1
|
Sokol OO, Nikitin NA, Evtushenko EA, Karpova OV, Matveeva IN, Gryn SA, Popova VM, Ivanov IV, Fedorov YN, Litenkova IY. Protective Activity of Inactivated Rabies Vaccine Using Flagellin-Based Adjuvant. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:574-582. [PMID: 38648774 DOI: 10.1134/s0006297924030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
Rabies is a zoonotic disease with high lethality. Most human deaths are associated with the bites received from dogs and cats. Vaccination is the most effective method of preventing rabies disease in both animals and humans. In this study, the ability of an adjuvant based on recombinant Salmonella typhimurium flagellin to increase protective activity of the inactivated rabies vaccine in mice was evaluated. A series of inactivated dry culture vaccine for dogs and cats "Rabikan" (strain Shchelkovo-51) with addition of an adjuvant at various dilutions were used. The control preparation was a similar series of inactivated dry culture vaccine without an adjuvant. Protective activity of the vaccine preparations was evaluated by the NIH potency test, which is the most widely used and internationally recommended method for testing effectiveness of the inactivated rabies vaccines. The value of specific activity of the tested rabies vaccine when co-administered with the adjuvant was significantly higher (48.69 IU/ml) than that of the vaccine without the adjuvant (3.75 IU/ml). Thus, recombinant flagellin could be considered as an effective adjuvant in the composition of future vaccine preparations against rabies virus.
Collapse
Affiliation(s)
- Olga O Sokol
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow Region, 141142, Russia
| | - Nikolai A Nikitin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Irina N Matveeva
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow Region, 141142, Russia
- Shchelkovo Biocombinat Federal State Enterprise, Biocombinat, Moscow Region, 141142, Russia
| | - Svetlana A Gryn
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow Region, 141142, Russia
| | - Vera M Popova
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow Region, 141142, Russia
| | - Igor V Ivanov
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow Region, 141142, Russia
| | - Yuri N Fedorov
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow Region, 141142, Russia
| | - Irina Y Litenkova
- Shchelkovo Biocombinat Federal State Enterprise, Biocombinat, Moscow Region, 141142, Russia
| |
Collapse
|
2
|
Zhou X, Wang H, Zhang J, Guan Y, Zhang Y. Single-injection subunit vaccine for rabies prevention using lentinan as adjuvant. Int J Biol Macromol 2024; 254:128118. [PMID: 37977452 DOI: 10.1016/j.ijbiomac.2023.128118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Current rabies vaccines require 5 doses to provide full protection from the deadly virus, which significantly reduce the compliance of recipients. To minimize the number of immunizations herein single injection vaccines were developed. First a single injection vaccine was designed using rabies virus glycoprotein (G protein) as antigen. A time-controlled release system which uses dynamic layer-by-layer films as erodible coating was employed to accomplish multiply pulsatile releases of G protein. The single-injection vaccine elicits potent humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of G protein. To further improve its performance, a second single injection vaccine, in which lentinan was added as adjuvant, was designed. This single-injection vaccine again elicits humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of antigen and adjuvant. In addition, the second single-injection vaccine elicits higher level immune response and provides higher efficiency on virus inhibition than the first one because lentinan can booster immune response.
Collapse
Affiliation(s)
- Xiaoyong Zhou
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haozheng Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
3
|
Narayan B, Verma SK, Singh S, Gupta MK, Kumar S. Protective antigen of Bacillus anthracis in combination with TLR4 or TLR5 agonist confers superior protection against lethal challenge in mouse model. Microbes Infect 2023; 25:105183. [PMID: 37437686 DOI: 10.1016/j.micinf.2023.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The immunogenicity and protective ability of recombinant PA (rPA) with two innate immune system modulators, i.e., monophosphoryl lipid A (MPLA), a TLR4 agonist, and recombinant flagellin C (FliC), a TLR5 agonist, were studied in the mouse model. BALB/c mice were inoculated with three doses of rPA + alum (Alum group), rPA + FliC + alum (FliC group), rPA + MPLA + alum (MPLA group), or only alum adjuvant (Alum alone group). Significant increases in anti-PA IgG titers were observed in the Alum, FliC and MPLA groups when compared to control Alum alone group. Similarly, a significant enhancement of proinflammatory (TNF-α, IL-1β), Th1 (IFN-γ, IL-12(p70), IL-2) and Th2 (IL-10, IL-4) cytokines were also noticed in Alum, FliC and MPLA groups compared to Alum alone group. The rPA-specific IgG and cytokine responses in MPLA and FliC groups were significantly higher than the Alum group, suggesting enhancement of immune response by these TLR agonists. MPLA was also found to skew the IgG1:IgG2a ratio towards IgG2a. At a challenge dose of 25 LD50, complete protection was observed in mice of MPLA group whereas lesser protection was observed in FliC (87%) and Alum (50%) groups. Therefore, we suggest the use of MPLA in further development of rPA based anthrax vaccines.
Collapse
Affiliation(s)
- Bineet Narayan
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Shailendra Kumar Verma
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Sandeep Singh
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Mahendra K Gupta
- School of Studies in Botany and Microbiology, Jiwaji University, Gwalior, India
| | - Subodh Kumar
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
4
|
Vale DL, Freitas CS, Martins VT, Moreira GJL, Machado AS, Ramos FF, Pereira IAG, Bandeira RS, de Jesus MM, Tavares GSV, Ludolf F, Chávez-Fumagalli MA, Galdino AS, Fujiwara RT, Bueno LL, Roatt BM, Christodoulides M, Coelho EAF, Lage DP. Efficacy of an Immunotherapy Combining Immunogenic Chimeric Protein Plus Adjuvant and Amphotericin B against Murine Visceral Leishmaniasis. BIOLOGY 2023; 12:851. [PMID: 37372136 PMCID: PMC10295016 DOI: 10.3390/biology12060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Visceral leishmaniasis (VL) in the Americas is a chronic systemic disease caused by infection with Leishmania infantum parasites. The toxicity of antileishmanial drugs, long treatment course and limited efficacy are significant concerns that hamper adequate treatment against the disease. Studies have shown the promise of an immunotherapeutics approach, combining antileishmanial drugs to reduce the parasitism and vaccine immunogens to activate the host immune system. In the current study, we developed an immunotherapy using a recombinant T cell epitope-based chimeric protein, ChimT, previously shown to be protective against Leishmania infantum, with the adjuvant monophosphoryl lipid A (MPLA) and amphotericin B (AmpB) as the antileishmanial drug. BALB/c mice were infected with L. infantum stationary promastigotes and later they received saline or were treated with AmpB, MPLA, ChimT/Amp, ChimT/MPLA or ChimT/MPLA/AmpB. The combination of ChimT/MPLA/AmpB significantly reduced the parasite load in mouse organs (p < 0.05) and induced a Th1-type immune response, which was characterized by higher ratios of anti-ChimT and anti-parasite IgG2a:IgG1 antibodies, increased IFN-γ mRNA and IFN-γ and IL-12 cytokines and accompanied by lower levels of IL-4 and IL-10 cytokines, when compared to other treatments and controls (all p < 0.05). Organ toxicity was also lower with the ChimT/MPLA/AmpB immunotherapy, suggesting that the inclusion of the vaccine and adjuvant ameliorated the toxicity of AmpB to some degree. In addition, the ChimT vaccine alone stimulated in vitro murine macrophages to significantly kill three different internalized species of Leishmania parasites and to produce Th1-type cytokines into the culture supernatants. To conclude, our data suggest that the combination of ChimT/MPLA/AmpB could be considered for further studies as an immunotherapy for L. infantum infection.
Collapse
Affiliation(s)
- Danniele L. Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Camila S. Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Vívian T. Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Gabriel J. L. Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Amanda S. Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Isabela A. G. Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Raquel S. Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Marcelo M. de Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Grasiele S. V. Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa 04000, Peru
| | - Alexsandro S. Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Lílian L. Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
- Departamento de Patologia Clínica, Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Daniela P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| |
Collapse
|
5
|
Zhong X, Wang G, Li F, Fang S, Zhou S, Ishiwata A, Tonevitsky AG, Shkurnikov M, Cai H, Ding F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023; 15:1615. [PMID: 37376063 DOI: 10.3390/pharmaceutics15061615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
β-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals and microorganisms and possesses various biological activities, including anti-inflammatory, antioxidant, and anti-tumor properties. More recently, there has been mounting proof that β-glucan functions as a physiologically active "biological response modulator (BRM)", promoting dendritic cell maturation, cytokine secretion, and regulating adaptive immune responses-all of which are directly connected with β-glucan-regulated glucan receptors. This review focuses on the sources, structures, immune regulation, and receptor recognition mechanisms of β-glucan.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Fu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Sixian Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Saitama, Japan
| | - Alexander G Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Abdul Rahman NA, Mohamad Norpi AS, Nordin ML, Mohd Amin MCI, Ahmad Fuaad AAH, Muhammad Azami NA, Marasini N, Azmi F. DENV-Mimetic Polymersome Nanoparticles Bearing Multi-Epitope Lipopeptides Antigen as the Next-Generation Dengue Vaccine. Pharmaceutics 2022; 14:pharmaceutics14010156. [PMID: 35057051 PMCID: PMC8781246 DOI: 10.3390/pharmaceutics14010156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Dengue remains a severe threat to public health. The safety and efficacy of the licensed dengue vaccine is not clinically satisfactory, which necessitate the need of new approach in designing an effective dengue vaccine without eliciting adverse reaction. Herein, we have designed a lipidated multi-epitope peptide vaccine (LipoDV) that can elicit highly targeted humoral and cell-mediated immune responses. To improve its immunogenicity, LipoDV was presented on the surface of MPLA-functionalized polymersome nanoparticles (PNs-LipoDV-MPLA). The as-constructed vaccine delivery platform resembles the structural morphology of DENV owing to its spherical nanoscale particle size and surface immunostimulatory properties given by LipoDV and MPLA that emulating the functional role of DENV E and prM/M proteins respectively. A proof-of-concept study demonstrated that BALB/c mice immunized with PNs-LipoDV-MPLA induced a stronger antigen-specific antibody response with an enhanced cell-mediated immunity as characterized by the elevated IFN-γ secretion in comparison to other tested vaccine candidates which possess a lesser structural trait of DENV. The DENV-mimicking nanoparticles vaccine exhibited negligible toxicity as analyzed by hemolytic test, MTT assay, histopathological examination and abnormal toxicity test on immunized mice. Collectively, our study provides a strong foundation in designing an effective peptide-based vaccine delivery platform against DENV infection.
Collapse
Affiliation(s)
- Nur Adilah Abdul Rahman
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
| | - Abdin Shakirin Mohamad Norpi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, No. 3 Jalan Greentown, Ipoh 30450, Malaysia
| | - Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
| | | | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nirmal Marasini
- Faculty of Medicine, School of Biomedical Science, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
- Correspondence: ; Tel.: +60-3-92897487
| |
Collapse
|
7
|
Toll-Like Receptor 4 Regulates Rabies Virus-Induced Humoral Immunity through Recruitment of Conventional Type 2 Dendritic Cells to Lymph Organs. J Virol 2021; 95:e0082921. [PMID: 34613801 DOI: 10.1128/jvi.00829-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expressions of pattern recognition receptors (PRRs) also cause diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not yet been revealed. Based on TLR4-deficient (TLR4-/-) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type 2 dendritic cells (CD8α- CD11b+ cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of follicular helper T (Tfh) cells promotes the proliferation of germinal center (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4-deficient (TLR4-/-) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG compared to that occurred in wild-type (WT) mice. As a consequence, TLR4-/- mice exhibited higher mortality than that of WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α+ CD11b-), a subset of cDCs known to induce CD4+ T-cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.
Collapse
|
8
|
Alum Pickering Emulsion as Effective Adjuvant to Improve Malaria Vaccine Efficacy. Vaccines (Basel) 2021; 9:vaccines9111244. [PMID: 34835175 PMCID: PMC8624716 DOI: 10.3390/vaccines9111244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is a life-threatening global epidemic disease and has caused more than 400,000 deaths in 2019. To control and prevent malaria, the development of a vaccine is a potential method. An effective malaria vaccine should either combine antigens from all stages of the malaria parasite’s life cycle, or epitopes of multiple key antigens due to the complexity of the Plasmodium parasite. Malaria’s random constructed antigen-1 (M.RCAg-1) is one of the recombinant vaccines, which was selected from a DNA library containing thousands of diverse multi-epitope chimeric antigen genes. Moreover, besides selecting an antigen, using an adjuvant is another important procedure for most vaccine development procedures. Freund’s adjuvant is considered an effective vaccine adjuvant for malaria vaccine, but it cannot be used in clinical settings because of its serious side effects. Traditional adjuvants, such as alum adjuvant, are limited by their unsatisfactory immune effects in malaria vaccines, hence there is an urgent need to develop a novel, safe and efficient adjuvant. In recent years, Pickering emulsions have attracted increasing attention as novel adjuvant. In contrast to classical emulsions, Pickering emulsions are stabilized by solid particles instead of surfactant, having pliability and lateral mobility. In this study, we selected aluminum hydroxide gel (termed as “alum”) as a stabilizer to prepare alum-stabilized Pickering emulsions (ALPE) as a malaria vaccine adjuvant. In addition, monophosphoryl lipid A (MPLA) as an immunostimulant was incorporated into the Pickering emulsion (ALMPE) to further enhance the immune response. In vitro tests showed that, compared with alum, ALPE and ALMPE showed higher antigen load rates and could be effectively endocytosed by J774a.1 cells. In vivo studies indicated that ALMPE could induce as high antibody titers as Freund’s adjuvant. The biocompatibility study also proved ALMPE with excellent biocompatibility. These results suggest that ALMPE is a potential adjuvant for a malaria vaccine.
Collapse
|
9
|
Zhu L, Lei Z, Xia X, Zhang Y, Chen Y, Wang B, Li J, Li G, Yang G, Cao G, Yin Z. Yeast Shells Encapsulating Adjuvant AS04 as an Antigen Delivery System for a Novel Vaccine against Toxoplasma Gondii. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40415-40428. [PMID: 34470103 DOI: 10.1021/acsami.1c12366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Toxoplasma gondii (T. gondii) infection causes severe zoonotic toxoplasmosis, which threatens the safety of almost one-third of the human population globally. However, there is no effective protective vaccine against human toxoplasmosis. This necessitates anti-T. gondii vaccine development, which is a main priority of public health. In this study, we optimized the adjuvant system 04 (AS04), a vaccine adjuvant constituted by 3-O-desacyl-4'-monophosphoryl lipid A (a TLR4 agonist) and aluminum salts, by packing it within natural extracts of β-glucan particles (GPs) from Saccharomyces cerevisiae to form a GP-AS04 hybrid adjuvant system. Through a simple mixing procedure, we loaded GP-AS04 particles with the total extract (TE) of T. gondii lysate, forming a novel anti-T. gondii vaccine GP-AS04-TE. Results indicated that the hybrid adjuvant can efficiently and stably load antigens, mediate antigen delivery, facilitate the dendritic uptake of antigens, boost dendritic cell maturation and stimulation, and increase the secretion of pro-inflammatory cytokines. In the mouse inoculation model, GP-AS04-TE significantly stimulated the function of dendritic cells, induced a very strong TE-specific humoral and cellular immune response, and finally showed a strong and effective protection against toxoplasma chronic and acute infections. This work proves the potential of GP-AS04 for exploitation as a vaccine against a range of pathogens.
Collapse
Affiliation(s)
- Leqing Zhu
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhiwei Lei
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Xichun Xia
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yingying Zhang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Baocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Jiawei Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Guangqiang Li
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guangchao Cao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
11
|
Abstract
Vaccines are powerful tools that can activate the immune system for protection against various diseases. As carbohydrates can play important roles in immune recognition, they have been widely applied in vaccine development. Carbohydrate antigens have been investigated in vaccines against various pathogenic microbes and cancer. Polysaccharides such as dextran and β-glucan can serve as smart vaccine carriers for efficient antigen delivery to immune cells. Some glycolipids, such as galactosylceramide and monophosphoryl lipid A, are strong immune stimulators, which have been studied as vaccine adjuvants. In this review, we focus on the current advances in applying carbohydrates as vaccine delivery carriers and adjuvants. We will discuss the examples that involve chemical modifications of the carbohydrates for effective antigen delivery, as well as covalent antigen-carbohydrate conjugates for enhanced immune responses.
Collapse
Affiliation(s)
- Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Hum Cell 2019; 33:10-22. [PMID: 31811569 DOI: 10.1007/s13577-019-00308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Migration and homing are known as critical steps toward regeneration of damaged tissues via cell therapies. Among various cellular sources of stem cells, the umbilical cord has been thus recognized as an interesting one endowed with high benefits. Accordingly, the main objective of the present study was to determine whether monophosphoryl lipid A (MPLA) or supernatant of Lactobacillus acidophilus (SLA) could increase migration of human umbilical cord mesenchymal stem cells (hUMSCs) toward acellular foreskin or not. In this study, the hUMSCs were isolated and cultured through acellular MPLA- or SLA-treated foreskin. Expression of some migration genes (i.e., VCAM-1, MMP-2, VLA-4, CXCR-4, and VEGF) was also investigated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Moreover; vimentin, cytokeratin 5 (CK5), and matrix metalloproteinases-2 (MMP-2) were detected via immunohistochemistry (IHC) analysis. The hUMSCs in the presence of MPLA- or SLA-treated foreskin showed more tissue tropism compared with those in the control group. Besides, the scanning electron microscopy (SEM) results established that the hUMSCs had more migratory activity in the presence of MPLA- or SLA-treated foreskin than the untreated one. The IHC analysis results correspondingly indicated that expression of vimentin, CK5, and MMP-2 proteins had augmented in both treatments compared with those in the control group. It was concluded that MPLA had revealed more prominent results than SLA, even though both treatments could be regarded as inducing factors in migration. Ultimately, it was suggested to introduce the use of MPLA and probiotic components as a promising approach to improve therapies in regenerative medicine.
Collapse
|
13
|
Chen C, Zhang C, Li R, Wang Z, Yuan Y, Li H, Fu Z, Zhou M, Zhao L. Monophosphoryl-Lipid A (MPLA) is an Efficacious Adjuvant for Inactivated Rabies Vaccines. Viruses 2019; 11:E1118. [PMID: 31816996 PMCID: PMC6950009 DOI: 10.3390/v11121118] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Rabies, as one of the most threatening zoonoses in the world, causes a fatal central nervous system (CNS) disease. So far, vaccination with rabies vaccines has been the most effective measure to prevent and control this disease. At present, inactivated rabies vaccines are widely used in humans and domestic animals. However, humoral immune responses induced by inactivated rabies vaccines are relatively low and multiple shots are required to achieve protective immunity. Supplementation with an adjuvant is a practical way to improve the immunogenicity of inactivated rabies vaccines. In this study, we found that monophosphoryl-lipid A (MPLA), a well-known TLR4 agonist, could significantly promote the maturation of bone marrow-derived dendritic cells (BMDC) through a TLR4-dependent pathway in vitro and the maturation of conventional DCs (cDCs) in vivo. We also found that MPLA, serving as an adjuvant for inactivated rabies vaccines, could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, and plasma cells (PCs), consequently enhancing the production of RABV-specific total-IgG, IgG2a, IgG2b, and the virus-neutralizing antibodies (VNAs). Furthermore, MPLA could increase the survival ratio of mice challenged with virulent RABV. In conclusion, our results demonstrate that MPLA serving as an adjuvant enhances the intensity of humoral immune responses by activating the cDC-Tfh-GC B axis. Our findings will contribute to the improvement of the efficiency of traditional rabies vaccines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY. Engineering Magnetosomes for High-Performance Cancer Vaccination. ACS CENTRAL SCIENCE 2019; 5:796-807. [PMID: 31139716 PMCID: PMC6535768 DOI: 10.1021/acscentsci.9b00060] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 05/18/2023]
Abstract
A novel cancer vaccine is developed by using Fe3O4 magnetic nanoclusters (MNCs) as the core and cancer cell membranes decorated with anti-CD205 as the cloak. Because of the superparamagnetism and magnetization of MNCs, it is first achieved for the magnetic retention of vaccine in the lymph nodes with a magnetic resonance imaging (MRI) guide, which opened the time window for antigen uptake by dendritic cells (DCs). Meanwhile, the camouflaged cancer cell membranes serve as a reservoir of various antigens, enabling subsequent multiantigenic response. Additionally, the decorated anti-CD205 direct more vaccine into CD8+ DCs, facilitating the major histocompatibility complex (MHC) I cross-presentation. These unique advantages together lead to a great proliferation of T cells with superior clonal diversity and cytotoxic activity. As a result, potent prophylactic and therapeutic effects with few abnormalities are observed on five different tumor models. Therefore, such a cancer-derived magnetosome with the integration of various recent nanotechnologies successfully demonstrates its promise for safe and high-performance cancer vaccination.
Collapse
Affiliation(s)
- Feng Li
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weidong Nie
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fan Zhang
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guihong Lu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chengliang Lv
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yanlin Lv
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weier Bao
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Lijun Zhang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Shuang Wang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoyong Gao
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Wei
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- E-mail:
| | - Hai-Yan Xie
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- E-mail:
| |
Collapse
|
15
|
Yao S, Li Y, Zhang Q, Zhang H, Zhou L, Liao H, Zhang C, Xu M. Staphylococcal enterotoxin C2 as an adjuvant for rabies vaccine induces specific immune responses in mice. Pathog Dis 2019; 76:5025657. [PMID: 29860490 DOI: 10.1093/femspd/fty049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023] Open
Abstract
Rabies vaccine administration is the most effective method to prevent the occurrence of rabies disease. However, administration of rabies vaccine without adjuvant always shows low efficiency. As a member of superantigen, staphylococcal enterotoxin C2 (SEC2) non-specifically activates T-cells at extremely low concentration. It enlightens us that SEC2 may be used as an adjuvant. We carried out the experiment that the mice received twice immunization with rabies vaccine in the presence or absence of SEC2 at 1-week interval. Serum and splenocytes from immunized mice were collected to measure the level of rabies-specific-IgG and the cell that secretes IFN-γ or IL-4. The promotion of antigen-specific splenocytes proliferation was also detected. Besides, a challenge test was performed to evaluate the protective efficiency of SEC2. It was shown that mice immunized with vaccine combined with SEC2 generated more specific anti-rabies-antibodies. The results for production of IFN-γ and IL-4, as well as the proliferation of splenocytes from immunized mice indicated SEC2 promoted the specific immune responses induced by rabies vaccine. Moreover, immunization of mice with vaccine combined with SEC2 provided efficient protection against the lethal rabies exposure. Taken together, our findings indicated that SEC2 can be served as an adjuvant for rabies vaccines.
Collapse
Affiliation(s)
- Songyuan Yao
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianru Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Libao Zhou
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Hui Liao
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| |
Collapse
|
16
|
Espinosa DA, Beatty PR, Reiner GL, Sivick KE, Hix Glickman L, Dubensky TW, Harris E. Cyclic Dinucleotide-Adjuvanted Dengue Virus Nonstructural Protein 1 Induces Protective Antibody and T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:1153-1162. [PMID: 30642979 DOI: 10.4049/jimmunol.1801323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023]
Abstract
Endothelial dysfunction and vascular leak, pathogenic hallmarks of severe dengue disease, are directly triggered by dengue virus (DENV) nonstructural protein 1 (NS1). Previous studies have shown that immunization with NS1, as well as passive transfer of NS1-immune serum or anti-NS1 mAb, prevent NS1-mediated lethality in vivo. In this study, we evaluated the immunogenicity and protective capacity of recombinant DENV NS1 administered with cyclic dinucleotides (CDNs), potent activators of innate immune pathways and highly immunogenic adjuvants. Using both wild-type C57BL/6 mice and IFN-α/β receptor-deficient mice, we show that NS1-CDN immunizations elicit serotype-specific and cross-reactive Ab and T cell responses. Furthermore, NS1-CDN vaccinations conferred significant homotypic and heterotypic protection from DENV2-induced morbidity and mortality. In addition, we demonstrate that high anti-NS1 Ab titers are associated with protection, supporting the role of humoral responses against DENV NS1 as correlates of protection. These findings highlight the potential of CDN-based adjuvants for inducing Ab and T cell responses and validate NS1 as an important candidate for dengue vaccine development.
Collapse
Affiliation(s)
- Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | | | | | | | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720;
| |
Collapse
|
17
|
Alves CC, Araujo N, Bernardes WPDOS, Mendes MM, Oliveira SC, Fonseca CT. A Strong Humoral Immune Response Induced by a Vaccine Formulation Containing rSm29 Adsorbed to Alum Is Associated With Protection Against Schistosoma mansoni Reinfection in Mice. Front Immunol 2018; 9:2488. [PMID: 30450095 PMCID: PMC6224358 DOI: 10.3389/fimmu.2018.02488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
The helminth Schistosoma mansoni is one of main causes of human schistosomiasis, a health and economic concern in some of the world's poorest countries. Current treatment regimens can lead to serious side effects and are not suitable for breastfeeding mothers. As such, efforts have been undertaken to develop a vaccine to prevent infection. Of these, Sm29 is a promising candidate that has been associated with resistance to infection/reinfection in humans and mice. Its ability to induce resistance to reinfection has also been recently demonstrated using a vaccine formulation containing Freund's adjuvant. However, Freund's adjuvant is unsuitable for use in human vaccines. We therefore evaluated the ability of Sm29 to induce protection against S. mansoni reinfection when formulated with either alum or MPLA as an adjuvant, both approved for human use. Our data demonstrate that, in contrast to Sm29 with MPLA, Sm29 with alum reduced parasite burden after reinfection compared to a control. We next investigated whether the immune response was involved in creating the differences between the protective (Sm29Alum) and non-protective (Sm29MPLA) vaccine formulations. We observed that both formulations induced a similar mixed-profile immune response, however, the Sm29 with alum formulation raised the levels of antibodies against Sm29. This suggests that there is an association between a reduction in worm burden and parasite-specific antibodies. In summary, our data show that Sm29 with an alum adjuvant can successfully protect against S. mansoni reinfection in mice, indicating a potentially effective vaccine formulation that could be applied in humans.
Collapse
Affiliation(s)
- Clarice Carvalho Alves
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Neusa Araujo
- Laboratório de Esquistossomose, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Mariana Moreira Mendes
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Laboratório de Imunologia de doenças Infeciosas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, CNPq, MCT, Salvador, Brazil
| | - Cristina Toscano Fonseca
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Ze L, Zonglin L, Ya'Nan W, Shaohui S, Huijuan Y, Wei C, Li W, Liao G. Application of a novel nanoemulsion adjuvant for rabies vaccine which stabilizes a Krebs cycle intermediate (SDH) in an animal model. Hum Vaccin Immunother 2018; 15:388-396. [PMID: 30299210 DOI: 10.1080/21645515.2018.1531966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is the most lethal zoonotic, vaccine-preventable viral disease in the world. Its treatment is complicated by insufficient vaccine supply and the requirement for four to five repeated injections, as commercially available inactivated rabies lack adjuvant and have low immunogenicity. In this study, we focused on the role of a Krebs cycle intermediate, succinate dehydrogenase (SDH), in the innate immune response to cytokine production. We formulated a novel nanoemulsion adjuvant, Golden03, which stabilizes mouse SDH activity and contains more coenzyme Q10 and succinic acid than the classic MF59 adjuvant. Mice were immunized on days 1, 3, and 7, with seroconversion rate results suggesting that Golden03 significantly enhanced vaccine-stimulated antibody production against the rabies virus. Neutralizing antibody concentration testing by RFFIT indicated that treatment with Golden03 could result in antibody levels of up to 0.74 IU/mL 5 days post infection (DPI). ELISPOT for IFN-γ in mouse spleen cells showed that Golden03 enhanced immune responses at 14 DPI, inducing a rapid and powerful cellular response compared to the control group. Furthermore, the Vaccine-Golden03 group displayed no obvious weight loss or death after intracranial injection with CVS-11. An additional advantage is that Golden03 allowed for a three-quarter reduction in dose, while maintaining its efficacy and rapid stimulation effect. We suggest that Golden03 could be developed as a potential adjuvant for use in human rabies vaccine.
Collapse
Affiliation(s)
- Liu Ze
- a The Fifth Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Li Zonglin
- a The Fifth Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Wu Ya'Nan
- a The Fifth Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Song Shaohui
- a The Fifth Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Yang Huijuan
- b The Sixth Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Cai Wei
- c The Fourth Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- d The Regulatory Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The Fifth Department of Biological Products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| |
Collapse
|
19
|
Shi W, Kou Y, Xiao J, Zhang L, Gao F, Kong W, Su W, Jiang C, Zhang Y. Comparison of immunogenicity, efficacy and transcriptome changes of inactivated rabies virus vaccine with different adjuvants. Vaccine 2018; 36:5020-5029. [DOI: 10.1016/j.vaccine.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/29/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022]
|
20
|
Song P, He S, Zhou A, Lv G, Guo J, Zhou J, Han Y, Zhou H, Hao Z, Cong H. Vaccination with toxofilin DNA in combination with an alum-monophosphoryl lipid A mixed adjuvant induces significant protective immunity against Toxoplasma gondii. BMC Infect Dis 2017; 17:19. [PMID: 28056837 PMCID: PMC5217305 DOI: 10.1186/s12879-016-2147-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND A widely prevalent disease, toxoplasmosis poses serious health threats to both humans and animals; therefore, development of an ideal DNA vaccine against Toxoplasma gondii is needed eagerly. The purpose of the present study is to assess the protective efficacy of a DNA vaccine encoding the T. gondii toxofilin gene (pEGFP-toxofilin). In addition, toxofilin DNA vaccine combined with the individual adjuvants, alum or monophosphoryl lipid A (MPLA), or a mixture of alum-MPLA adjuvant were screened for their ability to enhance antibody responses. METHODS Using bioinformatics, we analyzed the gene and amino acid sequences of the toxofilin protein, recognizing and identifying several potential linear B and T helper (Th)-1 cell epitopes. BALB/c mice were immunized three times with either toxofilin DNA vaccine alone or in combination with the adjuvants such as alum, MPLA or an alum-MPLA mixture. The systemic immune response was evaluated by cytokine, the percentage of CD4 (+) and CD8 (+) T cells and specific antibody measurement. Two weeks after the last immunization, protective efficacy was evaluated by challenging intraperitoneally with 1 × 104 tachyzoites of T. gondii or intragastrically with 20 cysts of T. gondii PRU strain. RESULTS All experimentally immunized mice developed strong humoral and cellular immune responses compared with the control groups. Moreover, by comparison with the non-adjuvant toxofilin DNA vaccine group, adding alum adjuvant to toxofilin DNA vaccine resulted in an increase in humoral response and a skewed Th2 response. However, the MPLA adjuvant with toxofilin DNA vaccine induced significantly enhanced humoral and Th1-biased immune responses. Importantly, the co-administration of alum-MPLA adjuvant in combination with the toxofilin DNA vaccine shifted the Th2 immune response to a Th1 response compared with the alum-toxofilin group, and elicited the strongest humoral and Th1 responses among all the groups. At the same time, a longer survival time and less cyst amounts against T. gondii infection were also observed in the alum-MPLA-toxofilin group in comparison with single or no adjuvant groups. CONCLUSIONS Toxoplasma gondii toxofilin is a promising vaccine candidate that warrants further development. Co-administration of the alum-MPLA adjuvant mixture with DNA vaccine could effectively enhance immunogenicity and strongly skew the cellular immune response towards a Th1 phenotype.
Collapse
Affiliation(s)
- Pengxia Song
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shenyi He
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, 250021, Jinan, Shandong Province, People's Republic of China
| | - Gang Lv
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jingjing Guo
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jian Zhou
- Shandong University School of Medicine, 250021, Jinan, Shandong Province, People's Republic of China
| | - Yali Han
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| | - Huaiyu Zhou
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| | - Zhen Hao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| | - Hua Cong
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, 250012, People's Republic of China
| |
Collapse
|
21
|
Noh HJ, Noh YW, Heo MB, Kim EH, Park SJ, Kim YI, Choi YK, Lim YT. Injectable and Pathogen-Mimicking Hydrogels for Enhanced Protective Immunity against Emerging and Highly Pathogenic Influenza Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6279-6288. [PMID: 27671946 DOI: 10.1002/smll.201602344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/19/2016] [Indexed: 05/28/2023]
Abstract
Seasonal emerging infectious diseases such as influenza A impose substantial risk and need new translational strategies to achieve active immunomodulation. Here, a novel injectable pathogen-mimicking hydrogel (iPMH) that can enhance both cellular and humoral immune responses is suggested. By the help of poly(γ-glutamic acid) that has abundant carboxylate groups and dispersion helper function, hydrophobic immunostimulatory 3-O-desacyl-4'-monophosphoryl lipid A (MPLA) molecules and viral antigens (PR8, W150) can be successfully combined as pathogen-mimicking adjuvants. Polyelectrolyte complex between the poly(γ-glutamic acid)-based adjuvants and collagens generate in situ gel-forming hydrogel at physiological temperature. When the iPMH are immunized, they act as a pathogen-mimicking (MPLA, H1N1, H5N1) immune priming center and a depot for continuous stimulation of immune system, resulting in the induction of high levels (8.5 times higher) of antigen-specific IgG titers in the sera of mice and the increased number of IFN-γ-producing cells (7.3 times higher) compared with those in the groups immunized with antigen plus clinically used aluminum gels. Following the intranasal infection of the mouse adapted virus (emerging infectious 2009 H1N1 and highly pathogenic 2006 H5N1) at 50 times the 50% lethal dose, the mice immunized with viral antigens plus iPMH exhibit 100% protective immunity against lethal virus challenge.
Collapse
Affiliation(s)
- Hyun Jong Noh
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Young-Woock Noh
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Min Beom Heo
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Chengju, 28644, South Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Chengju, 28644, South Korea
| | - Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Chengju, 28644, South Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Chengju, 28644, South Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
22
|
Kessels JA, Recuenco S, Navarro-Vela AM, Deray R, Vigilato M, Ertl H, Durrheim D, Rees H, Nel LH, Abela-Ridder B, Briggs D. Pre-exposure rabies prophylaxis: a systematic review. Bull World Health Organ 2016; 95:210-219C. [PMID: 28250534 PMCID: PMC5328107 DOI: 10.2471/blt.16.173039] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To review the safety and immunogenicity of pre-exposure rabies prophylaxis (including accelerated schedules, co-administration with other vaccines and booster doses), its cost-effectiveness and recommendations for use, particularly in high-risk settings. METHODS We searched the PubMed, Centre for Agriculture and Biosciences International, Cochrane Library and Web of Science databases for papers on pre-exposure rabies prophylaxis published between 2007 and 29 January 2016. We reviewed field data from pre-exposure prophylaxis campaigns in Peru and the Philippines. FINDINGS Pre-exposure rabies prophylaxis was safe and immunogenic in children and adults, also when co-administered with routine childhood vaccinations and the Japanese encephalitis vaccine. The evidence available indicates that shorter regimens and regimens involving fewer doses are safe and immunogenic and that booster intervals could be extended up to 10 years. The few studies on cost suggest that, at current vaccine and delivery costs, pre-exposure prophylaxis campaigns would not be cost-effective in most situations. Although pre-exposure prophylaxis has been advocated for high-risk populations, only Peru and the Philippines have implemented appropriate national programmes. In the future, accelerated regimens and novel vaccines could simplify delivery and increase affordability. CONCLUSION Pre-exposure rabies prophylaxis is safe and immunogenic and should be considered: (i) where access to postexposure prophylaxis is limited or delayed; (ii) where the risk of exposure is high and may go unrecognized; and (iii) where controlling rabies in the animal reservoir is difficult. Pre-exposure prophylaxis should not distract from canine vaccination efforts, provision of postexposure prophylaxis or education to increase rabies awareness in local communities.
Collapse
Affiliation(s)
- Jocelyn A Kessels
- School of Veterinary Science, University of Queensland Gatton Campus, Via Warrego Highway, Gatton, Queensland 4343, Australia
| | - Sergio Recuenco
- National Centre for Public Health, Instituto Nacional de Salud, Lima, Peru
| | - Ana Maria Navarro-Vela
- Directorate General of Strategic Interventions in Public Health, Ministry of Health, Lima, Peru
| | - Raffy Deray
- Diseases Prevention and Control Bureau, Department of Health, Manilla, Philippines
| | - Marco Vigilato
- Veterinary Public Health Unit, Pan American Health Organisation-World Health Organisation, Rio de Janeiro, Brazil
| | - Hildegund Ertl
- Wistar Institute Vaccine Center, Philadelphia, United States of America (USA)
| | - David Durrheim
- Hunter Medical Research Institution, University of Newcastle, Newcastle, Australia
| | - Helen Rees
- Wits Reproductive Health and HIV Institute, University of Witwatersrand, Johannesburg, South Africa
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | | | - Deborah Briggs
- College of Veterinary Medicine, Kansas State University, Manhattan, USA
| |
Collapse
|
23
|
Fotoran WL, Colhone MC, Ciancaglini P, Stabeli RG, Wunderlich G. Merozoite-Protein Loaded Liposomes Protect against Challenge in Two Murine Models of Plasmodium Infection. ACS Biomater Sci Eng 2016; 2:2276-2286. [DOI: 10.1021/acsbiomaterials.6b00492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wesley L. Fotoran
- Department
of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelle C. Colhone
- Department
of Chemistry, FFCLRP-USP, University of São Paulo, Ribeirão
Preto, Brazil
| | - Pietro Ciancaglini
- Department
of Chemistry, FFCLRP-USP, University of São Paulo, Ribeirão
Preto, Brazil
| | - Rodrigo G. Stabeli
- Centro de Estudos
de Biomoléculas Aplicadas a Saúde, Fiocruz−Fundação
Oswaldo Cruz, Ministério da Saúde, e Departamento de
Medicina da Universidade Federal de Rondônia (UNIR), Porto Velho, Rondônia, Brazil
| | - Gerhard Wunderlich
- Department
of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Shin WJ, Noh HJ, Noh YW, Kim S, Um SH, Lim YT. Hyaluronic acid-supported combination of water insoluble immunostimulatory compounds for anti-cancer immunotherapy. Carbohydr Polym 2016; 155:1-10. [PMID: 27702491 DOI: 10.1016/j.carbpol.2016.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 01/27/2023]
Abstract
A novel powder-form combination adjuvant system containing two immunostimulatory compounds was firstly developed and evaluated as a therapeutic intervention for cancer immunotherapy. With the help of hyaluronic acid (HA), water insoluble monophosphoryl lipid A (MPL), QS21 and imiquimod (R837), could be easily dispersed in aqueous solution and lyophilized as powder-form, which have an advantage in room-temperature storage stability compared with those conventional liquid formulation that requires cold storage. Two kinds of HA-based combination vaccine adjuvants (HA/MPL/QS21, HMQ and HA/MPL/R837, HMR) contributed to the increase of both humoral and cellular immunity, which is very important for efficient cancer immunotherapy. Through the challenge experiments in EG7-OVA (mouse lymphoma-expressing OVA) tumor-bearing mice model, we found out that the immunostimulatory effects of HMQ and HMR were successful in the inhibition of tumor proliferation. Taken together, both HA-based powder-form combination adjuvant systems are expected to be used as potent prophylactic and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Woo Jung Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jong Noh
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Woock Noh
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sohyun Kim
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
25
|
A novel rabies virus lipopeptide provides a better protection by improving the magnitude of DCs activation and T cell responses. Virus Res 2016; 221:66-73. [DOI: 10.1016/j.virusres.2016.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 03/20/2016] [Accepted: 05/09/2016] [Indexed: 11/22/2022]
|
26
|
Hernandez A, Bohannon JK, Luan L, Fensterheim BA, Guo Y, Patil NK, McAdams C, Wang J, Sherwood ER. The role of MyD88- and TRIF-dependent signaling in monophosphoryl lipid A-induced expansion and recruitment of innate immunocytes. J Leukoc Biol 2016; 100:1311-1322. [PMID: 27354411 DOI: 10.1189/jlb.1a0216-072r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment with the TLR4 agonist MPLA augments innate resistance to common bacterial pathogens. However, the cellular and molecular mechanisms by which MPLA augments innate immunocyte functions are not well characterized. This study examined the importance of MyD88- and TRIF-dependent signaling for leukocyte mobilization, recruitment, and activation following administration of MPLA. MPLA potently induced MyD88- and TRIF-dependent signaling. A single injection of MPLA caused rapid mobilization and recruitment of neutrophils, a response that was largely mediated by the chemokines CXCL1 and -2 and the hemopoietic factor G-CSF. Rapid neutrophil recruitment and chemokine production were regulated by both pathways although the MyD88-dependent pathway showed some predominance. In further studies, multiple injections of MPLA potently induced mobilization and recruitment of neutrophils and monocytes. Neutrophil recruitment after multiple injections of MPLA was reliant on MyD88-dependent signaling, but effective monocyte recruitment required activation of both pathways. MPLA treatment induced expansion of myeloid progenitors in bone marrow and upregulation of CD11b and shedding of L-selectin by neutrophils, all of which were attenuated in MyD88- and TRIF-deficient mice. These results show that MPLA-induced neutrophil and monocyte recruitment, expansion of bone marrow progenitors and augmentation of neutrophil adhesion molecule expression are regulated by both the MyD88- and TRIF-dependent pathways.
Collapse
Affiliation(s)
- Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Naeem K Patil
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Chase McAdams
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jingbin Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
27
|
Enkhbaatar P, Nelson C, Salsbury JR, Carmical JR, Torres KEO, Herndon D, Prough DS, Luan L, Sherwood ER. Comparison of Gene Expression by Sheep and Human Blood Stimulated with the TLR4 Agonists Lipopolysaccharide and Monophosphoryl Lipid A. PLoS One 2015; 10:e0144345. [PMID: 26640957 PMCID: PMC4671644 DOI: 10.1371/journal.pone.0144345] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Animal models that mimic human biology are important for successful translation of basic science discoveries into the clinical practice. Recent studies in rodents have demonstrated the efficacy of TLR4 agonists as immunomodulators in models of infection. However, rodent models have been criticized for not mimicking important characteristics of the human immune response to microbial products. The goal of this study was to compare genomic responses of human and sheep blood to the TLR4 agonists lipopolysaccharide (LPS) and monophosphoryl lipid A (MPLA). METHODS Venous blood, withdrawn from six healthy human adult volunteers (~ 28 years old) and six healthy adult female sheep (~3 years old), was mixed with 30 μL of PBS, LPS (1μg/mL) or MPLA (10μg/mL) and incubated at room temperature for 90 minutes on a rolling rocker. After incubation, 2.5 mL of blood was transferred to Paxgene Blood RNA tubes. Gene expression analysis was performed using an Agilent Bioanalyzer with the RNA6000 Nano Lab Chip. Agilent gene expression microarrays were scanned with a G2565 Microarray Scanner. Differentially expressed genes were identified. RESULTS 11,431 human and 4,992 sheep probes were detected above background. Among them 1,029 human and 175 sheep genes were differentially expressed at a stringency of 1.5-fold change (p<0.05). Of the 175 sheep genes, 54 had a known human orthologue. Among those genes, 22 had > 1.5-fold changes in human samples. Genes of major inflammatory mediators, such as IL-1, IL-6 and IL-8, TNF alpha, NF-kappaB, ETS2, PTGS2, PTX3, CXCL16, KYNU, and CLEC4E were similarly (>2-fold) upregulated by LPS and MPLA in both species. CONCLUSION The genomic responses of peripheral blood to LPS and MPLA in sheep are quite similar to those observed in humans, supporting the use of the ovine model for translational studies that mimic human inflammatory diseases and the study of TLR-based immunomodulators.
Collapse
Affiliation(s)
- Perenlei Enkhbaatar
- Department of Anesthesiology, the University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| | - Christina Nelson
- Department of Anesthesiology, the University of Texas Medical Branch, Galveston, TX, United States of America
| | - John R. Salsbury
- Department of Anesthesiology, the University of Texas Medical Branch, Galveston, TX, United States of America
| | - Joseph R. Carmical
- Molecular Virology and Microbiology Core, Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | | | - David Herndon
- Shriners Hospital for Children, Galveston, TX, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, the University of Texas Medical Branch, Galveston, TX, United States of America
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Edward R. Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
28
|
Agnolon V, Bruno C, Leuzzi R, Galletti B, D’Oro U, Pizza M, Seubert A, O’Hagan DT, Baudner BC. The potential of adjuvants to improve immune responses against TdaP vaccines: A preclinical evaluation of MF59 and monophosphoryl lipid A. Int J Pharm 2015; 492:169-76. [DOI: 10.1016/j.ijpharm.2015.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 01/11/2023]
|
29
|
Evaluation of the effect of MPL and delivery route on immunogenicity and protectivity of different formulations of FimH and MrpH from uropathogenic Escherichia coli and Proteus mirabilis in a UTI mouse model. Int Immunopharmacol 2015; 28:70-8. [PMID: 26033493 DOI: 10.1016/j.intimp.2015.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/21/2022]
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli and Proteus mirabilis are an important cause of morbidity and with the high rate of relapse and spread of multi-drug resistant pathogens, pose a significant public health challenge worldwide. Lack of an efficacious commercial vaccine targeting both uropathogens makes development of a combined vaccine highly desirable. In this study the immunogenicity and protective efficacy of different formulations of FimH of UPEC, MrpH of P. mirabilis and their fusion protein (MrpH.FimH) subcutaneously administered with and without Monophosphoryl lipid A (MPL) adjuvant were evaluated. Our data showed that the subcutaneously administered proteins induced both serum and mucosal IgG, which MPL significantly improved developing a mixed Th1 and Th2 immune response. However, the preparations induced a higher systemic and mucosal IgG and IL-2 levels by this route compared to the intranasal. Immunization of mice with MrpH.FimH fusion with MPL or a mixture of FimH, MrpH and MPL conferred the highest protection of the bladder and kidneys when challenged with UPEC and P. mirabilis in a UTI mouse model. Therefore considering these results MrpH.FimH fusion with MPL administered subcutaneously or intranasally could be a promising vaccine candidate for elimination of UTIs caused by UPEC and P. mirabilis.
Collapse
|
30
|
Layek B, Lipp L, Singh J. APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Control Release 2015; 207:143-53. [PMID: 25886704 DOI: 10.1016/j.jconrel.2015.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/04/2015] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Chronic hepatitis B is a serious liver disease and puts people at high risk of death from cirrhosis and liver cancer. Although DNA vaccination has been emerged as a potential immunotherapeutic strategy for the treatment of chronic hepatitis B, the efficiencies were not adequate in clinical trials. Here we describe the design, synthesis, and evaluation of mannosylated phenylalanine grafted chitosan (Man-CS-Phe) as a DNA delivery vector for direct transfection of antigen presenting cells to improve cellular and humoral immunity to plasmid-coded antigen. The cationic Man-CS-Phe micelles condense plasmid DNA into nanoscale polyplexes and provide efficient protection of complexed DNA from nuclease degradation. The mannose receptor-mediated enhanced cell uptake and high in vitro transfection efficiency of the polyplexes were demonstrated in RAW 264.7 and DC 2.4 cells using GFP-expressing plasmid DNA. Furthermore, intradermal immunization of BALB/c mice indicated that hepatitis B DNA vaccine/Man-CS-Phe polyplexes not only induced multi-fold higher serum antibody titer in comparison to all other formulations including FuGENE HD, but also significantly stimulated T-cell proliferation and skewed T helper toward Th1 polarization. These results illustrate that the Man-CS-Phe can serve as a promising DNA delivery vector to harness both cellular and humoral arms of immune system.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Lindsey Lipp
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|