR, mammalian target of rapamycin (mTOR), a serine/threonine protein kinase
Collapse
Affiliation(s)
- Benjamin Gauter-Fleckenstein
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julio S Reboucas
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katharina Fleckenstein
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, USA ; Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center, Durham, USA
| | - Chen Jiang
- Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center, Durham, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, 655W Baltimore Street, Bressler Research Building, 8-025, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Abstract
Evolution has favored the utilization of dioxygen (O2) in the development of complex multicellular organisms. O2 is actually a toxic mutagenic gas that is highly oxidizing and combustible. It is thought that plants are largely to blame for polluting the earth's atmosphere with O2 owing to the development of photosynthesis by blue-green algae over 2 billion years ago. The rise of the plants and atmospheric O2 levels placed evolutionary stress on organisms to adapt or become extinct. This implies that all the surviving creatures on our planet are mutants that have adapted to the "abnormal biology" of O2. Much of the adaptation to the presence of O2 in biological systems comes from well-coordinated antioxidant and repair systems that focus on converting O2 to its most reduced form, water (H2O), and the repair and replacement of damaged cellular macromolecules. Biological systems have also harnessed O2's reactive properties for energy production, xenobiotic metabolism, and host defense and as a signaling messenger and redox modulator of a number of cell signaling pathways. Many of these systems involve electron transport systems and offer many different mechanisms by which antioxidant therapeutics can alternatively produce an antioxidant effect without directly scavenging oxygen-derived reactive species. It is likely that each agent will have a different set of mechanisms that may change depending on the model of oxidative stress, organ system, or disease state. An important point is that all biological processes of aerobes have coevolved with O2 and this creates a Pandora's box for trying to understand the mechanism(s) of action of antioxidants being developed as therapeutic agents.
Collapse
Affiliation(s)
- Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
39
|
Pietrofesa RA, Solomides CC, Christofidou-Solomidou M. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration. ACTA ACUST UNITED AC 2014; 4. [PMID: 25705570 DOI: 10.4172/2161-105x.1000215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. METHODS We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. RESULTS At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. CONCLUSION Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with space exploration.
Collapse
Affiliation(s)
- Ralph A Pietrofesa
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Delmastro-Greenwood MM, Piganelli JD. Changing the energy of an immune response. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2013; 2:30-54. [PMID: 23885324 PMCID: PMC3714201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/17/2013] [Indexed: 06/02/2023]
Abstract
The breakdown of nutrients into the critical energy source ATP is the general purpose of cellular metabolism and is essential for sustaining life. Similarly, the immune system is composed of different cell subsets that are indispensable for defending the host against pathogens and disease. The interplay between metabolic pathways and immune cells leads to a plethora of different signaling pathways as well as cellular activities. The activation of T cells via glycolysis-mediated upregulation of surface markers, for example, is necessary for an appropriate effector response against an infection. However, tight regulation of immune cell metabolism is required for protecting the host and resuming homeostasis. An imbalance of immunological metabolic function and/or metabolic byproducts (reactive oxygen species) can oftentimes lead to diseases. In the case of cancer, overactive glucose metabolism can lead to hyperproliferation of cells and subsequent decreases in cytotoxic T cell activity, which attack and destroy the tumor. For this reason and many more, targeting metabolism in immune cells may be a novel therapeutic strategy for treatment of disease. The metabolic pathways of immune cells and the possibilities of immunometabolic therapies will be discussed.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Immunology, University of Pittsburgh School of MedicinePittsburgh, PA 15260, USA
| | - Jon D Piganelli
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children’s Hospital of Pittsburgh of UPMC4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Immunology, University of Pittsburgh School of MedicinePittsburgh, PA 15260, USA
| |
Collapse
|
41
|
Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury with EUK-207 and genistein: effects in adolescent rats. Radiat Res 2012; 179:125-34. [PMID: 23237541 DOI: 10.1667/rr2954.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure of civilian populations to radiation due to accident, war or terrorist act is an increasing concern. The lung is one of the more radiosensitive organs that may be affected in people receiving partial-body irradiation and radiation injury in lung is thought to be associated with the development of a prolonged inflammatory response. Here we examined how effectively damage to the lung can be mitigated by administration of drugs initiated at different times after radiation exposure and examined response in adolescent animals for comparison with the young adult animals that we had studied previously. We studied the mitigation efficacy of the isoflavone genistein (50 mg/kg) and the salen-Mn superoxide dismutase-catalase mimetic EUK-207 (8 mg/kg), both of which have been reported to scavenge reactive oxygen species and reduce activity of the NFkB pathway. The drugs were given by subcutaneous injection to 6- to 7-week-old Fisher rats daily starting either immediately or 2 weeks after irradiation with 12 Gy to the whole thorax. The treatment was stopped at 28 weeks post irradiation and the animals were assessed for levels of inflammatory cytokines, activated macrophages, oxidative damage and fibrosis at 48 weeks post irradiation. We demonstrated that both genistein and EUK-207 delayed and suppressed the increased breathing rate associated with pneumonitis. These agents also reduced levels of oxidative damage (50-100%), levels of TGF-β1 expression (75-100%), activated macrophages (20-60%) and fibrosis (60-80%). The adolescent rats developed pneumonitis earlier following irradiation of the lung than did the adult rats leading to greater severe morbidity requiring euthanasia (∼37% in adolescents vs. ∼10% in young adults) but the extent of the mitigation of the damage was similar or slightly greater.
Collapse
Affiliation(s)
- J Mahmood
- Ontario Cancer Institute/Princess Margaret Cancer Center, University Health Network, and The Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract 2012; 22:103-30. [PMID: 23075911 PMCID: PMC3640855 DOI: 10.1159/000341715] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/01/2012] [Indexed: 12/18/2022] Open
Abstract
Based on aqueous redox chemistry and simple in vivo models of oxidative stress, Escherichia coli and Saccharomyces cerevisiae, the cationic Mn(III) N-substituted pyridylporphyrins (MnPs) have been identified as the most potent cellular redox modulators within the porphyrin class of drugs; their efficacy in animal models of diseases that have oxidative stress in common is based on their high ability to catalytically remove superoxide, peroxynitrite, carbonate anion radical, hypochlorite, nitric oxide, lipid peroxyl and alkoxyl radicals, thus suppressing the primary oxidative event. While doing so MnPs could couple with cellular reductants and redox-active proteins. Reactive species are widely accepted as regulators of cellular transcriptional activity: minute, nanomolar levels are essential for normal cell function, while submicromolar or micromolar levels impose oxidative stress, which is evidenced in increased inflammatory and immune responses. By removing reactive species, MnPs affect redox-based cellular transcriptional activity and consequently secondary oxidative stress, and in turn inflammatory processes. The equal ability to reduce and oxidize superoxide during the dismutation process and recently accumulated results suggest that pro-oxidative actions of MnPs may also contribute to their therapeutic effects. All our data identify the superoxide dismutase-like activity, estimated by log k(cat)O2-*), as a good measure for the therapeutic efficacy of MnPs. Their accumulation in mitochondria and their ability to cross the blood-brain barrier contribute to their remarkable efficacy. We summarize herein the therapeutic effects of MnPs in cancer, central nervous system injuries, diabetes, their radioprotective action and potential for imaging. Few of the most potent modulators of cellular redox-based pathways, MnTE2-PyP5+, MnTDE-2-ImP5+, MnTnHex-2-PyP5+ and MnTnBuOE-2-PyP5+, are under preclinical and clinical development.
Collapse
Affiliation(s)
- Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Tin Weitner
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Amanda Arulpragasam
- Department of Duke University Neuroscience Undergraduate
Program, Duke University Medical Center, Durham, N.C., USA
| | - Miaomiao Lu
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
- Department of Department of Anesthesiology, Second Affiliated
Hospital, Zhengzhou University, Zhengzhou, China
| | - David S. Warner
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham,
N.C., USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| |
Collapse
|
43
|
Gao F, Fish BL, Szabo A, Doctrow SR, Kma L, Molthen RC, Moulder JE, Jacobs ER, Medhora M. Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res 2012; 178:468-80. [PMID: 23020094 DOI: 10.1667/rr2953.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the event of a radiological accident or terrorist attack, whole- or partial-body exposure can injure the lungs. To simulate such an incident, we used a single fraction of total-body irradiation (TBI) or whole-thoracic irradiation to induce pneumonitis or pulmonary fibrosis, respectively, in a rat model. The superoxide dismutase and catalase mimetic EUK-207 was given by subcutaneous injection (20 mg/kg/day, 5 days per week, once daily) starting at 7 days after irradiation and stopping before pneumonitis developed. After TBI, morbidity and the increase in breathing rates associated with pneumonitis were significantly improved in rats treated with EUK-207 compared to rats receiving irradiation alone. At 42 days after TBI (the peak of pneumonitis) changes in vascular end points including pulmonary hemodynamics ex vivo and relative arterial density in lungs were also mitigated by EUK-207. At 7 months after whole-thoracic irradiation, EUK-207 reduced synthesis of collagen as assessed by the Sircol collagen assay and Masson's trichrome staining. Our results demonstrate promise for EUK-207 as a mitigator of radiation pneumonitis and fibrosis. We also demonstrate for the first time mitigation of multiple vascular injuries in the irradiated lung in vivo by EUK-207.
Collapse
Affiliation(s)
- Feng Gao
- Departments of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jackson IL, Zhang X, Hadley C, Rabbani ZN, Zhang Y, Marks S, Vujaskovic Z. Temporal expression of hypoxia-regulated genes is associated with early changes in redox status in irradiated lung. Free Radic Biol Med 2012; 53:337-46. [PMID: 22588005 PMCID: PMC3649014 DOI: 10.1016/j.freeradbiomed.2012.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 12/21/2022]
Abstract
The development of normal lung tissue toxicity after radiation exposure results from multiple changes in cell signaling and communication initiated at the time of the ionizing event. The onset of gross pulmonary injury is preceded by tissue hypoxia and chronic oxidative stress. We have previously shown that development of debilitating lung injury can be mitigated or prevented by administration of AEOL10150, a potent catalytic antioxidant, 24h after radiation. This suggests that hypoxia-mediated signaling pathways may play a role in late radiation injury, but the exact mechanism remains unclear. The purpose of this study was to evaluate changes in the temporal expression of hypoxia-associated genes in irradiated mouse lung and determine whether AEOL10150 alters expression of these genes. A focused oligo array was used to establish a hypoxia-associated gene expression signature for lung tissue from sham-irradiated or irradiated mice treated with or without AEOL10150. Results were further verified by RT-PCR. Forty-four genes associated with metabolism, cell growth, apoptosis, inflammation, oxidative stress, and extracellular matrix synthesis were upregulated after radiation. Elevated expression of 31 of these genes was attenuated in animals treated with AEOL10150, suggesting that expression of a number of hypoxia-associated genes is regulated by early development of oxidative stress after radiation. Genes identified herein could provide insight into the role of hypoxic signaling in radiation lung injury, suggesting novel therapeutic targets, as well as clues to the mechanism by which AEOL10150 confers pulmonary radioprotection.
Collapse
Affiliation(s)
- Isabel L. Jackson
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| | - Xiuwu Zhang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 USA
| | - Caroline Hadley
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 USA
| | - Zahid N. Rabbani
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 USA
| | - Yu Zhang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 USA
| | - Sam Marks
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 USA
| | - Zeljko Vujaskovic
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
45
|
Ogata T, Yamazaki H, Teshima T, Tsuchiya T, Nishimoto N, Matsuura N. Anti-IL-6 receptor antibody does not ameliorate radiation pneumonia in mice. Exp Ther Med 2012; 4:273-276. [PMID: 22984368 DOI: 10.3892/etm.2012.582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/09/2012] [Indexed: 11/05/2022] Open
Abstract
We previously showed that early administration of monoclonal anti-interleukin-6 receptor antibody (IL-6RA) does not prevent radiation-induced lung injury in mice. The purpose of this study was to investigate whether a higher dose and longer course of IL-6RA treatment was effective in ameliorating radiation pneumonia. C57Bl/6J mice received thoracic irradiation of 12 Gy, and were intraperitoneally injected with the IL-6RA, namely MR16-1, or with control rat IgG 4 times, once immediately following exposure and then weekly from 1 to 3 weeks after irradiation. Enzyme-linked immunosorbent assays were used to analyze the plasma levels of IL-6 and serum amyloid A (SAA). Lung injury was assessed by histological staining with haematoxylin and eosin (H&E) and by measuring wet lung weight. We observed marked upregulation of IL-6 in IL-6RA-treated mice compared to the IgG-treated control group, whereas IL-6RA did not increase the production of SAA in the group receiving irradiation. However, radiation pneumonia, as evaluated by H&E staining and lung weight showed no differences between the IL-6RA-treated mice and the controls. Long-term treatment with high-dose IL-6RA does not ameliorate radiation pneumonia.
Collapse
|
46
|
Williams JP, Jackson IL, Shah JR, Czarniecki CW, Maidment BW, DiCarlo AL. Animal models and medical countermeasures development for radiation-induced lung damage: report from an NIAID Workshop. Radiat Res 2012; 177:e0025-39. [PMID: 22468702 DOI: 10.1667/rrol04.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since 9/11, there have been concerns that terrorists may detonate a radiological or nuclear device in an American city. Aside from several decorporation and blocking agents for use against internal radionuclide contamination, there are currently no medications within the Strategic National Stockpile that are approved to treat the immediate or delayed complications resulting from accidental exposure to radiation. Although the majority of research attention has focused on developing countermeasures that target the bone marrow and gastrointestinal tract, since they represent the most acutely radiosensitive organs, individuals who survive early radiation syndromes will likely suffer late effects in the months that follow. Of particular concern are the delayed effects seen in the lung that play a major role in late mortality seen in radiation-exposed patients and accident victims. To address these concerns, the National Institute of Allergy and Infectious Diseases convened a workshop to discuss pulmonary model development, mechanisms of radiation-induced lung injury, targets for medical countermeasures development, and end points to evaluate treatment efficacy. Other topics covered included guidance on the challenges of developing and licensing drugs and treatments specific to a radiation lung damage indication. This report reviews the data presented, as well as key points from the ensuing discussion.
Collapse
|
47
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 827] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
48
|
Zhang Y, Zhang X, Rabbani ZN, Jackson IL, Vujaskovic Z. Oxidative stress mediates radiation lung injury by inducing apoptosis. Int J Radiat Oncol Biol Phys 2012; 83:740-8. [PMID: 22270165 DOI: 10.1016/j.ijrobp.2011.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 06/28/2011] [Accepted: 08/08/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. METHODS AND MATERIALS C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. RESULTS Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-β1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. CONCLUSION Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
49
|
Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of lung injury after accidental exposure to radiation. Radiat Res 2011; 176:770-80. [PMID: 22013884 DOI: 10.1667/rr2562.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a serious need to develop effective mitigators against accidental radiation exposures. In radiation accidents, many people may receive nonuniform whole-body or partial-body irradiation. The lung is one of the more radiosensitive organs, demonstrating pneumonitis and fibrosis that are believed to develop at least partially because of radiation-induced chronic inflammation. Here we addressed the crucial questions of how damage to the lung can be mitigated and whether the response is affected by irradiation to the rest of the body. We examined the widely used dietary supplement genistein given at two dietary levels (750 or 3750 mg/kg) to Fischer rats irradiated with 12 Gy to the lung or 8 Gy to the lung + 4 Gy to the whole body excluding the head and tail (whole torso). We found that genistein had promising mitigating effects on oxidative damage, pneumonitis and fibrosis even at late times (36 weeks) when drug treatment was initiated 1 week after irradiation and stopped at 28 weeks postirradiation. The higher dose of genistein showed no greater beneficial effect. Combined lung and whole-torso irradiation caused more lung-related severe morbidity resulting in euthanasia of the animals than lung irradiation alone.
Collapse
Affiliation(s)
- J Mahmood
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Batinic-Haberle I, Rajic Z, Tovmasyan A, Ye X, Leong KW, Dewhirst MW, Vujaskovic Z, Benov L, Spasojevic I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 2011; 51:1035-53. [PMID: 21616142 PMCID: PMC3178885 DOI: 10.1016/j.freeradbiomed.2011.04.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/30/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO⁻, H₂O₂, •OH, CO₃•⁻, and •NO₂. Hence, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N'-disubstituted imidazolylporphyrins (MnPs), some of them with k(cat)(O₂·⁻) similar to the k(cat) of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP⁵⁺, MnTnHex-2-PyP⁵⁺, and MnTDE-2-ImP⁵⁺. The ability to disproportionate O₂·⁻ parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO⁻. The same structural feature that gives rise to the high k(cat)(O₂·⁻) and k(red)(ONOO⁻), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP⁵⁺ and MnTDE-2-ImP⁵⁺ are potent in numerous animal models of diseases, the lipophilic analogues, such as MnTnHex-2-PyP⁵⁺, were developed to cross blood brain barrier and target central nervous system and critical cellular compartments, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP⁵⁺ was the first efficacy study performed successfully with non-human primates. The Phase I toxicity clinical trials were done on amyotrophic lateral sclerosis patients with N,N'-diethylimidazolium analogue, MnTDE-2-ImP⁵⁺ (AEOL10150). Its aggressive development as a wide spectrum radioprotector by Aeolus Pharmaceuticals has been supported by USA Federal government. The latest generation of compounds, bearing oxygens in pyridyl substituents is presently under aggressive development for cancer and CNS injuries at Duke University and is supported by Duke Translational Research Institute, The Wallace H. Coulter Translational Partners Grant Program, Preston Robert Tisch Brain Tumor Center at Duke, and National Institute of Allergy and Infectious Diseases. Metal center of cationic MnPs easily accepts and donates electrons as exemplified in the catalysis of O₂·⁻ dismutation. Thus such compounds may be equally good anti- and pro-oxidants; in either case the beneficial therapeutic effects may be observed. Moreover, while the in vivo effects may appear antioxidative, the mechanism of action of MnPs that produced such effects may be pro-oxidative; the most obvious example being the inhibition of NF-κB. The experimental data therefore teach us that we need to distinguish between the mechanism/s of action/s of MnPs and the effects we observe. A number of factors impact the type of action of MnPs leading to favorable therapeutic effects: levels of reactive species and oxygen, levels of endogenous antioxidants (enzymes and low-molecular compounds), levels of MnPs, their site of accumulation, and the mutual encounters of all of those species. The complexity of in vivo redox systems and the complex redox chemistry of MnPs challenge and motivate us to further our understanding of the physiology of the normal and diseased cell with ultimate goal to successfully treat human diseases.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| | - Zrinka Rajic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaodong Ye
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait School of Medicine, Kuwait
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph. D. Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, . Ivan Spasojevic, Ph. D. Department of Medicine, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-8311, Fax: 919-684-8380,
| |
Collapse
|