1
|
Corvino A, Schneider T, Vu-Bezin J, Loap P, Kirova Y, Prezado Y. Photon mini-GRID therapy for preoperative breast cancer tumor treatment: A treatment plan study. Med Phys 2025. [PMID: 39873910 DOI: 10.1002/mp.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Breast cancer is the leading cause of female cancer mortality worldwide, accounting for 1 in 6 cancer deaths. Surgery, radiation, and systemic therapy are the three pillars of breast cancer treatment, with several strategies developed to combine them. The association of preoperative radiotherapy with immunotherapy may improve breast cancer tumor control by exploiting the tumor radio-induced immune priming. However, this requires the use of hypofractionated radiotherapy (3 × 8 Gy), increasing the risk of toxicity. Mini-GRID therapy (mini-GRT) is an innovative form of spatially fractionated radiation therapy (SFRT) characterized by narrow beam widths between 1 to 2 mm that promises a significant increase in normal tissue dose tolerances and could thereby represent a new alternative for preoperative breast cancer treatment. Mini-GRT has been successfully implemented at the Hospital de Santiago de Compostela (Spain) with a flattening filter-free LINAC (megavoltage x-rays). PURPOSE In this dosimetry proof-of-concept study, we evaluate the feasibility of photon mini-GRT for preoperative breast cancer treatment. We also assess the clinical potential of mini-GRT and compare it with the current treatment standard of intensity-modulated radiotherapy (IMRT). METHODS Seven unbiased breast cancer dosimetries of patients treated with stereotactic body radiotherapy (SBRT) (3 × 8 Gy, IMRT) were selected for the study. Photon mini-GRT was compared with SBRT using three main criteria: (i) the dose to organs at risk (OARs), (ii) the dose constraints dictated by normal tissue tolerance, and (iii) the lateral penumbra in OARs. Tumor coverage was evaluated in terms of normalized total dose at 8 Gy-fractions. The optimized SBRT by IMRT was realized at the Institut Curie, Paris, France. The dose in mini-GRT was calculated by means of Monte Carlo simulations based on the mini-GRT implementation realized at the University Hospital in Santiago de Compostela. RESULTS Compared to SBRT plans, mini-GRT resulted in a reduction of the mean dose to the lungs, heart, chest wall, and lymph nodes in the studied cases by a factor ranging from 50% to 100%. Additionally, valley, mean, and peak doses to normal tissues meet the dose tolerance limits for the considered OARs, the most challenging of all being the skin. The mean dose to the skin was reduced (20%-60% less) for most of the studied cases. Mini-GRT also yielded sharper lateral penumbras in the skin and lungs (size reduced by at least 50%). Similar tumor integral doses were obtained for the two treatment modalities. CONCLUSION Mini-GRT with megavoltage x-rays is an innovative treatment approach already implemented in a clinical context. In this proof-of-concept study, we evaluated mini-GRT for partial breast cancer irradiation, demonstrating its potential for preoperative treatment thanks to the high skin and normal tissue-sparing capabilities. These initial results represent a first step towards clinical use and encourage further prospective clinical studies.
Collapse
Affiliation(s)
- Angela Corvino
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Tim Schneider
- Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Université Paris-Saclay, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Jeremi Vu-Bezin
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
- University Versailles St. Quentin, St. Quentin, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruna, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruna, Spain
| |
Collapse
|
2
|
Liu K, Titt U, Esplen N, Connell L, Konradsson E, Yang M, Wang X, Takaoka T, Li Z, Koong AC, Mitra D, Mohan R, Loo BW, Lin SH, Schüler E. Discordance in acute gastrointestinal toxicity between synchrotron-based proton and linac-based electron ultra-high dose rate irradiation. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00058-6. [PMID: 39862897 DOI: 10.1016/j.ijrobp.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs. spread-out-Bragg-peak [SOBP]) on acute radiation-induced gastrointestinal toxicity (RIGIT) in mice. We also compared RIGIT between synchrotron-based protons and linac-based electrons with matched mean dose rates. METHODS AND MATERIALS We administered abdominal irradiation (12-14 Gy single fraction) to female C57BL/6J mice with an 87 MeV synchrotron-based proton beamline (2 cm diameter field size as a lateral beam). Dose rates were 0.2 Gy/s (S-T pCONV), 0.3 Gy/s (SOBP pCONV), 150 Gy/s (S-T pFLASH), and 230 Gy/s (SOBP pFLASH). RIGIT was assessed by the jejunal regenerating crypt assay and survival. We also compared responses to proton [pFLASH and pCONV] with responses to electron CONV (eCONV, 0.4 Gy/s) and electron FLASH (eFLASH, 188-205 Gy/s). RESULTS The number of regenerating jejunal crypts at each matched dose was lowest for pFLASH (similar between S-T and SOBP), greater and similar between pCONV (S-T and SOBP) and eCONV, and greatest for eFLASH. Correspondingly, mice that received pFLASH SOBP had the lowest survival rates (50% at 50 days), followed by pFLASH S-T (80%), and pCONV SOBP (90%), but 100% of mice receiving pCONV S-T survived (log-rank P = 0.047 for the four groups). CONCLUSIONS Our findings are consistent with an increase in RIGIT after synchrotron-based pFLASH versus pCONV. This negative proton-specific FLASH effect versus linac-based electron irradiation underscores the importance of understanding the physical and biological factors that will allow safe and effective clinical translation.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nolan Esplen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luke Connell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Elise Konradsson
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ming Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Takeshi Takaoka
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Hitachi Particle Engineering and Services Inc., Houston, Texas, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Devarati Mitra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Steven H Lin
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
3
|
Manring HR, Fleming JL, Meng W, Gamez M, Blakaj DM, Chakravarti A. FLASH Radiotherapy: From In Vivo Data to Clinical Translation. Hematol Oncol Clin North Am 2025:S0889-8588(24)00153-9. [PMID: 39828472 DOI: 10.1016/j.hoc.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Delivery of radiotherapy (RT) at ultra-high dose rates or FLASH radiotherapy (FLASH-RT) is an emerging treatment option for patients with cancer that could increase survival outcomes and quality of life. In vivo data across a multitude of normal tissues and associated tumors have been published demonstrating the FLASH effect while bringing attention to the need for additional research. Combination of FLASH-RT with other treatment options including spatially fractionated RT, immunotherapy, and usage in the setting of reirradiation could also provide additional benefit. Phase I clinical trials have shown promising results, yet research is warranted before routine clinical use of FLASH-RT.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Wei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mauricio Gamez
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Dukagjin M Blakaj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
4
|
Wang Y, Qi SN, Bi N, Li YX. FLASH radiotherapy combined with immunotherapy: From biological mechanisms to blockbuster therapeutics. Transl Oncol 2025; 51:102183. [PMID: 39613524 PMCID: PMC11629542 DOI: 10.1016/j.tranon.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024] Open
Abstract
FLASH ultra-high dose rate radiotherapy (RT) can effectively exert the protective effect on normal tissue and reduce the risk of treatment-related toxicity, without compromising the killing effect on tumor tissue, resulting in a significant differential biological effect between tumor control and normal tissue damage, namely the FLASH effect. To date, the precise biological details of the FLASH effect remain uncertain. The currently mainstream mechanisms proposed by the academic community include the transient oxygen depletion hypothesis, free radical hypothesis, immune protection hypothesis, and DNA integrity hypothesis, which have attracted increasing attention in recent years. Based on these theoretical principles and numerous investigations on the FLASH effect in vivo and in vitro, the combined application of FLASH and immune checkpoint inhibitors (ICIs) has been considered synergistic and potentially practical. The primary underlying basis is that FLASH might actively preserve the number and function of circulating immune cells, thereby enhancing the efficacy of immune cell-mediated immunotherapy. Meanwhile, FLASH RT could activate the tumor immune microenvironment and transform "cold'' tumors into ''hot'' ones, consequently boosting local and systemic anti-tumor immunity and expanding the therapeutic benefits of ICIs. Moreover, FLASH might attenuate immunoinflammatory responses and minimize the incidence of radiation-related adverse events, allowing for the potentially safer and promising clinical application of combing FLASH RT with ICI therapy. Nevertheless, data on this treatment modality is currently lacking, and several barriers remain to be addressed, including the logistical bottlenecks, technical hurdles, limited availability, and unclear biological mechanisms. Further research is warranted in the future.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Shu-Nan Qi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
5
|
Wang Z, Zhou G, Zhang Y, Cao Z. Ultra-high dose rate (FLASH) radiotherapy: Revolutionizing tumor targeting and microenvironmental dynamics in cancer treatment. Chin Med J (Engl) 2024; 137:3148-3150. [PMID: 39609951 PMCID: PMC11706608 DOI: 10.1097/cm9.0000000000003369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- Zhiming Wang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Zhifei Cao
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
6
|
Akulinichev SV, Glukhov SI, Kuznetsova EA, Gavrilov YK, Kokontsev DA, Martynova VV, Merzlikin GV, Yakovlev IA. Manifestation of the FLASH effect in proton irradiation of embryos. Int J Radiat Biol 2024; 101:144-152. [PMID: 39625863 DOI: 10.1080/09553002.2024.2435338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 01/25/2025]
Abstract
PURPOSE In order to study the FLASH effect using live models, this work compared proton-induced damage to embryos (nine days after fertilization) and one-day-old chicks (18 days after fertilization) from irradiated at different dose rates eggs of Japanese quail (Coturnix coturnix japónica). MATERIALS AND METHODS Eggs were irradiated with protons in different modes depending on the dose rate: in a conventional mode (<1 Gy/s, CONV), in a flash mode (∼100 Gy/s, FLASH) and in a single-pulse flash mode (∼105 Gy/s SPLASH). RESULTS By the criteria of body weight and length, as well as the number of erythrocytes with micronuclei in nine-day-old embryos from eggs irradiated in the spread-out Bragg peak (SOBP) (8.5 Gy), FLASH and SPLASH modes were found to be less traumatic compared with the CONV mode. Among all irradiated embryos, the maximum body weight and length were observed in the SPLASH mode. The lowest death incidence and the smallest number of abnormal erythrocytes were recorded after FLASH and SPLASH irradiation. In chicks that hatched from eggs irradiated in the CONV mode, a tendency for an increase in the number of abnormal erythrocytes was observed. The speed of movement of chicks from FLASH- and SPLASH-irradiated eggs was comparable with that from unirradiated eggs, while chicks from eggs irradiated in the CONV mode were less active than all others. CONCLUSIONS The proton irradiation of eggs in SOBP using high dose-rate modes is less damaging for healthy tissues and for the development of embryos and chicks on the cellular, anatomical, and physiological levels.
Collapse
Affiliation(s)
- S V Akulinichev
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- B.V.Petrovsky National Research Center of Surgery, Moscow, Russia
| | - S I Glukhov
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - E A Kuznetsova
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - Yu K Gavrilov
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - D A Kokontsev
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - V V Martynova
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - G V Merzlikin
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - I A Yakovlev
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- B.V.Petrovsky National Research Center of Surgery, Moscow, Russia
| |
Collapse
|
7
|
Renard S, Parent L, de Marzi L, Tsoutsou P, Kirova Y. Electron radiation therapy: Back to the future? Cancer Radiother 2024; 28:553-559. [PMID: 39389842 DOI: 10.1016/j.canrad.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024]
Abstract
Electron radiotherapy has long been preferred to photons for the treatment of superficial lesions because of its physical characteristics (high dose at the surface, rapid decrease in depth). Other characteristics (penumbra, heterogeneity on an oblique or irregular surface) make them difficult to use. In most indications (skin cancers, head and neck, medulloblastoma), with technical progress, in some cases they have been replaced by intensity-modulated conformal radiotherapy, brachytherapy and contact therapy. Other indications (drainage of mesotheliomas or irradiation of benign lesions) have disappeared. The low frequency of use leads to problems of safety and cost-effectiveness. However, modern photon radiotherapy techniques are still less effective than electrons in specific indications such as total skin irradiation (mycosis fungoides) or certain thin chest wall irradiations after total mastectomy, reirradiation or paediatric treatments without protons. Flash therapy, initiated by electrons, has been developed over the last 10 years, providing high-dose irradiation in an extremely short time. Initial results show good efficacy, with fewer side effects than with conventional radiotherapy. These results are leading to clinical technological developments on a larger scale. Although it has been replaced in most indications by more modern techniques, electron radiotherapy remains essential for targeted indications in specialised centres. The emergence of flash therapy will lead to new indications, on machines equipped with this new technology, which have yet to be defined and are currently the responsibility of specialised teams.
Collapse
Affiliation(s)
- Sophie Renard
- Department of Radiation Oncology, Institut de cancérologie de Lorraine, 6, avenue de Bourgogne, 54500 Vandœuvre-lès-Nancy, France.
| | - Laure Parent
- Medical Physics Department, Oncopole Claudius-Regaud, Institut universitaire du cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Ludovic de Marzi
- Radiation Oncology Department, institut Curie, université PSL, université Paris Saclay, Inserm Lito U1288, campus universitaire, bâtiment 101, 91898 Orsay, France
| | - Pelagia Tsoutsou
- Department of Radiation Oncology, Hôpitaux universitaires de Genève (HUG), faculté de médecine, université de Genève, avenue de la Roseraie 53, 1205 Geneva, Switzerland
| | - Youlia Kirova
- Department of Radiation Oncology, institut Curie, 26, rue d'Ulm, 75005 Paris, France; Université Versailles-Saint-Quentin, 78000 Versailles, France
| |
Collapse
|
8
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Liu K, Titt U, Esplen N, Connell L, Konradsson E, Yang M, Wang X, Takaoka T, Li Z, Koong AC, Mitra D, Mohan R, Loo BW, Lin SH, Schüler E. Discordance in acute gastrointestinal toxicity between synchrotron-based proton and linac-based electron ultra-high dose rate irradiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611307. [PMID: 39282305 PMCID: PMC11398481 DOI: 10.1101/2024.09.04.611307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Purpose Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs. spread-out-Bragg-peak [SOBP]) on acute radiation-induced gastrointestinal toxicity (RIGIT) in mice. We also compared RIGIT between synchrotron-based protons and linac-based electrons with matched mean dose rates. Methods and Materials We administered abdominal irradiation (12-14 Gy single fraction) to female C57BL/6J mice with an 87 MeV synchrotron-based proton beamline (2 cm diameter field size as a lateral beam). Dose rates were 0.2 Gy/s (S-T pCONV), 0.3 Gy/s (SOBP pCONV), 150 Gy/s (S-T pFLASH), and 230 Gy/s (SOBP pFLASH). RIGIT was assessed by the jejunal regenerating crypt assay and survival. We also compared responses to proton [pFLASH and pCONV] with responses to electron CONV (eCONV, 0.4 Gy/s) and electron FLASH (eFLASH, 188-205 Gy/s). Results The number of regenerating jejunal crypts at each matched dose was lowest for pFLASH (similar between S-T and SOBP), greater and similar between pCONV (S-T and SOBP) and eCONV, and greatest for eFLASH. Correspondingly, mice that received pFLASH SOBP had the lowest survival rates (50% at 50 days), followed by pFLASH S-T (80%), and pCONV SOBP (90%), but 100% of mice receiving pCONV S-T survived (log-rank P = 0.047 for the four groups). Conclusions Our findings are consistent with an increase in RIGIT after synchrotron-based pFLASH versus pCONV. This negative proton-specific FLASH effect versus linac-based electron irradiation underscores the importance of understanding the physical and biological factors that will allow safe and effective clinical translation.
Collapse
|
10
|
Padilla O, Minns HE, Wei HJ, Fan W, Webster-Carrion A, Tazhibi M, McQuillan NM, Zhang X, Gallitto M, Yeh R, Zhang Z, Hei TK, Szalontay L, Pavisic J, Tan Y, Deoli N, Garty G, Garvin JH, Canoll PD, Vanpouille-Box C, Menon V, Olah M, Rabadan R, Wu CC, Gartrell RD. Immune Response following FLASH and Conventional Radiation in Diffuse Midline Glioma. Int J Radiat Oncol Biol Phys 2024; 119:1248-1260. [PMID: 38364947 PMCID: PMC11209798 DOI: 10.1016/j.ijrobp.2024.01.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/β receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.
Collapse
Affiliation(s)
- Oscar Padilla
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanna E Minns
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Weijia Fan
- Mailman School of Public Health, Columbia University, New York, New York
| | | | - Masih Tazhibi
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Nicholas M McQuillan
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Xu Zhang
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York; Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Rebecca Yeh
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Zhiguo Zhang
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York; Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Luca Szalontay
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jovana Pavisic
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Yuewen Tan
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - Guy Garty
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Center for Radiological Research, Columbia University Irving Medical Center, New York, New York; Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - James H Garvin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Peter D Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | | | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, New York; Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - Marta Olah
- Department of Neurology, Columbia University Irving Medical Center, New York, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York; Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, New York
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Moreau M, Mao S, Ngwa U, Yasmin-Karim S, China D, Hooshangnejad H, Sforza D, Ding K, Li H, Rezaee M, Narang AK, Ngwa W. Democratizing FLASH Radiotherapy. Semin Radiat Oncol 2024; 34:344-350. [PMID: 38880543 PMCID: PMC11218907 DOI: 10.1016/j.semradonc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
FLASH radiotherapy (RT) is emerging as a potentially revolutionary advancement in cancer treatment, offering the potential to deliver RT at ultra-high dose rates (>40 Gy/s) while significantly reducing damage to healthy tissues. Democratizing FLASH RT by making this cutting-edge approach more accessible and affordable for healthcare systems worldwide would have a substantial impact in global health. Here, we review recent developments in FLASH RT and present perspective on further developments that could facilitate the democratizing of FLASH RT. These include upgrading and validating current technologies that can deliver and measure the FLASH radiation dose with high accuracy and precision, establishing a deeper mechanistic understanding of the FLASH effect, and optimizing dose delivery conditions and parameters for different types of tumors and normal tissues, such as the dose rate, dose fractionation, and beam quality for high efficacy. Furthermore, we examine the potential for democratizing FLASH radioimmunotherapy leveraging evidence that FLASH RT can make the tumor microenvironment more immunogenic, and parallel developments in nanomedicine or use of smart radiotherapy biomaterials for combining RT and immunotherapy. We conclude that the democratization of FLASH radiotherapy represents a major opportunity for concerted cross-disciplinary research collaborations with potential for tremendous impact in reducing radiotherapy disparities and extending the cancer moonshot globally.
Collapse
Affiliation(s)
- Michele Moreau
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD..
| | - Serena Mao
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Uriel Ngwa
- Department of Chemistry, University of Florida, Gainesville, Florida
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston MA
| | - Debarghya China
- Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD
| | - Hamed Hooshangnejad
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Amol K Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
12
|
Yan O, Wang S, Wang Q, Wang X. FLASH Radiotherapy: Mechanisms of Biological Effects and the Therapeutic Potential in Cancer. Biomolecules 2024; 14:754. [PMID: 39062469 PMCID: PMC11275005 DOI: 10.3390/biom14070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
Radiotherapy is an important treatment for many unresectable advanced malignant tumors, and radiotherapy-associated inflammatory reactions to radiation and other toxic side effects are significant reasons which reduce the quality of life and survival of patients. FLASH-radiotherapy (FLASH-RT), a prominent topic in recent radiation therapy research, is an ultra-high dose rate treatment known for significantly reducing therapy time while effectively targeting tumors. This approach minimizes radiation side effects on at-risk organs and maximally protects surrounding healthy tissues. Despite decades of preclinical exploration and some notable achievements, the mechanisms behind FLASH effects remain debated. Standardization is still required for the type of FLASH-RT rays and dose patterns. This review addresses the current state of FLASH-RT research, summarizing the biological mechanisms behind the FLASH effect. Additionally, it examines the impact of FLASH-RT on immune cells, cytokines, and the tumor immune microenvironment. Lastly, this review will discuss beam characteristics, potential clinical applications, and the relevance and applicability of FLASH-RT in treating advanced cancers.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (O.Y.); (S.W.); (Q.W.)
| |
Collapse
|
13
|
Cucinotta FA, Smirnova OA. Effects of Partial-Body, Continuous/Pulse Irradiation at Dose Rates from FLASH to Conventional Rates on the Level of Surviving Blood Lymphocytes: Modeling Approach. I. Continuous Irradiation. Radiat Res 2024; 201:535-545. [PMID: 38616047 DOI: 10.1667/rade-23-00222.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
A mathematical model developed by Cucinotta and Smirnova is extended to describe effects of continuous, partial-body irradiation at high doses D and at dose rates N from FLASH to conventional rates on the level of surviving blood lymphocytes in humans and small laboratory animals (mice). Specifically, whereas the applicability of the model is limited to the exposure times shorter than a single cardiac cycle T0, the extended model is capable of describing such effects for the aforementioned and longer exposure times. The extended model is implemented as the algebraic equations. It predicts that the level of surviving blood lymphocytes in humans and mice increases with increasing the dose rate from N= D/T0 to FLASH rates and approaches the upper limiting level of 1-vR, where vR is the fraction of blood volume in the irradiated part of the blood circulatory system. Levels of surviving blood lymphocytes computed at doses from 10 Gy to 40 Gy and at dose rates N, which equal or exceed 40 Gy/s for humans and 400 Gy/s for mice, are nearly indistinguishable from the upper limiting level. In turn, the level of surviving blood lymphocytes in humans and mice decreases with decreasing the dose rate from N= D/T0 to conventional rates and approaches a lower limiting level. This level strongly depends on the dose D (it is smaller at larger values of D) with a slight dependence on the dose rate N. The model with the parameters specified for mice (together with the model of the dynamics of lymphopoietic system in mice after partial-body irradiation) reproduce, on a quantitative level, the experimental data, according to which the concentration of blood lymphocytes measured in mice in one day after continuous, partial-body irradiation at a high dose and conventional dose rate is smaller at the larger value of vR. Additionally, the model predicts at the same high dose (>10 Gy) a faster restoration of the blood lymphocyte population in humans exposed to continuous, partial-body irradiation at a FLASH dose rate compared to a conventional dose rate.
Collapse
|
14
|
Gregucci F, Beal K, Knisely JPS, Pagnini P, Fiorentino A, Bonzano E, Vanpouille-Box CI, Cisse B, Pannullo SC, Stieg PE, Formenti SC. Biological Insights and Radiation-Immuno-Oncology Developments in Primary and Secondary Brain Tumors. Cancers (Basel) 2024; 16:2047. [PMID: 38893165 PMCID: PMC11171192 DOI: 10.3390/cancers16112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant central nervous system (CNS) cancers include a group of heterogeneous dis-eases characterized by a relative resistance to treatments and distinguished as either primary tumors arising in the CNS or secondary tumors that spread from other organs into the brain. Despite therapeutic efforts, they often cause significant mortality and morbidity across all ages. Radiotherapy (RT) remains the main treatment for brain cancers, improving associated symptoms, improving tumor control, and inducing a cure in some. However, the ultimate goal of cancer treatment, to improve a patient's survival, remains elusive for many CNS cancers, especially primary tumors. Over the years, there have thus been many preclinical studies and clinical trials designed to identify and overcome mechanisms of resistance to improve outcomes after RT and other therapies. For example, immunotherapy delivered concurrent with RT, especially hypo-fractionated stereotactic RT, is synergistic and has revolutionized the clinical management and outcome of some brain tumors, in particular brain metastases (secondary brain tumors). However, its impact on gliomas, the most common primary malignant CNS tumors, remains limited. In this review, we provide an overview of radioresistance mechanisms, the emerging strategies to overcome radioresistance, the role of the tumor microenviroment (TME), and the selection of the most significant results of radiation-immuno-oncological investigations. We also identify novel therapeutic opportunities in primary and secondary brain tumors with the purpose of elucidating current knowledge and stimulating further research to improve tumor control and patients' survival.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
| | - Kathryn Beal
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Jonathan P. S. Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Paul Pagnini
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, 27100 Pavia, Italy;
| | - Claire I. Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
| | - Susan C. Pannullo
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Philip E. Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
16
|
Lövgren N, Fagerström Kristensen I, Petersson K. Feasibility and constraints of Bragg peak FLASH proton therapy treatment planning. Front Oncol 2024; 14:1369065. [PMID: 38737902 PMCID: PMC11082391 DOI: 10.3389/fonc.2024.1369065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction FLASH proton therapy (FLASH-PT) requires ultra-high dose rate (≥ 40 Gy/s) protons to be delivered in a short timescale whilst conforming to a patient-specific target. This study investigates the feasibility and constraints of Bragg peak FLASH-PT treatment planning, and compares the in silico results produced to plans for intensity modulated proton therapy (IMPT). Materials and method Bragg peak FLASH-PT and IMPT treatment plans were generated for bone (n=3), brain (n=3), and lung (n=4) targets using the MIROpt research treatment planning system and the Conformal FLASH library developed by Applications SA from the open-source version of UCLouvain. FLASH-PT beams were simulated using monoenergetic spot-scanned protons traversing through a conformal energy modulator, a range shifter, and an aperture. A dose rate constraint of ≥ 40 Gy/s was included in each FLASH-PT plan optimisation. Results Space limitations in the FLASH-PT adapted beam nozzle imposed a maximum target width constraint, excluding 4 cases from the study. FLASH-PT plans did not satisfy the imposed target dose constraints (D95% ≥ 95% and D2%≤ 105%) but achieved clinically acceptable doses to organs at risk (OARs). IMPT plans adhered to all target and OAR dose constraints. FLASH-PT plans showed a reduction in both target homogeneity (p < 0.001) and dose conformity (non-significant) compared to IMPT. Conclusion Without accounting for a sparing effect, IMPT plans were superior in target coverage, dose conformity, target homogeneity, and OAR sparing compared to FLASH-PT. Further research is warranted in treatment planning optimisation and beam delivery for clinical implementation of Bragg peak FLASH-PT.
Collapse
Affiliation(s)
- Nathalie Lövgren
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ingrid Fagerström Kristensen
- Clinical Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Kristoffer Petersson
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
17
|
Tang R, Yin J, Liu Y, Xue J. FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Lett 2024; 587:216651. [PMID: 38342233 DOI: 10.1016/j.canlet.2024.216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/13/2024]
Abstract
Radiotherapy plays a pivotal role in the control and eradication of tumors, but it can also induce radiation injury to surrounding normal tissues while targeting tumor cells. In recent years, FLASH-Radiotherapy (FLASH-RT) has emerged as a cutting-edge research focus in the field of radiation therapy. By delivering high radiation doses to the treatment target in an ultra-short time, FLASH-RT produces the FLASH effect, which reduces the toxicity to normal tissues while achieving comparable tumor control efficacy to conventional radiotherapy. This review provides a brief overview of the development history of FLASH-RT and its impact on tumor control. Additionally, it focuses on introducing the protective effects and molecular mechanisms of this technology on various normal tissues, as well as exploring its synergistic effects when combined with other tumor therapies. Importantly, this review discusses the challenges faced in translating FLASH-RT into clinical practice and outlines its promising future applications.
Collapse
Affiliation(s)
- Rui Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianqiong Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Almeida A, Godfroid C, Leavitt RJ, Montay-Gruel P, Petit B, Romero J, Ollivier J, Meziani L, Sprengers K, Paisley R, Grilj V, Limoli CL, Romero P, Vozenin MC. Antitumor Effect by Either FLASH or Conventional Dose Rate Irradiation Involves Equivalent Immune Responses. Int J Radiat Oncol Biol Phys 2024; 118:1110-1122. [PMID: 37951550 PMCID: PMC11093276 DOI: 10.1016/j.ijrobp.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The capability of ultrahigh dose rate FLASH radiation therapy to generate the FLASH effect has opened the possibility to enhance the therapeutic index of radiation therapy. The contribution of the immune response has frequently been hypothesized to account for a certain fraction of the antitumor efficacy and tumor kill of FLASH but has yet to be rigorously evaluated. METHODS AND MATERIALS To investigate the immune response as a potentially important mechanism of the antitumor effect of FLASH, various murine tumor models were grafted either subcutaneously or orthotopically into immunocompetent mice or in moderately and severely immunocompromised mice. Mice were locally irradiated with single dose (20 Gy) or hypofractionated regimens (3 × 8 or 2 × 6 Gy) using FLASH (≥2000 Gy/s) and conventional (CONV) dose rates (0.1 Gy/s), with/without anti-CTLA-4. Tumor growth was monitored over time and immune profiling performed. RESULTS FLASH and CONV 20 Gy were isoeffective in delaying tumor growth in immunocompetent and moderately immunodeficient hosts and increased tumor doubling time to >14 days versus >7 days in control animals. Similar observations were obtained with a hypofractionated scheme, regardless of the microenvironment (subcutaneous flank vs ortho lungs). Interestingly, in profoundly immunocompromised mice, 20 Gy FLASH retained antitumor activity and significantly increased tumor doubling time to >14 days versus >8 days in control animals, suggesting a possible antitumor mechanism independent of the immune response. Analysis of the tumor microenvironment showed similar immune profiles after both irradiation modalities with significant decrease of lymphoid cells by ∼40% and a corresponding increase of myeloid cells. In addition, FLASH and CONV did not increase transforming growth factor-β1 levels in tumors compared with unirradiated control animals. Furthermore, when a complete and long-lasting antitumor response was obtained (>140 days), both modalities of irradiation were able to generate a long-term immunologic memory response. CONCLUSIONS The present results clearly document that the tumor responses across multiple immunocompetent and immunodeficient mouse models are largely dose rate independent and simultaneously contradict a major role of the immune response in the antitumor efficacy of FLASH. Therefore, our study indicates that FLASH is as potent as CONV in modulating antitumor immune response and can be used as an immunomodulatory agent.
Collapse
Affiliation(s)
- Aymeric Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Godfroid
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Ron J Leavitt
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Department, Iridium Netwerk, Wilrijk (Antwerp), Belgium; Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Benoit Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jackeline Romero
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lydia Meziani
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kevin Sprengers
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ryan Paisley
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Borghini A, Labate L, Piccinini S, Panaino CMV, Andreassi MG, Gizzi LA. FLASH Radiotherapy: Expectations, Challenges, and Current Knowledge. Int J Mol Sci 2024; 25:2546. [PMID: 38473799 PMCID: PMC10932202 DOI: 10.3390/ijms25052546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Major strides have been made in the development of FLASH radiotherapy (FLASH RT) in the last ten years, but there are still many obstacles to overcome for transfer to the clinic to become a reality. Although preclinical and first-in-human clinical evidence suggests that ultra-high dose rates (UHDRs) induce a sparing effect in normal tissue without modifying the therapeutic effect on the tumor, successful clinical translation of FLASH-RT depends on a better understanding of the biological mechanisms underpinning the sparing effect. Suitable in vitro studies are required to fully understand the radiobiological mechanisms associated with UHDRs. From a technical point of view, it is also crucial to develop optimal technologies in terms of beam irradiation parameters for producing FLASH conditions. This review provides an overview of the research progress of FLASH RT and discusses the potential challenges to be faced before its clinical application. We critically summarize the preclinical evidence and in vitro studies on DNA damage following UHDR irradiation. We also highlight the ongoing developments of technologies for delivering FLASH-compliant beams, with a focus on laser-driven plasma accelerators suitable for performing basic radiobiological research on the UHDR effects.
Collapse
Affiliation(s)
| | - Luca Labate
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| |
Collapse
|
20
|
Wu X, Luo H, Wang Q, Du T, Chen Y, Tan M, Liu R, Liu Z, Sun S, Yang K, Tian J, Zhang Q. Examining the Occurrence of the FLASH Effect in Animal Models: A Systematic Review and Meta-Analysis of Ultra-High Dose Rate Proton or Carbon Ion Irradiation. Technol Cancer Res Treat 2024; 23:15330338241289990. [PMID: 39512217 PMCID: PMC11544673 DOI: 10.1177/15330338241289990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose: This systematic review and meta-analysis sought to assess whether ultra-high dose rate (UHDR) ion irradiations can induce the FLASH effect in animal models. Methods: A comprehensive search of the Web of Science, PubMed, and EMBASE databases was conducted from inception until March 20, 2023, to identify studies involving irradiated animals subjected to proton or carbon ion beams at varying dose rates. The research content should include various indicators that can reflect the effect and safety of radiation, such as survival, normal tissue toxicity, inflammatory response, tumor volume, etc Results: Compared to conventional dose rate (CONV) ion irradiations, UHDR ion irradiations can significantly improve mouse survival (HR 0.48, 95% CI 0.29 to 0.78, I2 = 0%) and maintain comparable tumor control. There was no significant impact of different dose rates on the survival of zebrafish embryos (SMD 0.11, 95% CI -0.31 to 0.53, I2 = 85%). Subgroup analysis showed that radiation dose was an important factor affecting the survival of zebrafish embryos. Achieving normal tissue sparing may require higher radiation dose under UHD.In mouse and zebrafish embryo models, normal tissue sparing did not always occur after UHDR ion irradiations. In addition, only a limited number of cytokines (CXCL1, IL-6, GM-CSF, G-CSF, HMGB1, and TGF-β) and immune cells (microglia and myeloid cells) showed differences at different dose rates. Conclusions: UHDR ion irradiation can achieve FLASH effect, but the reproducibility of normal tissue sparing remains a challenge. Compared to CONV irradiation, UHDR ion irradiations demonstrated equivalent or even superior tumor control.
Collapse
Affiliation(s)
- Xun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qian Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Tianqi Du
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Yanliang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Mingyu Tan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- Graduate School, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100000, People's Republic of China
| |
Collapse
|
21
|
Iturri L, Bertho A, Lamirault C, Brisebard E, Juchaux M, Gilbert C, Espenon J, Sébrié C, Jourdain L, de Marzi L, Pouzoulet F, Muret J, Verrelle P, Prezado Y. Oxygen supplementation in anesthesia can block FLASH effect and anti-tumor immunity in conventional proton therapy. COMMUNICATIONS MEDICINE 2023; 3:183. [PMID: 38102219 PMCID: PMC10724215 DOI: 10.1038/s43856-023-00411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Radiation-induced neurocognitive dysfunction is a major adverse effect of brain radiation therapy and has specific relevance in pediatric oncology, where serious cognitive deficits have been reported in survivors of pediatric brain tumors. Moreover, many pediatric patients receive proton therapy under general anesthesia or sedation to guarantee precise ballistics with a high oxygen content for safety. The present study addresses the relevant question of the potential effect of supplemental oxygen administered during anesthesia on normal tissue toxicity and investigates the anti-tumor immune response generated following conventional and FLASH proton therapy. METHODS Rats (Fischer 344) were cranially irradiated with a single high dose of proton therapy (15 Gy or 25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s), and the toxicities in the normal tissue were examined by histological, cytometric and behavioral analysis. Glioblastoma-bearing rats were irradiated in the same manner and tumor-infiltrating leukocytes were quantified by flow cytometry. RESULTS Our findings indicate that supplemental oxygen has an adverse impact on both functional and anatomical evaluations of normal brain following conventional and FLASH proton therapy. In addition, oxygen supplementation in anesthesia is particularly detrimental for anti-tumor immune response by preventing a strong immune cell infiltration into tumoral tissues following conventional proton therapy. CONCLUSIONS These results demonstrate the need to further optimize anesthesia protocols used in radiotherapy with the goal of preserving normal tissues and achieving tumor control, specifically in combination with immunotherapy agents.
Collapse
Affiliation(s)
- Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Charlotte Lamirault
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, Orsay, France
| | | | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Cristèle Gilbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Julie Espenon
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Catherine Sébrié
- Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, BIOMAPS Universite Paris-Saclay, Orsay, France
| | - Laurène Jourdain
- Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, BIOMAPS Universite Paris-Saclay, Orsay, France
| | - Ludovic de Marzi
- Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie (LITO), Orsay, France
- Institut Curie, Radiation Oncology Department, Campus universitaire, Orsay, France
| | - Frédéric Pouzoulet
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, Orsay, France
- Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie (LITO), Orsay, France
| | - Jane Muret
- Institut Curie, Université PSL, Department of Anesthesia and Intensive Care, Paris, France
| | - Pierre Verrelle
- Institut Curie, Radiation Oncology Department, Campus universitaire, Orsay, France
- Institut Curie, Université Paris-Saclay, Inserm U1196, CNRS UMR9187, Chimie et Modélisation pour la Biologie du Cancer (CMBC), Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
| |
Collapse
|
22
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
23
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
24
|
Almeida A, Togno M, Ballesteros-Zebadua P, Franco-Perez J, Geyer R, Schaefer R, Petit B, Grilj V, Meer D, Safai S, Lomax T, Weber DC, Bailat C, Psoroulas S, Vozenin MC. Dosimetric and biologic intercomparison between electron and proton FLASH beams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537497. [PMID: 37131769 PMCID: PMC10153243 DOI: 10.1101/2023.04.20.537497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and purpose The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at a mean dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by e vs. pFLASH has yet been performed and constitutes the aim of the present study. Materials and methods The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥100 Gy/s eFLASH and pFLASH) irradiation. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed with previously validated models. Results Doses measured at Gantry1 were in agreement (± 2.5%) with reference dosimeters calibrated at CHUV/IRA. The neurocognitive capacity of e and pFLASH irradiated mice was indistinguishable from the control while both e and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained with the two beams and was similar between e and pFLASH vs. e and pCONV. Tumor rejection was similar indicating that T-cell memory response is beam-type and dose-rate independent. Conclusion Despite major differences in the temporal microstructure, this study shows that dosimetric standards can be established. The sparing of brain function and tumor control produced by the two beams were similar, suggesting that the most important physical parameter driving the FLASH effect is the overall time of exposure which should be in the range of hundreds of milliseconds for WBI in mice. In addition, we observed that immunological memory response is similar between electron and proton beams and is independent off the dose rate.
Collapse
Affiliation(s)
- A Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - P Ballesteros-Zebadua
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - J Franco-Perez
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - R Geyer
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
| | - R Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - B Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V Grilj
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - D Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - T Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Radiation Oncology, University Hospital of Zurich, Switzerland
| | - C Bailat
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - M C Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Konishi T, Kusumoto T, Hiroyama Y, Kobayashi A, Mamiya T, Kodaira S. Induction of DNA strand breaks and oxidative base damages in plasmid DNA by ultra-high dose rate proton irradiation. Int J Radiat Biol 2023; 99:1405-1412. [PMID: 36731459 DOI: 10.1080/09553002.2023.2176562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation cancer therapy with ultra-high dose rate (UHDR) exposure, so-called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response to therapy. The aim of this study was to clarify whether a 59.5 MeV proton beam at an UHDR of 48.6 Gy/s could effectively reduce the DNA damage of pBR322 plasmid DNA in solution compared to the conventional dose rate (CONV) of 0.057 Gy/s. MATERIALS AND METHODS A simple system, consisting of pBR322 plasmid DNA in 1× Tris-EDTA buffer, was initially employed for proton beam exposure. We then used formamidopyrimidine-DNA glycosylase (Fpg) enzymes. which convert oxidative base damages of oxidized purines to DNA strand breaks, to quantify DNA single strand breaks (SSBs) and double strand breaks (DSBs) by agarose gel electrophoresis. RESULTS Our findings showed that the SSB induction rate (SSB per plasmid DNA/Gy) at UHDR and the induction of Fpg enzyme sensitive sites (ESS) were significantly reduced in UHDR compared to CONV. However, there was no significant difference in DSB induction and non-DSB cluster damages. CONCLUSIONS UHDR of a 59.5 MeV proton beam could reduce non-clustered, non-DSB damages, such as SSB and sparsely distributed ESS. However, this effect may not be significant in reducing lethal DNA damage that becomes apparent only in acute radiation effects of mammalian cells and in vivo studies.
Collapse
Affiliation(s)
- Teruaki Konishi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Tamon Kusumoto
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Yota Hiroyama
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
| | - Alisa Kobayashi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Taisei Mamiya
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Satoshi Kodaira
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| |
Collapse
|
26
|
Mirjolet C, Baude J, Galluzzi L. Dual impact of radiation therapy on tumor-targeting immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:xiii-xxiv. [PMID: 37438022 DOI: 10.1016/s1937-6448(23)00114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France.
| | - Jérémy Baude
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|