1
|
Hsu CY, Lin J, Wei MF, Chen LH, Liang HKT, Lin FH. Local delivery of carboplatin-loaded hydrogel and calcium carbonate enables two-stage drug release for limited-dose radiation to eliminate mouse malignant glioma. Biomaterials 2025; 312:122746. [PMID: 39106816 DOI: 10.1016/j.biomaterials.2024.122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2023] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Postoperative radiotherapy remains the gold standard for malignant glioma treatment. Clinical limitations, including tumor growth between surgery and radiotherapy and the emergence of radioresistance, reduce treatment effectiveness and result in local disease progression. This study aimed to develop a local drug delivery system to inhibit tumor growth before radiotherapy and enhance the subsequent anticancer effects of limited-dose radiotherapy. We developed a compound of carboplatin-loaded hydrogel (CPH) incorporated with carboplatin-loaded calcium carbonate (CPCC) to enable two-stage (peritumoral and intracellular) release of carboplatin to initially inhibit tumor growth and to synergize with limited-dose radiation (10 Gy in a single fraction) to eliminate malignant glioma (ALTS1C1 cells) in a C57BL/6 mouse subcutaneous tumor model. The doses of carboplatin in CPH and CPCC treatments were 150 μL (carboplatin concentration of 5 mg/mL) and 15 mg (carboplatin concentration of 4.1 μg/mg), respectively. Mice receiving the combination of CPH-CPCC treatment and limited-dose radiation exhibited significantly reduced tumor growth volume compared to those receiving double-dose radiation alone. Furthermore, combining CPH-CPCC treatment with limited-dose radiation resulted in significantly longer progression-free survival than combining CPH treatment with limited-dose radiation. Local CPH-CPCC delivery synergized effectively with limited-dose radiation to eliminate mouse glioma, offering a promising solution for overcoming clinical limitations.
Collapse
Affiliation(s)
- Cheng-Yi Hsu
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan.
| | - Jason Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan.
| | - Ming-Feng Wei
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan.
| | - Liang-Hsin Chen
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Division of Proton Therapy, Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, No.57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei 10672, Taiwan.
| | - Hsiang-Kuang Tony Liang
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan; Division of Proton Therapy, Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, No.57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei 10672, Taiwan.
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Institute of Biomedical Engineering and Nano-medicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Miaoli County, Taiwan.
| |
Collapse
|
2
|
La Rosa A, Fellows Z, Wroe AJ, Coutinho L, Pons E, McAllister NC, Tolakanahalli R, Kutuk T, Hall MD, Press RH, McDermott MW, Odia Y, Ahluwalia MS, Mehta MP, Gutierrez AN, Kotecha R. Initial feasibility cohort of temporally modulated pulsed proton re-irradiation (TMPPR) for recurrent high-grade intracranial malignancies. Sci Rep 2024; 14:26685. [PMID: 39496803 PMCID: PMC11535062 DOI: 10.1038/s41598-024-78370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
Recurrent high-grade intracranial malignancies have a grim prognosis and uniform management guidelines are lacking. Re-irradiation is underused due to concerns about irreversible side effects. Pulsed-reduced dose rate radiotherapy (PRDR) aims to reduce toxicity while improving tumor control by exploiting dose-rate effects. We share our initial experience with temporally modulated pulsed proton re-irradiation (TMPPR), focusing on workflow, safety, feasibility, and outcomes for the first patient cohort. TMPPR was administered to patients with recurrent or progressive central nervous system malignancies using intensity modulated proton therapy with three fields. Patient and treatment data were collected, responses categorized using RANO assessment, and toxicities graded using CTCAE v5.0. Five patients received TMPPR between October 2022 and May 2023, with a median age of 54 years (Range: 32-72), and a median time from initial radiotherapy to re-RT of 23 months (Range 14-40). Treatment was completed without delay, with a median dose of 60 GyRBE in 30 fractions. Initial treatment response assessment showed complete (n = 1) or partial (n = 3) responses. Limited toxicity was observed, primarily grade 2 alopecia and one case of radiation necrosis graded at 2. This early experience demonstrates the feasibility of TMPPR delivery, highlighting the importance of prospective evaluations in the re-irradiation setting.
Collapse
Affiliation(s)
- Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Zachary Fellows
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Andrew J Wroe
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Len Coutinho
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Eduardo Pons
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Nicole C McAllister
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Robert H Press
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Department of Neurosurgery, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
3
|
Andratschke N, Willmann J, Appelt AL, Day M, Kronborg C, Massaccesi M, Ozsahin M, Pasquier D, Petric P, Riesterer O, De Ruysscher D, M Van der Velden J, Guckenberger M. Reirradiation - still navigating uncharted waters? Clin Transl Radiat Oncol 2024; 49:100871. [PMID: 39444538 PMCID: PMC11497423 DOI: 10.1016/j.ctro.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
With the emergence of high-precision radiotherapy technologies such as stereotactic ablative radiotherapy (SABR), MR guided brachytherapy, image guided intensity modulated photon and proton radiotherapy and most recently daily adaptive radiotherapy, reirradiation is increasingly recognized as a viable treatment option for many patients. This includes those with recurrent, metastatic or new malignancies post initial radiotherapy. The primary challenge in reirradiation lies in balancing tumor control against the risk of severe toxicity from cumulative radiation doses to previously irradiated normal tissue. Although technology for precise delivery has advanced at a fast pace, clinical practice of reirradiation still mostly relies on individual expertise, as prospective evidence is scarce, the level of reporting in clinical studies is not standardized and of low quality - especially with respect to cumulative doses received by organs at risk. A recent ESTRO/EORTC initiative proposed a standardized definition of reirradiation and formulated general requirements for minimal reporting in clinical studies [1]. As a consequence we found it timely to convene for an international and interdisciplinary meeting with experts in the field to summarize the current evidence, identify knowledge gaps and explore which best practices can be derived for safe reirradiation. The meeting was held on 15.06.2023 in Zurich and was endorsed by the scientific societies SASRO, DEGRO and ESTRO. Here, we report on available evidence and research priorities in the field of reirradiation, as discussed during the meeting.
Collapse
Affiliation(s)
- Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Ane L Appelt
- Leeds Institute of Medical Research at St James’s, University of Leeds, UK
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Madalyne Day
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Camilla Kronborg
- Danish Centre for Particle Therapy, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariangela Massaccesi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | | | - David Pasquier
- Academic Department of Radiation Oncology, Centre O Lambret, Lille, France
- University of Lille, Centrale Lille, CNRS, CRIStAL UMR 9189, Lille, France
| | - Primoz Petric
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | | | - Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro), GROW School and Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Joanne M Van der Velden
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| |
Collapse
|
4
|
Pasqualetti F, Lombardi G, Gadducci G, Giannini N, Montemurro N, Feletti A, Zeppieri M, Somma T, Caffo M, Bertolotti C, Ius T. Brain Stem Glioma Recurrence: Exploring the Therapeutic Frontiers. J Pers Med 2024; 14:899. [PMID: 39338153 PMCID: PMC11433503 DOI: 10.3390/jpm14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas of the brainstem represent a small percentage of central nervous system gliomas in adults. Due to the proximity of the tumor to critical structures, radical surgery is highly challenging and limited to selected cases. In addition, postoperative treatments, which become exclusive to non-operable patients, do not guarantee satisfactory disease control, making the progression of the disease inevitable. Currently, there is a lack of therapeutic options to control tumor growth after the diagnosis of recurrence. The rarity of these tumors, their distinct behavioral characteristics, and the limited availability of tumor tissue necessary for the development of prognostic and predictive biomarkers contribute to the absence of a standardized approach for treating recurrent brainstem gliomas. A salvage radiotherapy (RT) retreatment could represent a promising approach for recurrent brainstem gliomas. However, to date, it has been mainly evaluated in pediatric cases, with few experiences available to assess the most appropriate RT dose, safety, and clinical responses in adult patients. This comprehensive review aims to identify instances of adult patients with recurrent brainstem gliomas subjected to a secondary course of RT, with a specific focus on the analysis of treatment-related toxicity and outcomes. Through this investigation, we endeavor to contribute valuable insights into the viability and efficacy of salvage RT retreatment in managing recurrent brainstem gliomas in the adult population.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Giovanni Gadducci
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Noemi Giannini
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
| | - Alberto Feletti
- Department of Neurosciences, Biomedicine, and Movement Sciences, Institute of Neurosurgery, University of Verona, 37126 Verona, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80134 Naples, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomorphology and Dental Science, and Morphofunctional Imaging, Università degli Studi di Messina, 98125 Messina, Italy
| | - Chiara Bertolotti
- Department of Neuroradiology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
5
|
Hahnemann L, Krämer A, Fink C, Jungk C, Thomas M, Christopoulos P, Lischalk J, Meis J, Hörner-Rieber J, Eichkorn T, Deng M, Lang K, Paul A, Meixner E, Weykamp F, Debus J, König L. Fractionated stereotactic radiotherapy of intracranial postoperative cavities after resection of brain metastases - Clinical outcome and prognostic factors. Clin Transl Radiat Oncol 2024; 46:100782. [PMID: 38694237 PMCID: PMC11061678 DOI: 10.1016/j.ctro.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024] Open
Abstract
Background and Purpose After surgical resection of brain metastases (BM), radiotherapy (RT) is indicated. Postoperative stereotactic radiosurgery (SRS) reduces the risk of local progression and neurocognitive decline compared to whole brain radiotherapy (WBRT). Aside from the optimal dose and fractionation, little is known about the combination of systemic therapy and postoperative fractionated stereotactic radiotherapy (fSRT), especially regarding tumour control and toxicity. Methods In this study, 105 patients receiving postoperative fSRT with 35 Gy in 7 fractions performed with Cyberknife were retrospectively reviewed. Overall survival (OS), local control (LC) and total intracranial brain control (TIBC) were analysed via Kaplan-Meier method. Cox proportional hazards models were used to identify prognostic factors. Results Median follow-up was 20.8 months. One-year TIBC was 61.6% and one-year LC was 98.6%. Median OS was 28.7 (95%-CI: 16.9-40.5) months. In total, local progression (median time not reached) occurred in 2.0% and in 20.4% radiation-induced contrast enhancements (RICE) of the cavity (after median of 14.3 months) were diagnosed. Absence of extracranial metastases was identified as an independent prognostic factor for superior OS (p = <0.001) in multivariate analyses, while a higher Karnofsky performance score (KPS) was predictive for longer OS in univariate analysis (p = 0.041). Leptomeningeal disease (LMD) developed in 13% of patients. Conclusion FSRT after surgical resection of BM is an effective and safe treatment approach with excellent local control and acceptable toxicity. Further prospective randomized trials are needed to establish standardized therapeutic guidelines.
Collapse
Affiliation(s)
- L. Hahnemann
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - A. Krämer
- Department of Radiation Oncology, University Hospital of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - C. Fink
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C. Jungk
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - M. Thomas
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - P. Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - J.W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, NY, USA
| | - J. Meis
- Institute of Medical Biometry, University of Heidelberg, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
| | - J. Hörner-Rieber
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - T. Eichkorn
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - M. Deng
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - K. Lang
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - A. Paul
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - E. Meixner
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - F. Weykamp
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - J. Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - L. König
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Kübler J, Wester-Ebbinghaus M, Wenz F, Stieler F, Bathen B, Mai SK, Wolff R, Hänggi D, Blanck O, Giordano FA. Postoperative stereotactic radiosurgery and hypofractionated radiotherapy for brain metastases using Gamma Knife and CyberKnife: a dual-center analysis. J Neurosurg Sci 2024; 68:22-30. [PMID: 32031357 DOI: 10.23736/s0390-5616.20.04830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Postoperative stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (hFSRT) to tumor cavities is emerging as a new standard of care after resection of brain metastases. Both Gamma Knife (GK) and CyberKnife (CK) are modalities commonly used for stereotactic radiotherapy, but fractional schemes are not consistent. The objective of this study was to evaluate outcomes in patients receiving postoperative stereotactic radiotherapy of resected brain metastases (BM) using different fractionation schedules and modalities in two large centers. METHODS Patients with newly diagnosed BM who underwent postoperative SRS or hFSRT with either GK or CK at two large cancer centers were retrospectively evaluated. We analyzed local control (LC), regional control (RC) and overall survival (OS). RESULTS From April 14th to May 18th, 2020, 79 patients with 81 resection cavities were treated. Forty-seven patients (59.5%) received GK and 32 patients (40.5%) received CK treatment. Fifty-four cavities (66.7%) were treated with hFSRT and 27 (33.3%) with SRS. The most common hFSRT and SRS scheme was 3x10 Gy and 1x16 Gy, respectively. Median OS was 11.7 months with survival rates of 44.7% at 1 year and 18.5% at 2 years. LC was 83.3% after 1 year. Median time to regional progression was 12.0 months with RC rates of 61.1% at 6 months and 41.0% at 12 months. There was no difference in OS, LC or RC between GK and CK treatments or SRS and hFSRT. CONCLUSIONS Both SRS and hFSRT provide high local control rates in resected BM regardless of the applied modality.
Collapse
Affiliation(s)
- Jens Kübler
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Wester-Ebbinghaus
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Florian Stieler
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bastian Bathen
- Saphir Radiosurgery Center Frankfurt, Frankfurt am Main, Germany
- Department of Radiation Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sabine K Mai
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center Frankfurt, Frankfurt am Main, Germany
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center Frankfurt, Frankfurt am Main, Germany
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany -
| |
Collapse
|
7
|
Kossmann MRP, Ehret F, Roohani S, Winter SF, Ghadjar P, Acker G, Senger C, Schmid S, Zips D, Kaul D. Histopathologically confirmed radiation-induced damage of the brain - an in-depth analysis of radiation parameters and spatio-temporal occurrence. Radiat Oncol 2023; 18:198. [PMID: 38087368 PMCID: PMC10717523 DOI: 10.1186/s13014-023-02385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Radiation-induced damage (RID) after radiotherapy (RT) of primary brain tumors and metastases can be challenging to clinico-radiographically distinguish from tumor progression. RID includes pseudoprogression and radiation necrosis; the latter being irreversible and often associated with severe symptoms. While histopathology constitutes the diagnostic gold standard, biopsy-controlled clinical studies investigating RID remain limited. Whether certain brain areas are potentially more vulnerable to RID remains an area of active investigation. Here, we analyze histopathologically confirmed cases of RID in relation to the temporal and spatial dose distribution. METHODS Histopathologically confirmed cases of RID after photon-based RT for primary or secondary central nervous system malignancies were included. Demographic, clinical, and dosimetric data were collected from patient records and treatment planning systems. We calculated the equivalent dose in 2 Gy fractions (EQD22) and the biologically effective dose (BED2) for normal brain tissue (α/β ratio of 2 Gy) and analyzed the spatial and temporal distribution using frequency maps. RESULTS Thirty-three patients were identified. High-grade glioma patients (n = 18) mostly received one normofractionated RT series (median cumulative EQD22 60 Gy) to a large planning target volume (PTV) (median 203.9 ccm) before diagnosis of RID. Despite the low EQD22 and BED2, three patients with an accelerated hyperfractionated RT developed RID. In contrast, brain metastases patients (n = 15; 16 RID lesions) were often treated with two or more RT courses and with radiosurgery or fractionated stereotactic RT, resulting in a higher cumulative EQD22 (median 162.4 Gy), to a small PTV (median 6.7 ccm). All (n = 34) RID lesions occurred within the PTV of at least one of the preceding RT courses. RID in the high-grade glioma group showed a frontotemporal distribution pattern, whereas, in metastatic patients, RID was observed throughout the brain with highest density in the parietal lobe. The cumulative EQD22 was significantly lower in RID lesions that involved the subventricular zone (SVZ) than in lesions without SVZ involvement (median 60 Gy vs. 141 Gy, p = 0.01). CONCLUSIONS Accelerated hyperfractionated RT can lead to RID despite computationally low EQD22 and BED2 in high-grade glioma patients. The anatomical location of RID corresponded to the general tumor distribution of gliomas and metastases. The SVZ might be a particularly vulnerable area.
Collapse
Affiliation(s)
- Mario R P Kossmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Radiotherapy and Radiation Oncology, Pius-Hospital Oldenburg, Georgstr. 12, 26121, Oldenburg, Germany
| | - Felix Ehret
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siyer Roohani
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian F Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Pirus Ghadjar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Güliz Acker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Senger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simone Schmid
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Zips
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Lapadula L, Piombino M, Bianculli A, Caivano R, Capobianco A, Cacciatore A, Cozzolino M, Oliviero C, D'andrea B, Mileo A, Leone A, Carbone F, Fochi NP, Landriscina M, Colamaria A, Giordano G. Third whole-brain radiation therapy for multiple brain metastases. Should it be considered in selected patients? Cancer Radiother 2023; 27:725-730. [PMID: 37777371 DOI: 10.1016/j.canrad.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 10/02/2023]
Abstract
Whole brain reirradiation for the treatment of multiple brain metastases has shown promising results. However, concerns remain over the possible neurotoxic effects of the cumulative dose as well as the questionable radiosensitivity of recurrent metastases. A second reirradiation of the whole brain is ordinarily performed in our department for palliative purposes in patients presenting with multiple metastatic brain progression. For this study, an investigational third whole brain reirradiation has been administered to highly selected patients to obtain disease control and delay progression. Clinical outcomes and neurological toxicity were also evaluated.
Collapse
Affiliation(s)
- L Lapadula
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - M Piombino
- Radiation Oncology Department AUOC, Policlinico Bari, Italy
| | - A Bianculli
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - R Caivano
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - A Capobianco
- Multidisciplinary Oncology, Health Directorate Department, IRCCS Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Italy
| | - A Cacciatore
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - M Cozzolino
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - C Oliviero
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - B D'andrea
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - A Mileo
- Oncology Unit, IRCCS Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Italy
| | - A Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany; Faculty of Human Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - F Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany; Division of Neurosurgery, "Riuniti" Hospital, University of Foggia, FG 71121 Foggia, Italy
| | - N P Fochi
- Division of Neurosurgery, "Riuniti" Hospital, University of Foggia, FG 71121 Foggia, Italy.
| | - M Landriscina
- Unit of Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - A Colamaria
- Division of Neurosurgery, Policlinico "Riuniti", Foggia, Italy
| | - G Giordano
- Unit of Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
9
|
Ehret F, Wolfgang J, Allwohn L, Onken J, Wasilewski D, Roohani S, Oertel J, Zips D, Kaul D. Outcomes of Isocitrate Dehydrogenase Wild Type Glioblastoma after Re-irradiation. Clin Transl Radiat Oncol 2023; 42:100653. [PMID: 37502699 PMCID: PMC10369398 DOI: 10.1016/j.ctro.2023.100653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose Glioblastomas (GBM) are the most common malignant primary brain tumors in adults and have a dismal prognosis. Patients frequently suffer from local tumor recurrences, with limited therapeutic options. Re-irradiation represents a possible intervention, but given the recent 5th edition of the World Health Organization classification of central nervous system tumors, studies in isocitrate dehydrogenase wild type (IDH-wt) cohorts undergoing a second course of radiotherapy remain limited. Herein, we sought to describe our institutional experience and outcomes after GBM IDH-wt re-irradiation. Materials and Methods GBM patients with confirmed IDH-wt status undergoing re-irradiation were included in this single-center, retrospective analysis. Results A total of 88 patients were analyzed. The median clinical and radiographic follow-up periods were 4.6 months and 4.4 months, respectively. Most patients had a Karnofsky performance status of at least 80% (n = 57). The median biologically effective dose and 2 Gy equivalent dose (EQD2) for re-irradiations, assuming an α/β ratio of 10 Gy for GBM, were 51.4 and 42.8 Gy, respectively. In total, 71 deaths were recorded. The median overall survival (OS) was 8.0 months. Multivariable Cox regression of OS revealed a positive influence of gross total resection vs. biopsy or no resection (hazard ratio: 0.43, p = 0.02). The median progression-free survival (PFS) was 5.9 months. The multivariable Cox regression for PFS did not detect any significant factors. No clear evidence of radiation necrosis was recorded during the available follow-up. However, only a minority (n = 4) of patients underwent surgery after re-irradiation, none showing histopathological proof of radiation necrosis. Conclusion The prognosis for recurrent IDH-wt GBM after re-irradiation is poor. Patients who are amenable and able to undergo re-resection may have a favorable OS. A second course of radiotherapy with a moderate cumulative EQD2 and small- to medium-sized planning target volumes appeared safe regarding the occurrence of radiation necrosis.
Collapse
Affiliation(s)
- Felix Ehret
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Josy Wolfgang
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
| | - Luisa Allwohn
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
| | - Julia Onken
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Berlin, Germany
| | - David Wasilewski
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Berlin, Germany
| | - Siyer Roohani
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Daniel Zips
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
De Pietro R, Zaccaro L, Marampon F, Tini P, De Felice F, Minniti G. The evolving role of reirradiation in the management of recurrent brain tumors. J Neurooncol 2023; 164:271-286. [PMID: 37624529 PMCID: PMC10522742 DOI: 10.1007/s11060-023-04407-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.
Collapse
Affiliation(s)
- Raffaella De Pietro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucy Zaccaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca De Felice
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli (IS), Isernia, Italy.
| |
Collapse
|
11
|
Thompson C, Pagett C, Lilley J, Svensson S, Eriksson K, Bokrantz R, Ödén J, Nix M, Murray L, Appelt A. Brain Re-Irradiation Robustly Accounting for Previously Delivered Dose. Cancers (Basel) 2023; 15:3831. [PMID: 37568647 PMCID: PMC10417278 DOI: 10.3390/cancers15153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: The STRIDeR (Support Tool for Re-Irradiation Decisions guided by Radiobiology) planning pathway aims to facilitate anatomically appropriate and radiobiologically meaningful re-irradiation (reRT). This work evaluated the STRIDeR pathway for robustness compared to a more conservative manual pathway. (2) Methods: For ten high-grade glioma reRT patient cases, uncertainties were applied and cumulative doses re-summed. Geometric uncertainties of 3, 6 and 9 mm were applied to the background dose, and LQ model robustness was tested using α/β variations (values 1, 2 and 5 Gy) and the linear quadratic linear (LQL) model δ variations (values 0.1 and 0.2). STRIDeR robust optimised plans, incorporating the geometric and α/β uncertainties during optimisation, were also generated. (3) Results: The STRIDeR and manual pathways both achieved clinically acceptable plans in 8/10 cases but with statistically significant improvements in the PTV D98% (p < 0.01) for STRIDeR. Geometric and LQ robustness tests showed comparable robustness within both pathways. STRIDeR plans generated to incorporate uncertainties during optimisation resulted in a superior plan robustness with a minimal impact on PTV dose benefits. (4) Conclusions: Our results indicate that STRIDeR pathway plans achieved a similar robustness to manual pathways with improved PTV doses. Geometric and LQ model uncertainties can be incorporated into the STRIDeR pathway to facilitate robust optimisation.
Collapse
Affiliation(s)
- Christopher Thompson
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | - Christopher Pagett
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | - John Lilley
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | | | | | | | - Jakob Ödén
- RaySearch Laboratories, SE-104 30 Stockholm, Sweden
| | - Michael Nix
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | - Louise Murray
- Leeds Cancer Centre, Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS2 9JT, UK
| | - Ane Appelt
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Soykut ED, Odabasi E, Sahin N, Tataroglu H, Baran A, Guney Y. Re-irradiation with stereotactic radiotherapy for recurrent high-grade glial tumors. Rep Pract Oncol Radiother 2023; 28:361-369. [PMID: 37795399 PMCID: PMC10547398 DOI: 10.5603/rpor.a2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/23/2023] [Indexed: 10/06/2023] Open
Abstract
Background Despite the radical treatments applied, recurrence is encountered in the majority of high-grade gliomas (HGG). There is no standard treatment when recurrence is detected, but stereotactic radiotherapy (SRT) is a preferable alternative. The aim of this retrospective study is to evaluate the efficacy of SRT for recurrent HGG, and to investigate the factors that affect survival. Materials and methods From 2013 to 2021, a total of 59 patients with 64 lesions were re-irradiated in a single center with the CyberKnife Robotic Radiosurgery System. The primary endpoints of the study were overall survival (OS), progression free survival (PFS) and local control rates (LCR). Results The median time to first recurrence was 13 (4-85) months. SRT was performed as a median prescription dose of 30 Gy (range 15-30), with a median of 5 fractions (1-5). The median follow-up time was 4 months (range 1-57). The median OS was 8 (95% CI: 4.66-11.33) months. Age, grade 3, tumor size were associated with better survival. The median PFS was 5 [95% confidence interval (CI): 3.39-6.60] months. Age, grade 3 and time to recurrence > 9 months were associated with improved PFS. Grade 3 gliomas (p = 0.027), size of tumor < 2 cm (p = 0.008) remained independent prognostic factors for OS in multivariate analysis. Conclusion SRT is a viable treatment modality with significant survival contribution. Since it may have a favorable prognostic effect on survival in patients with tumor size < 2 cm, we recommend early diagnosis of recurrence and a decision to re-irradiate a smaller tumor during follow-up.
Collapse
Affiliation(s)
- Ela Delikgoz Soykut
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Eylem Odabasi
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Nilgun Sahin
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Hatice Tataroglu
- Department of Radiation Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Ahmet Baran
- Department of Medical Oncology, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Yildiz Guney
- Department of Radiation Oncology, Memorial Ankara Hospital, Ankara, Türkiye
| |
Collapse
|
13
|
Massimino M, Vennarini S, Buttarelli FR, Antonelli M, Colombo F, Minasi S, Pecori E, Ferroli P, Giussani C, Schiariti M, Schiavello E, Biassoni V, Erbetta A, Chiapparini L, Nigro O, Boschetti L, Gianno F, Miele E, Modena P, De Cecco L, Pollo B, Barretta F. Optimizing reirradiation for relapsed medulloblastoma: identifying the ideal patient and tumor profiles. J Neurooncol 2023; 163:577-586. [PMID: 37326761 DOI: 10.1007/s11060-023-04361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND First-line therapies for medulloblastoma(MBL) are obtaining higher survival-rates while decreasing late-effects, but treatment at relapse is not standardized. We report here the experience with MBL re-irradiation(re-RT), its timing and outcome in different clinical settings and tumor groups. METHODS Patient's staging/treatment at diagnosis, histotypes/molecular subgroups, relapse site/s, re-treatments outcome are reported. RESULTS 25 patients were included, with a median age of 11.4 years; 8 had metastases. According to 2016-2021 WHO-classification, 14 had SHH subgroup tumors(six TP53 mutated,one + MYC,one + NMYC amplification), 11 non-WNT/non-SHH (two with MYC/MYCN amplification).Thirteen had received HART-CSI, 11 standard-CSI, one HFRT; all post-radiation chemotherapy(CT), 16 also pre-RT. Median time to relapse (local-LR in nine, distant-DR in 14, LR + DR in two) was 26 months. Fourteen patients were re-operated, in five cases excising single DR-sites, thereafter three received CT, two after re-RT; out of 11 patients not re-operated, four had re-RT as first treatment and seven after CT. Re-RT was administered at median 32 months after first RT: focally in 20 cases, craniospinal-CSI in five. Median post-relapse-PFS/after re-RT was 16.7/8.2 months, while overall survival-OS was 35.1/23.9 months, respectively. Metastatic status both at diagnosis/relapse negatively affected outcome and re-surgery was prognostically favorable. PD after re-RT was however significantly more frequent in SHH (with a suggestive association with TP53 mutation, p = 0.050). We did not observe any influence of biological subgroups on PFS from recurrence while SHH showed apparently worse OS compared to non-WNT/non-SHH group. CONCLUSIONS Re-surgery + reRT can prolong survival; a substantial fraction of patients with worse outcome belongs to the SHH-subgroup.
Collapse
Affiliation(s)
- Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy.
| | - Sabina Vennarini
- Pediatric Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University, Rome, Italy
| | - Francesca Colombo
- Pediatric Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University, Rome, Italy
| | - Emilia Pecori
- Pediatric Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Ferroli
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Giussani
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marco Schiariti
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Alessandra Erbetta
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Olga Nigro
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Luna Boschetti
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Transfusion Medicine (EM), Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | | | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Barretta
- Department of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
14
|
Moore-Palhares D, Chen H, Keith J, Wang M, Myrehaug S, Tseng CL, Detsky J, Perry J, Lim-Fat MJ, Heyn C, Maralani P, Lipsman N, Das S, Sahgal A, Soliman H. Re-irradiation for recurrent high-grade glioma: an analysis of prognostic factors for survival and predictors of radiation necrosis. J Neurooncol 2023; 163:541-551. [PMID: 37256526 DOI: 10.1007/s11060-023-04340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Recurrent high-grade glioma (rHGG) is a heterogeneous population, and the ideal patient selection for re-irradiation (re-RT) has yet to be established. This study aims to identify prognostic factors for rHGG patients treated with re-RT. METHODS We retrospectively reviewed consecutive adults with rHGG who underwent re-RT from 2009 to 2020 from our institutional database. The primary objective was overall survival (OS). Secondary endpoints included prognostic factors for early death (< 6 months after re-RT) and predictors of radiation necrosis (RN). RESULTS For the 79 patients identified, the median OS after re-RT was 9.9 months (95% CI 8.3-11.6). On multivariate analyses, re-resection at progression (HR 0.56, p = 0.027), interval from primary treatment to first progression ≥ 16.3 months (HR 0.61, p = 0.034), interval from primary treatment to re-RT ≥ 23.9 months (HR 0.35, p < 0.001), and re-RT PTV volume < 112 cc (HR 0.27, p < 0.001) were prognostic for improved OS. Patients who had unmethylated-MGMT tumours (OR 12.4, p = 0.034), ≥ 3 prior systemic treatment lines (OR 29.1, p = 0.022), interval to re-RT < 23.9 months (OR 9.0, p = 0.039), and re-RT PTV volume ≥ 112 cc (OR 17.8, p = 0.003) were more likely to die within 6 months of re-RT. The cumulative incidence of RN was 11.4% (95% CI 4.3-18.5) at 12 months. Concurrent bevacizumab use (HR < 0.001, p < 0.001) and cumulative equivalent dose in 2 Gy fractions (EQD2, α/β = 2) < 99 Gy2 (HR < 0.001, p < 0.001) were independent protective factors against RN. Re-RT allowed for less corticosteroid dependency. Sixty-six percent of failures after re-RT were in-field. CONCLUSION We observe favorable OS rates following re-RT and identified prognostic factors, including methylation status, that can assist in patient selection and clinical trial design. Concurrent use of bevacizumab mitigated the risk of RN.
Collapse
Affiliation(s)
- Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Michael Wang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - James Perry
- Division of Neurology, Department of Medicine Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Chris Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
15
|
Dean JA, Tanguturi SK, Cagney D, Shin KY, Youssef G, Aizer A, Rahman R, Hammoudeh L, Reardon D, Lee E, Dietrich J, Tamura K, Aoyagi M, Wickersham L, Wen PY, Catalano P, Haas-Kogan D, Alexander BM, Michor F. Phase I study of a novel glioblastoma radiation therapy schedule exploiting cell-state plasticity. Neuro Oncol 2023; 25:1100-1112. [PMID: 36402744 PMCID: PMC10237407 DOI: 10.1093/neuonc/noac253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND Glioblastomas comprise heterogeneous cell populations with dynamic, bidirectional plasticity between treatment-resistant stem-like and treatment-sensitive differentiated states, with treatment influencing this process. However, current treatment protocols do not account for this plasticity. Previously, we generated a mathematical model based on preclinical experiments to describe this process and optimize a radiation therapy fractionation schedule that substantially increased survival relative to standard fractionation in a murine glioblastoma model. METHODS We developed statistical models to predict the survival benefit of interventions to glioblastoma patients based on the corresponding survival benefit in the mouse model used in our preclinical study. We applied our mathematical model of glioblastoma radiation response to optimize a radiation therapy fractionation schedule for patients undergoing re-irradiation for glioblastoma and developed a first-in-human trial (NCT03557372) to assess the feasibility and safety of administering our schedule. RESULTS Our statistical modeling predicted that the hazard ratio when comparing our novel radiation schedule with a standard schedule would be 0.74. Our mathematical modeling suggested that a practical, near-optimal schedule for re-irradiation of recurrent glioblastoma patients was 3.96 Gy × 7 (1 fraction/day) followed by 1.0 Gy × 9 (3 fractions/day). Our optimized schedule was successfully administered to 14/14 (100%) patients. CONCLUSIONS A novel radiation therapy schedule based on mathematical modeling of cell-state plasticity is feasible and safe to administer to glioblastoma patients.
Collapse
Affiliation(s)
- Jamie A Dean
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Shyam K Tanguturi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Cagney
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kee-Young Shin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayal Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Lubna Hammoudeh
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - David Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eudocia Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jorg Dietrich
- Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaru Aoyagi
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lacey Wickersham
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Catalano
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M Alexander
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Ludwig Center at Harvard, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Mohamed Yoosuf AB, Ajmal Khan M, Abdul Aziz MZ, Mansor S, Appalanaido GK, Alshehri S, Alqathami M. Re-irradiation Using Stereotactic Radiotherapy: A Bibliometric Analysis of Research Trends. Cureus 2023; 15:e39600. [PMID: 37384098 PMCID: PMC10297819 DOI: 10.7759/cureus.39600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2023] [Indexed: 06/30/2023] Open
Abstract
The objective of this research is to conduct a comprehensive bibliometric analysis using the Web of Science Core Collection (WoSCC) to examine the current research topics and trends pertaining to stereotactic-based re-irradiation. A bibliometric search was conducted for re-irradiation-related literature published in English from the WoSCC database from 1991 to 2022, using VOSviewer to visualize the results. The extracted information comprises the publication year, overall citation count, average citation rate, keywords, and research domains. We conducted a literature review to identify trends in research on re-irradiation. A total of 19,891 citations were found in 924 qualifying papers that came from 48 different nations. The number of publications and citations has grown steadily since 2008 with the highest number of publications in the year 2018. Similarly, a substantial increase in the number of citations has increased since 2004 and the citation growth rate has been positive between 2004 and 2019 with a peak in 2013. The top authorship patterns were six authors (111 publications and 2498 citations), whereas the highest number of citations per publication was attained with an authorship pattern of 17 authors (C/P = 41.1). The collaboration patterns analysis showed that the largest proportion of publications emanated from the United States with 363 publications (30.9%), followed by Germany with 102 publications (8.7%), and France with 92 publications (7.8%). The majority of the analyzed studies were focused on the brain (30%), head and neck (13%), lung (12%), and spine (10%) and there have been emerging studies on the use of re-irradiation for lung, prostate, pelvic and liver utilizing stereotactic radiotherapy. The main areas of interest have changed over time and are now based on a multidisciplinary approach that integrates advanced imaging techniques, stereotactic treatment delivery, the toxicity of organs at risk, quality of life, and treatment outcomes.
Collapse
Affiliation(s)
- Ahamed Badusha Mohamed Yoosuf
- Oncology, King Abdullah International Medical Research Center, Riyadh, SAU
- Department of Radiation Oncology, Ministry of National Guard-Health Affairs, Riyadh, SAU
| | - Muhammad Ajmal Khan
- Library and Health Science, Imam Abdulrehman Bin Faisal University, Dammam, SAU
| | - Mohd Zahri Abdul Aziz
- Advanced Management of Liver Malignancies Program, Universiti Sains Malaysia/Advanced Medical and Dental Institute, Penang, MYS
| | - Syahir Mansor
- Advanced Management of Liver Malignancies Program, Universiti Sains Malaysia/Advanced Medical and Dental Institute, Penang, MYS
- Nuclear Medicine Unit, Pusat Perubatan Universiti Sains Malaysia/Advanced Medical and Dental Institute, Penang, MYS
| | - Gokula Kumar Appalanaido
- Advanced Management of Liver Malignancies Program, Universiti Sains Malaysia/Advanced Medical and Dental Institute, Penang, MYS
- Radiotherapy Unit, Pusat Perubatan Universiti Sains Malaysia/Advanced Medical and Dental Institute, Penang, MYS
| | - Salem Alshehri
- Department of Radiation Oncology, Ministry of National Guard-Health Affairs, Riyadh, SAU
- Oncology, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Mamdouh Alqathami
- Department of Radiation Oncology, Ministry of National Guard-Health Affairs, Riyadh, SAU
- Oncology, King Abdullah International Medical Research Center, Riyadh, SAU
- Medical Physics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| |
Collapse
|
17
|
Yan M, Holden L, Detsky J, Tseng CL, Soliman H, Myrehaug S, Husain Z, Das S, Yeboah C, Lipsman N, Ruschin M, Sahgal A. Conventionally fully fractionated Gamma Knife Icon re-irradiation of primary recurrent intracranial tumors: the first report indicating feasibility and safety. J Neurosurg 2023; 138:674-682. [PMID: 35986735 DOI: 10.3171/2022.6.jns22998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE With the incorporation of real-time image guidance on the Gamma Knife system allowing for mask-based immobilization (Gamma Knife Icon [GKI]), conventionally fully fractionated (1.8-3.0 Gy/day) GKI radiation can now be delivered to take advantage of an inherently minimal margin for delivery uncertainty, sharp dose falloff, and inhomogeneous dose distribution. This case series details the authors' preliminary experience in re-irradiating 7 complex primary intracranial tumors, which were considered to have been previously maximally radiated and situated adjacent to critical organs at risk. METHODS The authors retrospectively reviewed all patients who received fractionated re-irradiation using GKI at the Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada, between 2016 and 2021. Patients with brain metastases, and those who received radiotherapy courses in 5 or fewer fractions, were excluded. All radiotherapy doses were converted to the equivalent total dose in 2-Gy fractions (EQD2), with the assumption of an α/β ratio of 2 for late normal tissue toxicity and 10 for the tumor. RESULTS A total of 7 patients were included in this case series. Three patients had recurrent meningiomas, as well as 1 patient each with ependymoma, intracranial sarcoma, pituitary macroadenoma, and papillary pineal tumor. Six patients had undergone prior linear accelerator-based conventional fractionated radiotherapy and 1 patient had undergone prior proton therapy. Patients were re-irradiated with a median (range) total dose of 50.4 (30-63.4) Gy delivered in a median (range) of 28 (10-38) fractions with GKI. The median (range) target volume was 6.58 (0.2-46.3) cm3. The median (range) cumulative mean EQD2 administered to the tumor was 121.1 (107.9-181.3) Gy, and the median (range) maximum point EQD2 administered to the brainstem, optic nerves, and optic chiasm were 91.6 (74.0-111.5) Gy, 58.9 (6.3-102.9) Gy, and 59.9 (36.7-127.3) Gy, respectively. At a median (range) follow-up of 15 (6-42) months, 6 of 7 patients were alive with 4 having locally controlled disease. Only 3 patients experienced treatment-related toxicities, which were self-limited. CONCLUSIONS Fractionated radiotherapy using GKI may be a safe and effective method for the re-irradiation of complex progressive primary intracranial tumors, where the aim is to minimize the potential for serious late effects.
Collapse
Affiliation(s)
- Michael Yan
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Lori Holden
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Jay Detsky
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Chia-Lin Tseng
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Hany Soliman
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Sten Myrehaug
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Zain Husain
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Sunit Das
- 2Division of Neurosurgery, St. Michael's Hospital
| | - Collins Yeboah
- 3Department of Medical Physics, Sunnybrook Health Sciences Centre; and
| | - Nir Lipsman
- 4Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Mark Ruschin
- 3Department of Medical Physics, Sunnybrook Health Sciences Centre; and
| | - Arjun Sahgal
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| |
Collapse
|
18
|
Bell JB, Jin W, Goryawala MZ, Azzam GA, Abramowitz MC, Diwanji T, Ivan ME, del Pilar Guillermo Prieto Eibl M, de la Fuente MI, Mellon EA. Delineation of recurrent glioblastoma by whole brain spectroscopic magnetic resonance imaging. Radiat Oncol 2023; 18:37. [PMID: 36814267 PMCID: PMC9948314 DOI: 10.1186/s13014-023-02219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) cellularity correlates with whole brain spectroscopic MRI (sMRI) generated relative choline to N-Acetyl-Aspartate ratio (rChoNAA) mapping. In recurrent GBM (rGBM), tumor volume (TV) delineation is challenging and rChoNAA maps may assist with re-RT targeting. METHODS Fourteen rGBM patients underwent sMRI in a prospective study. Whole brain sMRI was performed to generate rChoNAA maps. TVs were delineated by the union of rChoNAA ratio over 2 (rChoNAA > 2) on sMRI and T1PC. rChoNAA > 2 volumes were compared with multiparametric MRI sequences including T1PC, T2/FLAIR, diffusion-restriction on apparent diffusion coefficient (ADC) maps, and perfusion relative cerebral blood volume (rCBV). RESULTS rChoNAA > 2 (mean 27.6 cc, range 6.6-79.1 cc) was different from other imaging modalities (P ≤ 0.05). Mean T1PC volumes were 10.7 cc (range 1.2-31.4 cc). The mean non-overlapping volume of rChoNAA > 2 and T1PC was 29.2 cm3. rChoNAA > 2 was 287% larger (range 23% smaller-873% larger) than T1PC. T2/FLAIR volumes (mean 111.7 cc, range 19.0-232.7 cc) were much larger than other modalities. rCBV volumes (mean 6.2 cc, range 0.2-19.1 cc) and ADC volumes were tiny (mean 0.8 cc, range 0-3.7 cc). Eight in-field failures were observed. Three patients failed outside T1PC but within rChoNAA > 2. No grade 3 toxicities attributable to re-RT were observed. Median progression-free and overall survival for re-RT patients were 6.5 and 7.1 months, respectively. CONCLUSIONS Treatment of rGBM may be optimized by sMRI, and failure patterns suggest benefit for dose-escalation within sMRI-delineated volumes. Dose-escalation and radiologic-pathologic studies are underway to confirm the utility of sMRI in rGBM.
Collapse
Affiliation(s)
- Jonathan B. Bell
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - William Jin
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Mohammed Z. Goryawala
- grid.26790.3a0000 0004 1936 8606Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Gregory A. Azzam
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Matthew C. Abramowitz
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Tejan Diwanji
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Michael E. Ivan
- grid.26790.3a0000 0004 1936 8606Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Maria del Pilar Guillermo Prieto Eibl
- grid.26790.3a0000 0004 1936 8606Department of Neurology and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Macarena I. de la Fuente
- grid.26790.3a0000 0004 1936 8606Department of Neurology and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Eric A. Mellon
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1475 NW 12th Ave, Miami, FL 33136 USA
| |
Collapse
|
19
|
Salans M, Houri J, Karunamuni R, Hopper A, Delfanti R, Seibert TM, Bahrami N, Sharifzadeh Y, McDonald C, Dale A, Moiseenko V, Farid N, Hattangadi-Gluth JA. The relationship between radiation dose and bevacizumab-related imaging abnormality in patients with brain tumors: A voxel-wise normal tissue complication probability (NTCP) analysis. PLoS One 2023; 18:e0279812. [PMID: 36800342 PMCID: PMC9937457 DOI: 10.1371/journal.pone.0279812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Bevacizumab-related imaging abnormality (BRIA), appearing as areas of restricted diffusion on magnetic resonance imaging (MRI) and representing atypical coagulative necrosis pathologically, has been observed in patients with brain tumors receiving radiotherapy and bevacizumab. We investigated the role of cumulative radiation dose in BRIA development in a voxel-wise analysis. METHODS Patients (n = 18) with BRIA were identified. All had high-grade gliomas or brain metastases treated with radiotherapy and bevacizumab. Areas of BRIA were segmented semi-automatically on diffusion-weighted MRI with apparent diffusion coefficient (ADC) images. To avoid confounding by possible tumor, hypoperfusion was confirmed with perfusion imaging. ADC images and radiation dose maps were co-registered to a high-resolution T1-weighted MRI and registration accuracy was verified. Voxel-wise normal tissue complication probability analyses were performed using a logistic model analyzing the relationship between cumulative voxel equivalent total dose in 2 Gy fractions (EQD2) and BRIA development at each voxel. Confidence intervals for regression model predictions were estimated with bootstrapping. RESULTS Among 18 patients, 39 brain tumors were treated. Patients received a median of 4.5 cycles of bevacizumab and 1-4 radiation courses prior to BRIA appearance. Most (64%) treated tumors overlapped with areas of BRIA. The median proportion of each BRIA region of interest volume overlapping with tumor was 98%. We found a dose-dependent association between cumulative voxel EQD2 and the relative probability of BRIA (β0 = -5.1, β1 = 0.03 Gy-1, γ = 1.3). CONCLUSIONS BRIA is likely a radiation dose-dependent phenomenon in patients with brain tumors receiving bevacizumab and radiotherapy. The combination of radiation effects and tumor microenvironmental factors in potentiating BRIA in this population should be further investigated.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jordan Houri
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina, United States of America
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Austin Hopper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Rachel Delfanti
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Tyler M. Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Naeim Bahrami
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yasamin Sharifzadeh
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Jona A. Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
20
|
McGovern SL, Luo D, Johnson J, Nguyen K, Li J, McAleer MF, Yeboa D, Grosshans DR, Ghia AJ, Chung C, Bishop AJ, Song J, Thall PF, Brown PD, Mahajan A. A Prospective Study of Conventionally Fractionated Dose Constraints for Reirradiation of Primary Brain Tumors in Adults. Pract Radiat Oncol 2022; 13:231-238. [PMID: 36596356 DOI: 10.1016/j.prro.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Dose constraints for reirradiation of recurrent primary brain tumors are not well-established. This study was conducted to prospectively evaluate composite dose constraints for conventionally fractionated brain reirradiation. METHODS AND MATERIALS A single-institution, prospective study of adults with previously irradiated, recurrent brain tumors was performed. For 95% of patients, electronic dosimetry records from the first course of radiation (RT1) were obtained and deformed onto the simulation computed tomography for the second course of radiation (RT2). Conventionally fractionated treatment plans for RT2 were developed that met protocol-assigned dose constraints for RT2 alone and the composite dose of RT1 + RT2. Prospective composite dose constraints were based on histology, interval since RT1, and concurrent bevacizumab. Patients were followed with magnetic resonance imaging including spectroscopy and perfusion studies. Primary endpoint was the rate of symptomatic brain necrosis at 6 months after RT2. RESULTS Patients were enrolled from March 2017 to May 2018; 20 were evaluable. Eighteen had glioma, 1 had atypical choroid plexus papilloma, and 1 had hemangiopericytoma. Nineteen patients were treated with volumetric modulated arc therapy, and one was treated with protons. Median RT1 dose was 57 Gy (range, 50-60 Gy). Median RT1-RT2 interval was 49 months (range, 9-141 months). Median RT2 dose was 42.4 Gy (range, 36-60 Gy). Median planning target volume was 186 cc (range, 8-468 cc). Nineteen of 20 patients (95%) were free of grade 3+ central nervous system necrosis. One patient had grade 3+ necrosis 2 months after RT2; the patient recovered fully and lived another 18 months until dying of disease progression. Median overall survival from RT2 start for all patients was 13.3 months (95% credible interval, 6.3-20.7); for patients with glioblastoma, 11.5 months (95% credible interval, 6.1-20.1). CONCLUSIONS Brain reirradiation can be safely performed with conventionally fractionated regimens tailored to previous dose distributions. The prospective composite dose constraints described here are a starting point for future studies of conventionally fractionated reirradiation.
Collapse
Affiliation(s)
- Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Dershan Luo
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Johnson
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kham Nguyen
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary Frances McAleer
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debra Yeboa
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amol J Ghia
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caroline Chung
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew J Bishop
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juhee Song
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter F Thall
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Giakoumettis G, Mantzavinou A, Moschos G, Giakoumettis D, Capizzello A. Re-irradiation of Pediatric Medulloblastoma: A Case Report and Systematic Review. Cureus 2022; 14:e31585. [PMID: 36540431 PMCID: PMC9757891 DOI: 10.7759/cureus.31585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the optimal treatment given to children with medulloblastoma, many relapses are seen after combining treatments. Re-irradiation is part of salvage therapy for children who relapse and might provide long-term disease control. Nevertheless, it is challenging because there is a concern about exceeding radiation tolerances and late treatment toxicities. Re-irradiation is an option for many brain tumors, including medulloblastoma in children. This study presents a case of recurrent medulloblastoma treated with re-irradiation. A systematic review of the literature provided up-to-date data on the re-irradiation of medulloblastoma in children. This study aims to contribute to the scarce literature on the treatment strategy, which may help improve patients' outcomes.
Collapse
Affiliation(s)
| | - Artemis Mantzavinou
- Medicine, Barts and The London School of Medicine and Dentistry, London, GBR
| | - Georgios Moschos
- Department of Radiation Oncology, AHEPA University Hospital, Thessaloniki, GRC
| | | | - Antonio Capizzello
- Department of Radiation Oncology, AHEPA University Hospital, Thessaloniki, GRC
| |
Collapse
|
22
|
Ono T, Nemoto K. Re-Whole Brain Radiotherapy May Be One of the Treatment Choices for Symptomatic Brain Metastases Patients. Cancers (Basel) 2022; 14:cancers14215293. [PMID: 36358712 PMCID: PMC9657612 DOI: 10.3390/cancers14215293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 02/03/2023] Open
Abstract
Generally, patients with multiple brain metastases receive whole brain radiotherapy (WBRT). Although, more than 60% of patients show complete or partial responses, many experience recurrence. Therefore, some institutions consider re-WBRT administration; however, there is insufficient information regarding this. Therefore, we aimed to review re-WBRT administration among these patients. Although most patients did not live longer than 12 months, symptomatic improvement was sometimes observed, with tolerable acute toxicities. Therefore, re-WBRT may be a treatment option for patients with symptomatic recurrence of brain metastases. However, physicians should consider this treatment cautiously because there is insufficient data on late toxicity, including radiation necrosis, owing to poor prognosis. A better prognostic factor for survival following radiotherapy administration may be the time interval of > 9 months between the first WBRT and re-WBRT, but there is no evidence supporting that higher doses lead to prolonged survival, symptom improvement, and tumor control. Therefore, 20 Gy in 10 fractions or 18 Gy in five fractions may be a reasonable treatment method within the tolerable total biological effective dose 2 ≤ 150 Gy, considering the biologically effective dose for tumors and normal tissues.
Collapse
Affiliation(s)
- Takashi Ono
- Correspondence: ; Tel.: +81-23-628-5386; Fax: +81-23-628-5389
| | | |
Collapse
|
23
|
Ciammella P, Cozzi S, Botti A, Giaccherini L, Sghedoni R, Orlandi M, Napoli M, Pascarella R, Pisanello A, Russo M, Cavallieri F, Ruggieri MP, Cavuto S, Savoldi L, Iotti C, Iori M. Safety of Inhomogeneous Dose Distribution IMRT for High-Grade Glioma Reirradiation: A Prospective Phase I/II Trial (GLIORAD TRIAL). Cancers (Basel) 2022; 14:cancers14194604. [PMID: 36230525 PMCID: PMC9562035 DOI: 10.3390/cancers14194604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most frequent primary malignant brain tumor, and despite advances in imaging techniques and treatment options, the outcome remains poor and recurrence is inevitable. Salvage therapy presents a challenge, and re-irradiation can be a therapeutic option in recurrent GBM. The decision-making process for re-irradiation is a challenge for radiation oncologists due to the expected toxicity of a second course of radiotherapy and the limited radiation tolerance of normal tissue; nevertheless, it is being increasingly used, as several studies have demonstrated its feasibility. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation radiotherapy in recurrent GBM patients after conventional concurrent chemoradiation. Twelve patients were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose range of 30–50 Gy over 5 days using the IMRT (arc VMAT) technique using dose painting planning. The treatment was well tolerated. No toxicities greater than 3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively. Our phase I study demonstrated an acceptable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS. Abstract Glioblastoma multiforme (GBM) is the most aggressive astrocytic primary brain tumor, and concurrent temozolomide (TMZ) and radiotherapy (RT) followed by maintenance of adjuvant TMZ is the current standard of care. Despite advances in imaging techniques and multi-modal treatment options, the median overall survival (OS) remains poor. As an alternative to surgery, re-irradiation (re-RT) can be a therapeutic option in recurrent GBM. Re-irradiation for brain tumors is increasingly used today, and several studies have demonstrated its feasibility. Besides differing techniques, the published data include a wide range of doses, emphasizing that no standard approach exists. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation in recurrent GBM. From 2016 to 2019, 12 patients met the inclusion criteria and were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose of 30 Gy (up to 50 Gy) over 5 days using the IMRT (arc VMAT) technique. A dose painting by numbers (DPBN)/dose escalation plan were performed, and a continuous relation between the voxel intensity of the functional image set and the risk of recurrence in that voxel were used to define target and dose distribution. Re-irradiation was well tolerated in all treated patients. No toxicities greater than G3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively; 3-, 6-, and 12-month OS2 were 92%, 75%, and 42%, respectively; and 3-, 6-, and 12-month PFS2 were 83%, 42%, and 8%, respectively. Our work demonstrated a tolerable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS.
Collapse
Affiliation(s)
- Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-3297317608
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Lucia Giaccherini
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberto Sghedoni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Matteo Orlandi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Anna Pisanello
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Marco Russo
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Paola Ruggieri
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Silvio Cavuto
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luisa Savoldi
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
24
|
She L, Su L, Liu C. Bevacizumab combined with re-irradiation in recurrent glioblastoma. Front Oncol 2022; 12:961014. [PMID: 36046037 PMCID: PMC9423039 DOI: 10.3389/fonc.2022.961014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioblastoma is characterized by rich vasculature and abnormal vascular structure and function. Currently, there is no standard treatment for recurrent glioblastoma (rGBM). Bevacizumab (BEV) has established role of inhibiting neovascularization, alleviating hypoxia in the tumor area and activating the immune microenvironment. BEV may exert synergistic effects with re-irradiation (re-RT) to improve the tumor microenvironment for rGBM. Purpose The purpose of this study was to evaluate the safety, tolerability, and efficacy of a combination of BEV and re-RT for rGBM treatment. Methods In this retrospective study, a total of 26 rGBM patients with surgical pathologically confirmed glioblastoma and at least one event of recurrence were enrolled. All patients were treated with re-RT in combination with BEV. BEV was administered until progression or serious adverse events. Results Median follow-up was 21.9 months for all patients, whereas median progression-free survival (PFS) was 8.0 months (95% confidence interval [CI]: 6.5–9.5 months). In addition, the 6-month and 1-year PFS rates were 65.4% and 28.2%, respectively. The median overall survival (OS), 6-month OS rate, and 1-year OS rate were 13.6 months (95% CI: 10.2–17.0 months), 92.3%, and 67.5%, respectively. The patient showed good tolerance during the treatment with no grade > 3 grade side event and radiation necrosis occurrence rate of 0%. Combined treatment of gross total resection (GTR) before re-RT and concurrent temozolomide during re-RT was an independent prognostic factor that affected both OS and PFS in the whole cohort (OS: 0.067, 95% CI: 0.009–0.521, p = 0.010; PFS: 0.238, 95% CI: 0.076–0.744, p = 0.038). Conclusion In this study, re-RT combined with concurrent and maintenance BEV treatment was safe, tolerable, and effective in rGBM patients. Moreover, GTR before re-RT and selective concurrent temozolomide could further improve patient PFS and OS.
Collapse
Affiliation(s)
- Lei She
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Su
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
DEGRO practical guideline for central nervous system radiation necrosis part 1: classification and a multistep approach for diagnosis. Strahlenther Onkol 2022; 198:873-883. [PMID: 36038669 PMCID: PMC9515024 DOI: 10.1007/s00066-022-01994-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE The Working Group for Neuro-Oncology of the German Society for Radiation Oncology in cooperation with members of the Neuro-Oncology Working Group of the German Cancer Society aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). METHODS Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN including bevacizumab in clinical routine. CONCLUSION Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neuro-oncologist. A multistep approach as an opportunity to review as many characteristics as possible to improve diagnostic confidence is recommended. Additional information about radiotherapy (RT) techniques is crucial for the diagnosis of RN. Misdiagnosis of untreated and progressive RN can lead to severe neurological deficits. In this practice guideline, we propose a detailed nomenclature of treatment-related changes and a multistep approach for their diagnosis.
Collapse
|
26
|
Liu R, Luo H, Zhang Q, Sun S, Liu Z, Wang X, Geng Y, Zhao X. Bevacizumab is an effective treatment for symptomatic cerebral necrosis after carbon ion therapy for recurrent intracranial malignant tumours: A case report. Mol Clin Oncol 2022; 17:114. [PMID: 35747599 PMCID: PMC9204208 DOI: 10.3892/mco.2022.2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Carbon ion therapy (CIT) is a form of particle therapy, which not only spares normal tissues but may also improve local control of recurrent intracranial tumours. Cerebral radiation necrosis (RN) is one of the most serious adverse reactions of recurrent brain tumours following reirradiation, which may lead to neurological decline or even death. Bevacizumab is an anti-vascular endothelial growth factor antibody, which has been used to treat symptomatic RN. However, studies on bevacizumab for the treatment of CIT-induced RN are sparse. The present study described two cases that were successfully treated with bevacizumab for symptomatic RN following CIT for recurrent intracranial malignant tumours. The two recurrent intracranial malignant tumours, a chondrosarcoma in the right cavernous sinus and an anaplastic meningioma in the right frontal lobe, were enrolled in a clinical trial of CIT. Both cases were treated intravenously with bevacizumab when deterioration that appeared to be symptomatic brain RN was observed. Just before CIT, enhanced magnetic resonance imaging (MRI) was performed in each case to confirm tumour recurrence. Both cases exhibited a deterioration in symptoms, as well as on MRI, at 12-month intervals following CIT. The first case underwent positron emission tomography/computed tomography to confirm no increase in fluorodeoxyglucose uptake in lesion areas. Both cases were diagnosed as having symptomatic brain RN and began intravenous administration of four cycles of 5 mg/kg bevacizumab biweekly. The patients responded well, with rapid and marked improvements on MRI, and in clinical symptoms. No tumour progression was observed 24 months after CIT. In conclusion, bevacizumab was revealed to exert marked effects on symptomatic brain RN following CIT. Notably, cycles of bevacizumab should be administered specifically based on the aim of treating brain necrosis, and long-term or prophylactic applications are not recommended.
Collapse
Affiliation(s)
- Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xueshan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
27
|
Kutuk T, Tolakanahalli R, McAllister NC, Hall MD, Tom MC, Rubens M, Appel H, Gutierrez AN, Odia Y, Mohler A, Ahluwalia MS, Mehta MP, Kotecha R. Pulsed-Reduced Dose Rate (PRDR) Radiotherapy for Recurrent Primary Central Nervous System Malignancies: Dosimetric and Clinical Results. Cancers (Basel) 2022; 14:2946. [PMID: 35740612 PMCID: PMC9221236 DOI: 10.3390/cancers14122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The objective was to describe PRDR outcomes and report EQD2 OAR toxicity thresholds. METHODS Eighteen patients with recurrent primary CNS tumors treated with PRDR at a single institution between April 2017 and September 2021 were evaluated. The radiotherapy details, cumulative OAR doses, progression-free survival (PFS), overall survival (OS), and toxicities were collected. RESULTS The median PRDR dose was 45 Gy (range: 36-59.4 Gy); the median cumulative EQD2 prescription dose was 102.7 Gy (range: 93.8-120.4 Gy). The median cumulative EQD2 D0.03cc for the brain was 111.4 Gy (range: 82.4-175.2 Gy). Symptomatic radiation necrosis occurred in three patients, for which the median EQD2 brain D0.03cc was 115.9 Gy (110.4-156.7 Gy). The median PFS and OS after PRDR were 6.3 months (95%CI: 0.9-11.6 months) and 8.6 months (95%CI: 4.9-12.3 months), respectively. The systematic review identified five peer-reviewed studies with a median cumulative EQD2 prescription dose of 110.3 Gy. At a median follow-up of 8.7 months, the median PFS and OS were 5.7 months (95%CI: 2.1-15.4 months) and 6.7 months (95%CI: 3.2-14.2 months), respectively. CONCLUSION PRDR re-irradiation is a relatively safe and feasible treatment for recurrent primary CNS tumors. Despite high cumulative dose to OARs, the risk of high-grade, treatment-related toxicity within the first year of follow-up remains acceptable.
Collapse
Affiliation(s)
- Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nicole C. McAllister
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
| | - Matthew D. Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Martin C. Tom
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Muni Rubens
- Department of Clinical Informatics, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
| | - Haley Appel
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
| | - Alonso N. Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Yazmin Odia
- Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (Y.O.); (A.M.)
| | - Alexander Mohler
- Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (Y.O.); (A.M.)
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (T.K.); (R.T.); (N.C.M.); (M.D.H.); (M.C.T.); (H.A.); (A.N.G.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Translational Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
28
|
Initial results of a phase II trial of 18F-DOPA PET-guided re-irradiation for recurrent high-grade glioma. J Neurooncol 2022; 158:323-330. [PMID: 35583721 DOI: 10.1007/s11060-022-04011-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE In-field high-grade glioma (HGG) recurrence is a common challenge with limited treatment options, including re-irradiation. The radiotracer 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) crosses the blood brain barrier and demonstrates high uptake in tumor, but low uptake in normal tissue. This study investigated whether 18F-DOPA positron emission tomography (PET) and MRI guided re-irradiation for recurrent HGG may improve progression free survival (PFS). METHODS Adults with recurrent or progressive HGG previously treated with radiation were eligible. The primary endpoint was a 20% improvement from the historical control PFS at 3 months (PFS3) of 20% with systemic therapy alone. Re-RT dose was 35 Gy in 10 fractions. The target volume was MRI T1 contrast-enhancement defined tumor plus 18F-DOPA PET defined tumor. RESULTS Twenty patients completed treatment per protocol. Diagnosis was most commonly glioblastoma, IDH-wildtype (60%). MRI-defined volumes were expanded by a median 43% (0-436%) by utilizing 18F-DOPA PET. PFS3 was 85% (95% CI 63.2-95.8%), meeting the primary endpoint of PFS3 ≥ 40%. With 9.7 months median follow-up, 17 (85%) had progressed and 15 (75%) had died. Median OS from re-RT was 8.8 months. Failure following re-RT was within both the MRI and PET tumor volumes in 75%, MRI only in 13%, PET only in 0%, and neither in 13%. Four (20%) patients experienced grade 3 toxicity, including CNS necrosis (n = 2, both asymptomatic with bevacizumab initiation for radiographic findings), seizures (n = 1), fatigue (n = 1), and nausea (n = 1). No grade 4-5 toxicities were observed. CONCLUSION 18F-DOPA PET-guided re-irradiation for progressive high-grade glioma appears safe and promising for further investigation.
Collapse
|
29
|
Survival after reoperation for recurrent glioblastoma multiforme: A prospective study. Surg Oncol 2022; 42:101771. [DOI: 10.1016/j.suronc.2022.101771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/22/2022]
|
30
|
Relapsing High—Grade Glioma from Peritumoral Zone: Critical Review of Radiotherapy Treatment Options. Brain Sci 2022; 12:brainsci12040416. [PMID: 35447948 PMCID: PMC9027370 DOI: 10.3390/brainsci12040416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults, with a median survival of about 15 months. After the prior treatment, GBM tends to relapse within the high dose radiation field, defined as the peritumoral brain zone (PTZ), needing a second treatment. In the present review, the primary role of ionizing radiation in recurrent GBM is discussed, and the current literature knowledge about the different radiation modalities, doses and fractionation options at our disposal is summarized. Therefore, the focus is on the necessity of tailoring the treatment approach to every single patient and using radiomics and PET/MRI imaging to have a relatively good outcome and avoid severe toxicity. The use of charged particle therapy and radiosensitizers to overcome GBM radioresistance is considered, even if further studies are necessary to evaluate the effectiveness in the setting of reirradiation.
Collapse
|
31
|
Whole Blood Transcriptional Fingerprints of High-Grade Glioma and Longitudinal Tumor Evolution under Carbon Ion Radiotherapy. Cancers (Basel) 2022; 14:cancers14030684. [PMID: 35158950 PMCID: PMC8833402 DOI: 10.3390/cancers14030684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Particle therapy with carbon ions is a promising novel option for the treatment of recurrent high-grade glioma (rHGG). Lack of initial and sequential biopsies limits the investigation of rHGG evolution under therapy. We hypothesized that peripheral blood transcriptome derived from liquid biopsies (lbx) as a minimal invasive method may provide a useful decision support for identification of glioma grade and provide novel means for longitudinal molecular monitoring of tumor evolution under carbon ion irradiation (CIR). We demonstrate feasibility and report patient, tumor and treatment fingerprints in whole blood transcriptomes of rHGG patients with pre-CIR and three post-CIR time points. Abstract Purpose: To assess the value of whole blood transcriptome data from liquid biopsy (lbx) in recurrent high-grade glioma (rHGG) patients for longitudinal molecular monitoring of tumor evolution under carbon ion irradiation (CIR). Methods: Whole blood transcriptome (WBT) analysis (Illumina HumanHT-12 Expression BeadChips) was performed in 14 patients with rHGG pre re-irradiation (reRT) with CIR and 3, 6 and 9 weeks post-CIR (reRT grade III:5, 36%, IV:9, 64%). Patients were irradiated with 30, 33, 36 GyRBE (n = 5, 6, 3) in 3GyRBE per fraction. Results: WTB analysis showed stable correlation with treatment characteristics and patients tumor grade, indicating a preserved tumor origin specific as well as dynamic transcriptional fingerprints of peripheral blood cells. Initial histopathologic tumor grade was indirectly associated with TMEM173 (STING), DNA-repair (ATM, POLD4) and hypoxia related genes. DNA-repair, chromatin remodeling (LIG1, SMARCD1) and immune response (FLT3LG) pathways were affected post-CIR. Longitudinal WTB fingerprints identified two distinct trajectories of rHGG evolution, characterized by differential and prognostic CRISPLD2 expression pre-CIR. Conclusions: Lbx based WTB analysis holds the potential for molecular stratification of rHGG patients and therapy monitoring. We demonstrate the feasibility of the peripheral blood transcriptome as a sentinel organ for identification of patient, tumor characteristics and CIR specific fingerprints in rHGG.
Collapse
|
32
|
Pagett CJ, Lilley J, Lindsay R, Short S, Murray L. Optimising tumour coverage and organ at risk sparing for hypofractionated re-irradiation in glioblastoma. Phys Imaging Radiat Oncol 2022; 21:84-89. [PMID: 35243037 PMCID: PMC8881705 DOI: 10.1016/j.phro.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Re-irradiation may be used for recurrent glioblastoma (GBM) patients. In some cases Planning Target Volume (PTV) under-coverage is necessary to meet organ at risk (OAR) constraints. This study aimed to develop a Volumetric Modulated Arc Therapy planning solution for GBM re-irradiation including a means of assessing if target coverage would be achievable and how much PTV 'cropping' would be required to meet OAR constraints, based on PTV volume and OAR proximity. MATERIALS AND METHODS For 10 PTVs, 360°, 180°, two coplanar 180° and 180° + non-coplanar 45° arc arrangements were compared using 35 Gy in 10 fractions. Using the preferred arrangement, dose fall-off was modelled to determine the separation required between PTV and OAR to ensure OAR dose constraints were met, with data presented graphically. To evaluate the graph as an aid to planning, seven cases with overlap were replanned in two treatment planning systems (TPSs). RESULTS There were no significant dosimetric differences between arc arrangements. 180° was preferred due to shorter treatment times. The graph, which indicated if 95% PTV coverage would be achievable based on PTV volume and OAR proximity, was employed in seven cases to guide planning in two TPSs. Plans were deliverable. CONCLUSIONS Re-irradiation treatment planning can be challenging, especially when PTV under-coverage is necessary. 180° was considered optimal. To assist in the planning process, graphical guidance was produced to inform planners whether PTV under-coverage would be necessary and how much PTV 'cropping' would be required to meet constraints during optimisation.
Collapse
Affiliation(s)
| | - John Lilley
- Leeds Teaching Hospitals NHS Trust, United Kingdom
| | | | - Susan Short
- Leeds Teaching Hospitals NHS Trust, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Louise Murray
- Leeds Teaching Hospitals NHS Trust, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
| |
Collapse
|
33
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
34
|
Li M, Song Y, Li L, Qin J, Deng H, Zhang T. Reirradiation of Whole Brain for Recurrent Brain Metastases: A Case Report of Lung Cancer With 12-Year Survival. Front Oncol 2021; 11:780581. [PMID: 34900735 PMCID: PMC8660684 DOI: 10.3389/fonc.2021.780581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
Whole brain radiotherapy (WBRT) for brain metastases (BMs) was considered to be dose limited. Reirradiation of WBRT for recurrent BM has always been challenged. Here, we report a patient with multiple BMs of non-small-cell lung cancer (NSCLC), who received two courses of WBRT at the interval of 5 years with the cumulative administration dose for whole brain as 70 Gy and a boost for the local site as 30 Gy. Furthermore, after experiencing relapse in the brain, he underwent extra gamma knife (GK) radiotherapy for local brain metastasis for the third time after 5 years. The overall survival was 12 years since he was initially diagnosed with NSCLC with multiple brain metastases. Meanwhile, each time of radiotherapy brought a good tumor response to brain metastasis. Outstandingly, during the whole survival, he had a good quality of life (QoL) with Karnofsky Performance Score (KPS) above 80. Even after the last GK was executed, he had just a mild neurocognitive defect. In conclusion, with the cautious evaluation of a patient, we suggest that reirradiation of WBRT could be a choice, and the cumulative radiation dose of the brain may be individually modified.
Collapse
Affiliation(s)
- Minmin Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanbo Song
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Qin
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbin Deng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Radiotherapy versus combination radiotherapy-bevacizumab for the treatment of recurrent high-grade glioma: a systematic review. Acta Neurochir (Wien) 2021; 163:1921-1934. [PMID: 33796887 PMCID: PMC8195900 DOI: 10.1007/s00701-021-04794-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Background High-grade gliomas (HGG) comprise the most common primary adult brain cancers and universally recur. Combination of re-irradiation therapy (reRT) and bevacizumab (BVZ) therapy for recurrent HGG is common, but its reported efficacy is mixed. Objective To assess clinical outcomes after reRT ± BVZ in recurrent HGG patients receiving stereotactic radiosurgery (SRS), hypofractionated radiosurgery (HFSRT), or fully fractionated radiotherapy (FFRT). Methods We performed a systematic review of PubMed, Web of Science, Scopus, Embase, and Cochrane databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We identified studies reporting outcomes for patients with recurrent HGG treated via reRT ± BVZ. Cohorts were stratified by BVZ treatment status and re-irradiation modality (SRS, HFSRT, and FFRT). Outcome variables were overall survival (OS), progression-free survival (PFS), and radiation necrosis (RN). Results Data on 1399 patients was analyzed, with 954 patients receiving reRT alone and 445 patients receiving reRT + BVZ. All patients initially underwent standard-of-care therapy for their primary HGG. In a multivariate analysis that adjusted for median patient age, WHO grade, RT dosing, reRT fractionation regimen, time between primary and re-irradiation, and re-irradiation target volume, BVZ therapy was associated with significantly improved OS (2.51, 95% CI [0.11, 4.92] months, P = .041) but no significant improvement in PFS (1.40, 95% CI [− 0.36, 3.18] months, P = .099). Patients receiving BVZ also had significantly lower rates of RN (2.2% vs 6.5%, P < .001). Conclusions Combination of reRT + BVZ may improve OS and reduce RN rates in recurrent HGG, but further controlled studies are needed to confirm these effects. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-021-04794-3.
Collapse
|
36
|
Kayalı FI, Habiboğlu R. CAN HYPOFRACTIONATED REIRRADIATION PLUS TEMOZOLAMIDE BE A WISE CHOICE FOR RECURRENT HIGH AND LOW GRADE BRAIN TUMORS? JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1935131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
De Maria L, Terzi di Bergamo L, Conti A, Hayashi K, Pinzi V, Murai T, Lanciano R, Burneikiene S, Buglione di Monale M, Magrini SM, Fontanella MM. CyberKnife for Recurrent Malignant Gliomas: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:652646. [PMID: 33854978 PMCID: PMC8039376 DOI: 10.3389/fonc.2021.652646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Possible treatment strategies for recurrent malignant gliomas include surgery, chemotherapy, radiotherapy, and combined treatments. Among different reirradiation modalities, the CyberKnife System has shown promising results. We conducted a systematic review of the literature and a meta-analysis to establish the efficacy and safety of CyberKnife treatment for recurrent malignant gliomas. METHODS We searched PubMed, MEDLINE, and EMBASE from 2000 to 2021 for studies evaluating the safety and efficacy of CyberKnife treatment for recurrent WHO grade III and grade IV gliomas of the brain. Two independent reviewers selected studies and abstracted data. Missing information was requested from the authors via email correspondence. The primary outcomes were median Overall Survival, median Time To Progression, and median Progression-Free Survival. We performed subgroup analyses regarding WHO grade and chemotherapy. Besides, we analyzed the relationship between median Time To Recurrence and median Overall Survival from CyberKnife treatment. The secondary outcomes were complications, local response, and recurrence. Data were analyzed using random-effects meta-analysis. RESULTS Thirteen studies reporting on 398 patients were included. Median Overall Survival from initial diagnosis and CyberKnife treatment was 22.6 months and 8.6 months. Median Time To Progression and median Progression-Free Survival from CyberKnife treatment were 6.7 months and 7.1 months. Median Overall Survival from CyberKnife treatment was 8.4 months for WHO grade IV gliomas, compared to 11 months for WHO grade III gliomas. Median Overall Survival from CyberKnife treatment was 4.4 months for patients who underwent CyberKnife treatment alone, compared to 9.5 months for patients who underwent CyberKnife treatment plus chemotherapy. We did not observe a correlation between median Time To Recurrence and median Overall Survival from CyberKnife. Rates of acute neurological and acute non-neurological side effects were 3.6% and 13%. Rates of corticosteroid dependency and radiation necrosis were 18.8% and 4.3%. CONCLUSIONS Reirradiation of recurrent malignant gliomas with the CyberKnife System provides encouraging survival rates. There is a better survival trend for WHO grade III gliomas and for patients who undergo combined treatment with CyberKnife plus chemotherapy. Rates of complications are low. Larger prospective studies are warranted to provide more accurate results.
Collapse
Affiliation(s)
- Lucio De Maria
- Unit of Neurosurgery, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | | | - Alfredo Conti
- Unit of Neurosurgery, Alma Mater Studiorum University of Bologna and IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Kazuhiko Hayashi
- Unit of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Valentina Pinzi
- Unit of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Taro Murai
- Unit of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | - Stefano Maria Magrini
- Unit of Radiation Oncology, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | | |
Collapse
|
38
|
Liao G, Khan M, Zhao Z, Arooj S, Yan M, Li X. Bevacizumab Treatment of Radiation-Induced Brain Necrosis: A Systematic Review. Front Oncol 2021; 11:593449. [PMID: 33842309 PMCID: PMC8027305 DOI: 10.3389/fonc.2021.593449] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Radiation brain necrosis (RBN) is a serious complication in patients receiving radiotherapy for intracranial disease. Many studies have investigated the efficacy and safety of bevacizumab in patients with RBN. In the present study, we systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab, as well as for studies comparing bevacizumab with corticosteroids. MATERIALS AND METHODS We searched PubMed, Cochrane library, EMBASE, and ClinicalTrials.gov from their inception through 1 March, 2020 for studies that evaluated the efficacy and safety of bevacizumab in patients with RBN. Two investigators independently performed the study selection, data extraction, and data synthesis. RESULTS Overall, the present systematic review included 12 studies (eight retrospective, two prospective, and two randomized control trials [RCTs]) involving 236 patients with RBN treated who were treated with bevacizumab. The two RCTs also had control arms comprising patients with RBN who were treated with corticosteroids/placebo (n=57). Radiographic responses were recorded in 84.7% (200/236) of patients, and radiographic progression was observed in 15.3% (36/236). Clinical improvement was observed in 91% (n=127) of responding patients among seven studies (n=113). All 12 studies reported volume reduction on T1 gadolinium enhancement MRI (median: 50%, range: 26%-80%) and/or T2 FLAIR MRI images (median: 59%, range: 48%-74%). In total, 46 responding patients (34%) had recurrence. The two RCTs revealed significantly improved radiographic response in patients treated with bevacizumab (Levin et al.: p = 0.0013; Xu et al.: p < 0.001). Both also showed clinical improvement (Levin et al.: NA; Xu et al.: p = 0.039) and significant reduction in edema volume on both T1 gadolinium enhancement MRI (Levin et al.: p=0.0058; Xu et al.: p=0.027) and T2 FLAIR MRI (Levin et al.: p=0.0149; Xu et al.: p < 0.001). Neurocognitive improvement was significantly better after 2 months of treatment in patients receiving bevacizumab than in those given corticosteroids, as assessed by the MoCA scale (p = 0.028). The recurrence rate and side effects of the treatments showed no significant differences. CONCLUSIONS Patients with RBN respond to bevacizumab, which can improve clinical outcomes and cognitive function. Bevacizumab appears to be more efficacious than corticosteroid-based treatment. The safety profile was comparable to that of the corticosteroids.
Collapse
Affiliation(s)
- Guixiang Liao
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Muhammad Khan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People’s Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Maosheng Yan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
39
|
Clinical outcome after CyberKnife® radiosurgery re-irradiation for recurrent brain metastases. Cancer Radiother 2021; 25:457-462. [PMID: 33752961 DOI: 10.1016/j.canrad.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE The objective of this study was to elucidate the impact on clinical outcomes resulting from re-irradiation for locally recurrent (LR) brain metastases (BM) using CyberKnife® stereotactic radiosurgery (SRS). MATERIALS AND METHODS Seventy-seven patients with 254 LR BM lesions treated using SRS re-irradiation between January 2014 and December 2018 were analysed in this retrospective study. The local control (LC), overall survival (OS) rates, and adverse events were assessed. The adverse events were classified according to the Common terminology for adverse event (CTCAE) v5.0. RESULTS The median follow-up duration was 8.9 months. The median age of the patients was 55 years (IQR: 47-62). The 3, 6, and 9-month LC and OS rates were 92.2%, 73.4%, and 73.4% and 79.2%, 61.0%, and 48.1%, respectively. On multivariate analysis the gender (male vs. female; HR, 1.79; 95% CI, 1.06-3.01; P=0.028), type of first brain radiation (WBI vs. SRS) followed by re-irradiation using SRS (HR, 9.32; 95% CI, 2.77-15.27; P<0.001) tumour volume (>12cc vs. ≤12cc; HR, 1.84; 95% CI, 1.10-3.11; P=0.02), and recursive partitioning analysis (RPA) (I vs. II & III; HR, 0.38; 95% CI, 0.19-0.70; P=0.001) were independent predictive factor for OS. Radionecrosis was reported in 3 patients. CONCLUSION With acceptable toxicity, SRS re-irradiation for LR BM showed a favourable rate for LC and OS and reported better OS for the female gender, a patient undergoing first brain radiation with SRS, tumour volume ≤12cc, and RPA-I. This result needs to be further evaluated in future clinical studies.
Collapse
|
40
|
Stiefel I, Schröder C, Tanadini-Lang S, Pytko I, Vu E, Klement R, Guckenberger M, Andratschke N. High-dose re-irradiation of intracranial lesions - Efficacy and safety including dosimetric analysis based on accumulated EQD2Gy dose EQD calculation. Clin Transl Radiat Oncol 2021; 27:132-138. [PMID: 33659717 PMCID: PMC7890358 DOI: 10.1016/j.ctro.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/05/2023] Open
Abstract
Re-irradiation of the brain is feasible with an encouraging overall survival. Treatment related toxicity was low within the reported dose range. EQD2 cumulative dose distributions were calculated using rigid registration. Dose-Response-Modelling with logistic regression showed a correlation of the D1cc brain with any grade of acute toxicity.
Introduction The use of cranial re-irradiation is growing with improving overall survival and the advent of high-precision radiotherapy techniques. Still the value of re-irradiation needs careful evaluation regarding safety and efficacy. We analyzed dosimetric and clinical data of patients receiving cranial re-irradiation using EQD2 sum plans. Methods and material We retrospectively analyzed the data of 76 patients who received repeated cranial radiotherapy from 02/2013 to 09/2016. 34 patients suffered from recurrent primary brain tumors, 42 from brain metastases. Dosimetric analysis was performed accumulating EQD2 dose distributions based on rigid image registration. Clinical and radiological data was collected at follow-ups including toxicity, local control and overall survival. Results In total 76 patients had at least 2 courses of intracranial radiotherapy. The median accumulated prescription EQD2 dose was 96.5 Gy2 for all radiation courses combined. The median D(0.1 cc) of the brain for patients receiving more than 100 Gy2 was 114 Gy2 with a highest dose of 161.5 Gy2. 74% of patients suffered from low grade (G1–G2) acute toxicity, only two high grade (>G3) toxicities were recorded. Median overall survival from the time of first re-irradiation was 57 weeks (range 4–186 weeks). The median time to local failure for patients with a primary brain tumor was not reached and 24 weeks (range 1–77 weeks) for patients with brain metastases. Conclusion Repeated radiotherapy appears both safe and efficient in patients with recurrent primary or secondary brain tumors with doses to the brain up to 120 Gy2 EQD2, doses below 100 Gy2 for brainstem and doses below 75 Gy2 EQD2 to chiasm and optic nerves.
Collapse
Affiliation(s)
- I. Stiefel
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - C. Schröder
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer-Institut, Villigen, Switzerland
| | - S. Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - I. Pytko
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - E. Vu
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - R.J. Klement
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany
- University of Zurich, Zurich, Switzerland
| | - M. Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - N. Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Corresponding author at: Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
41
|
Gordon K, Gulidov I, Gogolin D, Lepilina O, Golovanova O, Semenov A, Dujenko S, Medvedeva K, Koryakin S, Ivanov S, Kaprin A. A Clinical Case of 5 Times Irradiated Recurrent Orbital Hemangiopericytoma. Case Rep Oncol 2021; 14:78-84. [PMID: 33776686 PMCID: PMC7983647 DOI: 10.1159/000513030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022] Open
Abstract
Orbital hemangiopericytomas (HPCs) are rare mesenchymal tumors with a high tendency to recur. Treatment options are quite limited in case of a relapse, but re-irradiation can be useful. Most of the available data limit the possibility of re-irradiation, while novel techniques (e.g., pencil beam proton therapy [PT]) open new approaches for the safe repeating of treatment. To the best of our knowledge, this is the first well-documented case of multi-times (>3) irradiation of tumors located intracranially. The case reported here describes orbital HPCs with proton irradiation performed two times since 1999 in a 30-year-old woman with a medical history as well as surgery followed by conventional radiotherapy (RT) and chemotherapy, and two times stereotactic RT (in 2009 and 2013). In 2016 the patient came to our hospital with the 3rd relapse of the tumor, located in the left orbit, with an intracranial part, involving cavernous sinus, which was close to the temporal lobe. The 4th course of irradiation was done in May to June 2016 by pencil beam PT. Radiation necrosis occurred after 2 years and was treated with bevacizumab (BVZ). Three years later, another relapse was treated with PT and BVZ. The 9-month follow-up showed complete tumor response without signs of brain toxicity. The patient died due to a brain abscess 1 year after the 5th irradiation. This case shows a possibility of irradiation, applied 5 times to the same location, with promising results and manageable toxicity.
Collapse
Affiliation(s)
- Konstantin Gordon
- Department of Proton Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Igor Gulidov
- Department of Proton Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Danil Gogolin
- Department of Proton Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Olga Lepilina
- Department of Dosimetry, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Olga Golovanova
- Department of Radiophysics, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Alexey Semenov
- Department of Proton Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Sergey Dujenko
- Department of Radiophysics, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Kira Medvedeva
- Department of Proton Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Sergey Koryakin
- Department of Radiophysics, A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center, Obninsk, Russian Federation
| | - Andrey Kaprin
- National Medical Research Radiological Center, Moscow, Russian Federation
| |
Collapse
|
42
|
Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021; 16:36. [PMID: 33602305 PMCID: PMC7890828 DOI: 10.1186/s13014-021-01767-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Despite aggressive management consisting of maximal safe surgical resection followed by external beam radiation therapy (60 Gy/30 fractions) with concomitant and adjuvant temozolomide, approximately 90% of WHO grade IV gliomas (glioblastomas, GBM) will recur locally within 2 years. For patients with recurrent GBM, no standard of care exists. Thanks to the continuous improvement in radiation science and technology, reirradiation has emerged as feasible approach for patients with brain tumors. Using stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT), either hypofractionated or conventionally fractionated schedules, several studies have suggested survival benefits following reirradiation of patients with recurrent GBM; however, there are still questions to be answered about the efficacy and toxicity associated with a second course of radiation. We provide a clinical overview on current status and recent advances in reirradiation of GBM, addressing relevant clinical questions such as the appropriate patient selection and radiation technique, optimal dose fractionation, reirradiation tolerance of the brain and the risk of radiation necrosis.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, VR, Italy
| | - Piera Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, MI, Italy
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
43
|
Gupta T, Maitre M, Maitre P, Goda JS, Krishnatry R, Chatterjee A, Moiyadi A, Shetty P, Epari S, Sahay A, Patil V, Jalali R. High-dose salvage re-irradiation for recurrent/progressive adult diffuse glioma: healing or hurting? Clin Transl Oncol 2021; 23:1358-1367. [PMID: 33528810 DOI: 10.1007/s12094-020-02526-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To report survival outcomes and identify prognostic factors of salvage re-irradiation (re-RT) in recurrent/progressive glioma. METHODS Medical records of patients treated with high-dose re-RT as part of multi-modality salvage therapy for recurrence/progression of adult diffuse glioma from 2010 to 2019 were analyzed retrospectively. RESULTS A total of 111 patients developing recurrent/progressive high-grade glioma after adequate upfront treatment at initial diagnosis were included. The first course of radiotherapy (RT) had been delivered to a median dose of 59.4 Gy with an inter-quartile range (IQR) of 54-60 Gy. Median time to recurrence/progression was 4.3 years (IQR = 2.3-7.4 years) while the median time to re-RT was 4.8 years (IQR = 3.6-7.9 years). Re-RT was delivered with intensity-modulated radiation therapy (IMRT) using 1.8 Gy/fraction to a median dose of 54 Gy (IQR = 50.4-55.8 Gy) for a cumulative median equivalent dose in 2-Gy fractions (EQD2) of 104.3 Gy (IQR = 102.6-109.4 Gy). At a median follow-up of 14 months after re-RT, the 1-year Kaplan-Meier estimates of post-re-RT progression-free survival (PFS) and overall survival (OS) were 42.8 and 61.8%, respectively. Univariate analysis identified histological grade at recurrence/progression; histological subtype; disease-free interval (DFI) and time interval between both courses of RT; performance status at re-RT; dose at re-RT and cumulative EQD2; isocitrate dehydrogenase (IDH) mutation; and O6-methyl-guanine DNA methyl transferase (MGMT) gene promoter methylation as significant prognostic factors. Preserved performance status, longer DFI, prolonged time interval between both courses of RT, and presence of IDH mutation were associated with significantly improved PFS on multi-variate analysis. However, only performance status retained independent prognostic significance for OS on multi-variate analysis. Post-treatment changes were seen in 33 (30%) patients on follow-up imaging, with higher cumulative dose (EQD2 ≥ 104.3 Gy) being associated with increased risk of post-re-RT pseudo-progression. CONCLUSION This clinical audit reports encouraging survival outcomes and identifies key prognostic factors associated with high-dose salvage re-RT in recurrent/progressive glioma.
Collapse
Affiliation(s)
- T Gupta
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India.
| | - M Maitre
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - P Maitre
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - J S Goda
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - R Krishnatry
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - A Chatterjee
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - A Moiyadi
- Department of Neuro-Surgical Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - P Shetty
- Department of Neuro-Surgical Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - S Epari
- Department of Pathology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - A Sahay
- Department of Pathology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - V Patil
- Department of Medical Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| | - R Jalali
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Kharghar, Navi Mumbai, 410210, India
| |
Collapse
|
44
|
Kuntz L, Noel G. [Repeated irradiation of brain metastases under stereotactic conditions: A review of the literature]. Cancer Radiother 2021; 25:390-399. [PMID: 33431294 DOI: 10.1016/j.canrad.2020.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
Stereotactic radiotherapy has become a standard in the management of patients with brain metastases; its main interest is to differ whole brain radiotherapy, provider of neurocognitive toxicity and to increase the rate of local control. The repetition of radiotherapy sessions under stereotactic conditions is not codified, neither on the number of technically and clinically possible sessions, nor on the maximum total number or volume of metastases to be treated. The purpose of this review is to analyse the data in the literature concerning repeated irradiations under stereotactic conditions. The second reirradiation in stereotactic condition shows satisfactory results in terms of overall survival, local control, and toxicity. However, we lack data for patients receiving more than two sessions of SRS as well as to define dose constraints to reirradiated healthy tissues. Prospective trials are still needed to validate the management of recurrent brain metastases after initial SRS.
Collapse
Affiliation(s)
- L Kuntz
- Département de radiothérapie, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - G Noel
- Département de radiothérapie, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France.
| |
Collapse
|
45
|
Scoccianti S, Perna M, Olmetto E, Delli Paoli C, Terziani F, Ciccone LP, Detti B, Greto D, Simontacchi G, Grassi R, Scoccimarro E, Bonomo P, Mangoni M, Desideri I, Di Cataldo V, Vernaleone M, Casati M, Pallotta S, Livi L. Local treatment for relapsing glioblastoma: A decision-making tree for choosing between reirradiation and second surgery. Crit Rev Oncol Hematol 2020; 157:103184. [PMID: 33307416 DOI: 10.1016/j.critrevonc.2020.103184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
In case of circumscribed recurrent glioblastoma (rec-GBM), a second surgery (Re-S) and reirradiation (Re-RT) are local strategies to consider. The aim is to provide an algorithm to use in the daily clinical practice. The first step is to consider the life expectancy in order to establish whether the patient should be a candidate for active treatment. In case of a relatively good life expectancy (>3 months) and a confirmed circumscribed disease(i.e. without multiple lesions that are in different lobes/hemispheres), the next step is the assessment of the prognostic factors for local treatments. Based on the existing prognostic score systems, patients who should be excluded from local treatments may be identified; based on the validated prognostic factors, one or the other local treatment may be preferred. The last point is the estimation of expected toxicity, considering patient-related, tumor-related and treatment-related factors impacting on side effects. Lastly, patients with very good prognostic factors may be considered for receiving a combined treatment.
Collapse
Affiliation(s)
- Silvia Scoccianti
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy.
| | - Marco Perna
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Emanuela Olmetto
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Camilla Delli Paoli
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Francesca Terziani
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Lucia Pia Ciccone
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Beatrice Detti
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Daniela Greto
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Gabriele Simontacchi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Roberta Grassi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Erika Scoccimarro
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Monica Mangoni
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Isacco Desideri
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Vanessa Di Cataldo
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Marco Vernaleone
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Marta Casati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Physics Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Stefania Pallotta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Physics Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Arpa D, Parisi E, Ghigi G, Savini A, Colangione SP, Tontini L, Pieri M, Foca F, Polico R, Tesei A, Sarnelli A, Romeo A. Re-irradiation of recurrent glioblastoma using helical TomoTherapy with simultaneous integrated boost: preliminary considerations of treatment efficacy. Sci Rep 2020; 10:19321. [PMID: 33168845 PMCID: PMC7653937 DOI: 10.1038/s41598-020-75671-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Although there is still no standard treatment for recurrent glioblastoma multiforme (rGBM), re-irradiation could be a therapeutic option. We retrospectively evaluated the efficacy and safety of re-irradiation using helical TomoTherapy (HT) with a simultaneous integrated boost (SIB) technique in patients with rGBM. 24 patients with rGBM underwent HT-SIB. A total dose of 20 Gy was prescribed to the Flair (fluid-attenuated inversion recovery) planning tumor volume (PTV) and 25 Gy to the PTV-boost (T1 MRI contrast enhanced area) in 5 daily fractions to the isodose of 67% (maximum dose within the PTV-boost was 37.5 Gy). Toxicity was evaluated by converting the 3D-dose distribution to the equivalent dose in 2 Gy fractions on a voxel-by-voxel basis. Median follow-up after re-irradiation was 27.8 months (range 1.6-88.5 months). Median progression-free survival (PFS) was 4 months (95% CI 2.0-7.9 months), while 6-month PFS was 41.7% (95% CI 22.2-60.1 months). Median overall survival following re-irradiation was 10.7 months (95% CI 7.4-16.1 months). There were no cases of re-operation due to early or late toxicity. Our preliminary results suggest that helical TomoTherapy with the proposed SIB technique is a safe and feasible treatment option for patients with rGBM, including those large disease volumes, reducing toxicity.
Collapse
Affiliation(s)
- Donatella Arpa
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Elisabetta Parisi
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Giulia Ghigi
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Alessandro Savini
- Medical Physics Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sarah Pia Colangione
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Luca Tontini
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Martina Pieri
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Rolando Polico
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Sarnelli
- Medical Physics Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonino Romeo
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
47
|
Coexistence of radiation-induced glioma and acute pontine infarct 40 years after radiotherapy for glioma: A case report. Clin Imaging 2020; 67:194-197. [DOI: 10.1016/j.clinimag.2020.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022]
|
48
|
Armstrong S, Hoskin P. Complex Clinical Decision-Making Process of Re-Irradiation. Clin Oncol (R Coll Radiol) 2020; 32:688-703. [PMID: 32893056 DOI: 10.1016/j.clon.2020.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022]
Abstract
As patients live longer with their cancer as a result of more effective treatment, recurrences and second malignancies in a previously irradiated field are an increasing challenge. The technical advances that enable high-dose radiation to limited volumes, excluding critical normal tissues, have increased the use of re-irradiation for many tumour sites. Minimising the volume, selecting patients with good performance status, negative metastatic screening and longer disease-free intervals are important principles. Despite this there is a narrow therapeutic window, and careful consideration with open discussion, including the patient, of the probable benefit and the implications of potential toxicities will always be essential. In this overview we evaluate the various radiobiological factors that need to be considered for re-irradiation, tissue recovery and dose tolerances in the setting of re-irradiation and summarise the available literature to guide clinicians in their decision-making for re-irradiation to primary and metastatic site/s of disease.
Collapse
Affiliation(s)
| | - P Hoskin
- Mount Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
49
|
Minniti G, Paolini S, Rea MLJ, Isidori A, Scaringi C, Russo I, Osti MF, Cavallo L, Esposito V. Stereotactic reirradiation with temozolomide in patients with recurrent aggressive pituitary tumors and pituitary carcinomas. J Neurooncol 2020; 149:123-130. [PMID: 32632895 DOI: 10.1007/s11060-020-03579-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/29/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the efficacy of a second course of fractionated stereotactic radiotherapy (re-SRT) and temozolomide (TMZ) as salvage treatment option in patients with aggressive pituitary tumors (APTs) and pituitary carcinomas (PCs). PATIENTS AND METHODS Twenty-one patients with recurrent or progressive APTs (n = 17) and PCs (n = 4) who received combined TMZ and re-SRT, 36 Gy/18fractions or 37.5 Gy/15fractions, were retrospectively evaluated. TMZ was given at a dose of 75 mg/m2 given concurrently to re-SRT, and then 150-200 mg/m2/day for 5 days every 4 weeks or 50 mg/m2 daily for 12 months. Local control (LC) and overall survival (OS) were calculated from the time of re-SRT by Kaplan-Meier method. RESULTS With a median follow-up of 27 months (range 12-58 months), 2-year and 4-year LC rates were 73% and 65%, respectively; 2-year and 4-year survival rates were 82% and 66%, respectively. A complete response was achieved in 2 and partial response in 11 patients. Six patients recurred with a median time to progression of 14 months. O(6)-Methylguanine-DNA methyltransferase (MGMT) status and tumor volume emerged as prognostic factors. Grade 3 radiation-related toxicities occurred in 3 (14%) patients. Grade 2 or 3 hematologic toxicities during chemotherapy occurred in 8 (38%) patients. CONCLUSION Re-SRT and TMZ is a safe treatment offering high LC in patients with progressive APTs and PCs. The potential advantages of combined chemoradiation as up-front or salvage treatment need to be explored in prospective trials.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | | | - Marie Lise Jaffrain Rea
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Andrea Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Scaringi
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Ivana Russo
- UPMC Hillman Cancer Center, Villa Maria, Mirabella, AV, Italy
| | | | - Luigi Cavallo
- Division of Neurosurgery, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | |
Collapse
|
50
|
Cuccia F, Mortellaro G, Ognibene L, Craparo G, Lo Casto A, Ferrera G. Salvage Re-irradiation Options in Adult Medulloblastoma: A Case Report and Review of the Literature. In Vivo 2020; 34:1283-1288. [PMID: 32354920 DOI: 10.21873/invivo.11903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Medulloblastoma is a rare tumor of adult age, while it occurs more frequently in children. Given the rarity, there is a lack of evidence for the treatment of recurrent disease. Few data are available about salvage re-irradiation collecting very heterogeneous series. CASE REPORT A 51-year-old male presented with headache, nausea, double vision, and gait disorders. A contrast-enhanced brain-MRI showed the presence of multifocal medulloblastoma. After surgery, adjuvant craniospinal radiotherapy was performed, chemotherapy was stopped due to toxicity. After 27 months, a new MRI and a Methionine-PET revealed a late pontocerebellar relapse; multidisciplinary board decided for a SBRT treatment. The second course of RT was well tolerated and 14 months later, the patient is alive in good general conditions, with no evidence of disease. CONCLUSION Our experience supports the use of salvage stereotactic radiotherapy as a safe and effective treatment option.
Collapse
Affiliation(s)
- Francesco Cuccia
- Radiation Oncology School, University of Palermo, Palermo, Italy .,Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | | | - Lucia Ognibene
- Radiotherapy Unit, San Gaetano Radiotherapy and Nuclear Medicine Center, Palermo, Italy
| | | | - Antonio Lo Casto
- Radiation Oncology School, University of Palermo - Section of Radiology - Di.Bi.Med., Palermo, Italy
| | | |
Collapse
|