1
|
Lusta KA, Churov AV, Beloyartsev DF, Golovyuk AL, Lee AA, Sukhorukov VN, Orekhov AN. The two coin sides of bacterial extracellular membrane nanovesicles: atherosclerosis trigger or remedy. DISCOVER NANO 2024; 19:179. [PMID: 39532781 PMCID: PMC11557815 DOI: 10.1186/s11671-024-04149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Among the numerous driving forces that cause the atherosclerotic cardiovascular disease (ASCVD), pathogenic bacterial extracellular membrane nanovesicles (BEMNs) containing toxins and virulence factors appear to be the key trigger of inflammation and atherogenesis, the major processes involved in the pathogenesis of ASCVD. Since BEMNs are the carriers of nanosized biomolecules to distant sites, they are now being considered as a novel drug delivery system. Nowadays, many therapeutic strategies are used to treat ASCVD. However, the conventional anti-atherosclerotic therapies are not effective enough. This primarily due to the inefficiency of non-targeted drug delivery systems to tissue affected areas, which, in turn, leads to numerous side effects, as well as faulty pharmacokinetics. In this regard, nanomedicine methods using nanoparticles (NPs) as targeted drug delivery vehicles proved to be extremely useful. Bioengineered BEMNs equipped with disease-specific ligand moieties and loaded with corresponding drugs represent a promising tool in nanomedicine, which can be used as a novel drug delivery system for a successful therapy of ASCVD. In this review, we outline the involvement of pathogenic BEMNs in the triggering of ASCVD, the conventional therapeutic strategies for the treatment of ASCVD, and the recent trends in nanomedicine using BEMNs and NPs as a vehicle for targeted drug delivery.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Institute for Atherosclerosis Research, Ltd, Osennyaya Street 4-1-207, Moscow, Russia, 121609.
| | - Alexey V Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, Moscow, Russia, 129226
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Alexander L Golovyuk
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Arthur A Lee
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
| | - Vasily N Sukhorukov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| |
Collapse
|
2
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024. [PMID: 38965193 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
3
|
Baima G, Minoli M, Michaud DS, Aimetti M, Sanz M, Loos BG, Romandini M. Periodontitis and risk of cancer: Mechanistic evidence. Periodontol 2000 2023. [PMID: 38102837 DOI: 10.1111/prd.12540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
This review aims to critically analyze the pathways of interaction and the pathogenic mechanisms linking periodontitis and oral bacteria with the initiation/progression of cancer at different body compartments. A higher risk of head and neck cancer has been consistently associated with periodontitis. This relationship has been explained by the local promotion of dysbiosis, chronic inflammation, immune evasion, and direct (epi)genetic damage to epithelial cells by periodontal pathobionts and their toxins. Epidemiological reports have also studied a possible link between periodontitis and the incidence of other malignancies at distant sites, such as lung, breast, prostate, and digestive tract cancers. Mechanistically, different pathways have been involved, including the induction of a chronic systemic inflammatory state and the spreading of oral pathobionts with carcinogenic potential. Indeed, periodontitis may promote low-grade systemic inflammation and phenotypic changes in the mononuclear cells, leading to the release of free radicals and cytokines, as well as extracellular matrix degradation, which are all mechanisms involved in carcinogenic and metastatic processes. Moreover, the transient hematogenous spill out or micro-aspiration/swallowing of periodontal bacteria and their virulence factors (i.e., lipopolysaccharides, fimbriae), may lead to non-indigenous bacterial colonization of multiple microenvironments. These events may in turn replenish the tumor-associated microbiome and thus influence the molecular hallmarks of cancer. Particularly, specific strains of oral pathobionts (e.g., Porphyromonas gingivalis and Fusobacterium nucleatum) may translocate through the hematogenous and enteral routes, being implicated in esophageal, gastric, pancreatic, and colorectal tumorigenesis through the modulation of the gastrointestinal antitumor immune system (i.e., tumor-infiltrating T cells) and the increased expression of pro-inflammatory/oncogenic genes. Ultimately, the potential influence of common risk factors, relevant comorbidities, and upstream drivers, such as gerovulnerability to multiple diseases, in explaining the relationship cannot be disregarded. The evidence analyzed here emphasizes the possible relevance of periodontitis in cancer initiation/progression and stimulates future research endeavors.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Margherita Minoli
- Department of Periodontology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Mariano Sanz
- Faculty of Odontology, University Complutense, Madrid, Spain
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Bruno G Loos
- Department of Periodontology, ACTA - Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Cavallone IN, Belda W, de Carvalho CHC, Laurenti MD, Passero LFD. New Immunological Markers in Chromoblastomycosis-The Importance of PD-1 and PD-L1 Molecules in Human Infection. J Fungi (Basel) 2023; 9:1172. [PMID: 38132773 PMCID: PMC10744586 DOI: 10.3390/jof9121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The pathogenesis of chromoblastomycosis (CBM) is associated with Th2 and/or T regulatory immune responses, while resistance is associated with a Th1 response. However, even in the presence of IFN-γ, fungi persist in the lesions, and the reason for this persistence is unknown. To clarify the factors associated with pathogenesis, this study aimed to determine the polarization of the cellular immune response and the densities of cells that express markers of exhaustion in the skin of CBM patients. In the skin of patients with CBM, a moderate inflammatory infiltrate was observed, characterized primarily by the occurrence of histiocytes. Analysis of fungal density allowed us to divide patients into groups that exhibited low and high fungal densities; however, the intensity of the inflammatory response was not related to mycotic loads. Furthermore, patients with CBM exhibited a significant increase in the number of CD4+ and CD8+ cells associated with a high density of IL-10-, IL-17-, and IFN-γ-producing cells, indicating the presence of a chronic and mixed cellular immune response, which was also independent of fungal load. A significant increase in the number of PD-1+ and PD-L1+ cells was observed, which may be associated with the maintenance of the fungus in the skin and the progression of the disease.
Collapse
Affiliation(s)
- Italo N. Cavallone
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, Brazil
| | - Walter Belda
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Caroline Heleno C. de Carvalho
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Marcia D. Laurenti
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Luiz Felipe D. Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, Brazil
| |
Collapse
|
5
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
6
|
Vitetta L. Letter on "Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer". Med Oncol 2023; 40:143. [PMID: 37040017 DOI: 10.1007/s12032-023-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
Investigations that decipher the human microbiome have reformed the way medicine is focusing on bacteria. An interesting research review recently published in the journal of Digestive Diseases and Sciences conceivably linked adjunctive commensal intestinal bacteria with the capacity to modulate the immune microenvironment towards immune checkpoint inhibitor (ICIs) efficacy of cancer immunotherapy. Evidence has emerged that the intestinal microbiome can modulate outcomes to ICIs therapies via two major mechanisms, namely mechanisms that are antigen-specific (i.e., epitopes are shared between microbial and tumour antigens that can enhance or reduce anti-tumour immune responses) and those mechanisms that are antigen-independent (i.e., modulation of responses to ICIs by engaging innate and/or adaptive immune cells).
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
7
|
Pai SI, Matheus HR, Guastaldi FPS. Effects of periodontitis on cancer outcomes in the era of immunotherapy. THE LANCET HEALTHY LONGEVITY 2023; 4:e166-e175. [PMID: 37003275 PMCID: PMC10148268 DOI: 10.1016/s2666-7568(23)00021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
Abstract
Periodontitis results from dysbiosis of the oral microbiome and affects up to 70% of US adults aged 65 years and older. More than 50 systemic inflammatory disorders and comorbidities are associated with periodontitis, many of which overlap with immunotherapy-associated toxicities. Despite the increasing use of immunotherapy for the treatment of cancer, uncertainty remains as to whether the microbial shift associated with periodontal disease can influence response rates and tolerance to cancer immunotherapy. We herein review the pathophysiology of periodontitis and the local and systemic inflammatory conditions related to oral dysbiosis, and discuss the overlapping adverse profiles of periodontitis and immunotherapy. The effects of the presence of Porphyromonas gingivalis, a key pathogen in periodontitis, highlight how the oral microbiome can affect the hosts' systemic immune responses, and further research into the local and systemic influence of other microorganisms causing periodontal disease is necessary. Addressing periodontitis in an ageing population of people with cancer could have potential implications for the clinical response to (and tolerability of) immunotherapy and warrants further investigation.
Collapse
|
8
|
Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: A double-edged sword in periodontitis. Biomed Pharmacother 2023; 159:114215. [PMID: 36630848 DOI: 10.1016/j.biopha.2023.114215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Periodontitis is a disease caused by infection and immunological imbalance, which often leads to the destruction of periodontal tissue. Programmed death protein 1 (PD-1) and its ligand: programmed death ligand 1 (PD-L1) are important "immune checkpoint" proteins that have a negative regulatory effect on T cells and are targets of immunotherapy. Studies have shown that the expression of PD-1 and PD-L1 in patients with periodontitis is higher than that in healthy individuals. The keystone pathogen Porphyromonas gingivalis (P. gingivalis) is believed to be the main factor driving the upregulation of PD-1/PD-L1. High expression of PD-1/PD-L1 can inhibit the inflammatory response and reduce the destruction of periodontal supporting tissues, but conversely, it can promote the "immune escape" of P. gingivalis, thus magnifying infections. In addition, the PD-1/PD-L1 pathway is also associated with various diseases, such as cancer and Alzheimer's disease. In this review, we discuss the influence and mechanism of the PD-1/PD-L1 pathway as a "double-edged sword" affecting the occurrence and development of periodontitis, as well as its function in periodontitis-related systemic disorders. The PD-1/PD-L1 pathway could be a new avenue for periodontal and its related systemic disorders therapy.
Collapse
Affiliation(s)
- Xiaowei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics 2022; 14:pharmaceutics14122597. [PMID: 36559091 PMCID: PMC9784355 DOI: 10.3390/pharmaceutics14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.
Collapse
|
10
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
11
|
Friedrich V, Choi HW. The Urinary Microbiome: Role in Bladder Cancer and Treatment. Diagnostics (Basel) 2022; 12:diagnostics12092068. [PMID: 36140470 PMCID: PMC9497549 DOI: 10.3390/diagnostics12092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Commensal microbes have increasingly been found to be involved in the development and progression of cancer. The recent discovery of the urinary microbiome bolstered the notion that microbes might play a role in bladder cancer. Although microbial involvement in bladder neoplastic transformation and metastatic progression, except schisto somiasis, has not been established, accumulating research suggests that dysbiosis of the urinary microbiome can produce a chronically inflammatory urothelial microenvironment and lead to bladder cancer. In this review, we describe how the urinary microbiome might facilitate the development of bladder cancer by altering the host immune system and the kind of cytokines that are directly involved in these responses. We investigated the therapeutic possibilities of modulating the urinary microbiome, including immune checkpoint therapy. The responsiveness of patients to intravesical Bacillus Calmette-Guerin therapy was evaluated with respect to microbiome composition. We conclude by noting that the application of microbes to orchestrate the inflammatory response in the bladder may facilitate the development of treatments for bladder cancer.
Collapse
|
12
|
Lin J, Huang D, Xu H, Zhan F, Tan X. Macrophages: A communication network linking Porphyromonas gingivalis infection and associated systemic diseases. Front Immunol 2022; 13:952040. [PMID: 35967399 PMCID: PMC9363567 DOI: 10.3389/fimmu.2022.952040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobic pathogen that is involved in the pathogenesis of periodontitis and systemic diseases. P. gingivalis has recently been detected in rheumatoid arthritis (RA), cardiovascular disease, and tumors, as well as Alzheimer’s disease (AD), and the presence of P. gingivalis in these diseases are correlated with poor prognosis. Macrophages are major innate immune cells which modulate immune responses against pathogens, however, multiple bacteria have evolved abilities to evade or even subvert the macrophages’ immune response, in which subsequently promote the diseases’ initiation and progression. P. gingivalis as a keystone pathogen of periodontitis has received increasing attention for the onset and development of systemic diseases. P. gingivalis induces macrophage polarization and inflammasome activation. It also causes immune response evasion which plays important roles in promoting inflammatory diseases, autoimmune diseases, and tumor development. In this review, we summarize recent discoveries on the interaction of P. gingivalis and macrophages in relevant disease development and progression, such as periodontitis, atherosclerosis, RA, AD, and cancers, aiming to provide an in-depth mechanistic understanding of this interaction and potential therapeutic strategies.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongwei Xu
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa, Iowa, IA, United States
- *Correspondence: XueLian Tan, ; Fenghuang Zhan,
| | - XueLian Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: XueLian Tan, ; Fenghuang Zhan,
| |
Collapse
|
13
|
Groeger S, Wu F, Wagenlehner F, Dansranjav T, Ruf S, Denter F, Meyle J. PD-L1 Up-Regulation in Prostate Cancer Cells by Porphyromonas gingivalis. Front Cell Infect Microbiol 2022; 12:935806. [PMID: 35846769 PMCID: PMC9277116 DOI: 10.3389/fcimb.2022.935806] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation is known to contribute to various human cancers. Porphyromonas gingivalis (P. gingivalis), is a gram-negative oral keystone pathogen that may cause severe periodontitis and expresses several virulence factors to affect the host immune system. Periodontitis is a chronic infectious disease that while progression, may cause loss of attachment and destruction of the tooth supporting tissues. Prostate cancer is one of the most common malignancies in men. Increasing evidence links periodontitis with prostate cancer, however the mechanisms explaining this relationship remain unclear. The aim of this study was to investigate the expression and signaling pathway of programmed death ligand 1 (PD-L1) in a prostate cancer cell line after infection with P. gingivalis and stimulation with P. gingivalis components to reveal the mechanism of tumor-induced immune evasion associated with bacterial infection in the tumor environment. Prostate cancer cells were infected with different concentrations of viable P. gingivalis and treated with different concentrations of heat-killed P. gingivalis and P. gingivalis cell components, including the total membrane fraction, inner membrane fraction, outer membrane fraction, cytosolic fraction and peptidoglycan (PGN). Chemical inhibitors were used to block different important molecules of signaling pathways to assess the participating signal transduction mechanisms. PD-L1 expression was detected by Western blot after 24 h of infection. PD-L1 was demonstrated to be upregulated in prostate cancer cells after infection with viable and with heat-killed P. gingivalis membrane fractions. Also isolated PGN induced PD-L1 up-regulation. The upregulation was mediated by the NOD1/NOD2 signaling pathway. No upregulation could be detected after treatment of the cells with P. gingivalis lipopolysaccharide (LPS). These results indicate, that chronic inflammatory disease can contribute to tumor immune evasion by modifying the tumor microenvironment. Thus, chronic infection possibly plays an essential role in the immune response and may promote the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Sabine Groeger
- Dept. of Periodontology, Justus-Liebig University, Giessen, Germany
- Dept. of Orthodontics, Justus-Liebig University, Giessen, Germany
- *Correspondence: Sabine Groeger,
| | - Fan Wu
- Dept. of Periodontology, Justus-Liebig University, Giessen, Germany
| | | | | | - Sabine Ruf
- Dept. of Orthodontics, Justus-Liebig University, Giessen, Germany
| | - Fabian Denter
- Dept. of Periodontology, Justus-Liebig University, Giessen, Germany
| | - Joerg Meyle
- Dept. of Periodontology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Kabwe M, Dashper S, Tucci J. The Microbiome in Pancreatic Cancer-Implications for Diagnosis and Precision Bacteriophage Therapy for This Low Survival Disease. Front Cell Infect Microbiol 2022; 12:871293. [PMID: 35663462 PMCID: PMC9160434 DOI: 10.3389/fcimb.2022.871293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
While the mortality rates for many cancers have decreased due to improved detection and treatments, that of pancreatic cancer remains stubbornly high. The microbiome is an important factor in the progression of many cancers. Greater understanding of the microbiome in pancreatic cancer patients, as well as its manipulation, may assist in diagnosis and treatment of this disease. In this report we reviewed studies that compared microbiome changes in pancreatic cancer patients and non-cancer patients. We then identified which bacterial genera were most increased in relative abundance across the oral, pancreatic, duodenal, and faecal tissue microbiomes. In light of these findings, we discuss the potential for utilising these bacteria as diagnostic biomarkers, as well as their potential control using precision targeting with bacteriophages, in instances where a causal oncogenic link is made.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
15
|
Wang X, Zhao W, Zhang W, Wu S, Yan Z. Candida albicans induces upregulation of programmed death ligand 1 in oral squamous cell carcinoma. J Oral Pathol Med 2022; 51:444-453. [PMID: 35362187 DOI: 10.1111/jop.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The potential association between Candida albicans (C. albicans) infection and oral squamous cell carcinoma (OSCC) has been noticed for a long time. Programmed death ligand-1 (PD-L1) is a key molecule of tumor immune escape and tumor progression. This study aimed to explore whether C. albicans could influence PD-L1 expression in OSCC in vitro and in mouse model. METHODS OSCC cell lines (Cal27 and HN6) were infected with C. albicans for 2 and 24 h, then PD-L1 expression was detected by quantitative real-time polymerase chain reaction (RT-qPCR), western blot (WB), and flow cytometry (FCM). To identify the underlying mechanisms, PD-L1 expression in OSCC cells treated with heat-inactivated C. albicans or with biofilm metabolites derived from C. albicans were explored respectively. Meanwhile, signaling pathways involved in PD-L1 regulation were explored by RT-qPCR, and the candidate genes were verified by WB. Moreover, an OSCC mouse model induced by 4-nitroquinoline-1 oxide was used to further explore the role of C. albicans infection in PD-L1 expression in vivo. RESULTS C. albicans and heat-inactivated C. albicans upregulated the PD-L1 expression in Cal27 and HN6 cells. Various signaling pathways involved in PD-L1 regulation were influenced by C. albicans infection. Among them, TLR2/MyD88 and TLR2/NF-κB pathways might participate in this process. Furthermore, PD-L1 expression in oral mucosa epithelium was upregulated by C. albicans infection in both normal and OSCC mice. CONCLUSIONS This study suggests that C. albicans could induce upregulation of PD-L1 in OSCC in vitro and in mouse model, which might due to the activation of TLR2/MyD88 and TLR2/NF-κB pathways.
Collapse
Affiliation(s)
- Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiwei Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenqing Zhang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Shuangshuang Wu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
16
|
Groeger S, Herrmann JM, Chakraborty T, Domann E, Ruf S, Meyle J. Porphyromonas gingivalis W83 Membrane Components Induce Distinct Profiles of Metabolic Genes in Oral Squamous Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23073442. [PMID: 35408801 PMCID: PMC8998328 DOI: 10.3390/ijms23073442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontitis, a chronic inflammatory disease is caused by a bacterial biofilm, affecting all periodontal tissues and structures. This chronic disease seems to be associated with cancer since, in general, inflammation intensifies the risk for carcinoma development and progression. Interactions between periodontal pathogens and the host immune response induce the onset of periodontitis and are responsible for its progression, among them Porphyromonas gingivalis (P. gingivalis), a Gram-negative anaerobic rod, capable of expressing a variety of virulence factors that is considered a keystone pathogen in periodontal biofilms. The aim of this study was to investigate the genome-wide impact of P. gingivalis W83 membranes on RNA expression of oral squamous carcinoma cells by transcriptome analysis. Human squamous cell carcinoma cells (SCC-25) were infected for 4 and 24 h with extracts from P. gingivalis W83 membrane, harvested, and RNA was extracted. RNA sequencing was performed, and differential gene expression and enrichment were analyzed using GO, KEGG, and REACTOME. The results of transcriptome analysis were validated using quantitative real-time PCR with selected genes. Differential gene expression analysis resulted in the upregulation of 15 genes and downregulation of 1 gene after 4 h. After 24 h, 61 genes were upregulated and 278 downregulated. GO, KEGG, and REACTONE enrichment analysis revealed a strong metabolic transcriptomic response signature, demonstrating altered gene expressions after 4 h and 24 h that mainly belong to cell metabolic pathways and replication. Real-time PCR of selected genes belonging to immune response, signaling, and metabolism revealed upregulated expression of CCL20, CXCL8, NFkBIA, TNFAIP3, TRAF5, CYP1A1, and NOD2. This work sheds light on the RNA transcriptome of human oral squamous carcinoma cells following stimulation with P. gingivalis membranes and identifies a strong metabolic gene expression response to this periodontal pathogen. The data provide a base for future studies of molecular and cellular interactions between P. gingivalis and oral epithelium to elucidate the basic mechanisms of periodontitis and the development of cancer.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.M.H.); (J.M.)
- Department of Orthodontics, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
- Correspondence:
| | - Jens Martin Herrmann
- Department of Periodontology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.M.H.); (J.M.)
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
- DZIF—Germen Centre for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany;
| | - Eugen Domann
- DZIF—Germen Centre for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany;
- Institute of Hygiene and Environmental Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.M.H.); (J.M.)
| |
Collapse
|
17
|
Chen C, Huang Z, Huang P, Li K, Zeng J, Wen Y, Li B, Zhao J, Wu P. Urogenital Microbiota:Potentially Important Determinant of PD-L1 Expression in Male Patients with Non-muscle Invasive Bladder Cancer. BMC Microbiol 2022; 22:7. [PMID: 34983384 PMCID: PMC8725255 DOI: 10.1186/s12866-021-02407-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
Background Urogenital microbiota may be associated with the recurrence of bladder cancer, but the underlying mechanism remains unclear. The notion that microbiota can upregulate PD-L1 expression in certain epithelial tumors to promote immune escape has been demonstrated. Thus, we hypothesized that the urogenital microbiota may be involved in the recurrence and progression of non-muscle invasive bladder cancer (NMIBC) by upregulating the PD-L1 expression. To test this hypothesis, we investigated the relationship between urogenital microbial community and PD-L1 expression in male patients with NMIBC. Results 16S rRNA gene sequencing was performed to analyse the composition of urogenital microbiota, and the expression of PD-L1 in cancerous tissues was detected by immunohistochemistry. The subjects (aged 43–79 years) were divided into PD-L1-positive group (Group P, n = 9) and PD-L1-negative group (Group N, n = 19) respectively based on their PD-L1 immunohistochemical results. No statistically significant differences were found in the demographic characteristics between group P and N. We observed that group P exhibited higher species richness (based on Observed species and Ace index, both P < 0.05). Furthermore, subgroup analysis showed that the increase in number of PD-L1 positive cells was accompanied by increased richness of urogenital microbiota. Significantly different composition of urogenital microbiota was found between group P and group N (based on weighted Unifrac and unweighted Unifrac distances metric, both P < 0.05). Enrichment of some bacterial genera (e.g., Leptotrichia, Roseomonas, and Propionibacterium) and decrease of some bacterial genera (e.g., Prevotella and Massilia) were observed in group P as compared with group N. These findings indicated that these genera may affect the expression of PD-L1 through some mechanisms to be studied. Conclusion Our study provided for the first time an overview of the association between urogenital microbiota and PD-L1 expression in male patients with NMIBC, indicating that urogenital microbiota was an important determinant of PD-L1 expression in male NMIBC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02407-8.
Collapse
Affiliation(s)
- Chunxiao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Li
- The third hospital of mianyang, Sichuan Province, China
| | - Jiarong Zeng
- Department of Urology, Meizhou People's Hospital, Meizhou, China
| | | | - Biao Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Clinical Microbiota Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Adel-Khattab D, Groeger S, Domann E, Chakraborty T, Lochnit G, Meyle J. Porphyromonas gingivalis induced up-regulation of PD-L1 in colon carcinoma cells. Mol Oral Microbiol 2021; 36:172-181. [PMID: 33715305 DOI: 10.1111/omi.12332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
Programmed death-ligand-1 (PD-L1) is a ligand for programmed death receptor (PD-1) that plays a major role in cell-mediated immune response; it regulates T-cell activation and regulates survival and functions of activated T cells. Expression of PD-L1 can induce chronic inflammation and activate mechanisms of immune evasion. PD-L1 is expressed in most of human carcinomas. Porphyromonas gingivalis (P. gingivalis) is a major keystone pathogen in periodontitis that invade host cells and disposes a variety of virulence factors. The aim of the present study was to clarify the signaling pathway of P. gingivalis molecules that induce PD-L1 up-regulation in colon carcinoma cells. Additionally, it was investigated which components of P. gingivalis are responsible for PD-L1 induction. Colon cancer cells (CL-11) were stimulated with total membrane (TM) fractions, peptidoglycans (PDGs) and viable P. gingivalis bacteria. Seven signaling molecule inhibitors were used: receptor-interacting serine/threonine-protein kinase 2 (RIP2) tyrosine kinase inhibitor, nucleotide-binding oligomerization domain (NOD)-like receptor 1&2 inhibitor, NOD-like receptor, nuclear factor kappa B inhibitor, c-Jun N-terminal kinases inhibitor, mitogen-activated protein/extracellular signal-regulated kinase inhibitor, mitogen activated kinase (MAPK) inhibitor. PD-L1 protein expression was examined by western blot analysis and quantitative real time PCR. It was demonstrated that the TM fraction and PDG induced up-regulation of PD-L1 expression in colon cancer cells. In conclusion, the results of this study suggest that PDG of P. gingivalis plays a major role in PD-L1 up-regulation in colon cancer cells. In addition, the mechanism of PD-L1 up-regulation depends on NOD 1 and NOD 2 and involves activation of RIP2 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Doaa Adel-Khattab
- Department of Periodontology, Justus-Liebig-University, Giessen, Germany.,Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Sabine Groeger
- Department of Periodontology, Justus-Liebig-University, Giessen, Germany
| | - Eugen Domann
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Giessen, Germany.,German Center For Infection Research (DZIF) Partner Site Giessen-Marburg-Langen Schubertstrasse B1, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Giessen, Germany.,German Center For Infection Research (DZIF) Partner Site Giessen-Marburg-Langen Schubertstrasse B1, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
19
|
Wongtim K, Ikeda E, Ohno T, Nagai S, Okuhara S, Kure K, Azuma M. Overexpression of PD-L1 in gingival basal keratinocytes reduces periodontal inflammation in a ligature-induced periodontitis model. J Periodontol 2021; 93:146-155. [PMID: 34021604 PMCID: PMC9292381 DOI: 10.1002/jper.21-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
Background The immune checkpoint programmed cell death 1 (PD‐1): PD‐1 ligand 1 (PD‐L1) pathway plays a crucial role in maintaining immune tolerance and preventing tissue damages by excessive immune responses. PD‐L1 is physiologically expressed and upregulated in keratinocytes (KCs) in the oral cavity. We here investigated the contribution of PD‐L1 that was overexpressed in gingival basal KCs in a ligature‐induced periodontitis model. Methods Wild‐type (WT) BALB/c and K14/PD‐L1 transgenic (tg) mice, in which PD‐L1 was overexpressed in basal KCs under control of the keratin 14 promoter, were used. To induce periodontitis, a 9‐0 silk ligature was placed around the upper right second molar, and lipopolysaccharide from Porphyromonas gingivalis was applied on the suture. Gingival tissues were collected on day 7, after which histological analyses were performed, including by hematoxylin and eosin and tartrate‐resistant acid phosphate staining (TRAP) and quantitative PCR for proinflammatory cytokines and bone metabolism‐related genes. Alveolar bone loss at 7 weeks after ligature placement was assessed by micro‐computed tomography analysis. Results PD‐L1 was overexpressed in the basal KCs of all gingival epithelia in K14/PD‐L1tg mice. Early ligature‐induced periodontal inflammation, as assessed based on histological changes, elevation of proinflammatory cytokine (IL‐1β, IL‐6, TNF‐α) expression, periodontal ligament degeneration, and osteoclastogenesis as assessed by Rankl and Opg expression and TRAP+ cells, was markedly impaired in K14/PD‐L1tg mice. Alveolar bone resorption at a late time point was also clearly minimized in K14/PD‐L1tg mice. Conclusion Overexpression of PD‐L1 in gingival basal keratinocytes in K14/PD‐L1tg mice reduces periodontal inflammation and alveolar bone resorption in a ligature‐induced periodontitis model.
Collapse
Affiliation(s)
- Keeratika Wongtim
- Department of Molecular ImmunologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Eri Ikeda
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tatsukuni Ohno
- Department of Molecular ImmunologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shigenori Nagai
- Department of Molecular ImmunologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shigeru Okuhara
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Keitetsu Kure
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Miyuki Azuma
- Department of Molecular ImmunologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
20
|
Zhou K, Sun M, Xia Y, Xie Y, Shu R. LPS stimulates gingival fibroblasts to express PD-L1 via the p38 pathway under periodontal inflammatory conditions. Arch Oral Biol 2021; 129:105161. [PMID: 34090065 DOI: 10.1016/j.archoralbio.2021.105161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The overall aim of this research was to investigate the differences in the expression of programmed death ligand 1 (PD-L1) in human gingival fibroblasts (HGFs) between a periodontal healthy group and a periodontal inflammatory group. and explore the possible mechanism involved. METHODS Differences in PD-L1 mRNA and protein expression in HGFs from a periodontal healthy group and a periodontal inflammatory group were examined by qPCR and western blotting, respectively, and were further tested after lipopolysaccharide (LPS) stimulation in both groups. The effects of a p38 pathway inhibitor on the changes in p38 phosphorylation levels and PD-L1 expression after LPS stimulation were investigated in both groups. RESULTS PD-L1 mRNA and protein levels in HGFs in the periodontal inflammatory group were significantly higher than those in the periodontal healthy group (p < 0.05). After 10 μg/mL LPS stimulation, PD-L1 mRNA levels in HGFs from both groups increased significantly (p < 0.05), peaking at 4 h, and the peak was significantly higher in the periodontal inflammatory group than in the periodontal healthy group (p < 0.05). However, PD-L1 protein expression was upregulated only in the inflammatory group (p < 0.05). Inhibition of the p38 pathway in HGFs decreased p38 phosphorylation in both groups (p < 0.05) but this treatment reversed the LPS-induced increase in PD-L1 mRNA and protein levels only in the inflammatory group (p < 0.05). CONCLUSION In the periodontal inflammatory state, the expression of PD-L1 in HGFs is more easily activated, and may be influenced by the p38 pathway.
Collapse
Affiliation(s)
- Kecong Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Sun
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yiru Xia
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Esberg A, Isehed C, Holmlund A, Lindquist S, Lundberg P. Serum proteins associated with periodontitis relapse post-surgery: A pilot study. J Periodontol 2021; 92:1805-1814. [PMID: 33813739 DOI: 10.1002/jper.21-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The knowledge of which genes and proteins that are connected to the susceptibility to gingivitis with subsequent local tissue degradation seen in periodontitis is insufficient. Changes of serum proteins associated with recurrence of bleeding on probing (BOP) and increased periodontal pocket depths (PPD) after surgical treatment of periodontitis could reveal molecules that could be early signals of tissue destruction and/or of importance for systemic effects in other tissues or organs. METHODS We performed a longitudinal pilot study and followed 96 inflammation-related proteins over time in serum from patients who underwent surgical treatment of periodontitis (n= 21). The samples were taken before (time 0), and then at 3, 6, and 12 months after surgery. Changes in protein levels were analysed in relation to the clinical outcome measures, that is, proportion of surfaces affected by BOP and PPD. RESULTS Changes in treatment outcomes with early signs of relapse in periodontitis after surgical treatment, for example, increased BOP and PPDs, were during 12-months follow up associated with increased serum levels of high-sensitivity C-reactive protein (hs-CRP) and programmed death-ligand 1 (PD-L1), and reduced serum levels of cystatin-D protein. CONCLUSION This study shows that clinical signs of recurrence of periodontitis after surgery are reflected in serum, but larger studies are needed for verification. Our novel findings of an association between increased PD-L1- and decreased cystatin D-levels and recurrence in periodontitis are interesting because PD-L1 has been shown to facilitate bacterial infections and chronic inflammation and cystatin D to inhibit tissue destruction. Our results justify mechanistic studies regarding the role of these molecules in periodontitis.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Catrine Isehed
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden.,Gävle County Hospital, Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle, Sweden.,Center for Research and Development Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Anders Holmlund
- Gävle County Hospital, Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle, Sweden.,Center for Research and Development Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Susanne Lindquist
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Pernilla Lundberg
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Shelby A, Pendleton C, Thayer E, Johnson GK, Xie XJ, Brogden KA. PD-L1 correlates with chemokines and cytokines in gingival crevicular fluid from healthy and diseased sites in subjects with periodontitis. BMC Res Notes 2020; 13:532. [PMID: 33187554 PMCID: PMC7666489 DOI: 10.1186/s13104-020-05376-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Objective PD-L1 is an immune checkpoint molecule that regulates immune and inflammatory responses. While cells of periodontal tissues express PD-L1, its presence in GCF is not known. The purpose of this study was to measure the PD-L1 values in GCF and correlate values with the presence of chemokine and cytokine values from periodontally diseased subjects and periodontally healthy subjects. Results PD-L1 values (pg/30 s), determined in triplicate using a fluorescent microparticle-based immunoassay ranged from 0.04–31.65 pg/30 s. PD-L1 correlated with 15 out of 22 chemokine and cytokine responses. In 85 healthy sites in 31 subjects, PD-L1 values were negatively correlated with IL6, CXCL8, IL10, and CCL3 values. In 53 diseased sites in 20 subjects, PD-L1 values were positively correlated with CCL11, CSF2, IFNG, IL1A, IL1B, IL2, IL7, IL15, and CCL5 values and negatively correlated with IL12A and IL5 values. Gene ontology (GO) annotations identified roles of PD-L1 in Th1 and Th2 activation and T-cell exhaustion signaling canonical pathways. PD-L1 values were correlated with the expression of chemokines and cytokines, which likely regulates immune cell trafficking and protects the periodontium from uncontrolled immune responses to pathogens and inflammation-induced tissue damage.
Collapse
Affiliation(s)
- Andrew Shelby
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Chandler Pendleton
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Emma Thayer
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Xian Jin Xie
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA.,Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Kim A Brogden
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA. .,Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
23
|
Bailly C. The implication of the PD-1/PD-L1 checkpoint in chronic periodontitis suggests novel therapeutic opportunities with natural products. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:90-96. [PMID: 32612718 PMCID: PMC7310691 DOI: 10.1016/j.jdsr.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
An analysis of the implication of the PD-1/PD-L1 immune checkpoint in periodontitis is provided with the objective to propose a novel therapeutic approach. An exhaustive survey of the literature has been performed to answer two questions: (1) Is there a role for PD-1 and/or PD-L1 in the development of periodontitis? (2) Which natural products interfere with the checkpoint activity and show activity against periodontitis? All online published information was collected and analyzed. The pathogenic bacteria Porphyromonas gingivalis, through its membrane-attached peptidoglycans, exploits the PD-1/PD-L1 checkpoint to evade immune response and to amplify the infection. Three anti-inflammatory natural products (and derivatives or plant extracts) active against periodontitis and able to interfere with the checkpoint were identified. Both curcumin and baicalin attenuate periodontitis and induce a down-regulation of PD-L1 in cells. The terpenoid saponin platycodin D inhibits the growth of P. gingivalis responsible for periodontitis and shows a rare capacity to induce the extracellular release of a soluble form of PD-L1, thereby restoring T cell activation. A potential PD-L1 shedding mechanism is discussed. The targeting of the PD-1/PD-L1 immune checkpoint could be considered a suitable approach to improve the treatment of chronic periodontitis. The plant natural products curcumin, baicalin and platycodin D should be further evaluated as PD-1/PD-L1 checkpoint modulators active against periodontitis.
Collapse
|
24
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
25
|
Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism. Infect Immun 2020; 88:IAI.00051-20. [PMID: 32041789 DOI: 10.1128/iai.00051-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression.
Collapse
|
26
|
G. Robayo DA, F. Hernandez R, T. Erira A, Kandaurova L, L. Juarez C, Juarez V, Cid-Arregui A. Oral Microbiota Associated with Oral and Gastroenteric Cancer. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
When the normal microbiota-host interactions are altered, the commensal microbial community evolves to a dysbiotic status resulting in some species becoming pathogenic and acting synergistically in the development of local and systemic diseases, including cancer. Advances in genetics, immunology and microbiology during the last years have made it possible to gather information on the oral and gastrointestinal microbiome and its interaction with the host, which has led to a better understanding of the interrelationship between microbiota and cancer. There is growing evidence in support for the role of some species in the development, progression and responses to treatment of various types of cancer. Accordingly, the number of studies investigating the association between oral microbiota and oral and gastrointestinal cancers has increased significantly during the last years. Here, we review the literature documenting associations of oral microbiota with oral and gastroenteric cancers.
Collapse
|
27
|
Wang CM, Hong LH, Zhang ZM, Wang Y. [Research progress on the relationship between Porphyromonas gingivalis and the malignancy of the digestive system and possible pathogenetic mechanism]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:521-526. [PMID: 31721501 PMCID: PMC7030411 DOI: 10.7518/hxkq.2019.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/20/2019] [Indexed: 01/11/2023]
Abstract
The malignant tumors including oral cancer, colorectal cancer, pancreatic cancer, and esophageal cancer, of the digestive system are a common high-fatal malignancy. Porphyromonas gingivalis, as the most important pathogen of periodontal disease, has been gradually proved that its invasiveness occurs not only in the mouth but also in other parts of the digestive system. Moreover, the relevant pathogenic mechanism is increasingly attracting the reseachers' attention. In this study, the role and possible pathogenesis of Porphyromonas gingivalis in the digestive system are described in a systematic and comprehensive way.
Collapse
Affiliation(s)
- Chun-Meng Wang
- Dept. of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Li-Hua Hong
- Dept. of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhi-Min Zhang
- Dept. of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yu Wang
- Dept. of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
28
|
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10:540. [PMID: 31308358 PMCID: PMC6629629 DOI: 10.1038/s41419-019-1769-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours' aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Collapse
Affiliation(s)
- Elham Alsahafi
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Nina Raulf
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Philippe Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Thomas Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
29
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
30
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
31
|
Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol 2019; 11:1563410. [PMID: 30671195 PMCID: PMC6327928 DOI: 10.1080/20002297.2018.1563410] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence for an association between periodontitis/tooth loss and oral, gastrointestinal, and pancreatic cancers. Periodontal disease, which is characterized by chronic inflammation and microbial dysbiosis, is a significant risk factor for orodigestive carcinogenesis. Porphyromonas gingivalis is proposed as a keystone pathogen in chronic periodontitis causing both dysbiosis and discordant immune response. The present review focuses on the growing recognition of a relationship between P. gingivalis and orodigestive cancers. Porphyromonas gingivalis has been recovered in abundance from oral squamous cell carcinoma (OSCC). Recently established tumorigenesis models have indicated a direct relationship between P. gingivalis and carcinogenesis. The bacterium upregulates specific receptors on OSCC cells and keratinocytes, induces epithelial-to-mesenchymal (EMT) transition of normal oral epithelial cells and activates metalloproteinase-9 and interleukin-8 in cultures of the carcinoma cells. In addition, P. gingivalis accelerates cell cycling and suppresses apoptosis in cultures of primary oral epithelial cells. In oral cancer cells, the cell cycle is arrested and there is no effect on apoptosis, but macro autophagy is increased. Porphyromonas gingivalis promotes distant metastasis and chemoresistance to anti-cancer agents and accelerates proliferation of oral tumor cells by affecting gene expression of defensins, by peptidyl-arginine deiminase and noncanonical activation of β-catenin. The pathogen also converts ethanol to the carcinogenic intermediate acetaldehyde. In addition, P. gingivalis can be implicated in precancerous gastric and colon lesions, esophageal squamous cell carcinoma, head and neck (larynx, throat, lip, mouth and salivary glands) carcinoma, and pancreatic cancer. The fact that distant organs can be involved clearly emphasizes that P. gingivalis has systemic tumorigenic effects in addition to the local effects in its native territory, the oral cavity. Although coinfection with other bacteria, viruses, and fungi occurs in periodontitis, P. gingivalis relates to cancer even in absence of periodontitis. Thus, there may be a direct relationship between P. gingivalis and orodigestive cancers.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Yu J, Lin Y, Xiong X, Li K, Yao Z, Dong H, Jiang Z, Yu D, Yeung SCJ, Zhang H. Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis. Front Genet 2019; 10:202. [PMID: 30923536 PMCID: PMC6426748 DOI: 10.3389/fgene.2019.00202] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.
Collapse
Affiliation(s)
- Jialiang Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Xiao Xiong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Kai Li
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
| | - Zuojie Jiang
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Dan Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hao Zhang
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Hao Zhang,
| |
Collapse
|
33
|
Yun Y, Wuchao W, Yafei W, Lei Z. [Research progress on the relationship between triggering receptor expressed on myeloid cells 1 and 2 and malignant tumors]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:648-653. [PMID: 29333781 DOI: 10.7518/hxkq.2017.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing scientific evidence supports the positive relationship between inflammation and cancer development. The immune response initiated by pattern recognition receptors is critical to triggering of tumor-associated inflammation. Triggering receptor expressed on myeloid cells (TREM) is an immunoglobulin of the super transmembrane glycoprotein family, which is mainly expressed on select groups of myeloid cells. The most important members of TREM comprise TREM-1 and TREM-2. Activation of TREM-1 and TREM-2 signaling is initiated upon binding of their ligands. Subsequently, cross-linking reactions of downstream effectors occur, resulting in inflammation regulation. Recently, the connection between TREM and malignant tumors has been widely noticed and studied. This review summarizes studies of association between TREM-1, TREM-2, and malignant tumors in the medical field to provide new ideas for study on the correlation between periodontitis and oral cavity cancer.
Collapse
Affiliation(s)
- Yang Yun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wu Wuchao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wu Yafei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhao Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|