1
|
Wu M, Sun C, Shi Q, Luo Y, Wang Z, Wang J, Qin Y, Cui W, Yan C, Dai H, Wang Z, Zeng J, Zhou Y, Zhu M, Liu X. Dry eye disease caused by viral infection: Past, present and future. Virulence 2024; 15:2289779. [PMID: 38047740 PMCID: PMC10761022 DOI: 10.1080/21505594.2023.2289779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Following viral infection, the innate immune system senses viral products, such as viral nucleic acids, to activate innate defence pathways, leading to inflammation and apoptosis, control of cell proliferation, and consequently, threat to the whole body. The ocular surface is exposed to the external environment and extremely vulnerable to viral infection. Several studies have revealed that viral infection can induce inflammation of the ocular surface and reduce tear secretion of the lacrimal gland (LG), consequently triggering ocular morphological and functional changes and resulting in dry eye disease (DED). Understanding the mechanisms of DED caused by viral infection and its potential therapeutic strategies are crucial for clinical interventional advances in DED. This review summarizes the roles of viral infection in the pathogenesis of DED, applicable diagnostic and therapeutic strategies, and potential regions of future studies.
Collapse
Affiliation(s)
- Min Wu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Cuilian Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Qin Shi
- Department of General Medicine, Gongli Hospital, Shanghai, China
| | - Yalu Luo
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Ziyu Wang
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jianxiang Wang
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yun Qin
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Weihang Cui
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Chufeng Yan
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Huangyi Dai
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Zhiyang Wang
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yamei Zhou
- Department of Microbiology Laboratory, Jiaxing Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Pérez AA, Vazquez-Meves G, Hunter ME. Early Detection of Wildlife Disease Pathogens Using CRISPR-Cas System Methods. CRISPR J 2024. [PMID: 39479796 DOI: 10.1089/crispr.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Wildlife diseases are a considerable threat to human health, conservation, and the economy. Surveillance is a critical component to mitigate the impact of animal diseases in these sectors. To monitor human diseases, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein) biosensors have proven instrumental as diagnostic tools capable of detecting unique DNA and RNA sequences related to their associated pathogens. However, despite the significant advances in the general development of CRISPR-Cas biosensors, their use to support wildlife disease management is lagging. In some cases, wildlife diseases of concern could be rapidly surveyed using these tools with minimal technical, operational, or cost requirements to end users. This review explores the potential to further leverage this technology to advance wildlife disease monitoring and highlights how concerted standardization of protocols can help to ensure data reliability.
Collapse
Affiliation(s)
- Adam A Pérez
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
SeyedAlinaghi S, Yarmohammadi S, Farahani Rad F, Rasheed MA, Javaherian M, Afsahi AM, Siami H, Bagheri A, Zand A, Dadras O, Mehraeen E. Prevalence of COVID-19 in prison population: a meta-analysis of 35 studies. INTERNATIONAL JOURNAL OF PRISON HEALTH 2024. [PMID: 39267228 DOI: 10.1108/ijoph-01-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
PURPOSE COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Considering the restricted and enclosed nature of prisons and closed environments and the prolonged and close contact between individuals, COVID-19 is more likely to have a higher incidence in these settings. This study aims to assess the prevalence of COVID-19 among prisoners. DESIGN/METHODOLOGY/APPROACH Papers published in English from 2019 to July 7, 2023, were identified using relevant keywords such as prevalence, COVID-19 and prisoner in the following databases: PubMed/MEDLINE, Scopus and Google Scholar. For the meta-analysis of the prevalence, Cochrane's Q statistics were calculated. A random effect model was used due to the heterogeneity in COVID-19 prevalence across included studies in the meta-analysis. All analyses were performed in STATA-13. FINDINGS The pooled data presented a COVID-19 prevalence of 20% [95%CI: 0.13, 0.26] and 24% [95%CI: 0.07, 0.41], respectively, in studies that used PCR and antibody tests. Furthermore, two study designs, cross-sectional and cohort, were used. The results of the meta-analysis showed studies with cross-sectional and cohort designs reported 20% [95%CI: 0.11, 0.29] and 25% [95%CI: 0.13, 0.38], respectively. ORIGINALITY/VALUE Through more meticulous planning, it is feasible to reduce the number of individuals in prison cells, thereby preventing the further spread of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ali Zand
- Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mehraeen
- Ardabil University of Medical Sciences, Ardabil, Iran and Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| |
Collapse
|
4
|
Nguyen K, Relja B, Epperson M, Park SH, Thornburg NJ, Costantini VP, Vinjé J. Salivary immune responses after COVID-19 vaccination. PLoS One 2024; 19:e0307936. [PMID: 39226256 PMCID: PMC11371244 DOI: 10.1371/journal.pone.0307936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
mRNA-based COVID-19 vaccines have played a critical role in reducing severe outcomes of COVID-19. Humoral immune responses against SARS-CoV-2 after vaccination have been extensively studied in blood; however, limited information is available on the presence and duration of SARS-CoV-2 specific antibodies in saliva and other mucosal fluids. Saliva offers a non-invasive sampling method that may also provide a better understanding of mucosal immunity at sites where the virus enters the body. Our objective was to evaluate the salivary immune response after vaccination with the COVID-19 Moderna mRNA-1273 vaccine. Two hundred three staff members of the U.S. Centers for Disease Control and Prevention were enrolled prior to receiving their first dose of the mRNA-1273 vaccine. Participants were asked to self-collect 6 saliva specimens at days 0 (prior to first dose), 14, 28 (prior to second dose), 42, and 56 using a SalivaBio saliva collection device. Saliva specimens were tested for anti-spike protein SARS-CoV-2 specific IgA and IgG enzyme immunoassays. Overall, SARS-CoV-2-specific salivary IgA titers peaked 2 weeks after each vaccine dose, followed by a sharp decrease during the following weeks. In contrast to IgA titers, IgG antibody titers increased substantially 2 weeks after the first vaccine dose, peaked 2 weeks after the second dose and persisted at an elevated level until at least 8 weeks after the first vaccine dose. Additionally, no significant differences in IgA/IgG titers were observed based on age, sex, or race/ethnicity. All participants mounted salivary IgA and IgG immune responses against SARS-CoV-2 after receiving the mRNA-1273 COVID-19 vaccine. Because of the limited follow-up time for this study, more data are needed to assess the antibody levels beyond 2 months after the first dose. Our results confirm the potential utility of saliva in assessing immune responses elicited by immunization and possibly by infection.
Collapse
Affiliation(s)
- Kenny Nguyen
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
| | - Boris Relja
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
- Cherokee Nation Assurance, Arlington, VA, United States of America
| | - Monica Epperson
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - So Hee Park
- Eagle Global Scientific, LLC, Atlanta, GA, United States of America
| | - Natalie J. Thornburg
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Veronica P. Costantini
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Jan Vinjé
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
5
|
Sharma S, Caputi M, Asghar W. Development of a Diagnostic Microfluidic Chip for SARS-CoV-2 Detection in Saliva and Nasopharyngeal Samples. Viruses 2024; 16:1190. [PMID: 39205164 PMCID: PMC11360425 DOI: 10.3390/v16081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
The novel coronavirus SARS-CoV-2 was first isolated in late 2019; it has spread to all continents, infected over 700 million people, and caused over 7 million deaths worldwide to date. The high transmissibility of the virus and the emergence of novel strains with altered pathogenicity and potential resistance to therapeutics and vaccines are major challenges in the study and treatment of the virus. Ongoing screening efforts aim to identify new cases to monitor the spread of the virus and help determine the danger connected to the emergence of new variants. Given its sensitivity and specificity, nucleic acid amplification tests (NAATs) such as RT-qPCR are the gold standard for SARS-CoV-2 detection. However, due to high costs, complexity, and unavailability in low-resource and point-of-care (POC) settings, the available RT-qPCR assays cannot match global testing demands. An alternative NAAT, RT-LAMP-based SARS-CoV-2 detection offers scalable, low-cost, and rapid testing capabilities. We have developed an automated RT-LAMP-based microfluidic chip that combines the RNA isolation, purification, and amplification steps on the same device and enables the visual detection of SARS-CoV-2 within 40 min from saliva and nasopharyngeal samples. The entire assay is executed inside a uniquely designed, inexpensive disposable microfluidic chip, where assay components and reagents have been optimized to provide precise and qualitative results and can be effectively deployed in POC settings. Furthermore, this technology could be easily adapted for other novel emerging viruses.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
6
|
Dasgupta U, Ghosh M, Chakraborty P, Park EY, Indra A, Chowdhury AD. Dual-Mode Virus Detection: Combining Electrochemical and Fluorescence Modalities for Enhanced Sensitivity and Reliability. ACS APPLIED BIO MATERIALS 2024; 7:4379-4388. [PMID: 38616360 DOI: 10.1021/acsabm.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
This study introduces a dual-mode biosensor specifically designed for the quantitative detection of viruses in rapid analysis. The biosensor is unique in its use of both optical (fluorescence) and electrochemical (impedance) detection methods using the same nanocomposites, providing a dual confirmation system for virus (norovirus-like particles) quantification. The system is based on using two antibody-conjugated nanocomposites: CdSeS quantum dots and Au-N,S-GQD nanocomposites. For optical detection, the principle relies on the fluorescence quenching of CdSeS by Au-N,S-GQD in a sandwich structure with the target. Conversely, electrochemical detection is based on the change in impedance caused by the formation of the same sandwich structure. The biosensor demonstrated exceptional sensitivity, capable of detecting norovirus at concentrations of as low as femtomolar in the electrochemical method and picomolar in the optical method. In the dual-responsive concentration range from 10-13 to 10-10 M, the sensor is highly sensitive in both methods, creating significant changes in fluorescence intensity and impedance in the presence of virus. Furthermore, the biosensor exhibits a high degree of specificity, with a negligible response to nontarget proteins, even within complex test solutions. This work represents a significant advancement in the field of biosensor technology, offering a fast, accurate, and reliable method for diagnosing viral infections and diseases.
Collapse
Affiliation(s)
- Uddipan Dasgupta
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Malabika Ghosh
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Pampi Chakraborty
- Department of Microbiology, St. Xavier's College (Autonomous), 5, Mahapalika Marg, Dhobi Talao, Chhatrapati Shivaji Terminus Area, Fort, Mumbai, Maharashtra 400001, India
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| |
Collapse
|
7
|
Silva KA, do Prado VB, Silva RR, Rocha MVP, de Oliveira RAR, Falcão TDJR, Serpa CC, Rocha MA, Pereira SP, Silva LS, Machado JM, Machado-de-Ávila RA, Fujiwara RT, Chávez-Fumagalli MA, Coelho EAF, Giunchetti RC, Campos-da-Paz M, Gonçalves AAM, Galdino AS. A Mini-Review of Diagnostic Methods for the Antigen and Antibody Detection of Rocky Mountain and Brazilian Spotted Fever. Biomedicines 2024; 12:1501. [PMID: 39062074 PMCID: PMC11274458 DOI: 10.3390/biomedicines12071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
Rocky Mountain or Brazilian spotted fever, caused by Rickettsia rickettsii, is a fulminant, seasonal, and neglected disease that occurs in focal points of North America and South America. Its rapid detection is essential for the better prognosis and survival rate of infected individuals. However, disease diagnosis still faces challenges as the accuracy of many of the available laboratory tests fluctuates. This review aimed to analyze methods for antibody or antigen detection, their gaps, and their evolution over time. A search was conducted to find all studies in the Pubmed database that described the antibody or antigen detection of R. rickettsii infections. Initially, a total of 403 articles were screened. Of these articles, only 17 fulfilled the pre-established inclusion criteria and were selected. Among the different methods applied, the IFA technique was the one most frequently found in the studies. However, it presented varied results such as a low specificity when using the indirect method. Other techniques, such as ELISA and immunohistochemistry, were also found, although in smaller numbers and with their own limitations. Although some studies showed promising results, there is a pressing need to find new techniques to develop a rapid and effective diagnosis of R. rickettssi infection.
Collapse
Affiliation(s)
- Kamila Alves Silva
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
- Laboratório de Biotecnologia de Microrganismos, National Institute of Science and Technology in Industrial Biotechnology (INCT-BIO), Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (L.S.S.); (J.M.M.); (A.A.M.G.)
| | - Vanesa Borges do Prado
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
| | - Rafael Rodrigues Silva
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
| | - Marcelo van Petten Rocha
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
| | - Rafael Almeida Ribeiro de Oliveira
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
| | - Tarumim de Jesus Rodrigues Falcão
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
| | - Clara Cristina Serpa
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
| | - Marina Andrade Rocha
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
| | - Sabrina Paula Pereira
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
- Laboratório de Biotecnologia de Microrganismos, National Institute of Science and Technology in Industrial Biotechnology (INCT-BIO), Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (L.S.S.); (J.M.M.); (A.A.M.G.)
| | - Líria Souza Silva
- Laboratório de Biotecnologia de Microrganismos, National Institute of Science and Technology in Industrial Biotechnology (INCT-BIO), Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (L.S.S.); (J.M.M.); (A.A.M.G.)
| | - Juliana Martins Machado
- Laboratório de Biotecnologia de Microrganismos, National Institute of Science and Technology in Industrial Biotechnology (INCT-BIO), Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (L.S.S.); (J.M.M.); (A.A.M.G.)
| | - Ricardo Andrez Machado-de-Ávila
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil;
| | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil;
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology in Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Mariana Campos-da-Paz
- Laboratório de Bioativos e Nanobiotecnologia, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil;
| | - Ana Alice Maia Gonçalves
- Laboratório de Biotecnologia de Microrganismos, National Institute of Science and Technology in Industrial Biotechnology (INCT-BIO), Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (L.S.S.); (J.M.M.); (A.A.M.G.)
| | - Alexsandro Sobreira Galdino
- Programas de Pós-graduação em Biotecnologia (PPGBIOTEC) e Multicêntrico em Bioquimica e Biologia Molecular (PMBqBM), Disciplina Biotecnologia & Inovações, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (K.A.S.); (V.B.d.P.); (R.R.S.); (M.v.P.R.); (R.A.R.d.O.); (T.d.J.R.F.); (C.C.S.); (M.A.R.); (S.P.P.)
- Laboratório de Biotecnologia de Microrganismos, National Institute of Science and Technology in Industrial Biotechnology (INCT-BIO), Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil; (L.S.S.); (J.M.M.); (A.A.M.G.)
| |
Collapse
|
8
|
Zhang Q, Liang Z, Wang X, Zhang S, Yang Z. Exploring the potential mechanisms of Danshen against COVID-19 via network pharmacology analysis and molecular docking. Sci Rep 2024; 14:12780. [PMID: 38834599 DOI: 10.1038/s41598-024-62363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Danshen, a prominent herb in traditional Chinese medicine (TCM), is known for its potential to enhance physiological functions such as blood circulation, immune response, and resolve blood stasis. Despite the effectiveness of COVID-19 vaccination efforts, some individuals still face severe complications post-infection, including pulmonary fibrosis, myocarditis arrhythmias and stroke. This study employs a network pharmacology and molecular docking approach to investigate the potential mechanisms underlying the therapeutic effects of candidate components and targets from Danshen in the treatment of complications in COVID-19. Candidate components and targets from Danshen were extracted from the TCMSP Database, while COVID-19-related targets were obtained from Genecards. Venn diagram analysis identified common targets. A Protein-Protein interaction (PPI) network and gene enrichment analysis elucidated potential therapeutic mechanisms. Molecular docking evaluated interactions between core targets and candidate components, followed by molecular dynamics simulations to assess stability. We identified 59 potential candidate components and 123 targets in Danshen for COVID-19 treatment. PPI analysis revealed 12 core targets, and gene enrichment analysis highlighted modulated pathways. Molecular docking showed favorable interactions, with molecular dynamics simulations indicating high stability of key complexes. Receiver operating characteristic (ROC) curves validated the docking protocol. Our study unveils candidate compounds, core targets, and molecular mechanisms of Danshen in COVID-19 treatment. These findings provide a scientific foundation for further research and potential development of therapeutic drugs.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoqing Wang
- School of Art and Design, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Siyu Zhang
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing, 312075, China
| | - Zongqi Yang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Mrisho M, Mwangoka G, Ali AM, Mkopi A, Mahende MK, Temu S, Msuya HM, Kazyoba PE, Abdallah G, Mihayo M, Juma O, Hamad A, Jongo S, Lweno O, Tumbo A, Mswata S, Kassim KR, Kishimba R, Haruna H, Kassa H, Kapologwe N, Rashid M, Abdulla S. Pilot deployment of a community health care worker in distributing and offering the COVID-19 AgRDT in Tanzania. Sci Rep 2024; 14:11679. [PMID: 38778088 PMCID: PMC11111661 DOI: 10.1038/s41598-024-62379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
A pilot implementation of the rapid diagnostic test program was performed to collect evidence of the feasibility, acceptability, and uptake of the COVID-19 AgRDT in Tanzania. We conducted a prospective cross-sectional study in the community to provide quantitative details of the pilot implementation of the antigen rapid diagnostic test (AgRDT) in Tanzania. This study was undertaken between March 2022 and September 2022. The pilot was implemented by distributing and offering test kits to people suspected of having COVID-19 in Dar es Salaam through community health workers. A total of 1039 participants consented to participate in the survey. All the participants reported having heard about the disease. The radio was the main source (93.2%) of information on COVID-19. With regard to prevention measures, approximately 930 (89.5%) of the respondents thought that COVID-19 could be prevented. Approximately 1035 (99.6%) participants reported that they were willing to have a COVID-19 AgRDT test and wait for 20 min for the results. With regard to the participants' opinions on the AgRDT device, the majority 907 (87.3%) felt comfortable with the test, and 1,029 (99.0%) were very likely to recommend the AgRDT test to their friends. The majority of participants 848 (83.1%) mentioned that they would be willing to pay for the test if it was not available for free. The results suggest overall good acceptance of the COVID-19 AgRDT test. It is evident that the use of trained community healthcare workers allows easy screening of all possible suspects and helps them receive early treatment.
Collapse
Affiliation(s)
- Mwifadhi Mrisho
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania.
| | - Grace Mwangoka
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Ali M Ali
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Abdallah Mkopi
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Muhidin K Mahende
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Silas Temu
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Hajirani M Msuya
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Paul E Kazyoba
- National Institute for Medical Research (NIMR), P O Box 9653, Dar es Salaam, Tanzania
| | - Gumi Abdallah
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Michael Mihayo
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Omar Juma
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Ali Hamad
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Said Jongo
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Omar Lweno
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Anneth Tumbo
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Sarah Mswata
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Kamaka R Kassim
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | | | - Hussein Haruna
- Ministry of Health (MoH), P. O. Box 743, Dodoma, Tanzania
| | - Hellen Kassa
- FIND|Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Ntuli Kapologwe
- Department of Health, Social Welfare and Nutrition Services, President's Office Regional Administration and Local Government (PORALG), P.O Box 1923, Dodoma, Tanzania
| | - Mohammed Rashid
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Salim Abdulla
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| |
Collapse
|
10
|
Kosar A, Asif M, Ahmad MB, Akram W, Mahmood K, Kumari S. Towards classification and comprehensive analysis of AI-based COVID-19 diagnostic techniques: A survey. Artif Intell Med 2024; 151:102858. [PMID: 38583369 DOI: 10.1016/j.artmed.2024.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The unpredictable pandemic came to light at the end of December 2019, known as the novel coronavirus, also termed COVID-19, identified by the World Health Organization (WHO). The virus first originated in Wuhan (China) and rapidly affected most of the world's population. This outbreak's impact is experienced worldwide because it causes high mortality risk, many cases, and economic falls. Around the globe, the total number of cases and deaths reported till November 12, 2022, were >600 million and 6.6 million, respectively. During the period of COVID-19, several diverse diagnostic techniques have been proposed. This work presents a systematic review of COVID-19 diagnostic techniques in response to such acts. Initially, these techniques are classified into different categories based on their working principle and detection modalities, i.e. chest X-ray imaging, cough sound or respiratory patterns, RT-PCR, antigen testing, and antibody testing. After that, a comparative analysis is performed to evaluate these techniques' efficacy which may help to determine an optimum solution for a particular scenario. The findings of the proposed work show that Artificial Intelligence plays a vital role in developing COVID-19 diagnostic techniques which support the healthcare system. The related work can be a footprint for all the researchers, available under a single umbrella. Additionally, all the techniques are long-lasting and can be used for future pandemics.
Collapse
Affiliation(s)
- Amna Kosar
- Department of Computer Science, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Asif
- Department of Computer Science, Lahore Garrison University, Lahore, Pakistan
| | - Maaz Bin Ahmad
- College of Computing and Information Sciences, Karachi Institute of Economics and Technology (KIET), Karachi, Pakistan
| | - Waseem Akram
- Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliu, Taiwan, ROC
| | - Khalid Mahmood
- Graduate School of Intelligent Data Science, National Yunlin University of Science and Technology, Douliu, Taiwan, ROC.
| | - Saru Kumari
- Departement of Mathematics, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
11
|
Rizzi G, Albanese E. Reply to the letter to the editor "before attributing impaired cognition in the elderly to COVID-19, all influencing factors must be considered". Brain Behav Immun Health 2024; 37:100740. [PMID: 38618011 PMCID: PMC11010793 DOI: 10.1016/j.bbih.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 04/16/2024] Open
Affiliation(s)
- Greta Rizzi
- Institute of Public Health, Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
| | - Emiliano Albanese
- Institute of Public Health, Faculty of Biomedical Sciences, Università della Svizzera italiana, Switzerland
| |
Collapse
|
12
|
Portmann-Baracco AS, Alcorta-Proaño RG, Nuñez-Mochizaki C, Webb CM, Trelles J, Caparo C, La Rosa MF. Severe Acute Respiratory Syndrome-Coronavirus-2 Antibody Status at the Time of Delivery and the Risk of Preeclampsia. Am J Perinatol 2024; 41:e2124-e2128. [PMID: 37230476 DOI: 10.1055/a-2099-8758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Our objective was to evaluate the association between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) serologic status in immunologically naive patients and the risk of preeclampsia at the time of delivery. STUDY DESIGN We conducted a retrospective cohort study of pregnant patients admitted to our institution from August 1 to September 30, 2020. We recorded maternal medical and obstetric characteristics and SARS-CoV-2 serologic status. Our primary outcome was the incidence of preeclampsia. Antibody testing was performed, and patients were classified into seropositive groups: immunoglobulin (Ig)G + , IgM + , or both IgG+ and IgM + . Bivariate and multivariable analyses were performed. RESULTS We included 275 patients that were negative for SARS-CoV-2 antibodies, and 165 that were positive. Seropositivity was not associated with higher rates of preeclampsia (p = 0.183) or with preeclampsia with severe features (p = 0.916) even after adjusting for maternal age >35, BMI ≥ 30, nulliparity, and previous history of preeclampsia, and type of serologic status. Previous preeclampsia had the greatest association with the development of preeclampsia (odds ratio [OR] = 13.40; 95% confidence interval [CI]: 4.98-36.09; p < 0.05) and with preeclampsia with severe features (OR = 5.46; 95% CI: 1.65-18.02; p < 0.05). CONCLUSION We found that in an obstetric population, there was no association between SARS-CoV-2 antibody status and the risk of preeclampsia. KEY POINTS · Pregnant people with acute COVID-19 are at an increased risk of developing preeclampsia.. · Seroconversion during pregnancy was not associated with an increased risk of preeclampsia.. · Further study regarding the timing of infection and its association with preeclampsia is necessary..
Collapse
Affiliation(s)
| | | | | | - Camille M Webb
- Department of Obstetrics and Gynecology, Cayetano Heredia University, Lima, Perú
- Department of Maternal Fetal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Juan Trelles
- Department of Obstetrics and Gynecology, Cayetano Heredia University, Lima, Perú
| | - Carlos Caparo
- Department of Obstetrics and Gynecology, Cayetano Heredia University, Lima, Perú
| | - Mauricio F La Rosa
- Department of Obstetrics and Gynecology, Cayetano Heredia University, Lima, Perú
- Department of Maternal Fetal Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
13
|
Wei S, Xiaqin W, Liwei L, Fasu Z, Ying P, Pingping T, Furong Y. Analysis of Risk Factors for Death in the Coronavirus Disease 2019 (COVID-19) Population: Data Analysis from a Large General Hospital in Anhui, China. Cureus 2024; 16:e60069. [PMID: 38741698 PMCID: PMC11089484 DOI: 10.7759/cureus.60069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, clinical prevention, early diagnosis, and hematological monitoring were challenging areas. This study aims to compare risk factors and hematological and biochemical data in non-survivor group patients with COVID-19 versus survivor group patients. A total of 204 patients with COVID-19 were selected as research subjects from December 2022 to January 2023. We analyzed the age, sex, time from onset to admission, and laboratory test indicators upon admission. The differences between surviving and deceased patients and mortality-related risk factors were examined. Among the 204 patients, 168 survived, whereas 36 died during hospitalization. Significant differences were observed between the two groups with COVID-19 across various factors, including age (p < 0.0001), WBC count (p < 0.0001), RBC count (p < 0.05), neutrophils (p < 0.0001), lymphocytes (p < 0.05), mean corpuscular hemoglobin concentration (MCHC) (p < 0.0001), RBC distribution width-standard deviation (RDW-SD) (p < 0.0001), RBC distribution width coefficient of variation (RDW-CV) (p < 0.0001), aspartate aminotransferase (AST) (p < 0.05), albumin (ALB) (p < 0.0001), creatinine (CR) (p < 0.0001), uric acid (UA) (p < 0.0001), blood urea nitrogen (BUN) (p < 0.0001), plasma thrombin time (TT) (p < 0.05), prothrombin time (PT) (p < 0.0001), and D-dimer (p < 0.0001). Multivariate logistic analysis revealed that older age, CR, UA, and ALB were independent factors associated with death (p < 0.05). Elderly patients with underlying diseases, abnormal routine blood test indices, and abnormal renal function and coagulation indices are at an increased worse prognosis and should be identified early. Age, UA, CR, and ALB can be used as predictors to assess the worse prognosis in the hospital.
Collapse
Affiliation(s)
- Shi Wei
- Medical Laboratory Science, Anhui Medical College, Hefei, CHN
| | - Wu Xiaqin
- Medical Laboratory, Anqing Center, Anhui Medical University, Anqing, CHN
| | - Liu Liwei
- Immunology, Anhui Medical College, Hefei, CHN
| | - Zhang Fasu
- Medical Laboratory Science, Anhui Medical College, Hefei, CHN
| | - Pan Ying
- Medical Laboratory Science, Anhui Medical College, Hefei, CHN
| | - Tian Pingping
- Medical Laboratory Science, Anhui Medical College, Hefei, CHN
| | - Yu Furong
- Medical Laboratory Science, Anhui Medical College, Hefei, CHN
| |
Collapse
|
14
|
Kumar A, Tripathi P, Kumar P, Shekhar R, Pathak R. From Detection to Protection: Antibodies and Their Crucial Role in Diagnosing and Combatting SARS-CoV-2. Vaccines (Basel) 2024; 12:459. [PMID: 38793710 PMCID: PMC11125746 DOI: 10.3390/vaccines12050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the antibody response to SARS-CoV-2, the virus responsible for COVID-19, is crucial to comprehending disease progression and the significance of vaccine and therapeutic development. The emergence of highly contagious variants poses a significant challenge to humoral immunity, underscoring the necessity of grasping the intricacies of specific antibodies. This review emphasizes the pivotal role of antibodies in shaping immune responses and their implications for diagnosing, preventing, and treating SARS-CoV-2 infection. It delves into the kinetics and characteristics of the antibody response to SARS-CoV-2 and explores current antibody-based diagnostics, discussing their strengths, clinical utility, and limitations. Furthermore, we underscore the therapeutic potential of SARS-CoV-2-specific antibodies, discussing various antibody-based therapies such as monoclonal antibodies, polyclonal antibodies, anti-cytokines, convalescent plasma, and hyperimmunoglobulin-based therapies. Moreover, we offer insights into antibody responses to SARS-CoV-2 vaccines, emphasizing the significance of neutralizing antibodies in order to confer immunity to SARS-CoV-2, along with emerging variants of concern (VOCs) and circulating Omicron subvariants. We also highlight challenges in the field, such as the risks of antibody-dependent enhancement (ADE) for SARS-CoV-2 antibodies, and shed light on the challenges associated with the original antigenic sin (OAS) effect and long COVID. Overall, this review intends to provide valuable insights, which are crucial to advancing sensitive diagnostic tools, identifying efficient antibody-based therapeutics, and developing effective vaccines to combat the evolving threat of SARS-CoV-2 variants on a global scale.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Prashant Kumar
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
15
|
Zhang Y, Zhang Y, Zhou W, He P, Sun X, Li J, Wei H, Yu J. Rapid and sensitive detection of SARS-CoV-2 IgM through luciferase luminescence on an automatic platform. Int J Biol Macromol 2024; 265:130964. [PMID: 38499123 DOI: 10.1016/j.ijbiomac.2024.130964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
SARS-CoV-2 has brought a global health crisis worldwide. IgM is an early marker in sera after the infections, and the detection of IgM is crucial to assist diagnosis and evaluate the vaccination clinically. Herein, we developed an automated platform to identify IgM against SARS-CoV-2 in sera. Streptavidin-magnetic beads were utilized to bind to a biotinylated anti-IgM antibody, which was employed to capture IgM in sera. RBD fused luciferase hGluc was employed to label the trapped IgM against RBD and the signal of luminescence of hGluc with the substrate of coelenterazine corresponded to the amount of SARS-CoV-2 IgM conjugated to the magnetic beads. An appropriate cut-off value of the designed method was defined by a set of negative samples and positive samples with 100 % sensitivity and 100 % specificity. Through serial dilution of a positive sample, it was found that the method has a better sensitivity than ELISA. The application to determine IgM against SARS-CoV-2 demonstrated a good performance of the method. The developed system can complete the analysis of SARS-CoV-2 IgM within 25 min. Through the substitution of RBD antigen with antigens of other pathogens in this platform, the automated detection of IgM against the corresponding pathogens can be realized.
Collapse
Affiliation(s)
- Yibing Zhang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yun Zhang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wenhao Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xueni Sun
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Junhua Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
16
|
Bernardo RA, Roque JV, de Oliveira Júnior CI, Lima NM, Machado LS, Duarte GRM, Costa NL, Sorgi CA, Soares FFL, Vaz BG, Chaves AR. Exploring salivary lipid profile changes in COVID-19 patients: Insights from mass spectrometry analysis. Talanta 2024; 269:125522. [PMID: 38091738 DOI: 10.1016/j.talanta.2023.125522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The most common COVID-19 testing relies on the use of nasopharyngeal swabs. However, this sampling step is very uncomfortable and is one of the biggest challenges regarding population testing. In the present study, the use of saliva as an alternative sample for COVID-19 diagnosis was investigated. Therefore, high-resolution mass spectrometry analysis and chemometric approaches were applied to salivary lipid extracts. Two data organizations were used: classical MS data and pseudo-MS image datasets. The latter transformed MS data into pseudo-images, simplifying data interpretation. Classification models achieved high accuracy, with pseudo-MS image data performing exceptionally well. PLS-DA with OPSDA successfully separated COVID-19 and healthy groups, serving as a potential diagnostic tool. The most important lipids for COVID-19 classification were elucidated and include sphingolipids, ceramides, phospholipids, and glycerolipids. These lipids play a crucial role in viral replication and the inflammatory response. While pseudo-MS image data excelled in classification, it lacked the ability to annotate important variables, which was performed using classical MS data. These findings have the potential to improve clinical diagnosis using rapid, non-invasive testing methods and accurate high-volume results.
Collapse
Affiliation(s)
- Ricardo A Bernardo
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba, PR, Brazil.
| | - Jussara V Roque
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Charles I de Oliveira Júnior
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Departamento de Química, Universidade Federal de Jataí, 75804-020, Jataí, GO, Brazil
| | | | - Lucas Santos Machado
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | | - Nádia L Costa
- Faculdade de Odontologia, Universidade Federal de Goiás, 74605-020, Goiânia, GO, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14015-130, Ribeirão Preto, SP, Brazil
| | - Frederico F L Soares
- Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba, PR, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Andréa R Chaves
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Departamento de Química, Universidade Federal de Jataí, 75804-020, Jataí, GO, Brazil.
| |
Collapse
|
17
|
Thongyuan S, Thanongsaksrikul J, Srimanote P, Phongphaew W, Eiamcharoen P, Thengchaisri N, Bosco-Lauth A, Decaro N, Yodsheewan R. Seroprevalence of Anti-SARS-CoV-2 Antibodies in Cats during Five Waves of COVID-19 Epidemic in Thailand and Correlation with Human Outbreaks. Animals (Basel) 2024; 14:761. [PMID: 38473145 DOI: 10.3390/ani14050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Human-to-animal SARS-CoV-2 transmission was observed, including a veterinarian contracting COVID-19 through close contact with an infected cat, suggesting an atypical zoonotic transmission. This study investigated the prevalence of SARS-CoV-2 antibodies in cats during human outbreaks and elucidated the correlation between cat infections and human epidemics. A total of 1107 cat serum samples were collected and screened for SARS-CoV-2 antibodies using a modified indirect ELISA human SARS-CoV-2 antibody detection kit. The samples were confirmed using a cPass™ neutralization test. The SARS-CoV-2 seropositivity rate was 22.67% (199/878), mirroring the trend observed in concomitant human case numbers. The waves of the epidemic and the provinces did not significantly impact ELISA-positive cats. Notably, Chon Buri exhibited a strong positive correlation (r = 0.99, p = 0.009) between positive cat sera and reported human case numbers. Additionally, the cPass™ neutralization test revealed a 3.99% (35/878) seropositivity rate. There were significant differences in numbers and proportions of positive cat sera between epidemic waves. In Samut Sakhon, a positive correlation (r = 1, p = 0.042) was noted between the proportion of positive cat sera and human prevalence. The findings emphasize the need for ongoing surveillance to comprehend SARS-CoV-2 dynamics in both human and feline populations.
Collapse
Affiliation(s)
- Suporn Thongyuan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12121, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12121, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Piyaporn Eiamcharoen
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, 3107 W Rampart Road, Fort Collins, CO 80523, USA
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima, Valenzano, 70010 Bari, Italy
| | - Rungrueang Yodsheewan
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Silva KA, Ribeiro AJ, Gandra IB, Resende CAA, da Silva Lopes L, Couto CAP, de Araujo Freire V, Barcelos ICS, Pereira SP, Xavier SR, da Paz MC, Giunchetti RC, Chávez-Fumagalli MA, Gonçalves AAM, Coelho EAF, Galdino AS. A Review on the use of Synthetic and Recombinant Antigens for the Immunodiagnosis of Tegumentary Leishmaniasis. Curr Med Chem 2024; 31:4763-4780. [PMID: 38509682 PMCID: PMC11348456 DOI: 10.2174/0109298673298705240311114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Improving the diagnostic technology used to detect tegumentary leishmaniasis (TL) is essential in view of it being a widespread, often neglected tropical disease, with cases reported from the Southern United States to Northern Argentina. Recombinant proteins, recombinant multiepitope proteins, and synthetic peptides have been extensively researched and used in disease diagnosis. One of the benefits of applying these antigens is a measurable increase in sensitivity and specificity, which improves test accuracy. The present review aims to describe the use of these antigens and their diagnostic effectiveness. With that in mind, a bibliographic survey was conducted on the PudMed platform using the search terms "tegumentary leishmaniasis" AND "diagno", revealing that recombinant proteins have been described and evaluated for their value in TL diagnosis since the 1990s. However, there was a spike in the number of publications using all of the antigens between 2013 and 2022, confirming an expansion in research efforts to improve diagnosis. Moreover, all of the studies involving different antigens had promising results, including improved sensitivity and specificity. These data recognize the importance of doing research with new technologies focused on developing quick, more effective diagnostic kits as early diagnosis facilitates treatment.
Collapse
Affiliation(s)
- Kamila Alves Silva
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Anna Júlia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Carlos Ananias Aparecido Resende
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Lucas da Silva Lopes
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Carolina Alves Petit Couto
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Verônica de Araujo Freire
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Isabelle Caroline Santos Barcelos
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Sabrina Paula Pereira
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Sandra Rodrigues Xavier
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Mariana Campos da Paz
- Laboratório de Bioativos e Nanobiotecnologia, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brasil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Ana Alice Maia Gonçalves
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brasil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| |
Collapse
|
19
|
Duś-Ilnicka I, Mazur M, Rybińska A, Radwan-Oczko M, Jurczyszyn K, Paradowska-Stolarz A. SARS CoV-2 IgG seropositivity post-vaccination among dental professionals: a prospective study. BMC Infect Dis 2023; 23:539. [PMID: 37596519 PMCID: PMC10436388 DOI: 10.1186/s12879-023-08534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has spread very rapidly around the world. Various regional and national lockdowns were imposed to control the spread. Meanwhile, vaccine development and population vaccination were the next steps for pandemic control. Workers in the dental field, both dentists and dental assistants, however, were close to the sources of aerosol generated during dental procedures and thus were the group of workers the most exposed to COVID-19 infection. The aim of our study was to monitor the immune response before and after the vaccine in a high-risk population, composed by dental professionals. METHODS A clinical prospective study was carried out among dental professionals at the Academic Dental Polyclinic, Wroclaw Medical University (Wrocław, Lower Silesia region, Poland). Blood samples were collected at an interval of one year - March/April 2020, before the vaccination against COVID-19, and April 2021, after the vaccination. The analysis was performed on serum with four different methods: qualitative, semi-quantitative, and quantitative IgG count for SARS-CoV-2, and SARS-CoV-2 neutralizing antibodies. RESULTS A total of 42 healthy adult volunteers participated in the study. The results showed a statistically significant difference (p < 0.05) in antibody levels before and after vaccination (1st and 2nd measurement) for each test method. The tests that were used affected the results and the test that showed the strongest relationship with the result was the Qualitative test. CONCLUSIONS Dental professionals are the adult working population most at risk for COVID-19. Monitoring SARS-CoV-2-status-related seropositivity can provide useful information occupational risk factors for dental professionals.
Collapse
Affiliation(s)
- Irena Duś-Ilnicka
- Oral Pathology Department, Wroclaw Medical University, ul. Krakowska 26, Wrocław, 52-425, Poland
| | - Marta Mazur
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, 00161, Italy.
| | - Anna Rybińska
- Oral Pathology Department, Wroclaw Medical University, ul. Krakowska 26, Wrocław, 52-425, Poland
| | - Małgorzata Radwan-Oczko
- Oral Pathology Department, Wroclaw Medical University, ul. Krakowska 26, Wrocław, 52-425, Poland
| | - Kamil Jurczyszyn
- Department of Oral Surgery, Wroclaw Medical University, Krakowska 26, Wrocław, 50-425, Poland
| | - Anna Paradowska-Stolarz
- Division of Dentofacial Anomalies, Department of Orthodontics and Dentofacial Orhopedics, Wroclaw Medical University, Krakowska 26, Wrocław, 52-425, Poland
| |
Collapse
|
20
|
Ho KL, Ding J, Fan JS, Tsui WNT, Bai J, Fan SK. Digital Microfluidic Multiplex RT-qPCR for SARS-CoV-2 Detection and Variants Discrimination. MICROMACHINES 2023; 14:1627. [PMID: 37630161 PMCID: PMC10456927 DOI: 10.3390/mi14081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Continuous mutations have occurred in the genome of the SARS-CoV-2 virus since the onset of the COVID-19 pandemic. The increased transmissibility of the mutated viruses has not only imposed medical burdens but also prolonged the duration of the pandemic. A point-of-care (POC) platform that provides multitarget detection will help to track and reduce disease transmissions. Here we detected and discriminated three genotypes of SARS-CoV-2, including the wildtype and two variants of concern (VOCs), the Delta variant and Omicron variant, through reverse transcription quantitative polymerase chain reaction (RT-qPCR) on a digital microfluidics (DMF)-based cartridge. Upon evaluating with the RNA samples of Omicron variant, the DMF RT-qPCR presented a sensitivity of 10 copies/μL and an amplification efficiency of 96.1%, capable for clinical diagnosis. When spiking with SARS-CoV-2 RNA (wildtype, Delta variant, or Omicron variant) and 18S rDNA, the clinical analog samples demonstrated accurate detection and discrimination of different SARS-CoV-2 strains in 49 min.
Collapse
Affiliation(s)
- Kuan-Lun Ho
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA; (K.-L.H.); (J.D.)
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA; (K.-L.H.); (J.D.)
| | - Jia-Shao Fan
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA;
| | - Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (W.N.T.T.); (J.B.)
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (W.N.T.T.); (J.B.)
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA; (K.-L.H.); (J.D.)
| |
Collapse
|
21
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
França DAD, Mioni MDSR, Fornazari F, Rodrigues NJL, Polido LRF, Appolinario CM, Ribeiro BLD, Duré AÍDL, Silva MVF, Richini-Pereira VB, Langoni H, Megid J. Comparison of Three Serologic Tests for the Detection of Anti- Coxiella burnetii Antibodies in Patients with Q Fever. Pathogens 2023; 12:873. [PMID: 37513720 PMCID: PMC10386034 DOI: 10.3390/pathogens12070873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The performance of a commercial immunofluorescence assay (IFA commercial), an in-house immunofluorescence assay (IFA in-house) and an indirect enzyme-linked immunosorbent assay (ELISA) were evaluated in the detection of antibodies anti-C. burnetii in the serum of Q fever patients and persons without the disease. For the study, seropositive and seronegative samples for Q fever (n = 200) from a serum bank of the Instituto Adolfo Lutz in Brazil were used. Commercial IFA was considered in this study as the gold standard for diagnosing Q fever. The in-house IFA demonstrated good agreement with the commercial test, showing high sensitivity (91%) and specificity (97%) compared to the gold standard, with a Kappa coefficient of 0.8954. The indirect ELISA test showed lower agreement with the gold standard, showing low sensitivity (67%), although the specificity of the technique was high (97%) and the Kappa coefficient was moderate (0.6631). In-house IFA is an excellent alternative for diagnosing Q fever.
Collapse
Affiliation(s)
- Danilo Alves de França
- Department of Veterinary Hygiene and Public Health, São Paulo State University, Botucatu 05508-220, Brazil
| | | | - Felipe Fornazari
- Department of Veterinary Hygiene and Public Health, São Paulo State University, Botucatu 05508-220, Brazil
| | | | | | - Camila Michele Appolinario
- Department of Veterinary Hygiene and Public Health, São Paulo State University, Botucatu 05508-220, Brazil
| | | | - Ana Íris de Lima Duré
- Ezequiel Dias Foundation, Otávio Magalhães Institute, Belo Horizonte 30510-010, Brazil
| | | | | | - Helio Langoni
- Department of Veterinary Hygiene and Public Health, São Paulo State University, Botucatu 05508-220, Brazil
| | - Jane Megid
- Department of Veterinary Hygiene and Public Health, São Paulo State University, Botucatu 05508-220, Brazil
| |
Collapse
|
23
|
Pu Z, Sui B, Wang X, Wang W, Li L, Xie H. The effects and mechanisms of the anti-COVID-19 traditional Chinese medicine, Dehydroandrographolide from Andrographis paniculata (Burm.f.) Wall, on acute lung injury by the inhibition of NLRP3-mediated pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154753. [PMID: 37084628 PMCID: PMC10060206 DOI: 10.1016/j.phymed.2023.154753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS Liposaccharide (LPS) was injected into a C57BL/6 mouse model of ALI, and LPS + adenosine triphosphate (ATP) was used to stimulate BMDMs in an in vitro model of ALI. RESULTS In an in vivo and in vitro model of ALI, Deh considerably reduced inflammation and oxidative stress by inhibiting NLRP3-mediated pyroptosis and attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis through the suppression of ROS production by inhibiting the Akt/Nrf2 pathway. Deh inhibited the interaction between Akt at T308 and PDPK1 at S549 to promote Akt protein phosphorylation. Deh directly targeted PDPK1 protein and accelerated PDPK1 ubiquitination. 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP and 223-ASP may be the reason for the interaction between PDPK1 and Deh. CONCLUSION Deh from Andrographis paniculata (Burm.f.) Wall presented NLRP3-mediated pyroptosis in a model of ALI through ROS-induced mitochondrial damage through inhibition of the Akt/Nrf2 pathway by PDPK1 ubiquitination. Therefore, it can be concluded that Deh may be a potential therapeutic drug for the treatment of ALI in COVID-19 or other respiratory diseases.
Collapse
Affiliation(s)
- Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China; State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Bangzhi Sui
- Department of Pediatric surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xingwen Wang
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Wusuan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Lingling Li
- Department of Pulmonary and Critical Care Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
24
|
Ptak K, Szymońska I, Olchawa-Czech A, Kukla K, Cisowska M, Kwinta P. Comparison of the course of multisystem inflammatory syndrome in children during different pandemic waves. Eur J Pediatr 2023; 182:1647-1656. [PMID: 36719477 PMCID: PMC9887239 DOI: 10.1007/s00431-022-04790-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
The purpose of this study is to assess the rate, clinical picture, and management of multisystem inflammatory syndrome in children (MIS-C) during the different COVID-19 variants of concern (VOC) domination periods. This was a retrospective analysis of prospectively collected data. The incidence and clinical picture of MIS-C during the original/Alpha (group 1) and Delta/Omicron (Group 2) variant domination periods were compared. Among 108 eligible patients, 74 (68.5%) were hospitalized during the group 1 domination period, and 34 (31.5%) were hospitalized during the group 2 domination period. The median (Me) patient ages were 76 months (interquartile range [IQR] 35-130) and 73 months (IQR 45-118), and 61% and 65% of patients were male, respectively. There was no significant difference in the presence of positive SARS-CoV 2 antibody test results (IgM or IgG) between the groups (84 vs. 90%; p = 0.54).No differences between groups were observed in fever duration prior to admission (Me [IQR]: 5 days [3-6] vs. 5 days [4-6]; p = 0.26) or the presence of mucocutaneous (95 vs. 100%; p = 0.41), circulatory (70.3 vs. 61.8%; p = 0.86), neurological (6.8 vs. 2.9%; p = 0.662), or gastrointestinal symptoms (84 vs. 79%; p = 0.59). Respiratory symptoms were more common in group 2 (70 vs. 91%; p = 0.015). The need for intensive care unit admission was similar in both groups (16.2 vs. 17.6%, p = 1.0). No deaths occurred in the entire cohort. The studied children were characterized by high C-reactive protein and procalcitonin levels, concentrations of ferritin within normal limits, lymphopenia, moderate hypoalbuminemia, and high B-type natriuretic peptide/brain natriuretic peptide (NT-proBNP) concentrations; however, there were no differences between the groups. Intravenous immunoglobulins were administered as a first-line treatment for almost all patients. There was no significant difference in corticosteroid administration between the groups (87% vs. 74%; p = 0.11); however, the summary dose of methylprednisolone was higher in group 2 (Me [IQR]″ 12.6 mg/kg [10.5-17.8] vs. 16.4 mg/kg [13.3-19.5]; p = 0.03). The median length of stay was 11 days [IQR]: [9-14] and 10 days [8-12], respectively (p = 0.065). CONCLUSION The clinical course of MIS-C is similar in subsequent pandemic waves; however, the incidence of MIS-C seems to be decreasing. WHAT IS KNOWN • The clinical picture of COVID-19 is evolving. Multisystem inflammatory syndrome in children (MIS-C) is a relatively new serious disease connected with SARS-CoV-2 infection, and in subsequent waves of the pandemic, new cases of the disease have been recorded. WHAT IS NEW • The clinical picture of MIS-C is not specific, but the course is still severe. • The incidence of MIS-C during the different pandemic waves is decreasing and the diagnosis in the period of lower prevalance is challenging.
Collapse
Affiliation(s)
- Katarzyna Ptak
- Department of Pediatrics, Jagiellonian University Medical College, ul. Wielicka 265, 30-663, Cracow, Poland.
| | - Izabela Szymońska
- Department of Pediatrics, Jagiellonian University Medical College, ul. Wielicka 265, 30-663, Cracow, Poland
| | - Anna Olchawa-Czech
- Department of Pediatrics, Jagiellonian University Medical College, ul. Wielicka 265, 30-663, Cracow, Poland
| | - Kornelia Kukla
- Department of Pediatrics, University Children's Hospital, Cracow, Poland
| | - Marta Cisowska
- Department of Pediatrics, University Children's Hospital, Cracow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, ul. Wielicka 265, 30-663, Cracow, Poland
| |
Collapse
|
25
|
Jang HJ, Zhuang W, Sui X, Ryu B, Huang X, Chen M, Cai X, Pu H, Beavis K, Huang J, Chen J. Rapid, Sensitive, Label-Free Electrical Detection of SARS-CoV-2 in Nasal Swab Samples. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15195-15202. [PMID: 36938607 PMCID: PMC10041344 DOI: 10.1021/acsami.3c00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Rapid diagnosis of coronavirus disease 2019 (COVID-19) is key for the long-term control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amid renewed threats of mutated SARS-CoV-2 around the world. Here, we report on an electrical label-free detection of SARS-CoV-2 in nasopharyngeal swab samples directly collected from outpatients or in saliva-relevant conditions by using a remote floating-gate field-effect transistor (RFGFET) with a 2-dimensional reduced graphene oxide (rGO) sensing membrane. RFGFET sensors demonstrate rapid detection (<5 min), a 90.6% accuracy from 8 nasal swab samples measured by 4 different devices for each sample, and a coefficient of variation (CV) < 6%. Also, RFGFET sensors display a limit of detection (LOD) of pseudo-SARS-CoV-2 that is 10 000-fold lower than enzyme-linked immunosorbent assays, with a comparable LOD to that of reverse transcription-polymerase chain reaction (RT-PCR) for patient samples. To achieve this, comprehensive systematic studies were performed regarding interactions between SARS-CoV-2 and spike proteins, neutralizing antibodies, and angiotensin-converting enzyme 2, as either a biomarker (detection target) or a sensing probe (receptor) functionalized on the rGO sensing membrane. Taken together, this work may have an immense effect on positioning FET bioelectronics for rapid SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Hyun-June Jang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wen Zhuang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaoyu Sui
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Byunghoon Ryu
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaodan Huang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Min Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Xiaolei Cai
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Haihui Pu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kathleen Beavis
- Department
of Pathology, University of Chicago, Chicago, Illinois 60637, United States
| | - Jun Huang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Junhong Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
26
|
Dobrijević D, Andrijević L, Antić J, Rakić G, Pastor K. Hemogram-based decision tree models for discriminating COVID-19 from RSV in infants. J Clin Lab Anal 2023; 37:e24862. [PMID: 36972470 PMCID: PMC10156096 DOI: 10.1002/jcla.24862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/29/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVE Decision trees are efficient and reliable decision-making algorithms, and medicine has reached its peak of interest in these methods during the current pandemic. Herein, we reported several decision tree algorithms for a rapid discrimination between coronavirus disease (COVID-19) and respiratory syncytial virus (RSV) infection in infants. METHODS A cross-sectional study was conducted on 77 infants: 33 infants with novel betacoronavirus (SARS-CoV-2) infection and 44 infants with RSV infection. In total, 23 hemogram-based instances were used to construct the decision tree models via 10-fold cross-validation method. RESULTS The Random forest model showed the highest accuracy (81.8%), while in terms of sensitivity (72.7%), specificity (88.6%), positive predictive value (82.8%), and negative predictive value (81.3%), the optimized forest model was the most superior one. CONCLUSION Random forest and optimized forest models might have significant clinical applications, helping to speed up decision-making when SARS-CoV-2 and RSV are suspected, prior to molecular genome sequencing and/or antigen testing.
Collapse
Affiliation(s)
- Dejan Dobrijević
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | | | - Jelena Antić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | - Goran Rakić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | - Kristian Pastor
- Faculty of Technology, Univeristy of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
27
|
Chen H, Hou ZY, Chen D, Li T, Wang YM, De Lima MA, Yang Y, Guo ZZ. Highly Sensitive Poly-N-isopropylacrylamide Microgel-based Electrochemical Biosensor for the Detection of SARS-COV-2 Spike Protein. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2023; 36:269-278. [PMID: 37005080 PMCID: PMC10080711 DOI: 10.3967/bes2023.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/19/2023]
Abstract
Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019 (COVID-19), a new, highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consequently, considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2. Methods In this study, a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein (S protein) in human saliva. The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid, and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication. The electrochemical performance of the sensor was evaluated through differential pulse voltammetry. Results Under optimal experimental conditions, the linear range of the sensor was 10 -13-10 -9 mg/mL, whereas the detection limit was 9.55 fg/mL. Furthermore, the S protein was instilled in artificial saliva as the infected human saliva model, and the sensing platform showed satisfactory detection capability. Conclusion The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein, indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Hao Chen
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhi Yuan Hou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China;Department of Pharmacy, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | - Die Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China;Department of Pharmacy, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | - Ting Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China;Department of Pharmacy, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | - Yi Ming Wang
- School of Public Health, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | | | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, UK
| | - Zhen Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| |
Collapse
|
28
|
Vengesai A, Naicker T, Midzi H, Kasambala M, Muleya V, Chipako I, Choto E, Moyo P, Mduluza T. Peptide microarray analysis of in-silico predicted B-cell epitopes in SARS-CoV-2 sero-positive healthcare workers in Bulawayo, Zimbabwe. Acta Trop 2023; 238:106781. [PMID: 36460093 PMCID: PMC9705268 DOI: 10.1016/j.actatropica.2022.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Immunogenic peptides that mimic linear B-cell epitopes coupled with immunoassay validation may improve serological tests for emerging diseases. This study reports a general approach for profiling linear B-cell epitopes derived from SARS-CoV-2 using an in-silico method and peptide microarray immunoassay, using healthcare workers' SARS-CoV-2 sero-positive sera. SARS-CoV-2 was tested using rapid chromatographic immunoassays and real-time reverse-transcriptase polymerase chain reaction. Immunogenic peptides mimicking linear B-cell epitopes were predicted in-silico using ABCpred. Peptides with the lowest sequence identity with human protein and proteins from other human pathogens were selected using the NCBI Protein BLAST. IgG and IgM antibodies against the SARS-CoV-2 spike protein, membrane glycoprotein and nucleocapsid derived peptides were measured in sera using peptide microarray immunoassay. Fifty-three healthcare workers included in the study were RT-PCR negative for SARS-CoV-2. Using rapid chromatographic immunoassays, 10 were SARS-CoV-2 IgM sero-positive and 7 were SARS-CoV-2 IgG sero-positive. From a total of 10 SARS-CoV-2 peptides contained on the microarray, 3 (QTH34388.1-1-14, QTN64908.1-135-148, and QLL35955.1-22-35) showed reactivity against IgG. Three peptides (QSM17284.1-76-89, QTN64908.1-135-148 and QPK73947.1-8-21) also showed reactivity against IgM. Based on the results we predicted one peptide (QSM17284.1-76-89) that had an acceptable diagnostic performance. Peptide QSM17284.1-76-89 was able to detect IgM antibodies against SARS-CoV-2 with area under the curve (AUC) 0.781 when compared to commercial antibody tests. In conclusion in silico peptide prediction and peptide microarray technology may provide a platform for the development of serological tests for emerging infectious diseases such as COVID-19. However, we recommend using at least three in-silico peptide prediction tools to improve the sensitivity and specificity of B-cell epitope prediction, to predict peptides with excellent diagnostic performances.
Collapse
Affiliation(s)
- Arthur Vengesai
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Senga Road, Gweru, Zimbabwe.
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, Doris Duke Medical Research Institute, University of KwaZulu-Natal, College of Health Sciences Durban, ZA, South Africa
| | - Herald Midzi
- Department of Biotechnology and Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Maritha Kasambala
- Department of Biological Sciences and Ecology, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Victor Muleya
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Senga Road, Gweru, Zimbabwe
| | - Isaac Chipako
- Aravas Pharmaceuticals Pvt LTD, Prospect Industrial Area, Harare, Zimbabwe
| | - Emilia Choto
- Immunology Department, Simon Mazorodze School of Medical and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Praise Moyo
- Department of Applied Biosciences and Biotechnology, Faculty of Science and Technology, Midlands State University, Senga Road, Gweru, Zimbabwe
| | - Takafira Mduluza
- Department of Biotechnology and Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
29
|
Fu H, Sun L, Zhu J. Detection of Antibody versus Antigen, Optimal Option of Different Serological Assays Based Tests for COVID-19 Diagnosis: A Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:23-36. [PMID: 36824236 PMCID: PMC9941426 DOI: 10.18502/ijph.v52i1.11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023]
Abstract
Background In this study, the diagnostic efficacy of antigen test and antibody test were assessed. Additionally, the difference of sensitivity, specificity, and diagnostic odds ratio were compared concerning efficacy of antibody test versus antigen test for Corona Virus Disease 2019 (COVID-19) diagnosis. Methods Online databases were searched for full-text publications and STATA software was used for data pooling and analysis before Sep 1st, 2022. Forrest plot was used to show the pooled sensitivity, specificity and diagnostic odds ratio. Combined receiver operating characteristic (ROC) curve was used to show the area of under curve of complex data. Results Overall, 25 studies were included. The sensitivity (0.68, 95% CI: 0.53-0.80) and specificity (0.99, 95% CI: 0.98-0.99) in antibody or antigen was calculated. The time point of test lead to heterogeneity. The area under curve (AUC) was 0.98 (95% CI: 0.96-0.99), and the diagnostic odds ratio (DOR) was 299.54 (95% CI: 135.61-661.64). Subgroup analysis indicated antibody test with sensitivity (0.59, 95% CI: 0.44-0.73) and specificity (0.98, 95% CI: 0.95-0.99) and antigen test with sensitivity of 0.77 (95% CI: 0.53-0.91) and specificity of 0.99 (95% CI: 0.98-1.00). Higher AUC and DOR were proved in antigen test. Conclusion The present study compared the efficacy of antibody test versus antigen test for COVID-19 diagnosis. Better diagnostic efficacy, lower heterogeneity, and less publication bias of rapid antigen testing was suggested in this study. This study would help us to make better strategy about choosing rapid and reliable testing method in diagnosis of the COVID-19 disease.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai 264001, Shandong Province, PR China
| | - Lin Sun
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai 264001, Shandong Province, PR China
| | - Jingwei Zhu
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, PR China,Corresponding Author:
| |
Collapse
|
30
|
Shoaib N, Iqbal A, Shah FA, Zainab W, Qasim M, Zerqoon N, Naseem MO, Munir R, Zaidi N. Population-level median cycle threshold (Ct) values for asymptomatic COVID-19 cases can predict the trajectory of future cases. PLoS One 2023; 18:e0281899. [PMID: 36893098 PMCID: PMC9997994 DOI: 10.1371/journal.pone.0281899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Recent studies indicate that the population-level SARS-CoV-2 cycle threshold (Ct) values can inform the trajectory of the pandemic. The presented study investigates the potential of Ct values in predicting the future of COVID-19 cases. We also determined whether the presence of symptoms could change the correlation between Ct values and future cases. METHODS We examined the individuals (n = 8660) that consulted different sample collection points of a private diagnostic center in Pakistan for COVID-19 testing between June 2020 and December 2021. The medical assistant collected clinical and demographic information. The nasopharyngeal swab specimens were taken from the study participants and real-time reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect SARS-CoV-2 in these samples. RESULTS We observed that median Ct values display significant temporal variations, which show an inverse relationship with future cases. The monthly overall median Ct values negatively correlated with the number of cases occurring one month after specimen collection (r = -0.588, p <0.05). When separately analyzed, Ct values for symptomatic cases displayed a weak negative correlation (r = -0.167, p<0.05), while Ct values from asymptomatic cases displayed a stronger negative correlation (r = -0.598, p<0.05) with the number of cases in the subsequent months. Predictive modeling using these Ct values closely forecasted the increase or decrease in the number of cases of the subsequent month. CONCLUSIONS Decreasing population-level median Ct values for asymptomatic COVID-19 cases appear to be a leading indicator for predicting future COVID-19 cases.
Collapse
Affiliation(s)
- Naila Shoaib
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| | - Asim Iqbal
- Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| | - Farhad Ali Shah
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| | - Wajeeha Zainab
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Maham Qasim
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Omer Naseem
- Hormone Lab, Lahore, Pakistan.,Institute of Learning Emergency Medicine, University of Health Sciences, Lahore, Pakistan
| | | | - Nousheen Zaidi
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
31
|
Chavda VP, Mishra T, Vuppu S. Immunological Studies to Understand Hybrid/Recombinant Variants of SARS-CoV-2. Vaccines (Basel) 2022; 11:45. [PMID: 36679891 PMCID: PMC9867374 DOI: 10.3390/vaccines11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The zoonotic SARS-CoV-2 virus was present before the onset of the pandemic. It undergoes evolution, adaptation, and selection to develop variants that gain high transmission rates and virulence, resulting in the pandemic. Structurally, the spike protein of the virus is required for binding to ACE2 receptors of the host cells. The gene coding for the spike is known to have a high propensity of mutations, as a result generating numerous variants. The variants can be generated by random point mutations or recombination during replication. However, SARS-CoV-2 can also produce hybrid variants on co-infection of the host by two distinct lineages of the virus. The genomic sequences of the two variants undergo recombination to produce the hybrid variants. Additionally, these sub-variants also contain numerous mutations from both the parent variants, as well as some novel mutations unique to the hybrids. The hybrid variants (XD, XE, and XF) can be identified through numerous techniques, such as peak PCR, NAAT, and hybrid capture SARS-CoV-2 NGS (next generation sequencing) assay, etc., but the most accurate approach is genome sequencing. There are numerous immunological diagnostic assays, such as ELISA, chemiluminescence immunoassay, flow-cytometry-based approaches, electrochemiluminescence immunoassays, neutralization assays, etc., that are also designed and developed to provide an understanding of the hybrid variants, their pathogenesis, and other reactions. The objective of our study is to comprehensively analyze the variants of SARS-CoV-2, especially the hybrid variants. We have also discussed the techniques available for the identification of hybrids, as well as the immunological assays and studies for analyzing the hybrid variants.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab. 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab. 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
32
|
Zheng X, Duan RH, Gong F, Wei X, Dong Y, Chen R, yue Liang M, Tang C, Lu L. Accuracy of serological tests for COVID-19: A systematic review and meta-analysis. Front Public Health 2022; 10:923525. [PMID: 36589993 PMCID: PMC9800917 DOI: 10.3389/fpubh.2022.923525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To determine the diagnostic accuracy of serological tests for coronavirus disease-2019 (COVID-19). Methods PubMed, Embase and the Cochrane Library were searched from January 1 2020 to September 2 2022. We included studies that measured the sensitivity, specificity or both qualities of a COVID-19 serological test and a reference standard of a viral culture or reverse transcriptase polymerase chain reaction (RT-PCR). The risk of bias was assessed by using quality assessment of diagnostic accuracy studies 2 (QUADAS-2). The primary outcomes included overall sensitivity and specificity, as stratified by the methods of serological testing [enzyme-linked immunosorbent assays (ELISAs), lateral flow immunoassays (LFIAs) or chemiluminescent immunoassays (CLIAs)] and immunoglobulin classes (IgG, IgM, or both). Secondary outcomes were stratum-specific sensitivity and specificity within the subgroups, as defined by study or participant characteristics, which included the time from the onset of symptoms, testing via commercial kits or an in-house assay, antigen target, clinical setting, serological kit as the index test and the type of specimen for the RT-PCR reference test. Results Eight thousand seven hundred and eighty-five references were identified and 169 studies included. Overall, we judged the risk of bias to be high in 47.9 % (81/169) of the studies, and a low risk of applicability concerns was found in 100% (169/169) of the studies. For each method of testing, the pooled sensitivity of the ELISAs ranged from 81 to 82%, with sensitivities ranging from 69 to 70% for the LFIAs and 77% to 79% for the CLIAs. Among the evaluated tests, IgG (80-81%)-based tests exhibited better sensitivities than IgM-based tests (66-68%). IgG/IgM-based CLIA had the highest sensitivity [87% (86-88%)]. All of the tests displayed high specificity (97-98%). Heterogeneity was observed in all of the analyses. The detection of nucleocapsid protein (77-80%) as the antigen target was found to offer higher sensitivity results than surface protein detection (66-68%). Sensitivity was higher in the in-house assays (78-79%) than in the commercial kits (47-48%). Conclusion Among the evaluated tests, ELISA and CLIA tests performed better in terms of sensitivity than did the LFIA. IgG-based tests had higher sensitivity than IgM-based tests, and combined IgG/IgM test-based CLIA tests had the best overall diagnostic test accuracy. The type of sample, serological kit and timing of use of the specific tests were associated with the diagnostic accuracy. Due to the limitations of the serological tests, other techniques should be quickly approved to provide guidance for the correct diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Rui hua Duan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fen Gong
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wei
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Dong
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rouhao Chen
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming yue Liang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Chunzhi Tang
| | - Liming Lu
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China,Liming Lu
| |
Collapse
|
33
|
SARS-CoV-2 Serology: Utility and Limits of Different Antigen-Based Tests through the Evaluation and the Comparison of Four Commercial Tests. Biomedicines 2022; 10:biomedicines10123106. [PMID: 36551862 PMCID: PMC9775032 DOI: 10.3390/biomedicines10123106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction: SARS-CoV-2 serology have several indications. Currently, as there are various types available, it is important to master their performance in order to choose the best test for the indication. We evaluated and compared four different commercial serology tests, three of them had the Food and Drug Administration Emergency Use Authorization (FDA-EUA). Our goal was to provide new data to help guide the interpretation and the choice of the serological tests. Methods: Four commercial tests were studied: Elecsys® Roche® on Cobas® (total anti-nucleocapsid (N) antibodies), VIDAS® Biomerieux® (IgM and IgG anti- receptor binding domain (RBD) antibodies), Mindray® (IgM and IgG anti-N and anti-RBD antibodies) and Access® Beckman Coulter® (IgG anti-RBD antibodies). Two panels were tested: a positive panel (n = 72 sera) obtained from COVID-19-confirmed patients with no vaccination history and a negative panel (n = 119) of pre-pandemic sera. The analytical performances were evaluated and the ROC curve was drawn to assess the manufacturer’s cut-off for each test. Results: A large range of variability between the tests was found. The Mindray®IgG and Cobas® tests showed the best overall sensitivity, which was equal to 79.2% CI 95% (67.9−87.8). The Cobas® test showed the best sensitivity after 14 days of COVID-19 molecular confirmation; which was equal to 85.4% CI 95% (72.2−93.9). The Access® test had a lower sensitivity, even after day 14 (55.5% CI 95% (43.4−67.3)). The best specificity was noted for the Cobas®, VIDAS®IgG and Access® IgG tests (100% CI 95% (96.9−100)). The IgM tests, VIDAS®IgM and Mindray®IgM, showed the lowest specificity and sensitivity rates. Overall, only 43 out of 72 sera (59.7%) showed concordant results by all tests. Retained cut-offs for a significantly better sensitivity and accuracy, without significant change in the specificity, were: 0.87 for Vidas®IgM (p = 0.01) and 0.14 for Access® (p < 10−4). The combination of Cobas® with Vidas® IgM and IgG offered the best accuracy in comparison with all other tests combinations. Conclusion: Although using an FDA-EUA approved serology test, each laboratory should carry out its own evaluation. Tests variability may raise some concerns that seroprevalence studies may vary significantly based on the used serology test.
Collapse
|
34
|
Ghasemi D, Araeynejad F, Maghsoud O, Gerami N, Keihan AH, Rezaie E, Mehdizadeh S, Hosseinzadeh R, Mohammadi R, Bahardoust M, Heiat M. The Trend of IgG and IgM Antibodies During 6-Month Period After the Disease Episode in COVID-19 Patients. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022; 46:1555-1562. [PMCID: PMC9702912 DOI: 10.1007/s40995-022-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022]
|
35
|
Cao JF, Gong Y, Wu M, Xiong L, Chen S, Huang H, Zhou X, Peng YC, Shen XF, Qu J, Wang YL, Zhang X. Molecular docking and molecular dynamics study Lianhua Qingwen granules (LHQW) treats COVID-19 by inhibiting inflammatory response and regulating cell survival. Front Cell Infect Microbiol 2022; 12:1044770. [PMID: 36506032 PMCID: PMC9729774 DOI: 10.3389/fcimb.2022.1044770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose 2019 Coronavirus disease (COVID-19) is endangering health of populations worldwide. Latest research has proved that Lianhua Qingwen granules (LHQW) can reduce tissue damage caused by inflammatory reactions and relieve patients' clinical symptoms. However, the mechanism of LHQW treats COVID-19 is currently lacking. Therefore, we employed computer simulations to investigate the mechanism of LHQW treats COVID-19 by modulating inflammatory response. Methods We employed bioinformatics to screen active ingredients in LHQW and intersection gene targets. PPI, GO and KEGG was used to analyze relationship of intersection gene targets. Molecular dynamics simulations validated the binding stability of active ingredients and target proteins. Binding free energy, radius of gyration and the solvent accessible surface area were analyzed by supercomputer platform. Results COVID-19 had 4628 gene targets, LHQW had 1409 gene targets, intersection gene targets were 415. Bioinformatics analysis showed that intersection targets were closely related to inflammation and immunomodulatory. Molecular docking suggested that active ingredients (including: licopyranocoumarin, Glycyrol and 3-3-Oxopropanoic acid) in LHQW played a role in treating COVID-19 by acting on CSF2, CXCL8, CCR5, NLRP3, IFNG and TNF. Molecular dynamics was used to prove the binding stability of active ingredients and protein targets. Conclusion The mechanism of active ingredients in LHQW treats COVID-19 was investigated by computer simulations. We found that active ingredients in LHQW not only reduce cell damage and tissue destruction by inhibiting the inflammatory response through CSF2, CXCL8, CCR5 and IFNG, but also regulate cell survival and growth through NLRP3 and TNF thereby reducing apoptosis.
Collapse
Affiliation(s)
- Jun-Feng Cao
- Chengdu Medical College, Chengdu, China
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, China
| | - Li Xiong
- Chengdu Medical College, Chengdu, China
| | | | | | | | - Ying-chun Peng
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xue-fang Shen
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinyu Qu
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi-li Wang
- Chengdu Medical College, Chengdu, China
- The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Chengdu Medical College, Chengdu, China
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| |
Collapse
|
36
|
Vitale E, Vella F, Indelicato G, Canalella A, Briguglio S, Pittari V, Senia P, Vinnikov D, Floresta D, Rapisarda V, Filetti V. SARS-CoV-2 Transmission Prevention Model Application in a Large Retail Company Before the Vaccine Introduction. Front Public Health 2022; 10:908690. [PMID: 36311617 PMCID: PMC9616115 DOI: 10.3389/fpubh.2022.908690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 01/22/2023] Open
Abstract
On 11 March 2020, following the spread of SARS-CoV-2, WHO declared a pandemic status. The impact on national health and economic systems has been huge. Therefore, many countries took measures to restrict the spread of the virus. Many work activities have been subjected to lockdown measures. However, some production activities, continued to remain open, i.e., large-scale food distribution, food industry, pharmacies, hospitals, etc. In order to contain the spread of the pandemic, public health measures have been implemented by the States to reduce the contagion of the virus in the workplace. Therefore, it was important to implement measures to contrast and contain the spread of SARS-CoV-2/COVID-19 in workplaces. The aim of this study was to adopt and implement a safety protocol useful to restrict the spread of SARS-CoV-2 in a large-scale retail trade company located in the south of Italy, before vaccination, during the first and second pandemic phases also exploiting telemedicine services. Antibody serological test cards were also used during the first pandemic wave and rapid antigenic swabs during the second to detect workers positive for SARS-CoV-2. A population of subjects who worked for another company similar for production activity and distribution on the territory was selected as the control group. During work activities, this group followed the minimum activity protocol provided by the Italian legislation (24 April 2020, Ministry Protocol), which provided the daily monitoring of the body temperature and in the case of SARS- CoV-2 positive subjects the extraordinary sanitation of the workplace. The measures implemented identified the positive subject for SARS-CoV-2 at an early stage. The protocol made it possible to significantly reduce the spread of the virus within large-scale retail distribution, and therefore, to avoid the temporary closure of the stores with a consequent reduction of economic losses compared with the control group.
Collapse
Affiliation(s)
- Ermanno Vitale
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy,*Correspondence: Ermanno Vitale
| | - Francesca Vella
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| | - Giuliano Indelicato
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| | - Andrea Canalella
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| | - Salvatore Briguglio
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| | - Veronica Pittari
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| | - Paola Senia
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| | - Denis Vinnikov
- Department of Epidemiology, Biostatistics and Evidence-Based Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Daniele Floresta
- Health and Safety Manager of Eurospin Sicily and Calabria, Catania, Italy
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| | - Veronica Filetti
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, Catania, Italy
| |
Collapse
|
37
|
Xu W, Song D, Liu J, Han X, Xu J, Zhu A, Long F. Development of chemiluminescent lab-on-fiber immunosensors for rapid point-of-care testing of anti-SARS-CoV-2 antibodies and evaluation of longitudinal immune response kinetics following three-dose inactivation virus vaccination. J Med Virol 2022; 95:e28190. [PMID: 36180404 PMCID: PMC9539144 DOI: 10.1002/jmv.28190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Developing reliable, rapid, and quantitative point-of-care testing (POCT) technology of SARS-CoV-2-specific antibodies and understanding longitudinal vaccination response kinetics are highly required to restrain the ongoing coronavirus disease 2019 (COVID-19) pandemic. We demonstrate a novel portable, sensitive, and rapid chemiluminescent lab-on-fiber detection platform for detection of anti-SARS-CoV-2 antibodies: the chemiluminescent lab-on-fiber immunosensor (c-LOFI). Using SARS-CoV-2 Spike S1 RBD protein functionalized fiber bio-probe, the c-LOFI can detect anti-SARS-CoV-2 immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies with high sensitivity based on their respective horseradish peroxidase-labeled secondary antibodies. The limits of detection of anti-SARS-CoV-2 IgG and IgM antibodies were 0.6 and 0.3 ng/ml, respectively. The c-LOFI was successfully applied for direct detection of anti-SARS-CoV-2 antibodies in whole blood samples with simple dilution, which can serve as a finger prick test to rapidly detect antibodies. Furthermore, the longitudinal immune response (>12 months) kinetics following three-dose inactivated virus vaccines was evaluated based on anti-SARS-CoV-2 IgG detection results, which can provide important significance for understanding the immune mechanism against COVID-19 and identify individuals who may benefit from the vaccination and booster vaccination. The c-LOFI has great potential to become a sensitive, low-cost, rapid, high-frequency POCT tool for the detection of both SARS-CoV-2-specific antibodies and other biomarkers.
Collapse
Affiliation(s)
- Wenjuan Xu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Dan Song
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Jiayao Liu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Xiangzhi Han
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Jiaxin Xu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Feng Long
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China,Department of ChemistryRenmin University of ChinaBeijing100872China
| |
Collapse
|
38
|
Lohiya DV, Pathak SS. Role of Technology in Detection of COVID-19. Cureus 2022; 14:e29138. [PMID: 36259008 PMCID: PMC9573002 DOI: 10.7759/cureus.29138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus caused coronavirus infection termed as COVID-19, an illness that has spread devastation all over the world. It was developed first in China and had swiftly spread throughout the world. COVID has created imposed burden on health in the lives of all individuals around the globe. This article provides a number of unprecedented detection technologies used in the detection of infection. COVID has created a large number of symptoms in the young, adolescent as well as elderly population. Old age people are susceptible to fatal serious symptoms because of low immunity. With these goals in mind, this article includes substantial condemning descriptions of the majority of initiatives in order to create diagnostic tools for easy diagnosis. It also provides the reader with a multidisciplinary viewpoint on how traditional approaches such as serology and reverse transcriptase polymerase chain reaction (RT-PCR) along with the frontline techniques such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas and artificial intelligence/machine learning have been utilized to gather information. The story will inspire creative new ways for successful detection therapy and to prevent this pandemic among a wide audience of operating and aspiring biomedical scientists and engineers.
Collapse
|
39
|
Sahoo P, Dey J, Mahapatra SR, Ghosh A, Jaiswal A, Padhi S, Prabhuswamimath SC, Misra N, Suar M. Nanotechnology and COVID-19 Convergence: Toward New Planetary Health Interventions Against the Pandemic. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:473-488. [PMID: 36040392 DOI: 10.1089/omi.2022.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 is a systemic disease affecting multiple organ systems and caused by infection with the SARS-CoV-2 virus. Two years into the COVID-19 pandemic and after the introduction of several vaccines, the pandemic continues to evolve in part owing to global inequities in access to preventive and therapeutic measures. We are also witnessing the introduction of antivirals against COVID-19. Against this current background, we review the progress made with nanotechnology-based approaches such as nanoformulations to combat the multiorgan effects of SARS-CoV-2 infection from a systems medicine lens. While nanotechnology has previously been widely utilized in the antiviral research domain, it has not yet received the commensurate interest in the case of COVID-19 pandemic response strategies. Notably, SARS-CoV-2 and nanomaterials are similar in size ranging from 50 to 200 nm. Nanomaterials offer the promise to reduce the side effects of antiviral drugs, codeliver multiple drugs while maintaining stability in the biological milieu, and sustain the release of entrapped drug(s) for a predetermined time period, to name but a few conceivable scenarios, wherein nanotechnology can enable and empower preventive medicine and therapeutic innovations against SARS-CoV-2. We conclude the article by underlining that nanotechnology-based interventions warrant further consideration to enable precision planetary health responses against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Panchanan Sahoo
- Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to Be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Arpan Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Aryan Jaiswal
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Santwana Padhi
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| |
Collapse
|
40
|
Cortés-Sarabia K, Cruz-Rangel A, Flores-Alanis A, Salazar-García M, Jiménez-García S, Rodríguez-Martínez G, Reyes-Grajeda JP, Rodríguez-Téllez RI, Patiño-López G, Parra-Ortega I, Del Moral-Hernández O, Illades-Aguiar B, Klünder-Klünder M, Márquez-González H, Chávez-López A, Luna-Pineda VM. Clinical features and severe acute respiratory syndrome-coronavirus-2 structural protein-based serology of Mexican children and adolescents with coronavirus disease 2019. PLoS One 2022; 17:e0273097. [PMID: 35969583 PMCID: PMC9377623 DOI: 10.1371/journal.pone.0273097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 infection in children and adolescents primarily causes mild or asymptomatic coronavirus disease 2019 (COVID-19), and severe illness is mainly associated with comorbidities. However, the worldwide prevalence of COVID-19 in this population is only 1%–2%. In Mexico, the prevalence of COVID-19 in children has increased to 10%. As serology-based studies are scarce, we analyzed the clinical features and serological response (SARS-CoV-2 structural proteins) of children and adolescents who visited the Hospital Infantil de México Federico Gómez (October 2020–March 2021). The majority were 9-year-old children without comorbidities who were treated as outpatients and had mild-to-moderate illness. Children aged 6–10 years and adolescents aged 11–15 years had the maximum number of symptoms, including those with obesity. Nevertheless, children with comorbidities such as immunosuppression, leukemia, and obesity exhibited the lowest antibody response, whereas those aged 1–5 years with heart disease had the highest levels of antibodies. The SARS-CoV-2 spike receptor-binding domain-localized peptides and M and E proteins had the best antibody response. In conclusion, Mexican children and adolescents with COVID-19 represent a heterogeneous population, and comorbidities play an important role in the antibody response against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, México
| | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City (Ciudad de México), México
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City (Ciudad de México), México
| | - Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Samuel Jiménez-García
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, México
| | - Griselda Rodríguez-Martínez
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City (Ciudad de México), México
| | - Rosa Isela Rodríguez-Téllez
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Israel Parra-Ortega
- Laboratorio Central, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, México
| | - Miguel Klünder-Klünder
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Horacio Márquez-González
- Investigación Clínica, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Adrián Chávez-López
- Departamento de la Unidad de Terapia Intensiva Pediátrica, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City (Ciudad de México), México
- * E-mail:
| |
Collapse
|
41
|
Wu S, Hou H, Li H, Wang T, Wei W, Zhang M, Yin B, Huang M, Sun Z, Wang F. Comparison of the Performance of 24 Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Assays in the Diagnosis of Coronavirus Disease 2019 Patients. Front Microbiol 2022; 13:876227. [PMID: 36003928 PMCID: PMC9393512 DOI: 10.3389/fmicb.2022.876227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background The accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the key to control Coronavirus Disease-2019 (COVID-19). The performance of different antibody detection methods for diagnosis of COVID-19 is inconclusive. Methods Between 16 February and 28 February 2020, 384 confirmed COVID-19 patients and 142 healthy controls were recruited. 24 different serological tests, including 4 enzyme-linked immunosorbent assays (EIAs), 10 chemiluminescent immunoassays (CLIAs), and 10 lateral flow immunoassays (LFIAs), were simultaneously performed. Results The sensitivities of anti-SARS-CoV-2 IgG and IgM antibodies with different reagents ranged from 75 to 95.83% and 46.09 to 92.45%, respectively. The specificities of both anti-SARS-CoV-2 IgG and IgM were relatively high and comparable among different reagents, ranged from 88.03 to 100%. The area under the curves (AUCs) of different tests ranged from 0.733 to 0.984, and the AUCs of EIAs or CLIAs were significantly higher than those of LFIAs. The sensitivities of both IgG and IgM gradually increased with increase of onset time. After 3–4 weeks, the sensitivities of anti-SARS-CoV-2 IgG were maintained at a certain level but the sensitivities of IgM were gradually decreased. Six COVID-19 patients who displayed negative anti-SARS-CoV-2 results were associated with the factors such as older age, having underlying diseases, and using immunosuppressant. Conclusion Besides the purpose of assessing the impact of the SARS-CoV-2 pandemic in the population, SARS-CoV-2 antibody assays may have an adjunct role in the diagnosis and exclusion of COVID-19, especially by using high-throughput technologies (EIAs or CLIAs).
Collapse
|
42
|
Evaluation and Clinical Validation of Guanidine-Based Inactivation Transport Medium for Preservation of SARS-CoV-2. Adv Pharmacol Pharm Sci 2022; 2022:1677621. [PMID: 35873075 PMCID: PMC9301760 DOI: 10.1155/2022/1677621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
WHO declared the outbreak of COVID-19, caused by SARS-CoV-2, a pandemic in March 2020. More than 223 million cases and approximately 4.6 million deaths have been confirmed. Early diagnosis and immediate treatment became a priority during this pandemic. However, COVID-19 diagnostic testing resources are limited, especially early in the pandemic. Apart from being limited, the COVID-19 diagnostic tests using reverse transcription polymerase chain reaction (RT-PCR) have encountered storage, transportation, and safety issues. These problems are mainly experienced by developing poor countries, countries in the equatorial region, and archipelagic countries. VITPAD® is a guanidine-based inactivation transport medium (ITM) formulated to maintain the RNA quality of SARS-CoV-2 during transportation without cold chains. This study, conducted from September 2020 to March 2021, performed clinical validation of VITPAD® by comparing its performance with a globally commercially available ITM from the NEST brand. Its stability at room temperature, safety, and resistance at high temperatures was also tested using RT-PCR analysis. VITPAD® can reduce the infectious nature of the specimen, preserve the SARS-CoV-2 for 18 days at an ambient temperature, and resist high temperatures (40°C for 3 hours). A guanidine-based transport medium, such as VITPAD®, is compatible and recommended for RT-PCR-based molecular diagnosis of COVID-19.
Collapse
|
43
|
Zou Y, Huang D, Jiang Q, Guo Y, Chen C. The Vaccine Efficacy Against the SARS-CoV-2 Omicron: A Systemic Review and Meta-Analysis. Front Public Health 2022; 10:940956. [PMID: 35910897 PMCID: PMC9326247 DOI: 10.3389/fpubh.2022.940956] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
BackgroundCOVID-19 is a respiratory illness caused by SARS-CoV-2. The most recent variant is Omicron (line B.1.1.529), which was first identified in South Africa in November 2021. The concern with this variant is the ineffectiveness of vaccines currently available. We aim to systematically evaluate the effectiveness of the currently available COVID-19 vaccines and boosters for the Omicron variant.MethodsWe searched the PubMed, Embase, the Cochrane Library and Web of Science databases from inception to June 5th, 2022. Studies that examined the effectiveness of SARS-CoV-2 vaccines against the Omicron variant infection were included. Random-effects model was used to estimate the pooled vaccine effectiveness against the Omicron variant.ResultsA total of 13 studies were included to evaluate the effectiveness of the vaccine against the Omicron variant, and 11 studies were included to compare the effectiveness between the two-dose and three-dose (booster) vaccinations. Full vaccination (two-dose with or without booster) showed a protective effect against the Omicron variant compared to no vaccination (OR = 0.62, 95% CI: 0.56–0.69), while the effectiveness decreased significantly over 6 months after the last dose. The two-dose vaccination plus booster provided better protection against the Omicron variant compared to the two-dose vaccination without booster (OR = 0.60, 95% CI: 0.52–0.68). Additional analysis was performed for the most commonly used vaccines in the United Staes: BNT162b2(Pfizer) (OR = 0.65, 95% CI: 0.52–0.82) and mRNA-1273(Moderna) (OR = 0.67, 95% CI: 0.58–0.88) vaccines in the US, which showed similar effectiveness compared to no vaccination.ConclusionsThe full dose of SARS-CoV-2 vaccination effectively reduces infection from the SARS-CoV-2 Omicron variant; however, the effectiveness wanes over time. The booster vaccine provides additional protection against the Omicron variant.
Collapse
Affiliation(s)
- Yuntao Zou
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, NJ, United States
| | - Doudou Huang
- Medical School of Nanjing University, Nanjing, China
| | - Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanglin Guo
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Chider Chen
| |
Collapse
|
44
|
Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. BIOSENSORS 2022; 12:473. [PMID: 35884276 PMCID: PMC9312918 DOI: 10.3390/bios12070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection. This review gives a condensed overview of the current electrochemical sensing platform strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electrochemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques, and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we summarised electrochemical biosensors detection strategies and their analytical performance on diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the employment of miniaturized electrochemical biosensors integrated with microfluidic technology in viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia PMB 146, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| |
Collapse
|
45
|
Dutta D, Naiyer S, Mansuri S, Soni N, Singh V, Bhat KH, Singh N, Arora G, Mansuri MS. COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics (Basel) 2022; 12:diagnostics12061503. [PMID: 35741313 PMCID: PMC9221722 DOI: 10.3390/diagnostics12061503] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
The world is grappling with the coronavirus disease 2019 (COVID-19) pandemic, the causative agent of which is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 symptoms are similar to the common cold, including fever, sore throat, cough, muscle and chest pain, brain fog, dyspnoea, anosmia, ageusia, and headache. The manifestation of the disease can vary from being asymptomatic to severe life-threatening conditions warranting hospitalization and ventilation support. Furthermore, the emergence of mutecated variants of concern (VOCs) is paramount to the devastating effect of the pandemic. This highly contagious virus and its emergent variants challenge the available advanced viral diagnostic methods for high-accuracy testing with faster result yields. This review is to shed light on the natural history, pathology, molecular biology, and efficient diagnostic methods of COVID-19, detecting SARS-CoV-2 in collected samples. We reviewed the gold standard RT-qPCR method for COVID-19 diagnosis to confer a better understanding and application to combat the COVID-19 pandemic. This comprehensive review may further develop awareness about the management of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (D.D.); (M.S.M.)
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60616, USA;
| | | | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Vandana Singh
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Khalid Hussain Bhat
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore 193201, JK, India;
| | - Nishant Singh
- Cell and Gene Therapy Absorption System, Exton, PA 19335, USA;
| | - Gunjan Arora
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - M. Shahid Mansuri
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Correspondence: (D.D.); (M.S.M.)
| |
Collapse
|
46
|
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS APPLIED BIO MATERIALS 2022; 5:2046-2068. [PMID: 35473316 PMCID: PMC9063993 DOI: 10.1021/acsabm.1c01320] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Recent advances in microfluidics-based point-of-care testing (POCT) technology such as paper, array, and beads have shown promising results for diagnosing various infectious diseases. The fast and timely detection of viral infection has proven to be a critical step for deciding the therapeutic outcome in the current COVID-19 pandemic, which in turn not only enhances the patient survival rate but also reduces the disease-associated comorbidities. In the present scenario, rapid, noninvasive detection of the virus using low cost and high throughput microfluidics-based POCT devices embraces the advantages over existing diagnostic technologies, for which a centralized lab facility, expensive instruments, sample pretreatment, and skilled personnel are required. Microfluidic-based multiplexed POCT devices can be a boon for clinical diagnosis in developing countries that lacks a centralized health care system and resources. The microfluidic devices can be used for disease diagnosis and exploited for the development and testing of drug efficacy for disease treatment in model systems. The havoc created by the second wave of COVID-19 led several countries' governments to the back front. The lack of diagnostic kits, medical devices, and human resources created a huge demand for a technology that can be remotely operated with single touch and data that can be analyzed on a phone. Recent advancements in information technology and the use of smartphones led to a paradigm shift in the development of diagnostic devices, which can be explored to deal with the current pandemic situation. This review sheds light on various approaches for the development of cost-effective microfluidics POCT devices. The successfully used microfluidic devices for COVID-19 detection under clinical settings along with their pros and cons have been discussed here. Further, the integration of microfluidic devices with smartphones and wireless network systems using the Internet-of-things will enable readers for manufacturing advanced POCT devices for remote disease management in low resource settings.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials,
CSIR-Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh 462026,
India
| | - Udwesh Panda
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
47
|
Khizar S, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Contribution of magnetic particles in molecular diagnosis of human viruses. Talanta 2022; 241:123243. [PMID: 35121538 PMCID: PMC8779935 DOI: 10.1016/j.talanta.2022.123243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Viral diseases are the primary source of death, making a worldwide influence on healthcare, social, and economic development. Thus, diagnosis is the vital approach to the main aim of virus control and elimination. On the other hand, the prompt advancement of nanotechnology in the field of medicine possesses the probability of being beneficial to diagnose infections normally in labs as well as specifically. Nanoparticles are efficiently in use to make novel strategies because of permitting analysis at cellular in addition to the molecular scale. Henceforth, they assist towards pronounced progress concerning molecular analysis at the nanoscale. In recent times, magnetic nanoparticles conjugated through covalent bonds to bioanalytes for instance peptides, antibodies, nucleic acids, plus proteins are established like nanoprobes aimed at molecular recognition. These modified magnetic nanoparticles could offer a simple fast approach for extraction, purification, enrichment/concentration, besides viruses' recognition precisely also specifically. In consideration of the above, herein insight and outlook into the limitations of conventional methods and numerous roles played by magnetic nanoparticles to extract, purify, concentrate, and additionally in developing a diagnostic regime for viral outbreaks to combat viruses especially the ongoing novel coronavirus (COVID-19).
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | - Amal A Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France.
| |
Collapse
|
48
|
Probing the Immune System Dynamics of the COVID-19 Disease for Vaccine Designing and Drug Repurposing Using Bioinformatics Tools. IMMUNO 2022. [DOI: 10.3390/immuno2020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of COVID-19 is complicated by immune dysfunction. The impact of immune-based therapy in COVID-19 patients has been well documented, with some notable studies on the use of anti-cytokine medicines. However, the complexity of disease phenotypes, patient heterogeneity and the varying quality of evidence from immunotherapy studies provide problems in clinical decision-making. This review seeks to aid therapeutic decision-making by giving an overview of the immunological responses against COVID-19 disease that may contribute to the severity of the disease. We have extensively discussed theranostic methods for COVID-19 detection. With advancements in technology, bioinformatics has taken studies to a higher level. The paper also discusses the application of bioinformatics and machine learning tools for the diagnosis, vaccine design and drug repurposing against SARS-CoV-2.
Collapse
|
49
|
Huete-Pérez JA, Colgrove RC, Cabezas-Robelo C, Páiz-Medina L, Hunsajarupan B, Silva S, Quant C, Huete A. SARS-CoV-2 prevalence at eight urban health clinics in Nicaragua: possible implications for the COVID-19 pandemic. IJID REGIONS 2022; 2:110-117. [PMID: 35721440 PMCID: PMC8730803 DOI: 10.1016/j.ijregi.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022]
Abstract
Objective To assess the prevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in selected health clinics in the three largest urban areas in Nicaragua, where data regarding coronavirus disease 2019 (COVID-19) testing, morbidity and mortality is severely limited. Methods In this cross-sectional study, participants were tested for SARS-CoV-2 RNA by loop-mediated isothermal amplification (LAMP), and were tested for antibodies using immunoassays. A questionnaire recorded subjects' COVID-19-associated symptoms and risk factors. Data were collected from 22 February to 19 March 2021, 1 year after the first confirmed cases of SARS-CoV-2 in Nicaragua. Study participants were enrolled while attending routine check-ups or seeking care unrelated to COVID-19. Study participation was random and voluntary. All patients were eligible to participate. Symptom history was not part of the eligibility criteria. Results The prevalence of current SARS-CoV-2 infection was high (14%, LAMP-positive/seronegative). Antibody testing showed higher overall seroprevalence (38%). Cough was the symptom most strongly associated with being LAMP-positive (odds ratio 3.57, 95% confidence interval 2.65-4.81). Loss of smell had the highest positive predictive value, and was significantly associated with being LAMP-positive. Conclusion The prevalence of current SARS-CoV-2 infection and seropositivity were fairly high. More than half of the sample population had evidence of current or past infection. Knowledge of this previously unknown elevated level of infection is crucial for healthcare providers and policy makers.
Collapse
Affiliation(s)
| | - Robert C. Colgrove
- Division of Infectious Diseases, Mount Auburn Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Lucía Páiz-Medina
- Molecular Biology Center, University of Central America, Managua, Nicaragua
| | - Bhanasut Hunsajarupan
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Alejandra Huete
- Division of Infectious Diseases, Mount Auburn Hospital, Cambridge, MA, USA
| |
Collapse
|
50
|
Qualitative and quantitative detection of SARS-CoV-2 antibodies from dried blood spots. Clin Biochem 2022; 117:16-22. [PMID: 34990593 PMCID: PMC8721924 DOI: 10.1016/j.clinbiochem.2021.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 01/13/2023]
Abstract
Introduction Dried blood spot (DBS) sampling is a minimally invasive method for specimen collection with potential multifaceted uses, particularly for serosurveillance of previous SARS-CoV-2 infection. In this study, we assessed DBS as a potential specimen type for assessing IgG and total (including IgG and IgM) antibodies to SARS-CoV-2 in vaccinated and naturally infected patients. Methods Six candidate buffers were assessed for eluting blood from DBS cards. The study utilized one hundred and five paired plasma specimens and DBS specimens from prospectively collected SARS-CoV-2 vaccinated individuals, remnants from those with PCR confirmed SARS-CoV-2 infections, or remnants from those without history of infection or vaccination. All specimens were tested with the Siemens SARS-CoV-2 total assay (COV2T) or IgG assay (sCOVG). Results The lowest backgrounds were observed with water and PBS, and water was used for elution. Relative to plasma samples, DBS samples had a positive percent agreement (PPA) of 94.4% (95% CI: 94.9–100%) for COV2T and 79.2 (68.4–87.0) for sCOVG using the manufacturer’s cutoff. The NPA was 100 % (87.1–100.0 and 85.13–100) for both assays. Dilution studies revealed 100% (95% CI: 90.8–100%) qualitative agreement between specimen types on the COV2T assay and 98.0% (88.0–99.9%) with the sCOVG using study defined cutoffs. Conclusion DBS specimens demonstrated high PPA and NPA relative to plasma for SARS-CoV-2 serological testing. Our data support feasibility of DBS sampling for SARS-CoV-2 serological testing.
Collapse
|