1
|
Wessel RE, Dolatshahi S. Regulators of placental antibody transfer through a modeling lens. Nat Immunol 2024; 25:2024-2036. [PMID: 39379658 DOI: 10.1038/s41590-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Šimunić-Briški N, Dukarić V, Očić M, Madžar T, Vinicki M, Frkatović-Hodžić A, Knjaz D, Lauc G. Regular moderate physical exercise decreases Glycan Age index of biological age and reduces inflammatory potential of Immunoglobulin G. Glycoconj J 2024; 41:67-76. [PMID: 38147152 PMCID: PMC10957704 DOI: 10.1007/s10719-023-10144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Physical inactivity and obesity are growing concerns, negatively impacting the general population. Moderate physical activity is known to have a beneficial anti-inflammatory effect. N-glycosylation of immunoglobulin G (IgG) reflects changes in the inflammatory potential of IgG. In this study, GlycanAge index of biological age (GlycanAge), one of the first commercially used biomarkers of aging, was employed to assess effects of exercise intensity in three different groups of athletes: professional competing athletes, regularly moderate active individuals and newly involved recreational individuals, compared to the group of inactive individuals. GlycanAge was significantly lower in the active group compared to the inactive group (β = -7.437, p.adj = 7.85E-03), and nominally significant and increased in professional athletes compared to the active group (β = 7.546, p = 3.20E-02). Competing female athletes had significantly higher GlycanAge comparing to active females exercising moderately (β = 20.206, p.adj = 2.71E-02), while the latter had significantly lower GlycanAge when compared with the inactive counterparts (β = -9.762, p.adj = 4.68E-02). Regular, life-long moderate exercise has an anti-inflammatory effect in both female and male population, demonstrated by lower GlycanAge index, and it has great potential to mitigate growing issues related to obesity and a sedentary lifestyle, which are relentlessly increasing world-wide.
Collapse
Affiliation(s)
| | - Vedran Dukarić
- Faculty of Kinesiology, University of Zagreb, 10000, Zagreb, Croatia
| | - Mateja Očić
- Faculty of Kinesiology, University of Zagreb, 10000, Zagreb, Croatia
| | - Tomislav Madžar
- Vaš Pregled Sports and Occupation Medicine Polyclinic, 10000, Zagreb, Croatia
- University of Applied Health Sciences, 10000, Zagreb, Croatia
| | | | | | - Damir Knjaz
- Faculty of Kinesiology, University of Zagreb, 10000, Zagreb, Croatia
| | - Gordan Lauc
- Genos Ltd, 10000, Zagreb, Croatia.
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
5
|
Muñoz-Rojas AR, Wang G, Benoist C, Mathis D. Adipose-tissue regulatory T cells are a consortium of subtypes that evolves with age and diet. Proc Natl Acad Sci U S A 2024; 121:e2320602121. [PMID: 38227656 PMCID: PMC10823167 DOI: 10.1073/pnas.2320602121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Foxp3+CD4+ regulatory T (Treg) cells found within tissues regulate local immunity, inflammation, and homeostasis. Tregs in epididymal visceral adipose tissue (eVAT) are critical regulators of local and systemic inflammation and metabolism. During aging and under obesogenic conditions, eVAT Tregs undergo transcriptional and phenotypic changes and are important for containing inflammation and normalizing metabolic indices. We have employed single-cell RNA sequencing, single-cell Tra and Trb sequencing, adoptive transfers, photoconvertible mice, cellular interaction analyses, and in vitro cultures to dissect the evolving heterogeneity of eVAT Tregs with aging and obesity. Distinct Treg subtypes with distinguishable gene expression profiles and functional roles were enriched at differing ages and with differing diets. Like those in lean mice, eVAT Tregs in obese mice were not primarily recruited from the circulation but instead underwent local expansion and had a distinct and diversified T cell receptor repertoire. The different eVAT-Treg subtypes were specialized in different functions; for example, the subtypes enriched in lean, but not obese, mice suppressed adipogenesis. The existence of functionally divergent eVAT-Treg subtypes in response to obesogenic conditions presents possibilities for precision therapeutics in the context of obesity.
Collapse
Affiliation(s)
| | - Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
6
|
Angeles-Martinez J, Monroy-Muñoz IE, Muñoz-Medina JE, Fernandes-Matano L, Salas-Lais ÁG, Hernández-Cueto MDLÁ, Bravo-Flores E, León-Juárez M, Santacruz-Tinoco CE, Montes-Herrera D. A Potential Association between Abdominal Obesity and the Efficacy of Humoral Immunity Induced by COVID-19 and by the AZD1222, Convidecia, BNT162b2, Sputnik V, and CoronaVac Vaccines. Vaccines (Basel) 2024; 12:88. [PMID: 38250901 PMCID: PMC10819553 DOI: 10.3390/vaccines12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Abdominal obesity is highly prevalent in Mexico and has a poor prognosis in terms of the severity of coronavirus disease (COVID-19) and low levels of antibodies induced by infection and vaccination. We evaluated the humoral immune response induced by COVID-19 and five different vaccination schedules in Mexican individuals with abdominal obesity and the effects of other variables. This prospective longitudinal cohort study included 2084 samples from 389 participants. The levels of anti-S1/S2 and anti-RBD IgG antibodies were measured at various time points after vaccination. A high prevalence of hospitalization and oxygen use was observed in individuals with abdominal obesity (AO) who had COVID-19 before vaccination; however, they also had high levels of anti-S1/S2 and anti-RBD-neutralizing IgG antibodies. The same was true for vaccination-induced antibody levels. However, their longevity was low. Interestingly, we did not observe significant differences in vaccine reactogenicity between abdominally obese and abdominally non-obese groups. Finally, individuals with a higher body mass index, older age, and previous COVID-19 had higher levels of antibodies induced by COVID-19 and vaccination. Therefore, it is important to evaluate other immunological and inflammatory factors to better understand the pathogenesis of COVID-19 in the presence of risk factors and to propose effective vaccination schedules for vulnerable populations.
Collapse
Affiliation(s)
- Javier Angeles-Martinez
- Central Epidemiology Laboratory, Mexican Social Security Institute, Mexico City 02990, Mexico; (Á.G.S.-L.); (M.D.L.Á.H.-C.)
| | - Irma Eloisa Monroy-Muñoz
- Reproductive and Perinatal Health Research Department, National Institute of Perinatology, Mexico City 11000, Mexico;
| | - José Esteban Muñoz-Medina
- Quality of Supplies and Specialized Laboratories Coordination, Mexican Social Security Institute, Mexico City 07760, Mexico; (J.E.M.-M.); (L.F.-M.)
| | - Larissa Fernandes-Matano
- Quality of Supplies and Specialized Laboratories Coordination, Mexican Social Security Institute, Mexico City 07760, Mexico; (J.E.M.-M.); (L.F.-M.)
| | - Ángel Gustavo Salas-Lais
- Central Epidemiology Laboratory, Mexican Social Security Institute, Mexico City 02990, Mexico; (Á.G.S.-L.); (M.D.L.Á.H.-C.)
| | | | | | - Moisés León-Juárez
- Immunobiochemistry Department, National Institute of Perinatology, Mexico City 11000, Mexico;
| | | | - Daniel Montes-Herrera
- Central Epidemiology Laboratory, Mexican Social Security Institute, Mexico City 02990, Mexico; (Á.G.S.-L.); (M.D.L.Á.H.-C.)
| |
Collapse
|
7
|
Haslund-Gourley BS, Woloszczuk K, Hou J, Connors J, Cusimano G, Bell M, Taramangalam B, Fourati S, Mege N, Bernui M, Altman MC, Krammer F, van Bakel H, Maecker HT, Rouphael N, Diray-Arce J, Wigdahl B, Kutzler MA, Cairns CB, Haddad EK, Comunale MA. IgM N-glycosylation correlates with COVID-19 severity and rate of complement deposition. Nat Commun 2024; 15:404. [PMID: 38195739 PMCID: PMC10776791 DOI: 10.1038/s41467-023-44211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The glycosylation of IgG plays a critical role during human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during human acute viral infection. The analysis of IgM N-glycosylation from healthy controls and hospitalized coronavirus disease 2019 (COVID-19) patients reveals increased high-mannose and sialylation that correlates with COVID-19 severity. These trends are confirmed within SARS-CoV-2-specific immunoglobulin N-glycan profiles. Moreover, the degree of total IgM mannosylation and sialylation correlate significantly with markers of disease severity. We link the changes of IgM N-glycosylation with the expression of Golgi glycosyltransferases. Lastly, we observe antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients and modulated by exoglycosidase digestion. Taken together, this work links the IgM N-glycosylation with COVID-19 severity and highlights the need to understand IgM glycosylation and downstream immune function during human disease.
Collapse
Affiliation(s)
| | - Kyra Woloszczuk
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | - Jintong Hou
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | - Gina Cusimano
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | - Mathew Bell
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | | | - Nathan Mege
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | - Mariana Bernui
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Joann Diray-Arce
- Clinical & Data Coordinating Center (CDCC); Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Brian Wigdahl
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | | | - Elias K Haddad
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA.
| | | |
Collapse
|
8
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
9
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
10
|
Haslund-Gourley B, Woloszcuk K, Hou J, Connors J, Cusimano G, Bell M, Taramangalam B, Fourati S, Mege N, Bernui M, Altman M, Krammer F, van Bakel H, Maecker H, Wigdahl B, Cairns C, Haddad E, Comunale M. IgM N-glycosylation correlates with COVID-19 severity and rate of complement deposition. RESEARCH SQUARE 2023:rs.3.rs-2939468. [PMID: 37398192 PMCID: PMC10312960 DOI: 10.21203/rs.3.rs-2939468/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The glycosylation of IgG plays a critical role during human SARS-CoV-2, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during acute viral infection in humans. In vitro evidence suggests that the glycosylation of IgM inhibits T cell proliferation and alters complement activation rates. The analysis of IgM N-glycosylation from healthy controls and hospitalized COVID-19 patients reveals that mannosylation and sialyation levels associate with COVID-19 severity. Specifically, we find increased di- and tri-sialylated glycans and altered mannose glycans in total serum IgM in severe COVID-19 patients when compared to moderate COVID-19 patients. This is in direct contrast with the decrease of sialic acid found on the serum IgG from the same cohorts. Moreover, the degree of mannosylation and sialylation correlated significantly with markers of disease severity: D-dimer, BUN, creatinine, potassium, and early anti-COVID-19 amounts of IgG, IgA, and IgM. Further, IL-16 and IL-18 cytokines showed similar trends with the amount of mannose and sialic acid present on IgM, implicating these cytokines' potential to impact glycosyltransferase expression during IgM production. When examining PBMC mRNA transcripts, we observe a decrease in the expression of Golgi mannosidases that correlates with the overall reduction in mannose processing we detect in the IgM N-glycosylation profile. Importantly, we found that IgM contains alpha-2,3 linked sialic acids in addition to the previously reported alpha-2,6 linkage. We also report that antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients. Taken together, this work links the immunoglobulin M N-glycosylation with COVID-19 severity and highlights the need to understand the connection between IgM glycosylation and downstream immune function during human disease.
Collapse
|
11
|
Šimunić-Briški N, Zekić R, Dukarić V, Očić M, Frkatović-Hodžić A, Deriš H, Lauc G, Knjaz D. Physical Exercise Induces Significant Changes in Immunoglobulin G N-Glycan Composition in a Previously Inactive, Overweight Population. Biomolecules 2023; 13:biom13050762. [PMID: 37238633 DOI: 10.3390/biom13050762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Regular exercise improves health, modulating the immune system and impacting inflammatory status. Immunoglobulin G (IgG) N-glycosylation reflects changes in inflammatory status; thus, we investigated the impact of regular exercise on overall inflammatory status by monitoring IgG N-glycosylation in a previously inactive, middle-aged, overweight and obese population (50.30 ± 9.23 years, BMI 30.57 ± 4.81). Study participants (N = 397) underwent one of three different exercise programs lasting three months with blood samples collected at baseline and at the end of intervention. After chromatographically profiling IgG N-glycans, linear mixed models with age and sex adjustment were used to investigate exercise effects on IgG glycosylation. Exercise intervention induced significant changes in IgG N-glycome composition. We observed an increase in agalactosylated, monogalctosylated, asialylated and core-fucosylated N-glycans (padj = 1.00 × 10-4, 2.41 × 10-25, 1.51 × 10-21 and 3.38 × 10-30, respectively) and a decrease in digalactosylated, mono- and di-sialylated N-glycans (padj = 4.93 × 10-12, 7.61 × 10-9 and 1.09 × 10-28, respectively). We also observed a significant increase in GP9 (glycan structure FA2[3]G1, β = 0.126, padj = 2.05 × 10-16), previously reported to have a protective cardiovascular role in women, highlighting the importance of regular exercise for cardiovascular health. Other alterations in IgG N-glycosylation reflect an increased pro-inflammatory IgG potential, expected in a previously inactive and overweight population, where metabolic remodeling is in the early stages due to exercise introduction.
Collapse
Affiliation(s)
| | - Robert Zekić
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| | - Vedran Dukarić
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| | - Mateja Očić
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | - Gordan Lauc
- Genos Ltd., 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Damir Knjaz
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Haslund-Gourley BS, Wigdahl B, Comunale MA. IgG N-glycan Signatures as Potential Diagnostic and Prognostic Biomarkers. Diagnostics (Basel) 2023; 13:1016. [PMID: 36980324 PMCID: PMC10047871 DOI: 10.3390/diagnostics13061016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
IgG N-glycans are an emerging source of disease-specific biomarkers. Over the last decade, the continued development of glycomic databases and the evolution of glyco-analytic methods have resulted in increased throughput, resolution, and sensitivity. IgG N-glycans promote adaptive immune responses through antibody-dependent cellular cytotoxicity (ADCC) and complement activation to combat infection or cancer and promote autoimmunity. In addition to the functional assays, researchers are examining the ability of protein-specific glycosylation to serve as biomarkers of disease. This literature review demonstrates that IgG N-glycans can discriminate between healthy controls, autoimmune disease, infectious disease, and cancer with high sensitivity. The literature also indicates that the IgG glycosylation patterns vary across disease state, thereby supporting their role as specific biomarkers. In addition, IgG N-glycans can be collected longitudinally from patients to track treatment responses or predict disease reoccurrence. This review focuses on IgG N-glycan profiles applied as diagnostics, cohort discriminators, and prognostics. Recent successes, remaining challenges, and upcoming approaches are critically discussed.
Collapse
Affiliation(s)
- Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
13
|
Ren Z, Sun W, Wang S, Ying J, Liu W, Fan L, Zhao Y, Wu C, Song P. Status and transition of normal-weight central obesity and the risk of cardiovascular diseases: A population-based cohort study in China. Nutr Metab Cardiovasc Dis 2022; 32:2794-2802. [PMID: 36319576 DOI: 10.1016/j.numecd.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) has become a growing public health concern. Normal weight central obesity (NWCO) has emerged as a potential risk factor for cardiometabolic dysregulation. To date, the association between NWCO and new-onset CVDs remains unclear. We aimed to evaluate the associations of NWCO and its longitudinal transitions with cardiovascular risks in middle-aged and older Chinese. METHODS AND RESULTS Data were from the China Health and Retirement Longitudinal Study 2011-2018. NWCO was defined as the combination of a body mass index (BMI) of <24.0 kg/m2 and a waist circumference (WC) of >85 cm in males or >80 cm in females. CVDs included heart diseases and stroke. Cause-specific hazard models and subdistribution hazard models with all-cause death as the competing event were applied. In 2011, 9856 participants without prior CVDs were included, of whom 1814 developed CVDs during a 7-year follow-up. Compared to normal weight and non-central obesity (NWNCO), NWCO was significantly associated with new-onset CVDs, with cause-specific hazard ratios (cHRs) and 95% confidence intervals (CIs) of 1.21 (1.04-1.41) for heart diseases and 1.40 (1.11-1.76) for stroke. From 2011 to 2013, 571 NWNCO participants developed NWCO who subsequently demonstrated a 45% higher risk of CVDs than those with maintained NWNCO. CONCLUSION NWCO and transition from NWNCO to NWCO are associated with higher risks of CVDs. Identification and prevention of NWCO may be useful in the management of CVDs.
Collapse
Affiliation(s)
- Ziyang Ren
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Weidi Sun
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuhui Wang
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayao Ying
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Liu
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Fan
- Department of Medical Insurance, School of Public Health, Southeast University, Nanjing, China
| | - Yang Zhao
- The George Institute for Global Health, University of New South Wales, Sydney, Australia; The George Institute for Global Health at Peking University Health Science Center, Beijing, China
| | - Chenkai Wu
- Global Health Research Center, Duke Kunshan University, Kunshan, China
| | - Peige Song
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
15
|
De Ruyter T, Martens DS, Bijnens EM, Nawrot TS, De Henauw S, Michels N. A multi-exposure approach to study telomere dynamics in childhood: A role for residential green space and waist circumference. ENVIRONMENTAL RESEARCH 2022; 213:113656. [PMID: 35691385 DOI: 10.1016/j.envres.2022.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Telomeres are vulnerable to various environmental exposures and lifestyle factors, encompassed in the exposome. Recent research shows that telomere length is substantially determined early in life and that exposures in childhood may have important consequences in setting later life telomere length. OBJECTIVES We explore in a child population the associations of 17 exposures with telomere length and longitudinal telomere change. METHODS Children (2.8-10.3y at baseline, 51.3% boys) were followed-up for five to seven years. Relative telomere length was measured at baseline and follow-up using quantitative real-time PCR. Exposures and lifestyle factors included: body composition (body mass index and waist circumference), dietary habits (sugar- and fat-rich food intake, vegetables and fruit intake), psychosocial stress (events, emotions, behaviour), sleep duration, physical activity, and residential environmental quality (longterm black carbon, particulate matter exposure, and residential green space). Cross-sectional (n=182) and longitudinal (n=150) analyses were assessed using linear regression models, adjusting for age, sex, socioeconomic status and multiple testing. RESULTS Our longitudinal analyses showed that higher residential green space at baseline was associated with (β=0.261, p=0.002) lower telomere attrition and that children with a higher waist circumference at baseline showed a higher telomere attrition (β=-0.287, p=0.001). These two predictors were confirmed via LASSO variable selection and correction for multiple testing. In addition, children with more unhealthy exposures at baseline had a significantly higher telomere attrition over the follow-up period compared to children with more healthy exposures (β=-0.200, p=0.017). DISCUSSION Waist circumference and residential green space were identified as predictors associated with telomere attrition in childhood. These results further support the advantages of a healthy lifestyle from early age onwards and the importance of a green environment to promote molecular longevity from childhood onwards.
Collapse
Affiliation(s)
- Thaïs De Ruyter
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, University of Leuven, Leuven, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Krištić J, Lauc G, Pezer M. Immunoglobulin G glycans - Biomarkers and molecular effectors of aging. Clin Chim Acta 2022; 535:30-45. [PMID: 35970404 DOI: 10.1016/j.cca.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Immunoglobulin G (IgG) antibodies are post-translationally modified by the addition of complex carbohydrate molecules - glycans, which have profound effects on the IgG function, most significantly as modulators of its inflammatory capacity. Therefore, it is not surprising that the changes in IgG glycosylation pattern are associated with various physiological states and diseases, including aging and age-related diseases. Importantly, within the inflammaging concept, IgG glycans are considered not only biomarkers but one of the molecular effectors of the aging process. The exact mechanism by which they exert their function, however, remains unknown. In this review, we list and comment on, to our knowledge, all studies that examined changes in IgG glycosylation during aging in humans. We focus on the information obtained from studies on general population, but we also cover the insights obtained from studies of long-lived individuals and people with age-related diseases. We summarize the current knowledge on how levels of different IgG glycans change with age (i.e., the extent and direction of the change with age) and discuss the potential mechanisms and possible functional roles of changes in IgG glycopattern that accompany aging.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
17
|
Deriš H, Tominac P, Vučković F, Briški N, Astrup A, Blaak EE, Lauc G, Gudelj I. Effects of low-calorie and different weight-maintenance diets on IgG glycome composition. Front Immunol 2022; 13:995186. [PMID: 36211377 PMCID: PMC9535357 DOI: 10.3389/fimmu.2022.995186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Obesity-induced inflammation activates the adaptive immune system by altering immunoglobulin G (IgG) glycosylation in a way to produce more proinflammatory antibodies. The IgG glycome has already been well studied, and its alterations are correlated with a high body mass index (BMI) and central adiposity. Still, the IgG N-glycome susceptibility to different dietary regimes for weight control after the initial weight loss has not been studied. To explore changes in IgG glycosylation induced by weight loss and subsequent weight-maintenance diets, we analyzed 1,850 IgG glycomes from subjects in a dietary intervention Diogenes study. In this study, participants followed a low-calorie diet (LCD) providing 800 kcal/d for 8 weeks, followed by one of five weight-maintenance diets over a 6-month period. The most significant alteration of the IgG N-glycome was present 8 weeks after the subjects underwent an LCD, a statistically significant decrease of agalactosylated and the increase of sialylated N glycans. In the follow-up period, the increase in glycans with bisecting GlcNAc and the decrease in sialylated glycans were observed. Those changes were present regardless of the diet type, and we did not observe significant changes between different diets. However, it should be noted that in all five diet groups, there were individuals who prominently altered their IgG glycome composition in either proinflammatory or anti-inflammatory directions.
Collapse
Affiliation(s)
- Helena Deriš
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Petra Tominac
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Nina Briški
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Arne Astrup
- Centre for Healthy Weigh, The Novo Nordisk Foundation, Hellerup, Denmark
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- *Correspondence: Gordan Lauc, ; Ivan Gudelj,
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- *Correspondence: Gordan Lauc, ; Ivan Gudelj,
| |
Collapse
|
18
|
Javeed R, Hussain D, Jabeen F, Sajid MS, Fatima B, Ashiq MN, Najam-Ul-Haq M. Apo-H (beta-2-glycoprotein) intact N-glycan analysis by MALDI-TOF-MS using sialic acid derivatization. Anal Bioanal Chem 2021; 413:7441-7449. [PMID: 34686894 DOI: 10.1007/s00216-021-03701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Apo-H is a plasma glycoprotein. Nearly 19% of the molecular weight of this protein is composed of glycans. Up- and down-regulation and structural changes in protein glycans provide diagnostic value for disease detection. Here, an efficient, sensitive, and optimized method is developed for Apo-H N-glycans analysis by MALDI-TOF-MS in positive mode. This bioanalytical method includes sample preparation, sample purification, and detection. An Apo-H enrichment method is developed using standard proteins by anti-Apo-H beads followed by enrichment from plasma samples. SDS-PAGE confirms the Apo-H protein enrichment, which is further verified by LC-MS/MS analysis. The lower ionization efficiency of sialylated glycan hampers their analysis by MALDI-MS. For this, stabilization of sialic acids is done by selective derivatization of carboxyl groups to differentiate between α(2,3)- and α(2,6)-linked sialic acids. Glycans are further purified by HILIC-SPE and analyzed by MALDI-MS. Several branched bi- and tri-antennary glycans with fucosylation and sialylation are identified. The reproducibility of the developed method is tested by analyzing multiple replicates of human plasma, where the same glycans are consistently identified. This method could be applied for the Apo-H glycan profiling of large clinical cohorts for diagnostic purposes.
Collapse
Affiliation(s)
- Rabia Javeed
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
19
|
Russell A, Wang W. The Rapidly Expanding Nexus of Immunoglobulin G N-Glycomics, Suboptimal Health Status, and Precision Medicine. EXPERIENTIA. SUPPLEMENTUM 2021; 112:545-564. [PMID: 34687022 DOI: 10.1007/978-3-030-76912-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Immunoglobulin G is a prevalent glycoprotein, whose downstream immune responses are partially mediated by the N-glycans within the fragment crystallisable domain. Collectively termed the N-glycome, it is considered a complex intermediate phenotype: an amalgamation of genetic predisposition, environmental exposure, and health behaviours over the life-course. Thus, the immunoglobulin G N-glycome may provide an indication of health status on the spectrum from health to disease and infirmary. Although variability exists within and between populations, composition of the immunoglobulin G N-glycome remains stable over short periods of time. This underscores the potential of harnessing the immunoglobulin G N-glycome as an ideal tool for preclinical disease risk prediction, stratification, and prognosis through the development of precise dynamic biomarkers.
Collapse
Affiliation(s)
- Alyce Russell
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
20
|
Greto VL, Cvetko A, Štambuk T, Dempster NJ, Kifer D, Deriš H, Cindrić A, Vučković F, Falchi M, Gillies RS, Tomlinson JW, Gornik O, Sgromo B, Spector TD, Menni C, Geremia A, Arancibia-Cárcamo CV, Lauc G. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int J Obes (Lond) 2021; 45:1521-1531. [PMID: 33941843 PMCID: PMC8236401 DOI: 10.1038/s41366-021-00816-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/18/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Obesity, a major global health problem, is associated with increased cardiometabolic morbidity and mortality. Protein glycosylation is a frequent posttranslational modification, highly responsive to inflammation and ageing. The prospect of biological age reduction, by changing glycosylation patterns through metabolic intervention, opens many possibilities. We have investigated whether weight loss interventions affect inflammation- and ageing-associated IgG glycosylation changes, in a longitudinal cohort of bariatric surgery patients. To support potential findings, BMI-related glycosylation changes were monitored in a longitudinal twins cohort. METHODS IgG N-glycans were chromatographically profiled in 37 obese patients, subjected to low-calorie diet, followed by bariatric surgery, across multiple timepoints. Similarly, plasma-derived IgG N-glycan traits were longitudinally monitored in 1680 participants from the TwinsUK cohort. RESULTS Low-calorie diet induced a marked decrease in the levels of IgG N-glycans with bisecting GlcNAc, whose higher levels are usually associated with ageing and inflammatory conditions. Bariatric surgery resulted in extensive alterations of the IgG N-glycome that accompanied progressive weight loss during 1-year follow-up. We observed a significant increase in digalactosylated and sialylated glycans, and a substantial decrease in agalactosylated and core fucosylated IgG N-glycans (adjusted p value range 7.38 × 10-04-3.94 × 10-02). This IgG N-glycan profile is known to be associated with a younger biological age and reflects an enhanced anti-inflammatory IgG potential. Loss of BMI over a 20 year period in the TwinsUK cohort validated a weight loss-associated agalactosylation decrease (adjusted p value 1.79 × 10-02) and an increase in digalactosylation (adjusted p value 5.85 × 10-06). CONCLUSIONS Altogether, these findings highlight that weight loss substantially affects IgG N-glycosylation, resulting in reduced glycan and biological age.
Collapse
Affiliation(s)
- Valentina L Greto
- Translational Gastroenterology Unit and NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Niall J Dempster
- Oxford Centre for Diabetes and NIHR Oxford Biomedical Research Centre, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Helena Deriš
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Ana Cindrić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Mario Falchi
- The Department of Twin Research, King's College London, St Thomas' Hospital, London, UK
| | - Richard S Gillies
- Department of Upper GI Surgery, Oxford University Hospitals, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes and NIHR Oxford Biomedical Research Centre, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Bruno Sgromo
- Department of Upper GI Surgery, Oxford University Hospitals, Oxford, UK
| | - Tim D Spector
- The Department of Twin Research, King's College London, St Thomas' Hospital, London, UK
| | - Cristina Menni
- The Department of Twin Research, King's College London, St Thomas' Hospital, London, UK
| | - Alessandra Geremia
- Translational Gastroenterology Unit and NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Carolina V Arancibia-Cárcamo
- Translational Gastroenterology Unit and NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
21
|
Wang X, Zhong Z, Balmer L, Wang W. Glycosylation Profiling as a Biomarker of Suboptimal Health Status for Chronic Disease Stratification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:321-339. [PMID: 34495543 DOI: 10.1007/978-3-030-70115-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
WHO defines health as "a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity." We coined and defined suboptimal health status (SHS) as a subclinical, reversible stage of the pre-chronic disease. SHS is a physical state between health and disease, characterized by health complaints, general weakness, chronic fatigue, and low energy levels. We have developed an instrument to measure SHS, Suboptimal Health Status Questionnaire-25 (SHSQ-25), a self-reported survey assessing five health components that has been validated in various ethnical populations. Our studies suggest that SHS is associated with the major components of cardiovascular health and the early onset of metabolic diseases. Besides subjective measure of health (SHS), glycans are conceived as objective biomarkers of SHS. Glycans are complex and branching carbohydrate moieties attached to proteins, participating in inflammatory regulation and chronic disease pathogenesis. We have been investigating the role of glycans and SHS in multiple cardiometabolic diseases in different ethnical populations (African, Chinese, and Caucasian). Here we present case studies to prove that a combination of subjective health measure (SHS) with objective health measure (glycans) represents a window of opportunity to halt or reverse the progression of chronic diseases.
Collapse
Affiliation(s)
- Xueqing Wang
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lois Balmer
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia
| | - Wei Wang
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia.
- Centre for Precision Health, ECU Strategic Research Centre, Edith Cowan University, Perth, Australia.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
- First Affiliated Hospital, Shantou University Medical College, Shantou, China.
| |
Collapse
|
22
|
Abstract
Human lifespan has increased significantly in the last 200 years, emphasizing our need to age healthily. Insights into molecular mechanisms of aging might allow us to slow down its rate or even revert it. Similar to aging, glycosylation is regulated by an intricate interplay of genetic and environmental factors. The dynamics of glycopattern variation during aging has been mostly explored for plasma/serum and immunoglobulin G (IgG) N-glycome, as we describe thoroughly in this chapter. In addition, we discuss the potential functional role of agalactosylated IgG glycans in aging, through modulation of inflammation level, as proposed by the concept of inflammaging. We also comment on the potential to use the plasma/serum and IgG N-glycome as a biomarker of healthy aging and on the interventions that modulate the IgG glycopattern. Finally, we discuss the current knowledge about animal models for human plasma/serum and IgG glycosylation and mention other, less explored, instances of glycopattern changes during organismal aging and cellular senescence.
Collapse
|
23
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
24
|
Aleksandrova K, Egea Rodrigues C, Floegel A, Ahrens W. Omics Biomarkers in Obesity: Novel Etiological Insights and Targets for Precision Prevention. Curr Obes Rep 2020; 9:219-230. [PMID: 32594318 PMCID: PMC7447658 DOI: 10.1007/s13679-020-00393-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Omics-based technologies were suggested to provide an advanced understanding of obesity etiology and its metabolic consequences. This review highlights the recent developments in "omics"-based research aimed to identify obesity-related biomarkers. RECENT FINDINGS Recent advances in obesity and metabolism research increasingly rely on new technologies to identify mechanisms in the development of obesity using various "omics" platforms. Genetic and epigenetic biomarkers that translate into changes in transcriptome, proteome, and metabolome could serve as targets for obesity prevention. Despite a number of promising candidate biomarkers, there is an increased demand for larger prospective cohort studies to validate findings and determine biomarker reproducibility before they can find applications in primary care and public health. "Omics" biomarkers have advanced our knowledge on the etiology of obesity and its links with chronic diseases. They bring substantial promise in identifying effective public health strategies that pave the way towards patient stratification and precision prevention.
Collapse
Affiliation(s)
- Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| | - Caue Egea Rodrigues
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Anna Floegel
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
| | - Wolfgang Ahrens
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| |
Collapse
|
25
|
N-glycans as functional effectors of genetic and epigenetic disease risk. Mol Aspects Med 2020; 79:100891. [PMID: 32861467 DOI: 10.1016/j.mam.2020.100891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
N-glycosylation is a frequent modification of proteins, essential for all domains of life. N-glycan biosynthesis is a dynamic, complex, non-templated process, wherein specific glycoforms are modulated by various microenvironmental cues, cellular signals and local availability of dedicated enzymes and sugar precursors. This intricate regulatory network comprises hundreds of proteins, whose activity is dependent on both sequence of implicated genes and the regulation of their expression. In this regard, variation in N-glycosylation patterns stems from either gene polymorphisms or from stable epigenetic regulation of gene expression in different individuals. Moreover, epigenome alters in response to various environmental factors, representing a direct link between environmental exposure and changes in gene expression, that are subsequently reflected through altered N-glycosylation. N-glycosylation itself has a fundamental role in numerous biological processes, ranging from protein folding, cellular homeostasis, adhesion and immune regulation, to the effector functions in multiple diseases. Moreover, specific modification of the glycan structure can modulate glycoprotein's biological function or direct the faith of the entire cell, as seen on the examples of antibodies and T cells, respectively. Since immunoglobulin G is one of the most profoundly studied glycoproteins in general, the focus of this review will be on its N-glycosylation changes and their functional implications. By deepening the knowledge on the mechanistic roles that certain glycoforms exert in differential pathological processes, valuable insight into molecular perturbations occurring during disease development could be obtained. The prospect of resolving the exact biological pathways involved offers a potential for the development of new therapeutic interventions and molecular tools that would aid in prognosis, early referral and timely treatment of multiple disease conditions.
Collapse
|
26
|
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12:9959-9981. [PMID: 32470948 PMCID: PMC7288963 DOI: 10.18632/aging.103344] [Citation(s) in RCA: 590] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.
Collapse
Affiliation(s)
- Amber L. Mueller
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - Maeve S. McNamara
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - David A. Sinclair
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| |
Collapse
|
27
|
Profiling of isomer-specific IgG N-glycosylation in cohort of Chinese colorectal cancer patients. Biochim Biophys Acta Gen Subj 2020; 1864:129510. [DOI: 10.1016/j.bbagen.2019.129510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/19/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022]
|
28
|
Wittenbecher C, Štambuk T, Kuxhaus O, Rudman N, Vučković F, Štambuk J, Schiborn C, Rahelić D, Dietrich S, Gornik O, Perola M, Boeing H, Schulze MB, Lauc G. Plasma N-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study. Diabetes Care 2020; 43:661-668. [PMID: 31915204 DOI: 10.2337/dc19-1507] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Plasma protein N-glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma N-glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke). RESEARCH DESIGN AND METHODS Based on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort (n = 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes (n = 820; median follow-up time 6.5 years) and CVD (n = 508; median follow-up time 8.2 years). Information on the relative abundance of 39 N-glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive N-glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women. RESULTS The N-glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. N-glycans were moderately predictive for CVD incidence (weighted C-indices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected N-glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD. CONCLUSIONS Selected N-glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein N-glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Olga Kuxhaus
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Catarina Schiborn
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dario Rahelić
- University Clinics for Diabetes, Endocrinology and Metabolism, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Stefan Dietrich
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heiner Boeing
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
29
|
Wang H, Li X, Wang X, Liu D, Zhang X, Cao W, Zheng Y, Guo Z, Li D, Xing W, Hou H, Wu L, Song M, Zhong Z, Wang Y, Tan X, Lauc G, Wang W. Next-Generation (Glycomic) Biomarkers for Cardiometabolic Health: A Community-Based Study of Immunoglobulin G N-Glycans in a Chinese Han Population. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:649-659. [PMID: 31313980 DOI: 10.1089/omi.2019.0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiovascular disease is a common complex trait that calls for next-generation biomarkers for precision diagnostics and therapeutics. The most common type of post-translational protein modification involves glycosylation. Glycans participate in key intercellular and intracellular functions, such as protein quality control, cell adhesion, cell-cell recognition, signal transduction, cell proliferation, and cell differentiation. In this context, immunoglobulin G (IgG) N-glycans affect the anti-inflammatory and proinflammatory responses of IgG, and are associated with cardiometabolic risk factors such as aging, central obesity, dyslipidemia, and hyperglycemia. Yet, the role of such glycomic biomarkers requires evaluation in diverse world populations. We report here original observations on association of IgG N-glycan biosignatures with 15 cardiometabolic risk factors in a community-based cross-sectional study conducted in 701 Chinese Han participants. After controlling for age and sex, we found that the 16, 21, and 18 IgG N-glycan traits were significantly different in participants with and without metabolic syndrome, hypertriglyceridemic waist phenotype, or abdominal obesity, respectively. The canonical correlation analysis showed that IgG N-glycan profiles were significantly associated with cardiometabolic risk factors (r = 0.469, p < 0.001). Classification models based on IgG N-glycan traits were able to differentiate participants with (1) metabolic syndrome, (2) hypertriglyceridemic waist phenotype, or (3) abdominal obesity from controls, with an area under receiver operating characteristic curves (AUC) of 0.632 (95% confidence interval [CI], 0.574-0.691, p < 0.001), 0.659 (95% CI, 0.587-0.730, p < 0.001), and 0.610 (95% CI, 0.565-0.656, p < 0.001), respectively. These new data suggest that IgG N-glycans may play an important role in cardiometabolic disease pathogenesis by regulating the proinflammatory or anti-inflammatory responses of IgG. Looking into the future, IgG N-glycan biosignatures warrant further research in other world population samples with a view to applications in clinical cardiology and public health practice.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Xueqing Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yulu Zheng
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Zheng Guo
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Dong Li
- School of Public Health, Shandong First Medical University, Taian, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University, Taian, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University, Taian, China
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou University Medical College, Shantou, China
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- School of Public Health, Shandong First Medical University, Taian, China
| |
Collapse
|
30
|
Li X, Wang H, Russell A, Cao W, Wang X, Ge S, Zheng Y, Guo Z, Hou H, Song M, Yu X, Wang Y, Hunter M, Roberts P, Lauc G, Wang W. Type 2 Diabetes Mellitus is Associated with the Immunoglobulin G N-Glycome through Putative Proinflammatory Mechanisms in an Australian Population. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:631-639. [PMID: 31526239 DOI: 10.1089/omi.2019.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a common complex trait arising from interactions among multiple environmental, genomic, and postgenomic factors. We report here the first attempt to investigate the association between immunoglobulin G (IgG) N-glycan patterns, T2DM, and their clinical risk factors in an Australian population. N-glycosylation of proteins is one of the most frequently observed co- and post-translational modifications, reflecting, importantly, the real-time status of the interplay between the genomic and postgenomic factors. In a community-based case-control study, 849 participants (217 cases and 632 controls) were recruited from an urban community in Busselton, Western Australia. We applied the ultraperformance liquid chromatography method to analyze the composition of IgG N-glycans. We then conducted Spearman's correlation analyses to explore the association between glycan biomarker candidates and clinical risk factors. We performed area under the curve (AUC) analysis of the receiver operating characteristic curves by fivefold cross-validation for clinical risk factors, IgG glycans, and their combination. Two directly measured and four derived glycan peaks were significantly associated with T2DM, after correction for extensive clinical confounders and false discovery rate, thus suggesting that IgG N-glycan traits are highly correlated with T2DM clinical risk factors. Moreover, adding the IgG glycan profiles to fasting blood glucose in the logistic regression model increased the AUC from 0.799 to 0.859. The AUC for IgG glycans alone was 0.623 with a 95% confidence interval 0.580-0.666. In addition, our study provided new evidence of diversity in T2DM complex trait by IgG N-glycan stratification. Six IgG glycan traits were firmly associated with T2DM, which reflects an increased proinflammatory and biological aging status. In summary, our study reports novel associations between the IgG N-glycome and T2DM in an Australian population and the putative role of proinflammatory mechanisms. Furthermore, IgG N-glycomic alterations offer future prospects as inflammatory biomarker candidates for T2DM diagnosis, and monitoring of T2DM progression to cardiovascular disease or renal failure.
Collapse
Affiliation(s)
- Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Hao Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Alyce Russell
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- School of Population and Global Health, University of Western Australia, Crawley, Australia
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xueqing Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Siqi Ge
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yulu Zheng
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Zheng Guo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xinwei Yu
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Michael Hunter
- School of Population and Global Health, University of Western Australia, Crawley, Australia
- Busselton Health Study Centre, Busselton Population Medical Research Institute, Busselton, Australia
| | - Peter Roberts
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- School of Public Health, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
- The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
31
|
Liu D, Li Q, Zhang X, Wang H, Cao W, Li D, Xing W, Song M, Wang W, Meng Q, Wang Y. Systematic Review: Immunoglobulin G N-Glycans as Next-Generation Diagnostic Biomarkers for Common Chronic Diseases. ACTA ACUST UNITED AC 2019; 23:607-614. [DOI: 10.1089/omi.2019.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Qihuan Li
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Dong Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qun Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Russell AC, Kepka A, Trbojević-Akmačić I, Ugrina I, Song M, Hui J, Hunter M, Laws SM, Lauc G, Wang W. Why Not Use the Immunoglobulin G N-Glycans as Predictor Variables in Disease Biomarker-Phenotype Association Studies? A Multivariate Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:668-670. [PMID: 31651214 DOI: 10.1089/omi.2019.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alyce C Russell
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Agnieszka Kepka
- Department of Immunology, Faculty of Biology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | | | - Ivo Ugrina
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Science, University of Split, Split, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Key Municipal Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Jennie Hui
- School of Population and Global Health, University of Western Australia, Nedlands, Australia.,Busselton Population Medical Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Michael Hunter
- School of Population and Global Health, University of Western Australia, Nedlands, Australia.,Busselton Health Study Centre, Busselton Population Medical Research Institute, Busselton, Australia
| | - Simon M Laws
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Key Municipal Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,School of Public Health, Taishan Medical University, Taian, China
| |
Collapse
|
33
|
Liu D, Li Q, Dong J, Li D, Xu X, Xing W, Zhang X, Cao W, Hou H, Wang H, Song M, Tao L, Kang X, Meng Q, Wang W, Guo X, Wang Y. The Association Between Normal BMI With Central Adiposity And Proinflammatory Potential Immunoglobulin G N-Glycosylation. Diabetes Metab Syndr Obes 2019; 12:2373-2385. [PMID: 31814749 PMCID: PMC6861528 DOI: 10.2147/dmso.s216318] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mechanism by which normal body mass index (BMI) with central adiposity (NWCA) increases the risk of the diseases has not been completely elucidated. The inflammatory role of immunoglobulin G (IgG) N-glycosylation in obesity defined by BMI or central adiposity defined by waist-to-hip ratio (WHR) was reported, respectively. We undertook this three-center cross-sectional study to determine the association between the IgG N-glycans and NWCA. METHODS The participants were categorized into four different phenotypes: normal BMI with normal WHR (NW), normal BMI with central adiposity (NWCA), obesity with normal WHR (ONCA) and obesity with central adiposity (OCA). The IgG N-glycans were analyzed using ultra-performance liquid chromatography analysis of released glycans, and differences among groups were compared. RESULTS In total, 17 out of 24 initial IgG N-glycans were significantly different among the four groups (NW, ONCA, NWCA and OCA) (P<0.05/6*78=0.0001). The changes of IgG glycans in central obesity (12 GPs) were more than those in obesity (3 GPs). In addition, lower galactosylation and bisecting GlcNAc and higher fucosylation were associated with increased risk of NWCA. CONCLUSION Central obesity was involved in more changes of IgG N-glycosylation representing stronger inflammation than obesity, which might make a greater contribution to the risk of related disorders. NWCA was associated with an increased pro-inflammatory of IgG N-glycosylation, which was accompanied by the development of central obesity and other related disorders.
Collapse
Affiliation(s)
- Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
| | - Qihuan Li
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
- Meinian Institute of Health, Beijing100191, People’s Republic of China
| | - Jing Dong
- Center for Physical Examination, Xuanwu Hospital, Capital Medical University, Beijing100050, People’s Republic of China
| | - Dong Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian271016, Shandong Province, People’s Republic of China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian271016, Shandong Province, People’s Republic of China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian271016, Shandong Province, People’s Republic of China
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian271016, Shandong Province, People’s Republic of China
| | - Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
- School of Medical and Health Sciences, Edith Cowan University, Perth6027, Australia
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
| | - Lixin Tao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaoping Kang
- The Rehabilitation Center, Beijing Xiaotangshan Hospital, Beijing102211, People’s Republic of China
| | - Qun Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian271016, Shandong Province, People’s Republic of China
- School of Medical and Health Sciences, Edith Cowan University, Perth6027, Australia
| | - Xiuhua Guo
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
- Xiuhua Guo School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing100069, People’s Republic of ChinaTel +86 10 83911504 Email
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing100069, People’s Republic of China
- Correspondence: Youxin Wang School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing100069, People’s Republic of ChinaTel +86 10 83911779 Email
| |
Collapse
|