1
|
Mendoza-Ramírez NJ, García-Cordero J, Martínez-Frías SP, Roa-Velázquez D, Luria-Pérez R, Bustos-Arriaga J, Hernández-Lopez J, Cabello-Gutiérrez C, Zúñiga-Ramos JA, Morales-Ríos E, Pérez-Tapia SM, Espinosa-Cantellano M, Cedillo-Barrón L. Combination of Recombinant Proteins S1/N and RBD/N as Potential Vaccine Candidates. Vaccines (Basel) 2023; 11:vaccines11040864. [PMID: 37112776 PMCID: PMC10142685 DOI: 10.3390/vaccines11040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.
Collapse
Affiliation(s)
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| | | | - Daniela Roa-Velázquez
- Departamento de Bioquímica, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| | - Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - José Bustos-Arriaga
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios # 1, Col. Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Jesús Hernández-Lopez
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A. C (CIAD) Carretera a la Victoria km 0.6, Hermosillo Sonora 83304, Mexico
| | - Carlos Cabello-Gutiérrez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Departamento de Investigación en Virología y Micología, Calzada de Tlalpan 4502, Belisario Domínguez, Tlalpan 14080, Mexico
| | - Joaquín Alejandro Zúñiga-Ramos
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas y Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico
| | - Edgar Morales-Ríos
- Departamento de Bioquímica, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City 11340, Mexico
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Cinvestav, Av. IPN # 2508 Col, Mexico City 07360, Mexico
| |
Collapse
|
2
|
Kumar A, Ladha A, Choudhury A, Ikbal AMA, Bhattacharjee B, Das T, Gupta G, Sharma C, Sarbajna A, Mandal SC, Choudhury MD, Ali N, Slama P, Rezaei N, Palit P, Tiwari ON. The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19? Expert Rev Vaccines 2022; 21:1071-1086. [PMID: 35604776 DOI: 10.1080/14760584.2022.2081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Amit Ladha
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Ankita Choudhury
- Department of Pharmaceutical Sciences, Allama TR College of Pharmacy, Hospital Rd, Srigouri, India
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura (W), India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tanmay Das
- Department of Business Administration, Assam University Silchar, India
| | - Gaurav Gupta
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chhavi Sharma
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Adity Sarbajna
- Department of Zoology, Surendranath College, Kolkata, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Nahid Ali
- Division of Immunology, Department of Infectious Diseases, INDIAN INSTITUTE OF CHEMICAL BIOLOGY, Kolkata, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Partha Palit
- Department of Pharmaceutical Sciences Drug Discovery research Laboratory, Assam University, Silchar, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
3
|
Soto JA, Díaz FE, Retamal-Díaz A, Gálvez NMS, Melo-González F, Piña-Iturbe A, Ramírez MA, Bohmwald K, González PA, Bueno SM, Kalergis AM. BCG-Based Vaccines Elicit Antigen-Specific Adaptive and Trained Immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines (Basel) 2022; 10:vaccines10050721. [PMID: 35632475 PMCID: PMC9143576 DOI: 10.3390/vaccines10050721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Background:Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is a live attenuated vaccine mainly administered to newborns and used for over 100 years to prevent the disease caused by Mycobacterium tuberculosis (M. tb). This vaccine can induce immune response polarization towards a Th1 profile, which is desired for counteracting M. tb, other mycobacteria, and unrelated intracellular pathogens. The vaccine BCG has been used as a vector to express recombinant proteins and has been shown to protect against several diseases, particularly respiratory viruses. Methods: BCG was used to develop recombinant vaccines expressing either the Nucleoprotein from SARS-CoV-2 or Andes orthohantavirus. Mice were immunized with these vaccines with the aim of evaluating the safety and immunogenicity parameters. Results: Immunization with two doses of 1 × 108 CFU or one dose of 1 × 105 CFU of these BCGs was safe in mice. A statistically significant cellular immune response was induced by both formulations, characterized as the activation of CD4+ and CD8+ T cells. Stimulation with unrelated antigens resulted in increased expression of activation markers by T cells and secretion of IL-2 and IFN-γ, while increased secretion of IL-6 was found for both recombinant vaccines; all of these parameters related to a trained immunity profile. The humoral immune response elicited by both vaccines was modest, but further exposure to antigens could increase this response. Conclusions: The BCG vaccine is a promising platform for developing vaccines against different pathogens, inducing a marked antigen-specific immune response.
Collapse
Affiliation(s)
- Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Fabián E. Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Angello Retamal-Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Nicolás M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Felipe Melo-González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Alejandro Piña-Iturbe
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Pablo A. González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Correspondence: or ; Tel.: +56-2-686-2842
| |
Collapse
|
4
|
Han X, Ye Q. The variants of SARS-CoV-2 and the challenges of vaccines. J Med Virol 2022; 94:1366-1372. [PMID: 34890492 PMCID: PMC9015306 DOI: 10.1002/jmv.27513] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), countries all over the world have suffered severe losses. It affects not only human life and health but also the economy. In response to COVID-19, countries have made tremendous efforts to vaccine development. The newly discovered variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have brought major challenges to the effectiveness and research of vaccines. This article reviews the existing literature and summarizes the main variants of the SARS-CoV-2 and its impact on vaccines, and provides new ideas for the later development of vaccines. An excellent job in developing and applying vaccines will be an important measure for epidemic prevention and control.
Collapse
Affiliation(s)
- Xiucui Han
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouZhejiangChina
| | - Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouZhejiangChina
| |
Collapse
|
5
|
Maghsood F, Shokri MR, Jeddi-Tehrani M, Rahvar MT, Ghaderi A, Salimi V, Kardar GA, Zarnani AH, Amiri MM, Shokri F. Identification of immunodominant epitopes on nucleocapsid and spike proteins of the SARS-CoV-2 in Iranian COVID-19 patients. Pathog Dis 2022; 80:6498121. [PMID: 34994386 PMCID: PMC8755367 DOI: 10.1093/femspd/ftac001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022] Open
Abstract
Given the emergence of SARS-CoV-2 virus as a life-threatening pandemic, identification of immunodominant epitopes of the viral structural proteins, particularly the nucleocapsid (NP) protein and receptor binding domain (RBD) of spike protein, is important to determine targets for immunotherapy and diagnosis. In this study, epitope screening was performed using a panel of overlapping peptides spanning the entire sequences of the RBD and NP proteins of SARS-CoV-2 in the sera from 66 COVID-19 patients and 23 healthy subjects by enzyme-linked immunosorbent assay (ELISA). Our results showed that while reactivity of patients' sera with reduced recombinant RBD protein was significantly lower than the native form of RBD (p<0.001), no significant differences were observed for reactivity of patients' sera with reduced and non-reduced NP protein. Pepscan analysis revealed weak to moderate reactivity towards different RBD peptide pools, which was more focused on peptides encompassing aa 181-223 of RBD. NP peptides, however, displayed strong reactivity with a single peptide covering aa 151-170. These findings were confirmed by peptide depletion experiments using both ELISA and Western blotting. Altogether, our data suggest involvement of mostly conformational disulfide bond-dependent immunodominant epitopes in RBD-specific antibody response, while the IgG response to NP is dominated by linear epitopes. Identification of dominant immunogenic epitopes in NP and RBD of SARS-CoV-2 could provide important information for the development of passive and active immunotherapy as well as diagnostic tools for the control of COVID-19 infection.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Monireh Torabi Rahvar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghaderi
- Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology Asthma & Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhuang Z, Liu D, Sun J, Li F, Zhao J. Immune responses to human respiratory coronaviruses infection in mouse models. Curr Opin Virol 2021; 52:102-111. [PMID: 34906757 PMCID: PMC8665230 DOI: 10.1016/j.coviro.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
Human respiratory coronaviruses (HCoVs), including the recently emerged SARS-CoV-2, the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, potentially cause severe lung infections and multiple organ damages, emphasizing the urgent need for antiviral therapeutics and vaccines against HCoVs. Small animal models, especially mice, are ideal tools for deciphering the pathogenesis of HCoV infections as well as virus-induced immune responses, which is critical for antiviral drug development and vaccine design. In this review, we focus on the antiviral innate immune response, antibody response and T cell response in HCoV infected mouse models, and discuss the potential implications for understanding the anti-HCoV immunity and fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong 510320, China.
| |
Collapse
|
7
|
Han X, Xu P, Ye Q. Analysis of COVID-19 vaccines: Types, thoughts, and application. J Clin Lab Anal 2021; 35:e23937. [PMID: 34396586 PMCID: PMC8418485 DOI: 10.1002/jcla.23937] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To deal with COVID-19, various countries have made many efforts, including the research and development of vaccines. The purpose of this manuscript was to summarize the development, application, and problems of COVID-19 vaccines. METHODS This article reviewed the existing literature to see the development of the COVID-19 vaccine. RESULTS We found that different types of vaccines had their own advantages and disadvantages. At the same time, the side effects of the vaccine, the dose of vaccination, the evaluation of the efficacy, and the application of the vaccine were all things worth studying. CONCLUSION The successful development of the COVID-19 vaccine concerns almost all countries and people in the world. We must do an excellent job of researching the immunogenicity and immune reactivity of the vaccines. We hope this review can help colleagues at home and abroad.
Collapse
Affiliation(s)
- Xiucui Han
- Department of Clinical LaboratoryThe Children’s HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Pengfei Xu
- Clinical LaboratoryZhejiang HospitalHangzhouChina
| | - Qing Ye
- Department of Clinical LaboratoryThe Children’s HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| |
Collapse
|
8
|
Sun Z, Zheng X, Ji F, Zhou M, Su X, Ren K, Li L. Mass Spectrometry Analysis of SARS-CoV-2 Nucleocapsid Protein Reveals Camouflaging Glycans and Unique Post-Translational Modifications. INFECTIOUS MICROBES & DISEASES 2021; 3:149-157. [PMID: 38630108 PMCID: PMC8454284 DOI: 10.1097/im9.0000000000000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
The devastating coronavirus disease 2019 (COVID-19) pandemic has prompted worldwide efforts to study structural biological traits of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its viral components. Compared to the Spike protein, which is the primary target for currently available vaccines or antibodies, knowledge about other virion structural components is incomplete. Using high-resolution mass spectrometry, we report a comprehensive post-translational modification (PTM) analysis of nucleocapsid phosphoprotein (NCP), the most abundant structural component of the SARS-CoV-2 virion. In addition to phosphoryl groups, we show that the SARS-CoV-2 NCP is decorated with a variety of PTMs, including N-glycans and ubiquitin. Based on newly identified PTMs, refined protein structural models of SARS-CoV-2 NCP were proposed and potential immune recognition epitopes of NCP were aligned with PTMs. These data can facilitate the design of novel vaccines or therapeutics targeting NCP, as valuable alternatives to the current vaccination and treatment paradigm that is under threat of the ever-mutating SARS-CoV-2 Spike protein.
Collapse
Affiliation(s)
- Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoqin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Weingarten-Gabbay S, Klaeger S, Sarkizova S, Pearlman LR, Chen DY, Gallagher KME, Bauer MR, Taylor HB, Dunn WA, Tarr C, Sidney J, Rachimi S, Conway HL, Katsis K, Wang Y, Leistritz-Edwards D, Durkin MR, Tomkins-Tinch CH, Finkel Y, Nachshon A, Gentili M, Rivera KD, Carulli IP, Chea VA, Chandrashekar A, Bozkus CC, Carrington M, Bhardwaj N, Barouch DH, Sette A, Maus MV, Rice CM, Clauser KR, Keskin DB, Pregibon DC, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs. Cell 2021; 184:3962-3980.e17. [PMID: 34171305 PMCID: PMC8173604 DOI: 10.1016/j.cell.2021.05.046] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 01/23/2023]
Abstract
T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | - Leah R Pearlman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Da-Yuan Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Kathleen M E Gallagher
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R Bauer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Suzanna Rachimi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hasahn L Conway
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Katelin Katsis
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yuntong Wang
- Repertoire Immune Medicines, Cambridge, MA 02139, USA
| | | | | | - Christopher H Tomkins-Tinch
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matteo Gentili
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith D Rivera
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Isabel P Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vipheaviny A Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
| | - Nina Bhardwaj
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Dan H Barouch
- Harvard Medical School, Boston, MA 02115, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program and Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA; Health Informatics Lab, Metropolitan College, Boston University, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
10
|
Kim DS, Rowland-Jones S, Gea-Mallorquí E. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Front Immunol 2020; 11:571481. [PMID: 33362759 PMCID: PMC7756008 DOI: 10.3389/fimmu.2020.571481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China resulted in the current COVID-19 global pandemic. The human immune system has not previously encountered this virus, raising the important question as to whether or not protective immunity is generated by infection. Growing evidence suggests that protective immunity can indeed be acquired post-infection-although a handful of reinfection cases have been reported. However, it is still unknown whether the immune response to SARS-CoV-2 leads to some degree of long-lasting protection against the disease or the infection. This review draws insights from previous knowledge regarding the nature and longevity of immunity to the related virus, SARS-CoV, to fill the gaps in our understanding of the immune response to SARS-CoV-2. Deciphering the immunological characteristics that give rise to protective immunity against SARS-CoV-2 is critical to guiding vaccine development and also predicting the course of the pandemic. Here we discuss the recent evidence that characterises the adaptive immune response against SARS-CoV-2 and its potential implications for the generation of memory responses and long-term protection.
Collapse
Affiliation(s)
- David S. Kim
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Tan Q, Duan L, Ma Y, Wu F, Huang Q, Mao K, Xiao W, Xia H, Zhang S, Zhou E, Ma P, Song S, Li Y, Zhao Z, Sun Y, Li Z, Geng W, Yin Z, Jin Y. Is oseltamivir suitable for fighting against COVID-19: In silico assessment, in vitro and retrospective study. Bioorg Chem 2020; 104:104257. [PMID: 32927129 PMCID: PMC7463036 DOI: 10.1016/j.bioorg.2020.104257] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/27/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oseltamivir is a first-line antiviral drug, especially in primary hospitals. During the ongoing outbreak of coronavirus disease 2019 (COVID-19), most patients with COVID-19 who are symptomatic have used oseltamivir. Considering its popular and important role as an antiviral drug, it is necessary to evaluate oseltamivir in the treatment of COVID-19. OBJECTIVE To evaluate the effect of oseltamivir against COVID-19. METHODS Swiss-model was used to construct the structure of the N-terminal RNA-binding domain (NRBD) of the nucleoprotein (NC), papain-like protease (PLpro), and RNA-directed RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). TM-align program was performed to compare the structure of the viral proteins with the structure of the neuraminidase of influenza A. Molecular docking was used to analyze the theoretical possibility of effective binding of oseltamivir with the active centers of the viral proteins. In vitro study was used to evaluate the antiviral efficiency of oseltamivir against SARS-CoV-2. By clinical case analysis, we statistically evaluated whether the history of oseltamivir use influenced the progression of the disease. RESULTS The structures of NRBD, PLpro, and RdRp were built successfully. The results from TM-align suggested that the S protein, NRBD, 3C-like protease (3CLpro), PLPrO, and RdRp were structurally similar to the influenza A neuraminidase, with TM-scores of 0.30077, 0.19254, 0.28766, 0.30666, and 0.34047, respectively. Interestingly, the active center of 3CL pro was found to be similar to the active center from the neuraminidase of influenza A. Through an analysis of molecular docking, we discovered that oseltamivir carboxylic acid was more favorable to bind to the active site of 3CLpro effectively, but its inhibitory effect was not strong compared with the positive group. Finally, we used in vitro study and retrospective case analysis to verify our speculations. We found that oseltamivir is ineffective against SARS-CoV-2 in vitro study and the clinical use of oseltamivir did not improve the patients' symptoms and signs and did not slow the disease progression. CONCLUSIONS We consider that oseltamivir isn't suitable for the treatment of COVID-19. During the outbreak of novel coronavirus, when oseltamivir is not effective for the patients after they take it, health workers should be highly vigilant about the possibility of COVID-19.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - YanLing Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaimin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjing Xiao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shujing Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - YuMei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilin Zhao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yice Sun
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeyu Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Geng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengrong Yin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Mirzaei R, Mohammadzadeh R, Mahdavi F, Badrzadeh F, Kazemi S, Ebrahimi M, Soltani F, Kazemi S, Jeda AS, Darvishmotevalli M, Yousefimashouf R, Keyvani H, Karampoor S. Overview of the current promising approaches for the development of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Int Immunopharmacol 2020; 88:106928. [PMID: 32862110 PMCID: PMC7444935 DOI: 10.1016/j.intimp.2020.106928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by the novel coronavirus called SARS-CoV-2. There is a gap in our understanding regarding the immunopathogenesis of COVID-19. However, many clinical trials are underway across the world for screening effective drugs against COVID-19. Nevertheless, currently, no proven effective therapies for this virus exists. The vaccines are deemed as a significant part of disease prevention for emerging viral diseases, since, in several cases, other therapeutic choices are limited or non-existent, or that diseases result in such an accelerated clinical worsening that the efficacy of treatments is restricted. Therefore, effective vaccines against COVID-19 are urgently required to overcome the tremendous burden of mortality and morbidity correlated with SARS-CoV-2. In this review, we will describe the latest evidence regarding outstanding vaccine approaches and the challenges for vaccine production.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Mahdavi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariba Badrzadeh
- Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Sheida Kazemi
- Students' Seientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Environmental Health, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soltani
- Health Safety and Environment Management Department, Azad University, Ahvaz Branch, Ahvaz, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishmotevalli
- Research Center For Health, Safety And Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5:237. [PMID: 33051445 PMCID: PMC7551521 DOI: 10.1038/s41392-020-00352-y] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/06/2020] [Accepted: 09/27/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that is highly pathogenic and has caused the recent worldwide pandemic officially named coronavirus disease (COVID-19). Currently, considerable efforts have been put into developing effective and safe drugs and vaccines against SARS-CoV-2. Vaccines, such as inactivated vaccines, nucleic acid-based vaccines, and vector vaccines, have already entered clinical trials. In this review, we provide an overview of the experimental and clinical data obtained from recent SARS-CoV-2 vaccines trials, and highlight certain potential safety issues that require consideration when developing vaccines. Furthermore, we summarize several strategies utilized in the development of vaccines against other infectious viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), with the aim of aiding in the design of effective therapeutic approaches against SARS-CoV-2.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Viral/biosynthesis
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Gene Expression Regulation/drug effects
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Middle East Respiratory Syndrome Coronavirus/drug effects
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Pandemics/prevention & control
- Patient Safety
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Protein Binding
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/drug effects
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
Collapse
Affiliation(s)
- Yetian Dong
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 2020; 256:117956. [PMID: 32535078 PMCID: PMC7289747 DOI: 10.1016/j.lfs.2020.117956] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The 2019-novel coronavirus disease (COVID-19) is caused by SARS-CoV-2 is transmitted from human to human has recently reported in China. Now COVID-19 has been spread all over the world and declared epidemics by WHO. It has caused a Public Health Emergency of International Concern. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Due to the rapid increase of SARS-CoV-2 infections and unavailability of antiviral therapeutic agents, developing an effective SAR-CoV-2 vaccine is urgently required. SARS-CoV-2 which is genetically similar to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) is an enveloped, single and positive-stranded RNA virus with a genome comprising 29,891 nucleotides, which encode the 12 putative open reading frames responsible for the synthesis of viral structural and nonstructural proteins which are very similar to SARS-CoV and MERS-CoV proteins. In this review we have summarized various vaccine candidates i.e., nucleotide, subunit and vector based as well as attenuated and inactivated forms, which have already been demonstrated their prophylactic efficacy against MERS-CoV and SARS-CoV, so these candidates could be used as a potential tool for the development of a safe and effective vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, Uttarakhand, India
| | - Veni Pande
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, Uttarakhand, India
| | - Diksha Sati
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Shobha Upreti
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India.
| |
Collapse
|
15
|
Llanes A, Restrepo CM, Caballero Z, Rajeev S, Kennedy MA, Lleonart R. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. Int J Mol Sci 2020; 21:E4546. [PMID: 32604724 PMCID: PMC7352669 DOI: 10.3390/ijms21124546] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an alarming rate of human morbidity and case fatality. Genomic information has been widely used to understand the pathogenesis, animal origin and mode of transmission of coronaviruses in the aftermath of the 2002-2003 severe acute respiratory syndrome (SARS) and 2012 Middle East respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic analysis have had an unprecedented relevance in the battle against the 2019-2020 coronavirus disease 2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in the history of mankind. Here, we review how genomic information has been used to tackle outbreaks caused by emerging, highly pathogenic, betacoronavirus strains, emphasizing on SARS-CoV, MERS-CoV and SARS-CoV-2. We focus on shared genomic features of the betacoronaviruses and the application of genomic information to phylogenetic analysis, molecular epidemiology and the design of diagnostic systems, potential drugs and vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Zuleima Caballero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Sreekumari Rajeev
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Melissa A. Kennedy
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| |
Collapse
|
16
|
Schindewolf C, Menachery VD. Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism. Viruses 2019; 11:E74. [PMID: 30658390 PMCID: PMC6356267 DOI: 10.3390/v11010074] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/28/2022] Open
Abstract
Efforts towards developing a vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV) have yielded promising results. Utilizing a variety of platforms, several vaccine approaches have shown efficacy in animal models and begun to enter clinical trials. In this review, we summarize the current progress towards a MERS-CoV vaccine and highlight potential roadblocks identified from previous attempts to generate coronavirus vaccines.
Collapse
Affiliation(s)
- Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555 TX, USA.
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555 TX, USA.
| |
Collapse
|
17
|
Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov Today 2015; 21:562-72. [PMID: 26691874 PMCID: PMC7108309 DOI: 10.1016/j.drudis.2015.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
Coronavirus nucleocapsid proteins are appealing drug targets against coronavirus-induced diseases. A variety of compounds targeting the coronavirus nucleocapsid protein have been developed. Many of these compounds show potential antiviral activity.
The advent of severe acute respiratory syndrome (SARS) in the 21st century and the recent outbreak of Middle-East respiratory syndrome (MERS) highlight the importance of coronaviruses (CoVs) as human pathogens, emphasizing the need for development of novel antiviral strategies to combat acute respiratory infections caused by CoVs. Recent studies suggest that nucleocapsid (N) proteins from coronaviruses and other viruses can be useful antiviral drug targets against viral infections. This review aims to provide readers with a concise survey of the structural features of coronavirus N proteins and how these features provide insights into structure-based development of therapeutics against coronaviruses. We will also present our latest results on MERS-CoV N protein and its potential as an antiviral drug target.
Collapse
|
18
|
Abstract
Emerging respiratory coronaviruses such as the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) pose potential biological threats to humans. SARS and MERS are manifested as severe atypical pneumonia associated with high morbidity and mortality in humans. The majority of studies carried out in SARS-CoV-infected humans and animals attribute a dysregulated/exuberant innate response as a leading contributor to SARS-CoV-mediated pathology. A decade after the 2002–2003 SARS epidemic, we do not have any approved preventive or therapeutic agents available in case of re-emergence of SARS-CoV or other related viruses. A strong neutralizing antibody response generated against the spike (S) glycoprotein of SARS-CoV is completely protective in the susceptible host. However, neutralizing antibody titers and the memory B cell response are short lived in SARS-recovered patients and the antibody will target primary homologous strain. Interestingly, the acute phase of SARS in humans is associated with a severe reduction in the number of T cells in the blood. Surprisingly, only a limited number of studies have explored the role of the T cell-mediated adaptive immune response in respiratory coronavirus pathogenesis. In this review, we discuss the role of anti-virus CD4 and CD8 T cells during respiratory coronavirus infections with a special emphasis on emerging coronaviruses.
Collapse
|
19
|
Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect 2012; 1:e23. [PMID: 26038429 PMCID: PMC3636424 DOI: 10.1038/emi.2012.26] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome (SARS) epidemic started in late 2002 and swiftly spread across 5 continents with a mortality rate of around 10%. Although the epidemic was eventually controlled through the implementation of strict quarantine measures, there continues a need to investigate the SARS coronavirus (SARS-CoV) and develop interventions should it re-emerge. Numerous studies have shown that neutralizing antibodies against the virus can be found in patients infected with SARS-CoV within days upon the onset of illness and lasting up to several months. In contrast, there is little data on the kinetics of T cell responses during SARS-CoV infection and little is known about their role in the recovery process. However, recent studies in mice suggest the importance of T cells in viral clearance during SARS-CoV infection. Moreover, a growing number of studies have investigated the memory T cell responses in recovered SARS patients. This review covers the available literature on the emerging importance of T cell responses in SARS-CoV infection, particularly on the mapping of cytotoxic T lymphocyte (CTL) epitopes, longevity, polyfunctionality and human leukocyte antigen (HLA) association as well as their potential implications on treatment and vaccine development.
Collapse
|
20
|
Raghuwanshi D, Mishra V, Das D, Kaur K, Suresh MR. Dendritic cell targeted chitosan nanoparticles for nasal DNA immunization against SARS CoV nucleocapsid protein. Mol Pharm 2012; 9:946-56. [PMID: 22356166 PMCID: PMC3322645 DOI: 10.1021/mp200553x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for noninvasive receptor mediated gene delivery to nasal resident DCs. The pDNA loaded biotinylated chitosan nanoparticles were prepared using a complex coacervation process and characterized for size, shape, surface charge, plasmid DNA loading and protection against nuclease digestion. The pDNA loaded biotinylated chitosan nanoparticles were targeted with bifunctional fusion protein (bfFp) vector for achieving DC selective targeting. The bfFp is a recombinant fusion protein consisting of truncated core-streptavidin fused with anti-DEC-205 single chain antibody (scFv). The core-streptavidin arm of fusion protein binds with biotinylated nanoparticles, while anti-DEC-205 scFv imparts targeting specificity to DC DEC-205 receptor. We demonstrate that intranasal administration of bfFp targeted formulations along with anti-CD40 DC maturation stimuli enhanced magnitude of mucosal IgA as well as systemic IgG against N protein. The strategy led to the detection of augmented levels of N protein specific systemic IgG and nasal IgA antibodies. However, following intranasal delivery of naked pDNA no mucosal and systemic immune responses were detected. A parallel comparison of targeted formulations using intramuscular and intranasal routes showed that the intramuscular route is superior for induction of systemic IgG responses compared with the intranasal route. Our results suggest that targeted pDNA delivery through a noninvasive intranasal route can be a strategy for designing low-dose vaccines.
Collapse
Affiliation(s)
- Dharmendra Raghuwanshi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| | - Vivek Mishra
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| | - Dipankar Das
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| | - Mavanur R. Suresh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| |
Collapse
|
21
|
Cho SJ, Woo HM, Kim KS, Oh JW, Jeong YJ. Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J Biosci Bioeng 2011; 112:535-40. [PMID: 21920814 PMCID: PMC7106535 DOI: 10.1016/j.jbiosc.2011.08.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 11/25/2022]
Abstract
The outbreak of severe acute respiratory syndrome (SARS) in 2002 affected thousands of people and an efficient diagnostic system is needed for accurate detection of SARS coronavirus (SARS CoV) to prevent or limit future outbreaks. Of the several SARS CoV structural proteins, the nucleocapsid protein has been shown to be a good diagnostic marker. In this study, an ssDNA aptamer that specifically binds to SARS CoV nucleocapsid protein was isolated from a DNA library containing 45-nuceotide random sequences in the middle of an 88mer single-stranded DNA. After twelve cycles of systematic evolution of ligands by exponential enrichment (SELEX) procedure, 15 ssDNA aptamers were identified. Enzyme-linked immunosorbent assay (ELISA) analysis was then used to identify the aptamer with the highest binding affinity to the SARS CoV nucleocapsid protein. Using this approach, an ssDNA aptamer that binds to the nucleocapsid protein with a K(d) of 4.93±0.30nM was identified. Western blot analysis further demonstrated that this ssDNA aptamer could be used to efficiently detect the SARS CoV nucleocapsid protein when compared with a nucleocapsid antibody. Therefore, we believe that the selected ssDNA aptamer may be a good alternative detection probe for the rapid and sensitive detection of SARS.
Collapse
Affiliation(s)
- Seong-Je Cho
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection. PLoS One 2011; 6:e23730. [PMID: 21904596 PMCID: PMC3163911 DOI: 10.1371/journal.pone.0023730] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022] Open
Abstract
Genetic background may play an important role in the process of SARS-CoV
infection and SARS development. We found several proteins that could interact
with the nucleocapsid protein of the SARS coronavirus (SARS-CoV).
α-2-Heremans-Schmid Glycoprotein (AHSG), which is required for macrophage
deactivation by endogenous cations, is associated with inflammatory regulation.
Cytochrome P450 Family 3A (CYP4F3A) is an ω-oxidase that
inactivates Leukotriene B4 (LTB4) in human neutrophils and the liver. We
investigated the association between the polymorphisms of these two
inflammation-associated genes and SARS development. The linkage disequilibrium
(LD) maps of these two genes were built with Haploview using data on
CHB+JPT (version 2) from the HapMap. A total of ten tag SNPs were selected
and genotyped. In the Guangzhou cohort study, after adjusting for age and sex,
two AHSG SNPs and one CYP4F3 SNP were found to
be associated with SARS susceptibility: rs2248690 (adjusted odds ratio
[AOR] 2.42; 95% confidence interval [CI] 1.30-4.51);
rs4917 (AOR 1.84; 95% CI 1.02-3.34); and rs3794987 (AOR 2.01; 95%
CI 1.10–3.68). To further validate the association, the ten tag SNPs were
genotyped in the Beijing cohort. After adjusting for age and sex, only rs2248690
(AOR, 1.63; 95% CI, 1.30–2.04) was found to be associated with SARS
susceptibility. The combined analysis of the two studies confirmed tag SNP
rs2248690 in AHSG as a susceptibility variant (AOR 1.70;
95% CI 1.37–2.09). The statistical analysis of the rs2248690
genotype data among the patients and healthy controls in the HCW cohort, who
were all similarly exposed to the SARS virus, also supported the findings.
Further, the SNP rs2248690 affected the transcriptional activity of the
AHSG promoter and thus regulated the AHSG serum level.
Therefore, our study has demonstrated that the AA genotype of rs2268690, which
leads to a higher AHSG serum concentration, was significantly associated with
protection against SARS development.
Collapse
|
23
|
Ahn I, Jeong BJ, Son HS. Comparative study of synonymous codon usage variations between the nucleocapsid and spike genes of coronavirus, and C-type lectin domain genes of human and mouse. Exp Mol Med 2010; 41:746-56. [PMID: 19561398 PMCID: PMC2772977 DOI: 10.3858/emm.2009.41.10.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Coronaviruses (CoVs) are single-stranded RNA viruses which contain the largest RNA genomes, and severe acute respiratory syndrome coronavirus (SARS-CoV), a newly found group 2 CoV, emerged as infectious disease with high mortality rate. In this study, we compared the synonymous codon usage patterns between the nucleocapsid and spike genes of CoVs, and C-type lectin domain (CTLD) genes of human and mouse on the codon basis. Findings indicate that the nucleocapsid genes of CoVs were affected from the synonymous codon usage bias than spike genes, and the CTLDs of human and mouse partially overlapped with the nucleocapsid genes of CoVs. In addition, we observed that CTLDs which showed the similar relative synonymous codon usage (RSCU) patterns with CoVs were commonly derived from the human chromosome 12, and mouse chromosome 6 and 12, suggesting that there might be a specific genomic region or chromosomes which show a more similar synonymous codon usage pattern with viral genes. Our findings contribute to developing the codon-optimization method in DNA vaccines, and further study is needed to determine a specific correlation between the codon usage patterns and the chromosomal locations in higher organisms.
Collapse
Affiliation(s)
- Insung Ahn
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejon 305-806, Korea
| | | | | |
Collapse
|
24
|
Kang Y, Chen A, Wang B, Zheng G. Protein transfer enhances cellular immune responses to DNA vaccination against SARS-CoV. Viral Immunol 2010; 22:417-22. [PMID: 19951178 DOI: 10.1089/vim.2009.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The current DNA vaccine formulations are not optimal for stimulation of CD8(+) T cells, which are required for clearing virally-infected cells. Here we show that CD8(+) T cell-stimulating activity can be effectively augmented by combining DNA vaccination with protein transfer. C57BL/6 mice were injected intramuscularly with an anti-SARS-CoV DNA vaccine admixed with a lipid-derived conjugate of 4-1BBL, a potential CD8(+) T-cell co-stimulator. The inclusion of the lipidated co-stimulator greatly enhanced cellular immune responses, especially the CTL response, induced by the DNA vaccine. The adjuvant effect of 4-1BBL was lipidation-dependent, indicating that it functions as a cell membrane-anchored co-stimulator. Results of our study suggest, for the first time, that muscle cells may be modified in situ, at the DNA injection site, into APC-like cells to allow direct priming of CD8(+) T cells and thereby improve the efficacy of DNA vaccines.
Collapse
Affiliation(s)
- Youmin Kang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
25
|
Zhang X, Wang J, Wen K, Mou Z, Zou L, Che X, Ni B, Wu Y. Antibody binding site mapping of SARS-CoV spike protein receptor-binding domain by a combination of yeast surface display and phage peptide library screening. Viral Immunol 2010; 22:407-15. [PMID: 19951177 DOI: 10.1089/vim.2009.0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein plays an important role in viral infection, and is a potential major neutralizing determinant. In this study, three hybridoma cell lines secreting specific monoclonal antibodies against the RBD of the S protein were generated and their exact binding sites were identified. Using yeast surface display, the binding sites of these antibodies were defined to two linear regions on the RBD: S(337-360) and S(380-399). Using these monoclonal antibodies in phage peptide library screening identified 10 distinct mimotopes 12 amino acids in length. Sequence comparison between native epitopes and these mimotopes further confirmed the binding sites, and revealed key amino acid residues involved in antibody binding. None of these antibodies could neutralize the murine leukemia virus pseudotyped expressing the SARS-CoV spike protein (MLV/SARS-CoV). However, these mAbs could be useful in the diagnosis of SARS-CoV due to their exclusive reactivity with SARS-CoV. Furthermore, this study established a feasible platform for epitope mapping. Yeast surface display combined with phage peptide library screening provides a convenient strategy for the identification of epitope peptides from certain antigenic proteins.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Institute of Immunology, the People's Liberation Army, Third Military Medical University, St. 30 Gaotanyan, District Shapingba, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Emerging pathogens are either new or newly recognized or those that are increasing in incidence and spread. Since the identity of emerging pathogens from animal reservoirs is difficult to predict, the development for pathogen-specific therapeutics and vaccines is problematic. The highly pathogenic SARS coronavirus (SARS-CoV) emerged from zoonotic pools in 2002 to cause a global epidemic of severe acute respiratory syndrome (SARS). Many patients with SARS-CoV experienced an exacerbated form of disease called acute respiratory distress syndrome (ARDS) requiring mechanical ventilation and supplemental oxygen and half of these patients died. Similar to other viral pathogens like influenza and West Nile Virus, the severity of SARS-CoV disease increased with age. Unfortunately, successful vaccination in the most vulnerable populations is a difficult task because of immunological deficiencies associated with aging (immune senescence). Due to the rapidity of virus emergence, technologies like synthetic biology can be harnessed to facilitate rapid recombinant virus construction for studying the novel virus biology, pathogenesis and the evaluation of therapeutic interventions. Since predicting the antigenic identity of future emergence is difficult, candidate vaccines and therapeutics should have a maximal breadth of cross-protection, and panels of antigenically divergent synthetically reconstructed viruses can be used as tools for this evaluation. We discuss how synthetic reconstruction of many animal and human SARS-CoV has provided a model to study the molecular mechanisms governing emergence and pathogenesis of viral diseases. In addition, we review the evolution, epidemiology, and pathogenesis of epidemic and zoonotic SARS-CoV with focus on the development of broadly reactive therapeutics and vaccines that protect aged populations from the zoonotic pool.
Collapse
|
27
|
Yasui F, Kai C, Saito K, Inoue S, Yoneda M, Morita K, Mizuno K, Kohara M. Analysis of the mechanism by which BALB/c mice having prior immunization with nucleocapsid protein of SARS-CoV develop severe pneumonia after SARS-CoV infection. ACTA ACUST UNITED AC 2010; 2:44-50. [PMID: 32288911 PMCID: PMC7128161 DOI: 10.1016/j.provac.2010.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The precise mechanism of severe acute respiratory syndrome (SARS), which is caused by SARS-associated coronavirus (SARS-CoV), is still unclear. We generated recombinant vaccinia virus (rVV) LC16m8 strain which simultaneously expresses four structural proteins of SARS-CoV, including nucleocapsid (N), membrane (M), envelop (E), spike (S) proteins (rVV-NMES) and reported that old BALB/c mice having prior immunization with rVV-NMES develop severe pneumonia similar to those of control mice though rVV-NMES-immunized mice showed lower pulmonary viral titer than in the control mice. Furthermore, we determined which SARS-CoV structural protein for the prior rVV-immunization is responsible for the severe pneumonia after the SARS-CoV infection as observed in the rVV-NMES-immunized mice. Old BALB/c mice were inoculated intradermally with rVV that expressed each structural proteins of SARS-CoV (rVV-N, -M, -E, or -S) with or without rVV-S and then infected intranasally with SARS-CoV more than 4 weeks later. At 9 days after SARS-CoV infection, the rVV-N-immunized mice show more severe pneumonia than in other groups. Furthermore, significant up-regulation of Th1 (IL-2)- and Th2 (IL-4 and IL-5)-bias cytokines and down-regulation of anti-inflammatory cytokine (IL-10 and TGF-β) were observed in rVV-N-immunized mice, resulting in the intensive infiltration of immunocompetent cells into the lung. In contrast, rVV-S-immunized mice showed only low pulmonary viral tier and slight pneumonia. However, the mice having co-immunization with both rVV-N and rVV-S showed severe pneumonia though their pulmonary viral titer was low. These results suggest that an excessive host immune response against the N protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Dep. Micobiol. & Cell Biol., Tokyo Metro. Inst. Med. Sci
| | - Chieko Kai
- Lab. Animal Res. Center, The Inst. Med. Sci., Univ. of Tokyo
| | - Kousuke Saito
- Dep. Micobiol. & Cell Biol., Tokyo Metro. Inst. Med. Sci
| | - Shingo Inoue
- Dep. of Virol., Inst. of Tropic. Med., Nagasaki Univ
| | - Misako Yoneda
- Lab. Animal Res. Center, The Inst. Med. Sci., Univ. of Tokyo
| | | | | | | |
Collapse
|
28
|
The Nucleocapsid Protein of the SARS Coronavirus: Structure, Function and Therapeutic Potential. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2009. [PMCID: PMC7176212 DOI: 10.1007/978-3-642-03683-5_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As in other coronaviruses, the nucleocapsid protein is one of the core components of the SARS coronavirus (CoV). It oligomerizes to form a closed capsule, inside which the genomic RNA is securely stored thus providing the SARS-CoV genome with its first line of defense from the harsh conditions of the host environment and aiding in replication and propagation of the virus. In addition to this function, several reports have suggested that the SARS-CoV nucleocapsid protein modulates various host cellular processes, so as to make the internal milieu of the host more conducive for survival of the virus. This article will analyze and discuss the available literature regarding these different properties of the nucleocapsid protein. Towards the end of the article, we will also discuss some recent reports regarding the possible clinically relevant use of the nucleocapsid protein, as a candidate diagnostic tool and vaccine against SARS-CoV infection.
Collapse
|
29
|
Zheng N, Xia R, Yang C, Yin B, Li Y, Duan C, Liang L, Guo H, Xie Q. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine 2009; 27:5001-7. [PMID: 19523911 PMCID: PMC7115566 DOI: 10.1016/j.vaccine.2009.05.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/20/2009] [Accepted: 05/26/2009] [Indexed: 12/18/2022]
Abstract
Vaccines produced in plant systems are safe and economical; however, the extensive application of plant-based vaccines is mainly hindered by low expression levels of heterologous proteins in plant systems. Here, we demonstrated that the post-transcriptional gene silencing suppressor p19 protein from tomato bushy stunt virus substantially enhanced the transient expression of recombinant SARS-CoV nucleocapsid (rN) protein in Nicotiana benthamiana. The rN protein in the agrobacteria-infiltrated plant leaf accumulated up to a concentration of 79 microg per g fresh leaf weight at 3 days post infiltration. BALB/c mice were intraperitoneally vaccinated with pre-treated plant extract emulsified in Freund's adjuvant. The rN protein-specific IgG in the mouse sera attained a titer about 1:1,800 following three doses of immunization, which suggested effective B-cell maturation and differentiation in mice. Antibodies of the subclasses IgG1 and IgG2a were abundantly present in the mouse sera. During vaccination of rN protein, the expression of IFN-gamma and IL-10 was evidently up-regulated in splenocytes at different time points, while the expression of IL-2 and IL-4 was not. Up to now, this is the first study that plant-expressed recombinant SARS-CoV N protein can induce strong humoral and cellular responses in mice.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Viral/blood
- Coronavirus Nucleocapsid Proteins
- Female
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/pharmacology
- Gene Silencing
- Humans
- Immunoglobulin G/blood
- Injections, Intraperitoneal
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/immunology
- Nucleocapsid Proteins/isolation & purification
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Spleen/immunology
- Nicotiana/genetics
- Nicotiana/metabolism
- Tombusvirus/genetics
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
Collapse
Affiliation(s)
- Nuoyan Zheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | - Cuiping Yang
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Bojiao Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Yin Li
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Chengguo Duan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Liming Liang
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Huishan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| |
Collapse
|
30
|
Abstract
In this review, the current state of vaccine development against human severe acute respiratory syndrome (SARS) coronavirus, focusing on recently published data is assessed. We discuss which strategies have been assessed immunologically and which have been evaluated in SARS coronavirus challenge models. We discuss inactivated vaccines, virally and bacterially vectored vaccines, recombinant protein and DNA vaccines, as well as the use of attenuated vaccines. Data regarding the correlates of protection, animal models and the available evidence regarding potential vaccine enhancement of SARS disease are discussed. While there is much evidence that various vaccine strategies against SARS are safe and immunogenic, vaccinated animals still display significant disease upon challenge. Current data suggest that intranasal vaccination may be crucial and that new or combination strategies may be required for good protective efficacy against SARS in humans.
Collapse
Affiliation(s)
- Rachel L Roper
- Brody School of Medicine, Department of Microbiology & Immunology, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
31
|
Hu H, Tao L, Wang Y, Chen L, Yang J, Wang H. Enhancing immune responses against SARS-CoV nucleocapsid DNA vaccine by co-inoculating interleukin-2 expressing vector in mice. Biotechnol Lett 2009; 31:1685-93. [PMID: 19579009 PMCID: PMC7088336 DOI: 10.1007/s10529-009-0061-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 12/25/2022]
Abstract
The immunogenicity of SARS-CoV nucleocapsid DNA vaccine and the immunoregulatory activity of interleukin-2 (IL-2) were investigated. DNA vaccine plasmids, pcDNA-N and pcDNA-IL2, were constructed and inoculated into BALB/c mice with or without pcDNA-IL2 by intramuscular injection. Cellular and humoral immune responses were assessed by indirect ELISA, lymphocyte proliferation assays, ELISPOT and FACS. The nucleocapsid DNA vaccine had good immunogenicity and can induce specific humoral and cellular immunity in BALB/c mice, while IL-2 plays an immunoadjuvant role and enhances specific immune responses. This study provides a frame of reference for the design of DNA vaccines against SARS-CoV.
Collapse
Affiliation(s)
- Hui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
A prime-boost vaccination protocol optimizes immune responses against the nucleocapsid protein of the SARS coronavirus. Vaccine 2009; 26:6678-84. [PMID: 18805454 PMCID: PMC7115531 DOI: 10.1016/j.vaccine.2008.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 08/29/2008] [Accepted: 09/01/2008] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a serious infectious disease caused by the SARS coronavirus. We assessed the potential of prime-boost vaccination protocols based on the nucleocapsid (NC) protein co-administered with a derivative of the mucosal adjuvant MALP-2 or expressed by modified Vaccinia virus Ankara (MVA–NC) to stimulate humoral and cellular immune responses at systemic and mucosal levels. The obtained results demonstrated that strong immune responses can be elicited both at systemic and mucosal levels following a heterologous prime-boost vaccination protocol consisting in priming with NC protein add-mixed with MALP-2 by intranasal route and boosting with MVA–NC by intramuscular route.
Collapse
|
33
|
Hu H, Huang X, Tao L, Huang Y, Cui BA, Wang H. Comparative analysis of the immunogenicity of SARS-CoV nucleocapsid DNA vaccine administrated with different routes in mouse model. Vaccine 2009; 27:1758-63. [PMID: 19186202 PMCID: PMC7115532 DOI: 10.1016/j.vaccine.2009.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/03/2009] [Accepted: 01/11/2009] [Indexed: 01/14/2023]
Abstract
The development of strategies to augment the immunogenicity of DNA vaccines is critical for improving their clinical utility. One such strategy involves using the different immune routes with DNA vaccines. In the present study, the immunogenicity of SARS-CoV nucleocapsid DNA vaccine, induced by using the current routine vaccination routes (intramuscularly, by electroporation, or orally using live-attenuated Salmonella typhimurium), was compared in mouse model. The comparison between the three vaccination routes indicated that immunization intramuscularly induced a moderate T cell response and antibody response. Mice administrated by electroporation induced the highest antibody response among the three immunization groups and a mid-level of cellular response. In contrast, the orally DNA vaccine evoked vigorous T cell response and a weak antibody production. These results indicated that the distinct types of immune responses were generated by the different routes of DNA immunization. In addition, our results also show that the delivery of DNA vaccines by electroporation and orally using live-attenuated Salmonella in vivo is an effective method to increase the immune responses. Further studies could be carried out using a combination strategy of both oral and electroporation immunizations to stimulate higher cellular and humoral immune responses.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/biosynthesis
- Antibody Formation/immunology
- Capsid/immunology
- Cell Proliferation
- DNA, Viral/genetics
- DNA, Viral/immunology
- Electroporation
- Female
- Immunity, Cellular/immunology
- Injections, Intramuscular
- Interferon-gamma/biosynthesis
- Interleukin-4/biosynthesis
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/immunology
- Severe acute respiratory syndrome-related coronavirus/immunology
- Salmonella typhimurium/immunology
- Severe Acute Respiratory Syndrome/immunology
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Hui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, PR China.
| | | | | | | | | | | |
Collapse
|
34
|
Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, Kase R, Sekiguchi S, Morita K, Hishima T, Suzuki H, Karamatsu K, Yasutomi Y, Shida H, Kidokoro M, Mizuno K, Matsushima K, Kohara M. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. THE JOURNAL OF IMMUNOLOGY 2009; 181:6337-48. [PMID: 18941225 DOI: 10.4049/jimmunol.181.9.6337] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mark J, Li X, Cyr T, Fournier S, Jaentschke B, Hefford MA. SARS coronavirus: unusual lability of the nucleocapsid protein. Biochem Biophys Res Commun 2008; 377:429-433. [PMID: 18926799 PMCID: PMC7092863 DOI: 10.1016/j.bbrc.2008.09.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 01/30/2023]
Abstract
The severe acute respiratory syndrome (SARS) is a contagious disease that killed hundreds and sickened thousands of people worldwide between November 2002 and July 2003. The nucleocapsid (N) protein of the coronavirus responsible for this disease plays a critical role in viral assembly and maturation and is of particular interest because of its potential as an antiviral target or vaccine candidate. Refolding of SARS N-protein during production and purification showed the presence of two additional protein bands by SDS-PAGE. Mass spectroscopy (MALDI, SELDI, and LC/MS) confirmed that the bands are proteolytic products of N-protein and the cleavage sites are four SR motifs in the serine-arginine-rich region-sites not suggestive of any known protease. Furthermore, results of subsequent testing for contaminating protease(s) were negative: cleavage appears to be due to inherent instability and/or autolysis. The importance of N-protein proteolysis to viral life cycle and thus to possible treatment directions are discussed.
Collapse
Affiliation(s)
- John Mark
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Xuguang Li
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Terry Cyr
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Sylvie Fournier
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Bozena Jaentschke
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2
| | - Mary Alice Hefford
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, AL:2201E, Ottawa, Ont., Canada K1A 0L2.
| |
Collapse
|
36
|
Suresh MR, Bhatnagar PK, Das D. Molecular targets for diagnostics and therapeutics of severe acute respiratory syndrome (SARS-CoV). JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2008; 11:1s-13s. [PMID: 19203466 DOI: 10.18433/j3j019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The large number of deaths in a short period of time due to the spread of severe acute respiratory syndrome (SARS) infection led to the unparalleled collaborative efforts world wide to determine and characterize the new coronavirus (SARS-CoV). The full genome sequence was determined within weeks of the first outbreak by the Canadian group with international collaboration. As per the World Health Organization (WHO), the continual lack of a rapid laboratory test to aid the early diagnosis of suspected cases of SARS makes this area a priority for future research. To prevent deaths in the future, early diagnosis and therapy of this infectious disease is of paramount importance. METHODS This review describes the specific molecular targets for diagnostics and therapeutics of viral infection. RESULTS The three major diagnostic methods available for SARS includes viral RNA detection by reverse transcription polymerase chain reaction (RT-PCR), virus induced antibodies by immunofluorescence assay (IFA) or by enzyme linked immunosorbant assay (ELISA) of nucleocapsid protein (NP). The spike glycoprotein of SARS-CoV is the major inducer of neutralizing antibodies. The receptor binding domain (RBD) in the S1 region of the spike glycoprotein contains multiple conformational epitopes that induces highly potent neutralizing antibodies. The genetically engineered attenuated form of the virus or viral vector vaccine encoding for the SARS-CoV spike glycoprotein has been shown to elicit protective immunity in vaccinated animals. CONCLUSION NP is the preferred target for routine detection of SARS-CoV infection by ELISA which is an economical method compared to other methods. The RBD of the spike glycoprotein is both a functional domain for cell receptor binding and also a major neutralizing determinant of SARS-CoV. The progress in evaluating a therapeutic or vaccine would depend on the avail ability of clinically relevant animal model.
Collapse
Affiliation(s)
- Mavanur R Suresh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
37
|
Dutta NK, Mazumdar K, Lee BH, Baek MW, Kim DJ, Na YR, Park SH, Lee HK, Kariwa H, Mai LQ, Park JH. Search for potential target site of nucleocapsid gene for the design of an epitope-based SARS DNA vaccine. Immunol Lett 2008; 118:65-71. [PMID: 18440652 PMCID: PMC7112843 DOI: 10.1016/j.imlet.2008.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/03/2008] [Accepted: 03/11/2008] [Indexed: 11/30/2022]
Abstract
It is believed today that nucleocapsid protein (N) of severe acute respiratory syndrome (SARS)-CoV is one of the most promising antigen candidates for vaccine design. In this study, three fragments [N1 (residues: 1–422); N2 (residues: 1–109); N3 (residues: 110–422)] of N protein of SARS-CoV were expressed in Escherichia coli and analyzed by pooled sera of convalescence phase of SARS patients. Three gene fragments [N1 (1–1269 nt), N2 (1–327 nt) and N3 (328–1269 nt)—expressing the same proteins of N1, N2 and N3, respectively] of SARS-N were cloned into pVAX-1 and used to immunize BALB/c mice by electroporation. Humoral (by enzyme-linked immunosorbent assay, ELISA) and cellular (by cell proliferation and CD4+:CD8+ assay) immunity was detected by using recombinant N1 and N3 specific antigen. Results showed that N1 and N3 fragments of N protein expressed by E. coli were able to react with sera of SARS patients but N2 could not. Specific humoral and cellular immunity in mice could be induced significantly by inoculating SARS-CoV N1 and N3 DNA vaccine. In addition, the immune response levels in N3 were significantly higher for antibody responses (IgG and IgG1 but not IgG2a) and cell proliferation but not in CD4+:CD8+ assay compared to N1 vaccine. The identification of antigenic N protein fragments has implications to provide basic information for the design of DNA vaccine against SARS-CoV. The present results not only suggest that DNA immunization with pVax-N3 could be used as potential DNA vaccination approaches to induce antibody in BALB/c mice, but also illustrates that gene immunization with these SARS DNA vaccines can generate different immune responses.
Collapse
Affiliation(s)
- Noton Kumar Dutta
- Laboratory Animal Medicine, College of Veterinary Medicine and KRF Zoonotic Disease Priority Research Institute, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Enjuanes L, Dediego ML, Alvarez E, Deming D, Sheahan T, Baric R. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Res 2008; 133:45-62. [PMID: 17416434 PMCID: PMC2633062 DOI: 10.1016/j.virusres.2007.01.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/04/2007] [Indexed: 01/19/2023]
Abstract
An important effort has been performed after the emergence of severe acute respiratory syndrome (SARS) epidemic in 2003 to diagnose and prevent virus spreading. Several types of vaccines have been developed including inactivated viruses, subunit vaccines, virus-like particles (VLPs), DNA vaccines, heterologous expression systems, and vaccines derived from SARS-CoV genome by reverse genetics. This review describes several aspects essential to develop SARS-CoV vaccines, such as the correlates of protection, virus serotypes, vaccination side effects, and bio-safeguards that can be engineered into recombinant vaccine approaches based on the SARS-CoV genome. The production of effective and safe vaccines to prevent SARS has led to the development of promising vaccine candidates, in contrast to the design of vaccines for other coronaviruses, that in general has been less successful. After preclinical trials in animal models, efficacy and safety evaluation of the most promising vaccine candidates described has to be performed in humans.
Collapse
Affiliation(s)
- Luis Enjuanes
- Centro Nacional de Biotecnología (CNB), CSIC, Campus Universidad Autónoma, Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Srivastava IK, Kan E, Srivastava IN, Cisto J, Biron Z. Structure, Immunopathogenesis and Vaccines Against SARS Coronavirus. IMMUNITY AGAINST MUCOSAL PATHOGENS 2008. [PMCID: PMC7122221 DOI: 10.1007/978-1-4020-8412-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new disease, severe atypical respiratory syndrome (SARS), emerged in China in late 2002 and developed into the first epidemic of the 21st century. The disease was caused by an unknown animal coronavirus (CoV) that had crossed the species barrier through close contact of humans with infected animals, and was identified as the etiological agent for SARS. This new CoV not only became readily transmissible between humans but also was also more pathogenic. The disease spread across the world rapidly due to the air travel, and infected 8096 people and caused 774 deaths in 26 countries on 5 continents. The disease is characterized by flu-like symptoms, including high fever, malaise, cough, diarrhea, and infiltrates visible on chest radiography. The overall mortality was about 10%, but varied profoundly with age; the course of disease seemed to be milder in the pediatric age group and resulted rarely in a fatal outcome, but the mortality in the elderly was as high as 50%. Aggressive quarantine measures taken by the health authorities have successfully contained and terminated the disease transmission. As a result there are no SARS cases recorded recently. Nevertheless there is a possibility that the disease may emerge in the population with high vigor. Significant progress has been made in understanding the disease biology, pathogenesis, development of animal models, and design and evaluation of different vaccines, and these are the focus of this chapter.
Collapse
|
40
|
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20:660-94. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Citation(s) in RCA: 657] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.
Collapse
|
41
|
Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. INFECTION GENETICS AND EVOLUTION 2007; 8:397-405. [PMID: 17881296 PMCID: PMC7106238 DOI: 10.1016/j.meegid.2007.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 12/16/2022]
Abstract
Ever since the discovery of SARS-CoV in the year 2003, numerous researchers around the world have been working relentlessly to understand the biology of this virus. As in other coronaviruses, nucleocapsid (N) is one of the most crucial structural components of the SARS-CoV. Hence major attention has been focused on characterization of this protein. Independent studies conducted by several laboratories have elucidated significant insight into the primary function of this protein, which is to encapsidate the viral genome. In addition, many reports also suggest that this protein interferes with different cellular pathways, thus implying it to be a key regulatory component of the virus too. In the first part of this review, we will discuss these different properties of the N-protein in a consolidated manner. Further, this protein has also been proposed to be an efficient diagnostic tool and a candidate vaccine against the SARS-CoV. Hence, towards the end of this article, we will discuss some recent progress regarding the possible clinically relevant use of the N-protein.
Collapse
Affiliation(s)
| | - Sunil K. Lal
- Corresponding author at: Virology Group, ICGEB, P.O. Box 10504, Aruna Asaf Ali Road, New Delhi 110067, India. Tel.: +91 9818522900.
| |
Collapse
|
42
|
Abstract
Severe acute respiratory syndrome (SARS) presented as an atypical pneumonia that progressed to acute respiratory distress syndrome in approximately 20% of cases and was associated with a mortality of about 10%. The etiological agent was a novel coronavirus (CoV). Angiotensin-converting enzyme 2 is the functional receptor for SARS-CoV; DC-SIGN and CD209L (L-SIGN) can enhance viral entry. Although the virus infects the lungs, gastrointestinal tract, liver, and kidneys, the disease is limited to the lungs, where diffuse alveolar damage is accompanied by a disproportionately sparse inflammatory infiltrate. Pro-inflammatory cytokines and chemokines, particularly IP-10, IL-8, and MCP-1, are elevated in the lungs and peripheral blood, but there is an unusual lack of an antiviral interferon (IFN) response. The virus is susceptible to exogenous type I IFN but suppresses the induction of IFN. Innate immunity is important for viral clearance in the mouse model. Virus-specific neutralizing antibodies that develop during convalescence prevent reinfection in animal models.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
43
|
Zhao J, Huang Q, Wang W, Zhang Y, Lv P, Gao XM. Identification and characterization of dominant helper T-cell epitopes in the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 2007; 81:6079-88. [PMID: 17392374 PMCID: PMC1900298 DOI: 10.1128/jvi.02568-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By using a series of overlapping synthetic peptides covering 98% of the amino acid sequence of the nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus (SARS-CoV), four helper T-cell (Th) epitopes (NP11, residues 11 to 25; NP51, residues 51 to 65; NP61, residues 61 to 75; and NP111, residues 111 to 125) in C57BL mice (H-2(b)), four (NP21, residues 21 to 35; NP91, residues 91 to 105; NP331, residues 331 to 345; and NP351, residues 351 to 365) in C3H mice (H-2(k)), and two (NP81, residues 81 to 95; and NP351, residues 351 to 365) in BALB/c mice (H-2(d)) have been identified. All of these peptides were able to stimulate the proliferation of NP-specific T-cell lines or freshly isolated lymph node cells from mice immunized with recombinant NP. Immunization of mice with synthetic peptides containing appropriate Th epitopes elicited strong cellular immunity in vivo, as evidenced by delayed-type hypersensitivity. Priming with the helper peptides (e.g., NP111 and NP351) significantly accelerated the immune response induced by recombinant NP, as determined by the production of NP-specific antibodies. When fused with a conserved neutralizing epitope (SP1143-1157) from the spike protein of SARS-CoV, NP111 and NP351 assisted in the production of high-titer neutralizing antibodies in vivo. These data provide useful insights regarding immunity against SARS-CoV and have the potential to help guide the design of peptide-based vaccines.
Collapse
Affiliation(s)
- Jincun Zhao
- Department of Immunology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
44
|
Community-acquired pneumonia: paving the way towards new vaccination concepts. COMMUNITY-ACQUIRED PNEUMONIA 2007. [PMCID: PMC7123104 DOI: 10.1007/978-3-7643-7563-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the availability of antimicrobial agents and vaccines, community-acquired pneumonia remains a serious problem. Severe forms tend to occur in very young children and among the elderly, since their immune competence is eroded by immaturity and immune senescence, respectively. The main etiologic agents differ according to patient age and geographic area. Streptococcus pneumoniae, Haemophilus influenzae, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV-3) are the most important pathogens in children, whereas influenza viruses are the leading cause of fatal pneumonia in the elderly. Effective vaccines are available against some of these organisms. However, there are still many agents against which vaccines are not available or the existent ones are suboptimal. To tackle this problem, empiric approaches are now being systematically replaced by rational vaccine design. This is facilitated by the growing knowledge in the fields of immunology, microbial pathogenesis and host response to infection, as well as by the availability of sophisticated strategies for antigen selection, potent immune modulators and efficient antigen delivery systems. Thus, a new generation of vaccines with improved safety and efficacy profiles compared to old and new agents is emerging. In this chapter, an overview is provided about currently available and new vaccination concepts.
Collapse
|
45
|
Deming D, Sheahan T, Heise M, Yount B, Davis N, Sims A, Suthar M, Harkema J, Whitmore A, Pickles R, West A, Donaldson E, Curtis K, Johnston R, Baric R. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 2006; 3:e525. [PMID: 17194199 PMCID: PMC1716185 DOI: 10.1371/journal.pmed.0030525] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 10/31/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. METHODS AND FINDINGS Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV-challenged mice. VRP-N-induced pathology presented at day 4, peaked around day 7, and persisted through day 14, and was likely mediated by cellular immune responses. CONCLUSIONS This study identifies gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations. The availability of a SARS-CoV virus bearing heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine efficacy against zoonotic strains, the most likely source of future outbreaks.
Collapse
Affiliation(s)
- Damon Deming
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy Sheahan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nancy Davis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amy Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mehul Suthar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Alan Whitmore
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ande West
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric Donaldson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristopher Curtis
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Robert Johnston
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Abstract
Severe acute respiratory syndrome (SARS) is caused by a coronavirus (CoV), SARSCoV. SARS-CoV belongs to the family Coronaviridae, which are enveloped RNA viruses in the order Nidovirales. Global research efforts are continuing to increase the understanding of the virus, the pathogenesis of the disease it causes (SARS), and the “heterogeneity of individual infectiousness” as well as shedding light on how to prepare for other emerging viral diseases. Promising drugs and vaccines have been identified. The milestones achieved have resulted from a truly international effort. Molecular studies dissected the adaptation of this virus as it jumped from an intermediary animal, the civet, to humans, thus providing valuable insights into processes of molecular emergence.
Collapse
Affiliation(s)
- Tommy R Tong
- Department of Pathology, Princess Margaret Hospital, Laichikok, Kowloon, Hong Kong, China
| |
Collapse
|
47
|
Gillim-Ross L, Subbarao K. Emerging respiratory viruses: challenges and vaccine strategies. Clin Microbiol Rev 2006; 19:614-36. [PMID: 17041137 PMCID: PMC1592697 DOI: 10.1128/cmr.00005-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The current threat of avian influenza to the human population, the potential for the reemergence of severe acute respiratory syndrome (SARS)-associated coronavirus, and the identification of multiple novel respiratory viruses underline the necessity for the development of therapeutic and preventive strategies to combat viral infection. Vaccine development is a key component in the prevention of widespread viral infection and in the reduction of morbidity and mortality associated with many viral infections. In this review we describe the different approaches currently being evaluated in the development of vaccines against SARS-associated coronavirus and avian influenza viruses and also highlight the many obstacles encountered in the development of these vaccines. Lessons learned from current vaccine studies, coupled with our increasing knowledge of the host and viral factors involved in viral pathogenesis, will help to increase the speed with which efficacious vaccines targeting newly emerging viral pathogens can be developed.
Collapse
Affiliation(s)
- Laura Gillim-Ross
- Laboratory of Infectious Diseases, National Insitute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
48
|
Yu XF, Liang LH, She M, Liao XL, Gu J, Li YH, Han ZC. Production of a monoclonal antibody against SARS-CoV spike protein with single intrasplenic immunization of plasmid DNA. Immunol Lett 2006; 100:177-81. [PMID: 15893826 PMCID: PMC7112869 DOI: 10.1016/j.imlet.2005.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/21/2005] [Accepted: 03/30/2005] [Indexed: 01/13/2023]
Abstract
Severe acute respiratory syndrome (SARS) is a highly infectious disease caused by a novel coronavirus (SARS-CoV). Specific monoclonal antibodies (mAbs) against the SARS-CoV are vital for early diagnosis and pathological studies of SARS. Direct intrasplenic inoculation of plasmid DNA encoding antigen is an effective and fast approach to generate specific mAb when the protein antigen is difficult to prepare or dangerous in use. In this study, we selected one fragment of SARS-CoV spike protein (S1-3) as antigenic determinant by immunoinformatics. Single intrasplenic immunization of plasmid DNA encoding S1-3 induced anti-spike protein antibodies. We established one hybridoma cell line secreting specific mAb and evaluated this mAb with murine leukemia virus pseudotyped with SARS-CoV spike protein (MLV/SARS-CoV). The mAb could recognize the spike protein on the MLV/SARS-CoV-infected Vero E6 cells albeit with no neutralizing effect on the infectivity of the pseudotype virus. Our results show that a single-shot intrasplenic DNA immunization is efficient for the production of specific mAb against SARS spike protein, and a linear epitope of the spike protein is recognized in this study.
Collapse
Affiliation(s)
- Xiao Fei Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Peng H, Yang LT, Wang LY, Li J, Huang J, Lu ZQ, Koup RA, Bailer RT, Wu CY. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 2006; 351:466-75. [PMID: 16690096 PMCID: PMC7111820 DOI: 10.1016/j.virol.2006.03.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 03/09/2006] [Accepted: 03/22/2006] [Indexed: 01/28/2023]
Abstract
The nucleocapsid (N) protein is a structural component of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and can induce antibody responses in SARS patients during infection. However, it is not known whether SARS-CoV N protein can induce a long persistence of memory T-cell response in human. In this study, we found that peripheral blood mononuclear cells (PBMCs) from fully recovered SARS individuals rapidly produced IFN-gamma and IL-2 following stimulation with a pool of overlapping peptides that cover the entire N protein sequence. The N-specific IFN-gamma(+)CD4(+) T cells were mainly composed of CD45RA(-)CCR7(+)CD62L(-) cells, whereas IFN-gamma(+)CD8(+) memory T cells were mostly contained within CD45RA(+)CCR7(-)CD62L(-) cell population. Epitope mapping study indicated that a cluster of overlapping peptides located in the C-terminal region (amino acids [aa] 331 to 362) of N protein contained at least two different T-cell epitopes. The results indicated that human memory T-cell responses specific for SARS-CoV N protein could persist for 2 years in the absence of antigen, which would be a valuable for the design of effective vaccines against SARS-CoV and for basic studies of human T-cell memory.
Collapse
Affiliation(s)
- Hui Peng
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou 510089, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yang CX, Chen HQ, Chen C, Yu WP, Zhang WC, Peng YJ, He WQ, Wei DM, Gao X, Zhu MS. Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase. Cell Res 2006; 16:367-76. [PMID: 16617332 DOI: 10.1038/sj.cr.7310047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myosin light chain kinases (MLCK) phosphorylate the regulatory light chain of myosin II in thick filaments and bind to F-actin-containing thin filaments with high affinity. The ability of short myosin light chain kinase (S-MLCK) to bind F-actin is structurally attributed to the DFRXXL regions in its N-terminus. The long myosin light chain kinase (L-MLCK) has two additional DFRXXL motifs and six Ig-like modules in its N-terminal extension. The six Ig-like modules are capable of binding to stress fibers independently. Our results from the imaging analysis demonstrated that the first two intact Ig-like modules (2Ig) in N-terminal extension of L-MLCK is the minimal binding module required for microfilament binding. Binding assay confirmed that F-actin was able to bind 2Ig. Stoichiometries of 2Ig peptide were similar for myofilament or pure F-actin. The binding affinities were slightly lower than 5DFRXXL peptide as reported previously. Similar to DFRXXL peptides, the 2Ig peptide also caused efficient F-actin bundle formation in vitro. In the living cell, over-expression of 2Ig fragment increased "spike"-like protrusion formation with over-bundled F-actin. Our results suggest that L-MLCK may act as a potent F-actin bundling protein via its DFRXXL region and the 2Ig region, implying that L-MLCK plays a role in cytoskeleton organization.
Collapse
Affiliation(s)
- Chun Xiang Yang
- Model Animal Research Center and National Key Lab of Medicine, Nanjing University, Nanjing 210061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|