1
|
Lykhmus O, Tzeng WY, Koval L, Uspenska K, Zirdum E, Kalashnyk O, Garaschuk O, Skok M. Impairment of brain function in a mouse model of Alzheimer's disease during the pre-depositing phase: The role of α7 nicotinic acetylcholine receptors. Biomed Pharmacother 2024; 178:117255. [PMID: 39116785 DOI: 10.1016/j.biopha.2024.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent incurable neurodegenerative disorder accompanied by neuroinflammation, amyloid accumulation, and memory impairment. It begins decades before the first clinical symptoms appear, and identifying early biomarkers is key for developing disease-modifying therapies. We show now in a mouse model of AD that before any amyloid deposition the brains of 1.5-month-old mice contain increased levels of pro-inflammatory cytokines IL-1β and IL-6, decreased levels of nicotinic acetylcholine receptors (nAChRs) in the brain and brain mitochondria and increased amounts of α7 nAChR-bound Aβ1-42, along with impaired episodic memory and increased risk of apoptosis. Both acute (1-week-long) and chronic (4-month-long) treatments with α7-selective agonist PNU282987, starting at 1.5 months of age, were well tolerated. The acute treatment did not affect the levels of soluble Aβ1-42 but consistently upregulated the α7 nAChR expression, decreased the level of α7-Aβ1-42 complexes, and improved episodic memory of 1.5-month-old mice. The chronic treatment, covering the disease development phase, strongly upregulated the expression of all abundant brain nAChRs, reduced both free and α7-coupled Aβ1-42 within the brain, had anti-inflammatory and antiapoptotic effects, and potently upregulated cognition, thus identifying α7 nAChRs as both early biomarker and potent therapeutic target for fighting this devastating disease.
Collapse
Affiliation(s)
- Olena Lykhmus
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | - Wen-Yu Tzeng
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | | | - Elizabeta Zirdum
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany.
| | - Maryna Skok
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Kalashnyk O, Lykhmus O, Sullivan R, Komisarenko S, Skok M. Agonists or positive allosteric modulators of α7 nicotinic acetylcholine receptor prevent interaction of SARS-Cov-2 receptor-binding domain with astrocytoma cells. Biochem Biophys Res Commun 2024; 709:149825. [PMID: 38537599 DOI: 10.1016/j.bbrc.2024.149825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.
Collapse
Affiliation(s)
- Olena Kalashnyk
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | | | - Serhiy Komisarenko
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| |
Collapse
|
3
|
Lykhmus O, Kalashnyk O, Sullivan R, Skok M. Hydroxyurea interaction with α7 nicotinic acetylcholine receptor can underlie its therapeutic efficacy upon COVID-19. J Neuroimmunol 2023; 385:578244. [PMID: 38016403 DOI: 10.1016/j.jneuroim.2023.578244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
In this paper the authors provide evidence that hydroxyurea (hydroxycarbamide) interacts with α7 nicotinic acetylcholine receptor, exerts anti-inflammatory and pro-survival effect, prevents α7 nicotinic receptor interaction with angiotensin-converting enzyme-2 and stimulates IgM to IgG class switch upon immunization with SARS spike protein fragment 674-685. Hydroxyurea shifts immunoglobulin glycosylation profile to anti-inflammatory phenotype and prevents the appearance of anti-idiotypic α7(179-190)-specific antibodies, as well as memory impairment. According to these results, interaction with α7 nicotinic acetylcholine receptor may underlie positive therapeutic effects of hydroxyurea upon SARS-Cov-2 infection by interfering with virus penetration into the cell and providing anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
| | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, Kyiv, Ukraine.
| |
Collapse
|
4
|
Kalashnyk O, Lykhmus O, Koval L, Uspenska K, Obolenskaya M, Chernyshov V, Komisarenko S, Skok M. α7 Nicotinic acetylcholine receptors regulate translocation of HIF-1α to the cell nucleus and mitochondria upon hypoxia. Biochem Biophys Res Commun 2023; 657:35-42. [PMID: 36972659 DOI: 10.1016/j.bbrc.2023.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), initially characterized as ligand-gated ion channels mediating fast synaptic transmission, are now found in many non-excitable cells and mitochondria where they function in ion-independent manner and regulate vital cellular processes like apoptosis, proliferation, cytokine secretion. Here we show that the nAChRs of α7 subtype are present in the nuclei of liver cells and astrocytoma U373 cell line. As shown by lectin ELISA, the nuclear α7 nAChRs are mature glycoproteins that follow the standard rout of post-translational modifications in Golgi; however, their glycosylation profile is non-identical to that of mitochondrial nAChRs. They are exposed on the outer nuclear membrane and are found in combination with lamin B1. The nuclear α7 nAChRs are up-regulated in liver within 1 h after partial hepatectomy and in H2O2-treated U373 cells. As shown both in silico and experimentally, the α7 nAChR interacts with hypoxia-inducible factor HIF-1α and this interaction is impaired by α7-selective agonists PNU282987 and choline or type 2 positive allosteric modulator PNU120596, which prevent HIF-1α accumulation in the nuclei. Similarly, HIF-1α interacts with mitochondrial α7 nAChRs in U373 cells treated with dimethyloxalylglycine. It is concluded that functional α7 nAChRs influence HIF-1α translocation into the nucleus and mitochondria upon hypoxia.
Collapse
Affiliation(s)
- Olena Kalashnyk
- Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Kateryna Uspenska
- Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Maria Obolenskaya
- Institute of Molecular Biology and Genetics NAS of Ukraine, 150, Zabolotnogo str., 03143, Kyiv, Ukraine.
| | - Volodymyr Chernyshov
- Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Serhiy Komisarenko
- Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Maryna Skok
- Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| |
Collapse
|
5
|
Skok M, Deryabina O, Lykhmus O, Kalashnyk O, Uspenska K, Shuvalova N, Pokholenko I, Lushnikova I, Smozhanyk K, Skibo G, Kordyum V. Mesenchymal stem cell application for treatment of neuroinflammation-induced cognitive impairment in mice. Regen Med 2022; 17:533-546. [PMID: 35638401 DOI: 10.2217/rme-2021-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The present research has been undertaken to study the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of neuroinflammation-induced cognitive disorders. Methods: Either umbilical cord or adipose MSCs were injected into mice treated with lipopolysaccharide. The mice were studied in behavioral tests, and their brains were examined by means of immunohistochemistry, electron microscopy and sandwich ELISA. Results: MSCs, introduced either intravenously or intraperitoneally, restored episodic memory of mice disturbed by inflammation, normalized nAChR and Aβ1-42 levels and stimulated proliferation of neural progenitor cells in the brain. The effect of MSCs was observed for months, whereas that of MSC-conditioned medium was transient and stimulated an immune reaction. SDF-1α potentiated the effects of MSCs on the brain and memory. Conclusion: MSCs of different origins provide a long-term therapeutic effect in the treatment of neuroinflammation-induced episodic memory impairment.
Collapse
Affiliation(s)
- Maryna Skok
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Olena Deryabina
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Kateryna Uspenska
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Nadia Shuvalova
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine
| | - Ianina Pokholenko
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Iryna Lushnikova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Kateryna Smozhanyk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Galyna Skibo
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vitalii Kordyum
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| |
Collapse
|
6
|
Lykhmus O, Kalashnyk O, Koval L, Krynina O, Komisarenko S, Skok M. Immunization with 674-685 fragment of SARS-Cov-2 spike protein induces neuroinflammation and impairs episodic memory of mice. Biochem Biophys Res Commun 2022; 622:57-63. [PMID: 35843095 PMCID: PMC9263688 DOI: 10.1016/j.bbrc.2022.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
COVID-19 is accompanied by strong inflammatory reaction and is often followed by long-term cognitive disorders. The fragment 674-685 of SARS-Cov-2 spike protein was shown to interact with α7 nicotinic acetylcholine receptor involved in regulating both inflammatory reactions and cognitive functions. Here we show that mice immunized with the peptide corresponding to 674-685 fragment of SARS-Cov-2 spike protein conjugated to hemocyanin (KLH-674-685) demonstrate decreased level of α7 nicotinic acetylcholine receptors, increased levels of IL-1β and TNFα in the brain and impairment of episodic memory. Choline injections prevented α7 nicotinic receptor decline and memory loss. Mice injected with immunoglobulins obtained from the blood of (KLH-674-685)-immunized mice also demonstrated episodic memory decline. These data allow suggesting that post-COVID memory impairment in humans is related to SARS-Cov-2 spike protein-specific immune reaction. The mechanisms of such effect are being discussed.
Collapse
Affiliation(s)
- Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Olga Krynina
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Serhiy Komisarenko
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| |
Collapse
|
7
|
SARS-Cov-2 spike protein fragment 674-685 protects mitochondria from releasing cytochrome c in response to apoptogenic influence. Biochem Biophys Res Commun 2021; 561:14-18. [PMID: 34000512 PMCID: PMC8112323 DOI: 10.1016/j.bbrc.2021.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Abstract
In spite of numerous studies, many details of SARS-Cov-2 interaction with human cells are still poorly understood. The 674–685 fragment of SARS-Cov-2 spike protein is homologous to the fragment of α-cobratoxin underlying its interaction with α7 nicotinic acetylcholine receptors (nAChRs). The interaction of 674–685 peptide with α7 nAChR has been predicted in silico. In the present paper we confirm this prediction experimentally and investigate the effect of SARS-Cov-2 spike protein peptide on mitochondria, which express α7 nAChRs to regulate apoptosis-related events. We demonstrate that SARS-Cov-2 spike protein peptide 674–685 competes with the antibody against 179–190 fragment of α7 nAChR subunit for the binding to α7-expressing cells and mitochondria and prevents the release of cytochrome c from isolated mitochondria in response to 0.5 mM H2O2 but does not protect intact U373 cells against apoptogenic effect of H2O2. Our data suggest that the α7 nAChR-binding portion of SARS-Cov-2 spike protein prevents mitochondria-driven apoptosis when the virus is uncoated inside the cell and, therefore, supports the infected cell viability before the virus replication cycle is complete.
Collapse
|
8
|
Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
The immune system and the nervous system depend on each other for their fine tuning and working, thus cooperating to maintain physiological homeostasis and prevent infections. The cholinergic system regulates the mobilization, differentiation, secretion, and antigen presentation of adaptive and innate immune cells mainly through α7 nicotinic acetylcholine receptors (α7nAChRs). The neuro-immune interactions are established and maintained by the following mechanisms: colocalization of immune and neuronal cells at defined anatomical sites, expression of the non-neuronal cholinergic system by immune cells, and the acetylcholine receptor-mediated activation of intracellular signaling pathways. Based on these immunological mechanisms, the protective effects of cholinergic system in animal models of diseases were summarized in this paper, such as myocardial infarction/ischemia-reperfusion, viral myocarditis, and endotoxin-induced myocardial damage. In addition to maintaining hemodynamic stability and improving the energy metabolism of the heart, both non-neuronal acetylcholine and neuronal acetylcholine in the heart can alleviate myocardial inflammation and remodeling to exert a significant cardioprotective effect. The new findings on the role of cholinergic agonists and vagus nerve stimulation in immune regulation are updated, so as to develop improved approaches to treat inflammatory heart disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
9
|
Kalashnyk O, Lykhmus O, Uspenska K, Izmailov M, Komisarenko S, Skok M. Mitochondrial α7 nicotinic acetylcholine receptors are displaced from complexes with VDAC1 to form complexes with Bax upon apoptosis induction. Int J Biochem Cell Biol 2020; 129:105879. [PMID: 33147521 DOI: 10.1016/j.biocel.2020.105879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in muscles and autonomic ganglia and regulate cytokine and neurotransmitter release in the brain and non-excitable cells. The α7 nAChRs localized in the outer membrane of mitochondria regulate cytochrome c release stimulated by apoptosis-inducing agents. However, the mechanisms through which nAChRs influence mitochondrial permeability remain obscure. Here we put an aim to explore the interaction of nAChRs with voltage-dependent anion channels (VDAC1) and pro-apoptotic protein Bax in the course of apoptosis induction. By using molecular modeling in silico, it was shown that both Bax and VDAC1 can bind within the 4th transmembrane portion (M4) of nAChR subunits. Experimentally, α7 nAChR-Bax and α7 nAChR-VDAC1 complexes were identified by sandwich ELISA in mitochondria isolated from astrocytoma U373 cells. Stimulating apoptosis of U373 cells by H2O2 disrupted α7-VDAC complexes and favored formation of α7-Bax complexes accompanied by cytochrome c release from mitochondria. α7-selective agonist PNU282987 or type 2 positive allosteric modulator PNU120596 disrupted α7-Bax and returned α7 nAChR to complex with VDAC1 resulting in attenuation of cytochrome c release. It is concluded that mitochondrial nAChRs regulate apoptosis-induced mitochondrial channel formation by modulating the interplay of apoptosis-related proteins in mitochondria outer membrane.
Collapse
Affiliation(s)
- Olena Kalashnyk
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Olena Lykhmus
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Kateryna Uspenska
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Mykhailo Izmailov
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Sergiy Komisarenko
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Maryna Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine.
| |
Collapse
|
10
|
Trikash I, Kasatkina L, Lykhmus O, Skok M. Nicotinic acetylcholine receptors regulate clustering, fusion and acidification of the rat brain synaptic vesicles. Neurochem Int 2020; 138:104779. [PMID: 32474177 PMCID: PMC7256623 DOI: 10.1016/j.neuint.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
The brain nicotinic acetylcholine receptors (nAChRs) expressed in pre-synaptic nerve terminals regulate neurotransmitter release. However, there is no evidence for the expression of nAChRs in synaptic vesicles, which deliver neurotransmitter to synaptic cleft. The aim of this paper was to investigate the presence of nAChRs in synaptic vesicles purified from the rat brain and to study their possible involvement in vesicles life cycle. According to dynamic light scattering analysis, the antibody against extracellular domain (1-208) of α7 nAChR subunit inhibited synaptic vesicles clustering. Sandwich ELISA with nAChR subunit-specific antibodies demonstrated the presence of α4β2, α7 and α7β2nAChR subtypes in synaptic vesicles and showed that α7 and β2 nAChR subunits are co-localized with synaptic vesicle glycoprotein 2A (SV2A). Pre-incubation with either α7-selective agonist PNU282987 or nicotine did not affect synaptic vesicles clustering but delayed their Ca2+-dependent fusion with the plasma membranes. In contrast, nicotine but not PNU282987 stimulated acidification of isolated synaptic vesicles, indicating that α4β2 but not α7-containing nAChRs are involved in regulation of proton influx and neurotransmitter refilling. Treatment of rats with levetiracetam, a specific modulator of SV2A, increased the content of α7 nAChRs in synaptic vesicles accompanied by increased clustering but decreased Ca2+-dependent fusion. These data for the first time demonstrate the presence of nAChRs in synaptic vesicles and suggest an active involvement of cholinergic regulation in neurotransmitter release. Synaptic vesicles may be an additional target of nicotine inhaled upon smoking and of α7-specific drugs widely discussed as anti-inflammatory and pro-cognitive tools.
Collapse
Affiliation(s)
- Irene Trikash
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
11
|
Tarasenko O, Voytenko S, Koval L, Lykhmus O, Kalashnyk O, Skok M. Unusual properties of α7 nicotinic acetylcholine receptor ion channels in B lymphocyte-derived SP-2/0 cells. Int Immunopharmacol 2020; 82:106373. [PMID: 32163855 DOI: 10.1016/j.intimp.2020.106373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
This study demonstrates the presence of α7 nicotinic acetylcholine receptors (nAChR) in B lymphocyte-derived SP-2/0 cells by means of flow cytometry and immunocytochemistry. According to lectin and sandwich ELISA, the α7 subunits expressed in SP-2/0 cells are more glycosylated compared to those expressed in the brain or normal B lymphocytes and are combined with β2 subunits. At zero and negative pipette potentials, either acetylcholine or α7-specific agonist PNU282987 stimulated the ion channel activity in SP-2/0 cells revealed by single channel patch-clamp recordings. The conductivity was within the range of 19 to 39 pS and reversal potential was between -17 mV and +28 mV, the currents were potentiated by α7-specific positive allosteric modulator PNU120596 and were partially blocked by α7-specific antagonist methyllicaconitine (MLA). However, they were oriented downwards suggesting that the channels mediated the cation outflux rather than influx. As shown by Ca2+ imaging studies, PNU282987 did not stimulate immediate Ca2+ influx into SP-2/0 cells. Instead, Ca2+ influx through Ca-release-activated channels (CRACs) was observed within minutes after either PNU282987 or MLA application. It is concluded that SP-2/0 express α7β2 nAChRs, which mediate the cation outflux under negative pipette potentials applied, possibly, due to depolarized membrane or negative surface charge formed by carbohydrate residues. In addition, α7β2 nAChRs may influence CRACs in ion-independent way.
Collapse
Affiliation(s)
| | - Sergiy Voytenko
- Bogomoletz Institute of Physiology, 4, Bogomoletz Str, 01024 Kyiv, Ukraine
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| |
Collapse
|
12
|
Lykhmus O, Kalashnyk O, Uspenska K, Horid’ko T, Kosyakova H, Komisarenko S, Skok M. Different Effects of Nicotine and N-Stearoyl-ethanolamine on Episodic Memory and Brain Mitochondria of α7 Nicotinic Acetylcholine Receptor Knockout Mice. Biomolecules 2020; 10:E226. [PMID: 32028688 PMCID: PMC7072576 DOI: 10.3390/biom10020226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) are involved in regulating neuroinflammation and cognitive functions. Correspondingly, α7-/- mice demonstrate pro-inflammatory phenotype and impaired episodic memory. In addition, nAChRs expressed in mitochondria regulate the release of pro-apoptotic factors like cytochrome c. Here we studied whether the cognitive deficiency of α7-/- mice can be cured by oral consumption of either nicotine or N-stearoylethanolamine (NSE), a lipid possessing anti-inflammatory, cannabimimetic and membrane-stabilizing activity. Mice were examined in Novel Object Recognition behavioral test, their blood, brains and brain mitochondria were tested for the levels of interleukin-6, various nAChR subtypes and cytochrome c released by ELISA. The data presented demonstrate that both substances stimulated the raise of interleukin-6 in the blood and improved episodic memory of α7-/- mice. However, NSE improved, while nicotine worsened the brain mitochondria sustainability to apoptogenic stimuli, as shown by either decreased or increased amounts of cytochrome c released. Both nicotine and NSE up-regulated α4β2 nAChRs in the brain; NSE up-regulated, while nicotine down-regulated α9-containing nAChRs in the brain mitochondria. It is concluded that the level of alternative nAChR subtypes in the brain is critically important for memory and mitochondria sustainability in the absence of α7 nAChRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, 01030 Kyiv, Ukraine; (O.L.); (O.K.); (K.U.); (T.H.); (H.K.); (S.K.)
| |
Collapse
|
13
|
Lykhmus O, Kalashnyk O, Uspenska K, Skok M. Positive Allosteric Modulation of Alpha7 Nicotinic Acetylcholine Receptors Transiently Improves Memory but Aggravates Inflammation in LPS-Treated Mice. Front Aging Neurosci 2020; 11:359. [PMID: 31998114 PMCID: PMC6966166 DOI: 10.3389/fnagi.2019.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation accompanies or even precedes the development of cognitive changes in many brain pathologies, including Alzheimer’s disease. Therefore, dampening inflammatory reactions within the brain is a promising strategy for supporting cognitive functions in elderly people and for preventing the development of neurodegenerative disorders. Nicotinic acetylcholine receptors containing α7 subunits (α7 nAChRs) are involved in regulating cell survival, inflammation, and memory. The aim of our study was to evaluate the efficiency of α7-specific therapy at different stages of inflammation and to compare the effects of orthosteric agonist PNU282987 and type 2 positive allosteric modulator (PAM) PNU120596 in mice after a single injection of lipopolysaccharide (LPS). The data presented demonstrate that PNU282987 protected mice from LPS-induced impairment of episodic memory by decreasing IL-6 levels in the blood, stabilizing the brain mitochondria and up-regulating the brain α7-, α3-, and α4-containing nAChRs. Such treatment was efficient when given simultaneously with LPS or a week after LPS injection and was not efficient if LPS had been injected 2 months before. PNU120596 also decreased IL-6, stabilized mitochondria and up-regulated the brain nAChRs. However, its memory-improving effect was transient and disappeared after the end of the injection cycle. Moreover, cessation of PNU120596 treatment resulted in a sharp increase in IL-1β and IL-6 levels in the blood. It is concluded that activating α7 nAChRs protects the mouse brain from the pathogenic effect of LPS in the early stages of inflammation but is not efficient when irreversible changes have already occurred. The use of a PAM does not improve the effect of the agonist, possibly potentiates the effect of endogenous agonists, and results in undesirable effects after treatment cessation.
Collapse
Affiliation(s)
- Olena Lykhmus
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Olena Kalashnyk
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Kateryna Uspenska
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Maryna Skok
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
14
|
Lykhmus O, Kalashnyk O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, Shuvalova N, Kordium V, Ustymenko A, Kyryk V, Skok M. Mesenchymal Stem Cells or Interleukin-6 Improve Episodic Memory of Mice Lacking α7 Nicotinic Acetylcholine Receptors. Neuroscience 2019; 413:31-44. [DOI: 10.1016/j.neuroscience.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
15
|
Lykhmus O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, Shuvalova N, Kordium V, Ustymenko A, Kyryk V, Skok M. Intravenously Injected Mesenchymal Stem Cells Penetrate the Brain and Treat Inflammation-Induced Brain Damage and Memory Impairment in Mice. Front Pharmacol 2019; 10:355. [PMID: 31057400 PMCID: PMC6479176 DOI: 10.3389/fphar.2019.00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is regarded as one of the pathogenic factors of Alzheimer disease (AD). Previously, we showed that mice regularly injected with bacterial lipopolysaccharide (LPS) possessed the AD-like symptoms like episodic memory decline, elevated amounts of amyloid beta (Aβ) peptide (1-42), and decreased levels of nicotinic acetylcholine receptors (nAChRs) in the brain. The use of mesenchymal stem cells (MSCs), which can differentiate into multiple cell types, including neurons, is an attractive idea of regenerative medicine, in particular, for neurodegenerative disorders like AD. In the present study, we aimed to investigate whether pathogenic effect of LPS on the brain and behavior of mice can be prevented or treated by injection of MSCs or MSC-produced soluble factors. Fluorescently-labeled MSCs, injected intravenously, were found in the brain blood vessels of LPS-treated mice. Mice co-injected with LPS and MSCs did not demonstrate episodic memory impairment, Aβ (1-42) accumulation, and nAChR decrease in the brain and brain mitochondria. Their mitochondria released less cytochrome c under the effect of Ca2+ compared to mitochondria of LPS-only-treated mice. Moreover, MSCs could reverse the pathogenic symptoms developed 3 weeks after LPS injection. Cultured MSCs produced IL-6 in response to LPS and MSCs effect in vivo was accompanied by additional stimulation of both micro- and macroglia. Xenogeneic (human) MSCs were almost as efficient as allogeneic (mouse) ones and regular injections of human MSC-conditioned medium also produced positive effect. These data allow suggesting MSCs as a potential therapeutic tool to cure neuroinflammation-related cognitive pathology.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry NAS, Kyiv, Ukraine
| | - Lyudmyla Koval
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry NAS, Kyiv, Ukraine
| | - Larysa Voytenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry NAS, Kyiv, Ukraine
| | - Kateryna Uspenska
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry NAS, Kyiv, Ukraine
| | - Serhiy Komisarenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry NAS, Kyiv, Ukraine
| | - Olena Deryabina
- Department of Gene Technologies, State Institute of Genetic and Regenerative Medicine NAMS, Kyiv, Ukraine
| | - Nadia Shuvalova
- Department of Gene Technologies, State Institute of Genetic and Regenerative Medicine NAMS, Kyiv, Ukraine
| | - Vitalii Kordium
- Department of Gene Technologies, State Institute of Genetic and Regenerative Medicine NAMS, Kyiv, Ukraine.,Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics NAS, Kyiv, Ukraine
| | - Alina Ustymenko
- Department of Gene Technologies, State Institute of Genetic and Regenerative Medicine NAMS, Kyiv, Ukraine
| | - Vitalii Kyryk
- Department of Gene Technologies, State Institute of Genetic and Regenerative Medicine NAMS, Kyiv, Ukraine
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry NAS, Kyiv, Ukraine
| |
Collapse
|
16
|
Uspenska K, Lykhmus O, Obolenskaya M, Pons S, Maskos U, Komisarenko S, Skok M. Mitochondrial Nicotinic Acetylcholine Receptors Support Liver Cells Viability After Partial Hepatectomy. Front Pharmacol 2018; 9:626. [PMID: 29950998 PMCID: PMC6008424 DOI: 10.3389/fphar.2018.00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) expressed on the cell plasma membrane are ligand-gated ion channels mediating fast synaptic transmission, regulating neurotransmitter and cytokine release and supporting the viability of many cell types. The nAChRs expressed in mitochondria regulate the release of pro-apoptotic factors, like cytochrome c, in ion channel-independent manner. Here we show that α3β2, α7β2, and α9α10 nAChR subtypes are up-regulated in rat liver mitochondria 3–6 h after partial hepatectomy resulting in increased sustainability of mitochondria to apoptogenic effects of Ca2+ and H2O2. In contrast, laparotomy resulted in down-regulation of all nAChR subunits, except α9, and decreased mitochondria sustainability to apoptogenic effects of Ca2+ and H2O2. Experiments performed in liver mitochondria from α3+/-, α7-/-, β4-/-, α7β2-/-, or wild-type C57Bl/6J mice demonstrated that the decrease of α3 or absence of α7 or α7/β2 subunits in mitochondria is compensated with β4 and α9 subunits, which could be found in α3β4, α4β4, α9β4, and α9α10 combinations. Mitochondria from knockout mice maintained their sustainability to Ca2+ but were differently regulated by nAChR subtype-specific ligands: PNU-282987, methyllycaconitine, dihydro-β-erythroidine, α-conotoxin MII, and α-conotoxin PeIA. It is concluded that mitochondrial nAChRs play an important role in supporting the viability of hepatic cells and, therefore, may be a pharmacological target for pro-survival therapy. The concerted action of multiple nAChR subtypes controlling either CaKMII- or Src-dependent signaling pathways in mitochondria ensures a reliable protection against apoptogenic factors of different nature.
Collapse
Affiliation(s)
- Kateryna Uspenska
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Olena Lykhmus
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Maria Obolenskaya
- System Biology Group, Institute of Molecular Biology and Genetics, Kiev, Ukraine
| | - Stephanie Pons
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Paris, France
| | - Serhiy Komisarenko
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| |
Collapse
|
17
|
Uspenska K, Lykhmus O, Arias HR, Pons S, Maskos U, Komisarenko S, Skok M. Positive allosteric modulators of α7* or β2* nicotinic acetylcholine receptors trigger different kinase pathways in mitochondria. Int J Biochem Cell Biol 2018; 99:226-235. [PMID: 29704624 DOI: 10.1016/j.biocel.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Mitochondrial nicotinic acetylcholine receptors (nAChRs) regulate the early stage of mitochondria-driven apoptosis, including cytochrome c release. Mitochondrial nAChR signaling is mainly mediated by intra-mitochondrial kinases, in an ion-independent manner. To determine the relationship between specific nAChR subtypes and mitochondrial kinases, the effects of a set of nAChR subtype-selective positive allosteric modulators (PAMs) on cytochrome c release from mouse liver mitochondria stimulated by 0.9 μM Ca2+, 0.5 mM H2O2 or 1.0 μM wortmanin is studied. The results indicate that Ca2+-stimulated cytochrome c release from wild-type, but not α7-/-, mice mitochondria is attenuated by the potent agonist PNU-282987 or type II PAMs (PNU-120596, 4BP-TQS, and PAM-2-4), but not by NS-1738, a type I PAM. In contrast, wortmannin-stimulated cytochrome c release from wild-type and, to a lesser extent, α7-/- mice mitochondria is efficiently attenuated by the β2-selective PAM desformylfrustrabromine. In conclusion, the ligand-evoked α7* nAChR conformational changes required to induce intra-mitochondrial signaling can be triggered through orthosteric (agonists) and transmembrane (type II PAMs) sites, but not by the interaction with type I PAMs. The α7 and β2 nAChR subunits are responsible for the engagement of distinct kinase pathways, supporting the concept that multiple heteromeric nAChR subtypes ensure mitochondria resistance to various exogenous and endogenous apoptogenic agents.
Collapse
Affiliation(s)
- Kateryna Uspenska
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Hugo R Arias
- CONICET, Godoy Cruz, 2290, Buenos Aires, Argentina
| | - Stephanie Pons
- Institut Pasteur, 25, rue du Dr Roux, 75015, Paris, France
| | - Uwe Maskos
- Institut Pasteur, 25, rue du Dr Roux, 75015, Paris, France
| | - Serghiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine.
| |
Collapse
|
18
|
Koval L, Kalashnyk O, Lykhmus O, Skok M. α7 nicotinic acetylcholine receptors are involved in suppression of the antibody immune response. J Neuroimmunol 2018; 318:8-14. [PMID: 29395323 DOI: 10.1016/j.jneuroim.2018.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
This study demonstrates that α7 nicotinic acetylcholine receptors (nAChRs) regulate mouse B lymphocyte proliferation and IgM production in ion-independent manner. The high α7 nAChR levels were found in CD5+ and Foxp3+ B cells; induction of Foxp3+ cells in vitro was attenuated in the absence or upon inhibition of α7 nAChRs. The adoptively transferred B lymphocytes, stimulated in presence of methyllicaconitine, decreased the IgM response and abolished the IgG response in the host. The data obtained demonstrate the importance of cholinergic regulation for the antibody immune response and immunosuppression.
Collapse
Affiliation(s)
- Lyudmyla Koval
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030 Kyiv, Ukraine.
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030 Kyiv, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030 Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030 Kyiv, Ukraine.
| |
Collapse
|
19
|
Lykhmus O, Uspenska K, Koval L, Lytovchenko D, Voytenko L, Horid'ko T, Kosiakova H, Gula N, Komisarenko S, Skok M. N-Stearoylethanolamine protects the brain and improves memory of mice treated with lipopolysaccharide or immunized with the extracellular domain of α7 nicotinic acetylcholine receptor. Int Immunopharmacol 2017; 52:290-296. [PMID: 28963942 DOI: 10.1016/j.intimp.2017.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is an important risk factor for neurodegenerative disorders like Alzheimer's disease. Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) regulate inflammatory processes in various tissues, including the brain. N-stearoylethanolamine (NSE) is a biologically active cell membrane component with anti-inflammatory and membrane-protective properties. Previously we found that mice injected with bacterial lipopolysaccharide (LPS) or immunized with recombinant extracellular domain (1-208) of α7 nAChR subunit possessed decreased α7 nAChR levels, accumulated pathogenic amyloid-beta peptide Aβ(1-42) in the brain and demonstrated impaired episodic memory compared to non-treated mice. Here we studied the effect of NSE on behavior and brain components of LPS- treated or α7(1-208)-immunized mice. NSE, given per os, non-significantly decreased LPS-stimulated interleukin-6 elevation in the brain, slowed down the α7(1-208)-specific IgG antibody production and prevented the antibody penetration into the brain of mice. NSE prevented the loss of α7 nAChRs and accumulation of α7-bound Aβ(1-42) in the brain and brain mitochondria of LPS-treated or α7(1-208)-immunized mice and supported mitochondria resistance to apoptosis by attenuating Ca2+-stimulated cytochrome c release. Finally, NSE significantly improved episodic memory of mice impaired by either LPS treatment or immunization with α7(1-208). The results of our study demonstrate a therapeutic potential of NSE for prevention of cognitive disfunction caused by neuroinflammation or autoimmune reaction that allows suggesting this drug as a candidate for the treatment or prophylaxis of Alzheimer's pathology.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Kateryna Uspenska
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Lyudmyla Koval
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Daria Lytovchenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Larysa Voytenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Tetyana Horid'ko
- Department of Lipid Biochemistry, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Halyna Kosiakova
- Department of Lipid Biochemistry, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Nadiya Gula
- Department of Lipid Biochemistry, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Serhiy Komisarenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine.
| |
Collapse
|
20
|
Lykhmus O, Voytenko LP, Lips KS, Bergen I, Krasteva-Christ G, Vetter DE, Kummer W, Skok M. Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci 2017; 11:282. [PMID: 28955208 PMCID: PMC5601054 DOI: 10.3389/fncel.2017.00282] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023] Open
Abstract
The α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are likely to be the evolutionary precursors to the entire cys-loop superfamily of ligand-gated ion channels, which includes acetylcholine, GABA, glycine and serotonin ionotropic receptors. nAChRs containing α9 and α10 subunits are found in the inner ear, dorsal root ganglia and many non-excitable tissues, but their expression in the central nervous system has not been definitely demonstrated. Here we show the presence of both α9 and α10 nAChR subunits in the mouse brain by RT-PCR and immunochemical approaches with a range of nAChR subunit-selective antibodies, which selectivity was demonstrated in the brain preparations of α7−/−, α9−/− and α10−/− mice. The α9 and α10 RNA transcripts were found in medulla oblongata (MO), cerebellum, midbrain (MB), thalamus and putamen (TP), somatosensory cortex (SC), frontal cortex (FC) and hippocampus. High α9-selective signal in ELISA was observed in the FC, SC, MO, TP and hippocampus and α10-selective signal was the highest in MO and FC. The α9 and α10 proteins were found in the brain mitochondria, while their presence on the plasma membrane has not been definitely confirmed The α7-, α9- and α10-selective antibodies stained mainly neurons and hypertrophied astrocytes, but not microglia. The α9- and α10-positive cells formed ordered structures or zones in cerebellum and superior olive (SO) and were randomly distributed among α7-positive cells in the FC; they were found in CA1, CA3 and CA4, but not in CA2 region of the hippocampus. The α9 and α10 subunits were up-regulated in α7−/− mice and both α7 and α9 subunits were down-regulated in α10−/− mice. We conclude that α9 and α10 nAChR subunits are expressed in distinct neurons of the mouse brain and in the brain mitochondria and are compensatory up-regulated in the absence of α7 subunits.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Larysa P Voytenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Katrin S Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | - Ivonne Bergen
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | | | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, United States
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig University GiessenGiessen, Germany.,German Center for Lung Research (DZL)Giessen, Germany
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| |
Collapse
|
21
|
Uspenska K, Lykhmus O, Gergalova G, Chernyshov V, Arias HR, Komisarenko S, Skok M. Nicotine facilitates nicotinic acetylcholine receptor targeting to mitochondria but makes them less susceptible to selective ligands. Neurosci Lett 2017; 656:43-50. [DOI: 10.1016/j.neulet.2017.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/21/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
22
|
The role of carbohydrate component of recombinant α7 nicotinic acetylcholine receptor extracellular domain in its immunogenicity and functional effects of resulting antibodies. Immunobiology 2016; 221:1355-1361. [DOI: 10.1016/j.imbio.2016.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 01/06/2023]
|
23
|
Lykhmus O, Gergalova G, Zouridakis M, Tzartos S, Komisarenko S, Skok M. Inflammation decreases the level of alpha7 nicotinic acetylcholine receptors in the brain mitochondria and makes them more susceptible to apoptosis induction. Int Immunopharmacol 2015; 29:148-51. [PMID: 25887272 DOI: 10.1016/j.intimp.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/06/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022]
Abstract
α7 nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating inflammatory reactions, as well as the cell viability. They are expressed in both the plasma membrane and mitochondria of eukaryotic cells. Previously we found that neuroinflammation resulted in the decrease of α7 nAChR density in the brain of mice and was accompanied by accumulation of amyloid-beta (Aβ) peptides and memory impairment. In the present paper, it is shown that inflammation induced by either regular bacterial lipopolysaccharide (LPS) injections or immunizations with α7 nAChR extracellular domain (1-208) affected also the brain cell mitochondria. Using various modifications of sandwich ELISA, we observed the decrease of α7 nAChRs and accumulation of Aβ(1-40) and Aβ(1-42) in mitochondria of immunized or LPS-treated mice compared to control ones. Mitochondria of treated mice responded with cytochrome c release to lower Ca(2+) concentrations than mitochondria of control mice and were less sensitive to its attenuation with α7 nAChR agonist PNU282987. It is concluded that inflammation decreases α7 nAChR expression in both mitochondria and cell plasma membrane and makes mitochondria more susceptible to apoptosis induction.
Collapse
Affiliation(s)
| | | | | | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, Kyiv, Ukraine.
| |
Collapse
|
24
|
Kalashnyk O, Lykhmus O, Oliinyk O, Komisarenko S, Skok M. α7 Nicotinic acetylcholine receptor-specific antibody stimulates interleukin-6 production in human astrocytes through p38-dependent pathway. Int Immunopharmacol 2014; 23:475-9. [PMID: 25281899 DOI: 10.1016/j.intimp.2014.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/12/2014] [Accepted: 09/18/2014] [Indexed: 01/02/2023]
Abstract
α7 Nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating inflammatory cytokine production in macrophages and astrocytes. In the present paper, it is shown that α7-specific agonists PNU282987 (130nM) or choline (1.6mM) attenuated the interleukin-6 (IL-6) production stimulated by bacterial lipopolysaccharide in monocyte-derived U937 and astrocyte-derived U373 cell lines. In contrast, α7(179-190)-specific antibody, which bound to and was internalized by U373 cells, stimulated IL-6 production in p38 kinase-dependent manner in the absence of lipopolysaccharide. The antibody effect was not due to its Fc-fragment because similar capacity was found for recombinant single-chain (scFv) α7(179-190)-specific antibody selected from the gene library of healthy human subject. The data obtained allow suggesting that α7-specific antibody can provoke neuroinflammation within the brain by inducing IL-6 production in astrocytes.
Collapse
Affiliation(s)
| | | | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, Kyiv, Ukraine.
| |
Collapse
|
25
|
Expression of acetylcholine receptors by experimental rat renal allografts. BIOMED RESEARCH INTERNATIONAL 2014; 2014:289656. [PMID: 25121092 PMCID: PMC4119892 DOI: 10.1155/2014/289656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
Chronic allograft injury (CAI) is a major cause for renal allograft dysfunction and characterized by vasculopathies, tubular atrophy, and fibrosis. We demonstrated that numerous leukocytes interact with vascular endothelial cells of allografts and produce acetylcholine, which contributes to vascular remodeling. The cholinergic system might be a promising target for the development of novel therapies. However, neither the cellular mechanisms nor the acetylcholine receptors involved in CAI are known. Kidney transplantation was performed in the Lewis to Lewis and in the Fischer-334 to Lewis rat strain combination, which is an established experimental model for CAI. Expression of nicotinic and muscarinic acetylcholine receptors mRNA was quantified in renal tissue by real-time RT-PCR on days 9 and 42 after surgery. We detected CHRNA2-7, CHRNA10, CHRNB2, CHRNB4, and CHRM1-3 mRNA in normal kidneys and in renal transplants. In contrast, CHRNA9, CHRM4, and CHRM5 mRNA remained below the threshold of detection. In renal allografts, CHRNA3 and CHRNB4 mRNA expression were dramatically reduced compared to isografts. In conclusion, we demonstrated that most acetylcholine receptor subtypes are expressed by normal and transplanted kidneys. Allograft rejection downmodulates CHRNA3 and CHRNB4 mRNA. The role of different acetylcholine receptor subtypes in the development of CAI remains to be established.
Collapse
|
26
|
Lykhmus O, Gergalova G, Koval L, Zhmak M, Komisarenko S, Skok M. Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction. Int J Biochem Cell Biol 2014; 53:246-52. [PMID: 24880090 DOI: 10.1016/j.biocel.2014.05.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors control survival, proliferation and cytokine release in non-excitable cells. Previously we reported that α7 nicotinic receptors were present in the outer membranes of mouse liver mitochondria to regulate mitochondrial pore formation and cytochrome c release. Here we used a wide spectrum of nicotinic receptor subunit-specific antibodies to show that mitochondria express several nicotinic receptor subtypes in a tissue-specific manner: brain and liver mitochondria contain α7β2, α4β2 and less α3β2 nicotinic receptors, while mitochondria from the lung express preferentially α3β4 receptor subtype; all of them are non-covalently connected to voltage-dependent anion channels and control cytochrome c release. By using selective ligands of different nicotinic receptor subtypes (acetylcholine (1 μM) or dihydro-β-erythroidine (1 μM) for α4β2), conotoxin MII (1 nM) for α3β2, MLA (50 nM) for α7β2 and acetylcholine (10 μM) for all subtypes) and apoptogenic agents triggering different mitochondrial signaling pathways (1 μM wortmannin, 90 μM Ca(2+) or 0.5 mM H₂O₂) it was found that α7β2 receptors affect mainly PI₃K/Akt pathway, while α3β2 and α4β2 nAChRs also significantly influence CaKMII- and Src-dependent pathways. It is concluded that cholinergic regulation in mitochondria is realized through multiple nicotinic receptor subtypes, which control various pathways inducing mitochondrial type of apoptosis.
Collapse
Affiliation(s)
- Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovicha str., 01601 Kyiv, Ukraine
| | - Galyna Gergalova
- Palladin Institute of Biochemistry, 9, Leontovicha str., 01601 Kyiv, Ukraine
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, 9, Leontovicha str., 01601 Kyiv, Ukraine
| | - Maxim Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklaya str., 117997 Moscow, Russian Federation
| | - Sergiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovicha str., 01601 Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovicha str., 01601 Kyiv, Ukraine.
| |
Collapse
|
27
|
Gergalova G, Lykhmus O, Komisarenko S, Skok M. α7 nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. Int J Biochem Cell Biol 2014; 49:26-31. [PMID: 24412630 DOI: 10.1016/j.biocel.2014.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/11/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels found in the plasma membrane of both excitable and non-excitable cells. Previously we reported that nicotinic receptors containing α7 subunits were present in the outer membranes of mitochondria to regulate the early apoptotic events like cytochrome c release. Here we show that signaling of mitochondrial α7 nicotinic receptors affects intramitochondrial protein kinases. Agonist of α7 nicotinic receptors PNU 282987 (30 nM) prevented the effect of phosphatidyl inositol-3-kinase inhibitor wortmannin, which stimulated cytochrome c release in isolated mouse liver mitochondria, and restored the Akt (Ser 473) phosphorylation state decreased by either 90 μM Ca(2+) or wortmannin. The effect of PNU 282987 was similar to inhibition of calcium-calmodulin-dependent kinase II (upon 90 μM Ca(2+)) or of Src kinase(s) (upon 0.5mM H2O2) and of protein kinase C. Cytochrome c release from mitochondria could be also attenuated by α7 nicotinic receptor antagonist methyllicaconitine or α7-specific antibodies. Allosteric modulator PNU 120526 (1 μM) did not improve the effect of agonist PNU 282987. Acetylcholine (1 μM) and methyllicaconitine (10nM) inhibited superoxide release from mitochondria measured according to alkalization of Ca(2+)-containing medium. It is concluded that α7 nicotinic receptors regulate mitochondrial permeability transition pore formation through ion-independent mechanism involving activation of intramitochondrial PI3K/Akt pathway and inhibition of calcium-calmodulin-dependent or Src-kinase-dependent signaling pathways.
Collapse
Affiliation(s)
- Galyna Gergalova
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Sergiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine.
| |
Collapse
|
28
|
Skok MV. Nicotinic acetylcholine receptors: specific antibodies and functions in humoral immunity. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Chernyshov V, Kryukova E, Tsetlin V, Komisarenko S, Skok M. Mitochondria express α7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One 2012; 7:e31361. [PMID: 22359587 PMCID: PMC3281078 DOI: 10.1371/journal.pone.0031361] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/06/2012] [Indexed: 11/30/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate synaptic transmission in the muscle and autonomic ganglia and regulate transmitter release in the brain. The nAChRs composed of α7 subunits are also expressed in non-excitable cells to regulate cell survival and proliferation. Up to now, functional α7 nAChRs were found exclusively on the cell plasma membrane. Here we show that they are expressed in mitochondria and regulate early pro-apoptotic events like cytochrome c release. The binding of α7-specific antibody with mouse liver mitochondria was revealed by electron microscopy. Outer membranes of mitochondria from the wild-type and β2−/− but not α7−/− mice bound α7 nAChR-specific antibody and toxins: FITC-labeled α-cobratoxin or Alexa 555-labeled α-bungarotoxin. α7 nAChR agonists (1 µM acetylcholine, 10 µM choline or 30 nM PNU-282987) impaired intramitochondrial Ca2+ accumulation and significantly decreased cytochrome c release stimulated with either 90 µM CaCl2 or 0.5 mM H2O2. α7-specific antagonist methyllicaconitine (50 nM) did not affect Ca2+ accumulation in mitochondria but attenuated the effects of agonists on cytochrome c release. Inhibitor of voltage-dependent anion channel (VDAC) 4,4′-diisothio-cyano-2,2′-stilbene disulfonic acid (0.5 µM) decreased cytochrome c release stimulated with apoptogens similarly to α7 nAChR agonists, and VDAC was co-captured with the α7 nAChR from mitochondria outer membrane preparation in both direct and reverse sandwich ELISA. It is concluded that α7 nAChRs are expressed in mitochondria outer membrane to regulate the VDAC-mediated Ca2+ transport and mitochondrial permeability transition.
Collapse
Affiliation(s)
- Galyna Gergalova
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Olena Lykhmus
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Olena Kalashnyk
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Lyudmyla Koval
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Volodymyr Chernyshov
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Elena Kryukova
- Department of Molecular Bases of Neurosignaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor Tsetlin
- Department of Molecular Bases of Neurosignaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergiy Komisarenko
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Maryna Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
- * E-mail:
| |
Collapse
|
30
|
Voytenko LP, Lushnikova IV, Skok MV, Lykhmus OY, Deuchars J, Skibo GG. Co-Expression of Glutamic Acid Decarboxylase Isoform 67, Membrane Nicotinic Acetylcholine Receptors, and Connexin 36 in Ischemia-Resistant Hippocampal Interneurons. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|