1
|
Makita Y, Reich HN. Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy. J Clin Med 2024; 13:5255. [PMID: 39274468 PMCID: PMC11396043 DOI: 10.3390/jcm13175255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent primary glomerular disease worldwide and it remains a leading cause of kidney failure. Clinical manifestations of IgA are exacerbated by infections, and emerging data suggest that aberrant mucosal immune responses are important contributors to the immunopathogenesis of this disease. However, the exact stimuli, location and mechanism of nephritis-inducing IgA production remains unclear. In this focused review we explore recent developments in our understanding of the contribution of the mucosal immune system and mucosal-derived IgA-producing cells to the development of IgAN.
Collapse
Affiliation(s)
- Yuko Makita
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| | - Heather N Reich
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
2
|
Moulder R, Bhosale SD, Viiri K, Lahesmaa R. Comparative proteomics analysis of the mouse mini-gut organoid: insights into markers of gluten challenge from celiac disease intestinal biopsies. Front Mol Biosci 2024; 11:1446822. [PMID: 39263374 PMCID: PMC11387180 DOI: 10.3389/fmolb.2024.1446822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction Organoid models enable three-dimensional representation of cellular systems, providing flexible and accessible research tools, and can highlight key biomolecules. Such models of the intestinal epithelium can provide significant knowledge for the study of celiac disease and provide an additional context for the nature of markers observed from patient biopsy data. Methods Using LC-MS/MS, the proteomes of the crypt and enterocyte-like states of a mouse mini-gut organoid model were measured. The data were further compared with published biopsy data by comparing the changes induced by gluten challenge after a gluten-free diet. Results and discussion These analyses identified 4,850 protein groups and revealed how 400 putative biomarkers of dietary challenge were differentially expressed in the organoid model. In addition to the extensive changes within the differentiated cells, the data reiterated the disruption of the crypt-villus axis after gluten challenge. The mass spectrometry data are available via ProteomeXchange with the identifier PXD025690.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks. Animals (Basel) 2024; 14:2120. [PMID: 39061581 PMCID: PMC11274025 DOI: 10.3390/ani14142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were randomly assigned to two groups, each with 15 replicates of two minks per replicate. The minks in two groups were fed the basal diets and the basal diets with viable Enterococcus faecium (more than 107 cfu/kg of diet), respectively. Compared with the minks in control, Enterococcus faecium minks had heavier body weight (BW) at week 4 and week 8 of the study (p < 0.05), greater average daily gain (ADG), and a lower feed/gain ratio (F/G) of male minks during the initial 4 weeks and the entire 8-week study period (p < 0.05). Furthermore, Enterococcus faecium increased the apparent digestibility of crude protein (CP) and dry matter (DM) compared to the control (p < 0.05). Moreover, Enterococcus faecium enhanced the serum superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) contents (p < 0.05). The results also confirmed that Enterococcus faecium increased the levels of serum immunoglobulin A (IgA), immunoglobulin G (IgG), and the concentrations of secretory immunoglobulin A (SIgA) in the jejunal mucosa while decreasing the interleukin-8 (IL-8) and interleukin-1β (IL-1β) levels in the jejunal mucosa (p < 0.05). Intestinal microbiota analysis revealed that Enterococcus faecium increased the species numbers at the OUT level. Compared with the control, Enterococcus faecium had significant effects on the relative abundance of Paraclostridium, Brevinema, and Comamonas (p < 0.05). The results showed that Enterococcus faecium could improve the growth performance, increase the antioxidant capacity, improve the immunity of growing male minks, and also modulate the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (L.C.); (F.S.); (Q.R.); (Z.J.); (J.C.); (Y.L.)
| |
Collapse
|
4
|
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of dietary supplementation of Enterococcus faecium postbiotics on growth performance and intestinal health of growing male mink. Front Vet Sci 2024; 11:1409127. [PMID: 39051012 PMCID: PMC11266192 DOI: 10.3389/fvets.2024.1409127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Recent studies have demonstrated that postbiotics possess bioactivities comparable to those of probiotics. Therefore, our experiment aimed to evaluate the effects of postbiotics derived from Enterococcus faecium on the growth performance and intestinal health of growing male minks. A total of 120 growing male minks were randomly assigned to 4 groups, each with 15 replicates of 2 minks. The minks in the 4 groups were fed a basal diet supplemented with 0 (control), 0.05, 0.1, and 0.15% postbiotics derived from E. faecium (PEF), respectively. Compared to the control, PEF improved feed/gain (F/G) during the first 4 weeks and the entire 8 weeks of the study (p < 0.05); in addition, 0.1% PEF improved average daily gain (ADG) during the first 4 weeks and the entire 8 weeks of the study (p < 0.05), while 0.15% PEF improved ADG during the first 4 weeks of the study (p < 0.05). Consequently, 0.1% PEF minks displayed greater body weight (BW) at weeks 4 and 8 (p < 0.05), and 0.15% PEF minks had greater BW at week 4 (p < 0.05) than minks in the control. Furthermore, compared to the control, both 0.05 and 0.1% PEF enhanced the apparent digestibility of crude protein (CP) and ether extract (EE) (p < 0.05) in the initial 4 weeks, while both 0.1 and 0.15% PEF enhanced the apparent digestibility of CP and DM in the final 4 weeks (p < 0.05). Additionally, trypsin activity was elevated in the 0.1 and 0.15% PEF groups compared to the control (p < 0.05). In terms of intestinal morphology, PEF increased the villus height and villus/crypt (V/C) in the jejunum (p < 0.05), and both 0.1 and 0.15% PEF decreased the crypt depth and increased the villus height and V/C in the duodenum (p < 0.05) compared to the control group. Supplementation with 0.1% PEF increased the SIgA levels but decreased the IL-2, IL-8, and TNF-α levels in the jejunum (p < 0.05). Compared to the control, E. faecium postbiotics decreased the relative abundances of Serratia and Fusobacterium (p < 0.05). In conclusion, the results indicate that the growth performance, digestibility, immunity, and intestine development of minks are considerably affected by E. faecium postbiotics. In particular, dietary supplementation with 0.1% E. faecium postbiotics provides greater benefits than supplementation with 0.05 and 0.15%.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Xue K, Li J, Huang R. The immunoregulatory role of gut microbiota in the incidence, progression, and therapy of breast cancer. Front Cell Infect Microbiol 2024; 14:1411249. [PMID: 39035351 PMCID: PMC11257971 DOI: 10.3389/fcimb.2024.1411249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Breast cancer (BrCa) is the most prevalent malignant tumor in women and one of the leading causes of female mortality. Its occurrence and progression are influenced by various factors, including genetics, environment, lifestyle, and hormones. In recent years, the gut microbiota has been identified as a significant factor affecting BrCa. The gut microbiota refers to the collective population of various microorganisms in the human gastrointestinal tract. Gut microbiota is closely associated with human health and disease development, participating in crucial physiological functions such as digestion, metabolism, immune response, and neural regulation. It has been found to influence the occurrence and treatment of BrCa through a variety of mechanisms. This article aims to review the immunomodulatory role of the gut microbiota in the development and treatment of BrCa.
Collapse
Affiliation(s)
| | | | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
May A, Gerhards H, Wollanke B. Effect of hospitalization on equine local intestinal immunoglobulin A (IgA) concentration measured in feces. J Equine Vet Sci 2024; 137:105078. [PMID: 38697372 DOI: 10.1016/j.jevs.2024.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
During hospitalization horses may develop gastrointestinal conditions triggered by a stress-associated weak local immune system. The prospective, clinical trial was conducted to find out whether fecal immunoglobulin A (IgA) concentrations could be determined in hospitalized horses and how they changed during hospitalization and in response to various stressors. Samples were obtained from 110 horses and a control group (n = 14). At arrival in the hospital, horses were categorized into pain grades (1-5), and elective versus strenuous surgery (> 2 hours, traumatic and emergency procedures). Feces were collected on day 1, day 2, day 3, and day 7 in all horses. Blood samples were obtained at the same intervals, but additionally after general anaesthesia in horses undergoing surgery (day 2). IgA concentration in feces was determined by ELISA and measured in optical density at 450nm. The control group showed constant IgA concentrations on all days (mean value 0.30 OD450 ±SD 0.11, 1.26 mg/g; n = 11). After general anaesthesia fecal IgA concentrations decreased considerably independent of duration and type of surgery (P < 0.001 for elective and P = 0.043 for traumatic surgeries). High plasma cortisol concentrations were weakly correlated with low fecal IgA on the day after surgery (P = 0.012, day 3, correlation coefficient r = 0.113). Equine fecal IgA concentrations showed a decline associated with transport, surgery, and hospitalization in general, indicating that stress has an impact on the local intestinal immune function and may predispose horses for developing gastrointestinal diseases such as enterocolitis.
Collapse
Affiliation(s)
- A May
- Equine Hospital, Ludwig-Maximilians-University Munich, Sonnenstrasse 14 85764 Oberschleissheim, Germany.
| | - H Gerhards
- retired, former head of Equine Hospital, Ludwig-Maximilians-University Munich, Germany
| | - B Wollanke
- Equine Hospital, Ludwig-Maximilians-University Munich, Sonnenstrasse 14 85764 Oberschleissheim, Germany
| |
Collapse
|
7
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
8
|
Zhu J, He L. The Modulatory Effects of Curcumin on the Gut Microbiota: A Potential Strategy for Disease Treatment and Health Promotion. Microorganisms 2024; 12:642. [PMID: 38674587 PMCID: PMC11052165 DOI: 10.3390/microorganisms12040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin (CUR) is a lipophilic natural polyphenol that can be isolated from the rhizome of turmeric. Studies have proposed that CUR possesses a variety of biological activities. Due to its anti-inflammatory and antioxidant properties, CUR shows promise in the treatment of inflammatory bowel disease, while its anti-obesity effects make it a potential therapeutic agent in the management of obesity. In addition, curcumin's ability to prevent atherosclerosis and its cardiovascular benefits further expand its potential application in the treatment of cardiovascular disease. Nevertheless, owing to the limited bioavailability of CUR, it is difficult to validate its specific mechanism of action in the treatment of diseases. However, the restricted bioavailability of CUR makes it challenging to confirm its precise mode of action in disease treatment. Recent research indicates that the oral intake of curcumin may lead to elevated levels of residual curcumin in the gastrointestinal system, hinting at curcumin's potential to directly influence gut microbiota. Furthermore, the ecological dysregulation of the gut microbiota has been shown to be critical in the pathogenesis of human diseases. This review summarizes the impact of gut dysbiosis on host health and the various ways in which curcumin modulates dysbiosis and ameliorates various diseases caused by it through the administration of curcumin.
Collapse
Affiliation(s)
- Junwen Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | | |
Collapse
|
9
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Hendrikx T, Lang S, Rajcic D, Wang Y, McArdle S, Kim K, Mikulski Z, Schnabl B. Hepatic pIgR-mediated secretion of IgA limits bacterial translocation and prevents ethanol-induced liver disease in mice. Gut 2023; 72:1959-1970. [PMID: 36690432 PMCID: PMC10841342 DOI: 10.1136/gutjnl-2022-328265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Alcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease. DESIGN pIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/- ) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes. RESULTS Livers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation. CONCLUSION Our results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.
Collapse
Affiliation(s)
- Tim Hendrikx
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Sonja Lang
- University Hospital of Cologne, Clinic for Gastroenterology and Hepatology, Cologne, Germany
| | - Dragana Rajcic
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Yanhan Wang
- Medicine, University of California, La Jolla, California, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Bernd Schnabl
- Medicine, University of California, La Jolla, California, USA
| |
Collapse
|
11
|
Li Y, Zhen S, Cao L, Sun F, Wang L. Effects of Lactobacillus plantarum Postbiotics on Growth Performance, Immune Status, and Intestinal Microflora of Growing Minks. Animals (Basel) 2023; 13:2958. [PMID: 37760358 PMCID: PMC10526065 DOI: 10.3390/ani13182958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The present experiment was conducted to investigate the effects of Lactobacillus plantarum postbiotics on growth performance, immune status, and intestinal microflora of growing minks. A total of 80 minks (40 males and 40 females) were divided into four groups, each group contained 20 minks (10 males and 10 females). The minks in the four groups were fed a basal diet supplemented with 0, 0.15%, 0.3%, and 0.45% Lactobacillus plantarum postbiotics (PLP), respectively. After one week of adaptation, the experiment ran for eight weeks. The results showed that Lactobacillus plantarum postbiotics tended to have effects on average daily again (ADG) during the first 4 wk of the study (p < 0.1), and had effects on immune status (p < 0.05). Lactobacillus plantarum postbiotics also affected the abundance of intestinal bacteria at genus level (p < 0.05), but had no effects on α diversity of growing minks (p > 0.05). Compared to the minks in the control group, minks in 0.30% PLP group tended to have greater ADG, and IgA and IgM content in serum as well as SIgA content in jejunal mucosa (p < 0.05), and had less jejunal mucosal TNF-α and IL-8 levels, while minks in 0.45% PLP group had less IL-2 (p < 0.05). Compared to the control, Lactobacillus plantarum postbiotics decreased the relative abundances of Bacteroides_vulgatus and Luteimonas_sp. in male minks, and the relative abundances of Streptococcus_halotolerans in female minks (p < 0.05), respectively. Males grew faster and ate more associated with less F/G than females (p < 0.05). Males also had greater serum IgA and IgG content (p < 0.05), and males had less jejunal mucosal IL-1β, IL-8, IL-2, IL-6, IL-12, IL-10, TNF-α, and IFN-γ levels (p < 0.05). These results suggest that dietary supplementation of 0.3% postbiotics harvested from Lactobacillus plantarum could improve growth performance and immune status, and modulated the intestinal bacteria abundance of growing minks.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Z.); (L.C.); (F.S.)
| |
Collapse
|
12
|
Zhao C, Chen N, Ashaolu TJ. Prebiotic and modulatory evidence of lactoferrin on gut health and function. J Funct Foods 2023; 108:105741. [DOI: 10.1016/j.jff.2023.105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
13
|
Mohammed AD, Ball RAW, Kubinak JL. The interplay between bile acids and mucosal adaptive immunity. PLoS Pathog 2023; 19:e1011356. [PMID: 37347728 PMCID: PMC10286976 DOI: 10.1371/journal.ppat.1011356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Affiliation(s)
- Ahmed Dawood Mohammed
- Department of Pathology, Microbiology, Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Ryan A. W. Ball
- Department of Pathology, Microbiology, Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Jason L. Kubinak
- Department of Pathology, Microbiology, Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
14
|
Bermejo-Haro MY, Camacho-Pacheco RT, Brito-Pérez Y, Mancilla-Herrera I. The hormonal physiology of immune components in breast milk and their impact on the infant immune response. Mol Cell Endocrinol 2023:111956. [PMID: 37236499 DOI: 10.1016/j.mce.2023.111956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
During pregnancy, the maternal body undergoes a considerable transformation regarding the anatomy, metabolism, and immune profile that, after delivery, allows for protection and nourishment of the offspring via lactation. Pregnancy hormones are responsible for the development and functionality of the mammary gland for breast milk production, but little is known about how hormones control its immune properties. Breast milk composition is highly dynamic, adapting to the nutritional and immunological needs that the infant requires in the first months of life and is responsible for the main immune modeling of breastfed newborns. Therefore, alterations in the mechanisms that control the endocrinology of mammary gland adaptation for lactation could disturb the properties of breast milk that prepare the neonatal immune system to respond to the first immunologic challenges. In modern life, humans are chronically exposed to endocrine disruptors (EDs), which alter the endocrine physiology of mammals, affecting the composition of breast milk and hence the neonatal immune response. In this review, we provide a landscape of the possible role of hormones in the control of passive immunity transferred by breast milk and the possible effect of maternal exposure to EDs on lactation, as well as their impacts on the development of neonatal immunity.
Collapse
Affiliation(s)
- Mextli Y Bermejo-Haro
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Rodrigo T Camacho-Pacheco
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Yesenia Brito-Pérez
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Ismael Mancilla-Herrera
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico.
| |
Collapse
|
15
|
Song C, Chai Z, Chen S, Zhang H, Zhang X, Zhou Y. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med 2023; 55:681-691. [PMID: 37009791 PMCID: PMC10167328 DOI: 10.1038/s12276-023-00960-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 04/04/2023] Open
Abstract
Damage to the colon mucus barrier, the first line of defense against microorganisms, is an important determinant of intestinal diseases such as inflammatory bowel disease and colorectal cancer, and disorder in extraintestinal organs. The mucus layer has attracted the attention of the scientific community in recent years, and with the discovery of new mucosal components, it has become increasingly clear that the mucosal barrier is a complex system composed of many components. Moreover, certain components are jointly involved in regulating the structure and function of the mucus barrier. Therefore, a comprehensive and systematic understanding of the functional components of the mucus layer is clearly warranted. In this review, we summarize the various functional components of the mucus layer identified thus far and describe their unique roles in shaping mucosal structure and function. Furthermore, we detail the mechanisms underlying mucus secretion, including baseline and stimulated secretion. In our opinion, baseline secretion can be categorized into spontaneous Ca2+ oscillation-mediated slow and continuous secretion and stimulated secretion, which is mediated by massive Ca2+ influx induced by exogenous stimuli. This review extends the current understanding of the intestinal mucus barrier, with an emphasis on host defense strategies based on fortification of the mucus layer.
Collapse
Affiliation(s)
- Chunyan Song
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Si Chen
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Hui Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| |
Collapse
|
16
|
Wei L, Zhang L, Zhang Y, Yan L, Liu B, Cao Z, Zhao N, He X, Li L, Lu C. Intestinal Escherichia coli and related dysfunction as potential targets of Traditional Chinese Medicine for respiratory infectious diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116381. [PMID: 36940735 DOI: 10.1016/j.jep.2023.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has saved countless lives and maintained human health over its long history, especially in respiratory infectious diseases. The relationship between the intestinal flora and the respiratory system has been a popular research topic in recent years. According to the theory of the "gut-lung axis" in modern medicine and the idea that "the lung stands in an interior-exterior relationship with the large intestine" in TCM, gut microbiota dysbiosis is a contributing factor to respiratory infectious diseases, and there is potential means for manipulation of the gut microbiota in the treatment of lung diseases. Emerging studies have indicated intestinal Escherichia coli (E. coli) overgrowth in multiple respiratory infectious diseases, which could exacerbate respiratory infectious diseases by disrupting immune homeostasis, the gut barrier and metabolic balance. TCM is an effective microecological regulator, that can regulate the intestinal flora including E. coli, and restore the balance of the immune system, gut barrier, and metabolism. AIM OF THE REVIEW This review discusses the changes and effects of intestinal E. coli in respiratory infection, as well as the role of TCM in the intestinal flora, E. coli and related immunity, the gut barrier and the metabolism, thereby suggesting the possibility of TCM therapy regulating intestinal E. coli and related immunity, the gut barrier and the metabolism to alleviate respiratory infectious diseases. We aimed to make a modest contribution to the research and development of new therapies for intestinal flora in respiratory infectious diseases and the full utilization of TCM resources. Relevant information about the therapeutic potential of TCM to regulate intestinal E. coli against diseases was collected from PubMed, China National Knowledge Infrastructure (CNKI), and so on. The Plants of the World Online (https://wcsp.science.kew.org) and the Plant List (www.theplantlist.org) databases were used to provide the scientific names and species of plants. RESULTS Intestinal E. coli is a very important bacterium in respiratory infectious diseases that affects the respiratory system through immunity, the gut barrier and the metabolism. Many TCMs can inhibit the abundance of E. coli and regulate related immunity, the gut barrier and the metabolism to promote lung health. CONCLUSION TCM targeting intestinal E. coli and related immune, gut barrier, and metabolic dysfunction could be a potential therapy to promote the treatment and prognosis of respiratory infectious diseases.
Collapse
Affiliation(s)
- Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yan Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
17
|
Effects of Dietary Ferulic Acid on Intestinal Health and Ileal Microbiota of Tianfu Broilers Challenged with Lipopolysaccharide. Molecules 2023; 28:molecules28041720. [PMID: 36838708 PMCID: PMC9967589 DOI: 10.3390/molecules28041720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that LPS impaired gastrointestinal development and disrupted intestinal microbial composition and metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities. This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced by decreased antioxidant functions (p < 0.05), disrupted morphological structure (p < 0.05), and increased intestinal permeability (p < 0.05); however, these adverse effects were improved by FA supplementation. Additionally, FA supplementation preserved sIgA levels (p < 0.05), increased mRNA expression levels of CLDN and ZO-1 (p < 0.05), and enhanced epithelial proliferation (p < 0.05) in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions (TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition in LPS-challenged broilers.
Collapse
|
18
|
Collinet A, Grimm P, Jacotot E, Julliand V. Biomarkers for monitoring the equine large intestinal inflammatory response to stress-induced dysbiosis and probiotic supplementation. J Anim Sci 2022; 100:skac268. [PMID: 35980768 PMCID: PMC9576022 DOI: 10.1093/jas/skac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
Large intestine barrier disturbances can have serious consequences for the health of horses. The loss of mucosal integrity that leads to increased intestinal permeability may result from a local inflammatory immune response following alterations of the microbiota, known as dysbiosis. Therefore, our research aimed to identify noninvasive biomarkers for studying the intestinal permeability and the local inflammatory immune response in horses. Regarding the biomarkers used in other mammalian species, we measured the concentrations of lipopolysaccharides (LPS), reflected by 3-OH C14, C16, and C18 fatty acids, in blood, and fecal secretory immunoglobulin-A (SIgA). These biomarkers were evaluated in two trials including 9 and 12 healthy horses, which developed large intestinal dysbiosis experimentally induced by 5 d of antibiotic administration (trimethoprim sulfadiazine [TMS]) or 5 d of abrupt introduction of high starch levels (barley) into the diet. Horses were either control or supplemented with Lactobacillus acidophilus, Ligilactobacillus salivarius, and Bifidobacterium lactis. Correlations were performed between biomarkers and fecal bacterial diversity, composition, and function. No significant interaction between day and supplementation, or supplementation effect were observed for each biomarker. However, with the dietary stressor, a significant increase in blood concentrations of 3-OH C16 (P = 0.0125) and C14 (P = 0.0252) fatty acids was measured 2 d after the cessation of barley administration. Furthermore, with the antibiotic stressor, blood levels of 3-OH C16 progressively increased (P = 0.0114) from the first day to 2 d after the end of TMS administration. No significant day effect was observed for fecal SIgA concentrations for both stressors. These results indicate that both antibiotic- and diet-induced dysbiosis resulted in a local translocation of LPS 2 d after the cessation of the stressor treatments, suggesting an impairment of intestinal permeability, without detectable local inflammation. Blood LPS and fecal SIgA concentrations were significantly correlated with several bacterial variations in the large intestine, which are features of antibiotic- and diet-induced dysbiosis. These findings support the hypothesis that a relationship exists between dysbiosis and the loss of mucosal integrity in the large intestine of horses.
Collapse
Affiliation(s)
- Axelle Collinet
- Lab To Field, 21000 Dijon, France
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France
| | | | - Emmanuel Jacotot
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France
| | - Véronique Julliand
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, 21000 Dijon, France
| |
Collapse
|
19
|
Blackburn JB, Schaff JA, Gutor S, Du RH, Nichols D, Sherrill T, Gutierrez AJ, Xin MK, Wickersham N, Zhang Y, Holtzman MJ, Ware LB, Banovich NE, Kropski JA, Blackwell TS, Richmond BW. Secretory Cells Are the Primary Source of pIgR in Small Airways. Am J Respir Cell Mol Biol 2022; 67:334-345. [PMID: 35687143 PMCID: PMC9447142 DOI: 10.1165/rcmb.2021-0548oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Jacob A. Schaff
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Sergey Gutor
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Rui-Hong Du
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - David Nichols
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Taylor Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Matthew K. Xin
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Nancy Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Michael J. Holtzman
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Bradley W. Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
20
|
Huang YJ, Porsche C, Kozik AJ, Lynch SV. Microbiome-Immune Interactions in Allergy and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2244-2251. [PMID: 35724951 PMCID: PMC10566566 DOI: 10.1016/j.jaip.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 06/13/2023]
Abstract
The human microbiota has been established as a key regulator of host health, in large part owing to its constant interaction with and impact on host immunity. A range of environmental exposures spanning from the prenatal period through adulthood are known to affect the composition and molecular productivity of microbiomes across mucosal and dermal tissues with short- and long-term consequences for host immune function. Here we review recent findings in the field that provide insights into how microbial-immune interactions promote and sustain immune dysfunction associated with allergy and asthma. We consider both early life microbiome perturbation and the molecular underpinnings of immune dysfunction associated with subsequent allergy and asthma development in childhood, as well as microbiome features that relate to phenotypic attributes of allergy and asthma in older patients with established disease.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich.
| | - Cara Porsche
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
21
|
Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol 2022; 20:707-720. [PMID: 35906422 DOI: 10.1038/s41579-022-00768-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Associations between age and the human microbiota are robust and reproducible. The microbial composition at several body sites can predict human chronological age relatively accurately. Although it is largely unknown why specific microorganisms are more abundant at certain ages, human microbiota research has elucidated a series of microbial community transformations that occur between birth and death. In this Review, we explore microbial succession in the healthy human microbiota from the cradle to the grave. We discuss the stages from primary succession at birth, to disruptions by disease or antibiotic use, to microbial expansion at death. We address how these successions differ by body site and by domain (bacteria, fungi or viruses). We also review experimental tools that microbiota researchers use to conduct this work. Finally, we discuss future directions for studying the microbiota's relationship with age, including designing consistent, well-powered, longitudinal studies, performing robust statistical analyses and improving characterization of non-bacterial microorganisms.
Collapse
|
22
|
Intervention of Shugan Xiaozhi Decoction on Nonalcoholic Fatty Liver Disease via Mediating Gut-Liver Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4801695. [PMID: 35837380 PMCID: PMC9276511 DOI: 10.1155/2022/4801695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with an increasing incidence rate but few therapies. Shugan Xiaozhi decoction (SX) has demonstrated beneficial effects in treating NAFLD with an unclear mechanism. This study was aimed at investigating the therapeutic mechanism of SX on high-fat diet-induced NAFLD rats via the gut-liver axis. Hepatic steatosis and integrity of intestinal mucosa in NAFLD rats were assessed by histopathological staining. The level of lipid and inflammation were estimated by enzyme-linked immunosorbent assay. Western Blotting was used to detect apolipoprotein (apo) B48 expression. 16S rRNA analysis was used to measure the changes of gut microbial composition after SX treatment. The expressions of zona occludens 1 protein (ZO-1), occludin, and secretory immunoglobulin A (sIgA) in the colon were detected by immunostaining to investigate the intestinal barrier function. Our study found that SX reduced hepatic steatosis, the levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, and triglyceride and apoB48 expression but increased peroxisome proliferator activated receptor α (PPARα) level. Moreover, SX altered the diversity of gut microbiota, upregulating the relative abundance of f_Prevotellaceae, while downregulating f_Bacteroidales_ S24-7, f_Lachnospiraceae, f_Ruminococcaceae, f_Erysipelotrichaceae, and f_Desulfovibrionaceae. By increasing the expression of ZO-1 and occludin and decreasing the level of proinflammatory factors, including sIgA, lipopolysaccharide, tumor necrosis factor-α, interleukin-1β, monocyte chemotactic protein-1, and transforming growth factor-β1, SX improved intestinal mucosal integrity and barrier function. Our study illustrated that the gut-liver axis was a potential way for SX to ameliorate NAFLD, that is, by regulating the expression of PPARα, apoB48, and modulating gut microbiota to protect the intestinal barrier function, and thus alleviate lipid deposition and inflammatory response in the liver.
Collapse
|
23
|
Chang HM, Loh TC, Foo HL, Lim ETC. Lactiplantibacillus plantarum Postbiotics: Alternative of Antibiotic Growth Promoter to Ameliorate Gut Health in Broiler Chickens. Front Vet Sci 2022; 9:883324. [PMID: 35859810 PMCID: PMC9289564 DOI: 10.3389/fvets.2022.883324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
The postbiotic produced from Lactiplantibacillus plantarum has been revealed as a potential alternative to antibiotic growth promoters (AGP). It helps to stimulate growth performance, improve nutrient digestibility, intestinal histomorphology, immune response, and improve meat quality in livestock. However, there is a paucity of information on the effects of L. plantarum postbiotic produced by formulated media on the gut health and immune response. Therefore, this study was conducted by using three strains of dietary L. plantarum postbiotics to determine the growth performance, intestinal histomorphology, intestinal mucin production, and immune status in broiler chickens. A 245 male Cobb 500-day-old birds were assigned randomly to five treatments, namely, NC: basal diet only (negative control), OTC: basal diet + 0.01% (w/w) oxytetracycline (positive control), RG11: basal diet + 0.1% (v/w) Postbiotic RG11, RI11: basal diet + 0.1% (v/w) Postbiotic RI11, and RS5: basal diet + 0.1% (v/w) Postbiotic RS5. The body weight and feed intake were taken weekly. The small intestine and its mucus, ceca digesta were collected on days 21 and 42. Fresh excreta for crude mucin production were collected 3 days before slaughter on day 42. From the findings, RS5 recorded a significant highest (p < 0.05) final body weight, body weight gain, and significant lowest (p < 0.05) feed conversion ratio. The concentrations of glutathione peroxidase, superoxide dismutase (SOD), acidic mucin, sulfated mucin, and intestinal trefoil factor were significantly higher (p < 0.05) in the birds fed with RI11 and RS5. Postbiotics RI11 and RS5 had up-regulated expression of intestinal Mucin 2, occludin, and secretory immunoglobulin A. The antibiotic-fed chickens also showed a reduced (p < 0.05) total bacteria and Bifidobacterium population but a significantly increased (p < 0.05) the population of Escherichia coli in the jejunum. In conclusion, the supplementation of L. plantarum postbiotic can be used to substitute AGP as it promoted growth performance, mucin production, ameliorated tight junction permeability, and immune status in broiler chickens due to improved gut health and beneficial bacteria colonization.
Collapse
Affiliation(s)
- Hui Mei Chang
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Teck Chwen Loh
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Hooi Ling Foo
| | - Eric Teik Chung Lim
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
24
|
Guo K, Huang J, Zhou Z. Host gene effects on gut microbiota in type 1 diabetes. Biochem Soc Trans 2022; 50:1133-1142. [PMID: 35521897 PMCID: PMC9246325 DOI: 10.1042/bst20220004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by progressive pancreatic β-cell loss. Both a predisposing genetic background, that may encompass mutations in several genes, as well as exposure to environmental factors can affect the progression of autoimmune responses to multiple pancreatic islet autoantigens. Many genetic variants that increase the risk of T1D are found in immunity genes involved in sensing and responding to microorganisms. Although increasing evidence indicates that the gut microbiome composition may promote or prevent T1D development, little is known about the link between gut microbiota and T1D susceptibility genes in patients with T1D. Recent studies in the inbred non-obese diabetic (NOD) mouse, a widely used model of T1D, have suggested that many genetic loci can influence gut microbiome composition to modulate islet autoimmunity. This review summarizes evidence that examines the effect of host genes on gut microbiota diversity and function during T1D development. Knowledge of the host gene-gut microbiota interactions at play during T1D progression may help us identify new diagnostic and prognostic tools and help also design effective strategies for disease treatment.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, U.S.A
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
26
|
Broad Cross-Reactive IgA and IgG against Human Coronaviruses in Milk Induced by COVID-19 Vaccination and Infection. Vaccines (Basel) 2022; 10:vaccines10060980. [PMID: 35746588 PMCID: PMC9229351 DOI: 10.3390/vaccines10060980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022] Open
Abstract
It is currently unclear if SARS-CoV-2 infection or mRNA vaccination can also induce IgG and IgA against common human coronaviruses (HCoVs) in lactating parents. Here we prospectively analyzed human milk (HM) and blood samples from lactating parents to measure the temporal patterns of anti-SARS-CoV-2 specific and anti-HCoV cross-reactive IgA and IgG responses. Two cohorts were analyzed: a vaccination cohort (n = 30) who received mRNA-based vaccines for COVID-19 (mRNA-1273 or BNT162b2), and an infection cohort (n = 45) with COVID-19 disease. Longitudinal HM and fingerstick blood samples were collected pre- and post-vaccination or, for infected subjects, at 5 time-points 14–28 days after confirmed diagnosis. The anti-spike(S) and anti-nucleocapsid(N) IgA and IgG antibody levels against SARS-CoV-2 and HCoVs were measured by multiplex immunoassay (mPlex-CoV). We found that vaccination significantly increased the anti-S IgA and IgG levels in HM. In contrast, while IgG levels increased after a second vaccine dose, blood and HM IgA started to decrease. Moreover, HM and blood anti-S IgG levels were significantly correlated, but anti-S IgA levels were not. SARS2 acute infection elicited anti-S IgG and IgA that showed much higher correlations between HM and blood compared to vaccination. Vaccination and infection were able to significantly increase the broadly cross-reactive IgG recognizing HCoVs in HM and blood than the IgA antibodies in HM and blood. In addition, the broader cross-reactivity of IgG in HM versus blood indicates that COVID-19 vaccination and infection might provide passive immunity through HM for the breastfed infants not only against SARS-CoV-2 but also against common cold coronaviruses.
Collapse
|
27
|
Han Y, Zhang Y, Ouyang K, Chen L, Zhao M, Wang W. Sulfated Cyclocarya paliurus polysaccharides improve immune function of immunosuppressed mice by modulating intestinal microbiota. Int J Biol Macromol 2022; 212:31-42. [PMID: 35597376 DOI: 10.1016/j.ijbiomac.2022.05.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 01/03/2023]
Abstract
The study was aimed to investigate the effect of Cyclocarya paliurus polysaccharides (CPP) and the sulfation derivative (S-CPP) on modulate intestinal mucosal immunity and intestinal microbiota in cyclophosphamide-induced mice. The results showed that CPP and S-CPP effectively alleviated intestinal villi injury, enhanced the contents of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in small intestinal tissue and serum, and upregulated IL-1β at gene levels, zonula occludens-1 (ZO-1), Occludin and Claudin-1 at gene and protein levels, thereby promoting the repair of intestinal mechanical barrier and enhancing intestinal mucosal immunity. Moreover, the beneficial modulation of CPP and S-CPP on the overall structure of intestinal microbiota was revealed by performing 16S ribosomal RNA (16S rRNA) sequencing. Sulfated modification could improve the protection of CPP on the intestinal barrier and the regulation of systemic immunity. S-CPP had a stronger potential to reduce the damage of cyclophosphamide (Cy) on immunity and intestinal microbiota.
Collapse
Affiliation(s)
- Yi Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
28
|
Lei Z, Liu W, Nie Y, Yang Y, Chen G, Huang L, Wu H, Lei Y, Chen L, Hu Q, Rong H, Yu S, Song Q, Tong F, Guo J. EpCAM Is Essential to Maintaining the Immune Homeostasis of Intestines via Keeping the Expression of pIgR in the Intestinal Epithelium of Mice. Front Immunol 2022; 13:843378. [PMID: 35493520 PMCID: PMC9043958 DOI: 10.3389/fimmu.2022.843378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
EpCAM deficiency causes congenital tufting enteropathy (CTE) which is considered as one kinds of very early onset inflammatory bowel disease (IBD). However, functions of EpCAM on regulating the immunity of intestines are still unclear. To study the mechanism of EpCAM on maintaining the intestinal immune homeostasis, the intestines of WT and EpCAM-/- mice at E18.5, P0 and P3 stages were collected for morphological, histological and gene expression tests. Serious inflammation was detected in the small intestines of P3 EpCAM-/- mice. Compared to WT mice, genes related to inflammatory factors and immunity cells, including TNFα, IL-1β, IL-6, IL-8rb, MIP2, MCP1, Ly6d and Ly6g, were all significantly upregulated and the expression of intestinal abundance matrix metalloproteinases (MMPs) was also significantly increased in the intestines of EpCAM-/- mice at E18.5, P0 and P3 stages. Signals of p38, ERK1/2 and JNK were hyper-activated in the intestines of EpCAM-/- mice. The expression of pIgR was significantly decreased and the expression and activation of transcriptional factors which promote the expression of pIgR were also reduced in the intestines of EpCAM-/- mice compared to WT controls. In conclusion, EpCAM could maintain the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|
29
|
Wang J, Young BE, Li D, Seppo AE, Zhou Q, Wiltse A, Nowak-Wegrzyn A, Murphy K, Widrick K, Diaz N, Cruz-Vasquez J, Järvinen KM, Zand MS. Broad Cross-reactive IgA and IgG Against Human Coronaviruses in Milk Induced by COVID-19 Vaccination and Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.03.13.22272281. [PMID: 35313594 PMCID: PMC8936120 DOI: 10.1101/2022.03.13.22272281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
UNLABELLED It is currently unclear if SARS-CoV-2 infection or mRNA vaccination can also induce IgG and IgA against common human coronaviruses (HCoVs) in lactating parents. Here we prospectively analyzed human milk (HM) and blood samples from lactating parents to measure the temporal patterns of anti-SARS-CoV-2 specific and anti-HCoV cross-reactive IgA and IgG responses. Two cohorts were analyzed: a vaccination cohort (n=30) who received mRNA-based vaccines for COVID-19 (mRNA-1273 or BNT162b2), and an infection cohort (n=45) with COVID-19 disease. Longitudinal HM and fingerstick blood samples were collected pre- and post-vaccination or, for infected subjects, at 5 time-points 14 - 28 days after confirmed diagnosis. The anti-spike(S) and antinucleocapsid(N) IgA and IgG antibody levels against SARS-CoV-2 and HCoVs were measured by multiplex immunoassay (mPlex-CoV). We found that vaccination significantly increased the anti-S IgA and IgG levels in HM. In contrast, while IgG levels increased after a second vaccine dose, blood and HM IgA started to decrease. Moreover, HM and blood anti-S IgG levels were significantly correlated, but anti-S IgA levels were not. SARS2 acute infection elicited anti-S IgG and IgA that showed much higher correlations between HM and blood compared to vaccination. Vaccination and infection were able to significantly increase the broadly cross-reactive IgG recognizing HCoVs in HM and blood than the IgA antibodies in HM and blood. In addition, the broader cross-reactivity of IgG in HM versus blood indicates that COVID-19 vaccination and infection might provide passive immunity through HM for the breastfed infants not only against SARS-CoV-2 but also against common cold coronaviruses. IMPORTANCE It is unknown if COVID-19 mRNA vaccination and infection in lactating mothers results in cross-reactive antibodies against other common human coronaviruses. Our study demonstrates that mRNA vaccination and COVID-19 infection increase anti-spike SARS-CoV-2 IgA and IgG in both blood and milk. IgA and IgG antibody concentrations in milk were more tightly correlated with concentrations in blood after infection compared to mRNA vaccination. Notably, both infection and vaccination resulted in increased IgG against common seasonal β -coronaviruses. This suggests that SARS-CoV-2 vaccination or infection in a lactating parent may result in passive immunity against SARS-CoV-2 and seasonal coronaviruses for the recipient infant.
Collapse
|
30
|
van Kampen JJA, Dalm VASH, Fraaij PLA, Oude Munnink BB, Schapendonk CME, Izquierdo-Lara RW, Villabruna N, Ettayebi K, Estes MK, Koopmans MPG, de Graaf M. Clinical and In Vitro Evidence Favoring Immunoglobulin Treatment of a Chronic Norovirus Infection in a Patient With Common Variable Immunodeficiency. J Infect Dis 2022; 226:1781-1789. [PMID: 35255136 PMCID: PMC9650502 DOI: 10.1093/infdis/jiac085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunocompromised individuals can become chronically infected with norovirus, but effective antiviral therapies are not yet available. METHODS Treatments with nitazoxanide, ribavirin, interferon alpha-2a, and nasoduodenally administered immunoglobulins were evaluated sequentially in an immunocompromised patient chronically infected with norovirus. In support, these components were also applied to measure norovirus inhibition in intestinal enteroid cultures in vitro. Viral RNA levels were determined in fecal and plasma samples during each treatment and viral genomes were sequenced. RESULTS None of the antivirals resulted in a reduction of viral RNA levels in feces or plasma. However, during ribavirin treatment, there was an increased accumulation of virus genome mutations. In vitro, an effect of interferon alpha-2a on virus replication was observed and a genetically related strain was neutralized effectively in vitro using immunoglobulins and post-norovirus-infection antiserum. In agreement, after administration of immunoglobulins, the patient cleared the infection. CONCLUSIONS Intestinal enteroid cultures provide a relevant system to evaluate antivirals and the neutralizing potential of immunoglobulins. We successfully treated a chronically infected patient with immunoglobulins, despite varying results reported by others. This case study provides in-depth, multifaceted exploration of norovirus treatment that can be used as a guidance for further research towards norovirus treatments.
Collapse
Affiliation(s)
| | | | - Pieter L A Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nele Villabruna
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Miranda de Graaf
- Correspondence: Miranda de Graaf, PhD, Erasmus University Medical Center, PO Box 1738, 3000 DR Rotterdam, the Netherlands ()
| |
Collapse
|
31
|
Abstract
INTRODUCTION There is a wide spectrum of noninfectious gastrointestinal pathology, causing considerable morbidity and mortality in CVID, where both etiology and effective therapy are under debate. AREAS COVERED This review will focus on the noninfectious inflammation in the GI tract in CVID patients, covering the both the upper and lower GI tract inflammation, including the liver. The controversy of the CVID enteropathy definition and that of gluten-free diet for celiac-like disease in CVID will be discussed. Furthermore, the review will cover the link between GI inflammation and GI cancer. Finally, the role of gut microbiota, IgA, and genetics and its relationship with CVID enteropathy is scrutinized. The authors reviewed literature from PubMed. EXPERT OPINION The heterogeneity and the unknown mechanism behind CVID enteropathy, and thereby the lack of effective treatment, is one of the key challenges in the field of CVID. Celiac-like disease in CVID is due to immune dysregulation, and a gluten-free diet is therefore not indicated. Gut microbial dysbiosis and mucosal IgA can initiate systemic and local inflammation and is involved in the immune dysregulation in CVID. Considering the heterogeneity of CVID enteropathy, personalized medicine is probably the future for these patients.
Collapse
Affiliation(s)
- I M Andersen
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway
| | - S F Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Norway
| |
Collapse
|
32
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
33
|
Beopoulos A, Gea M, Fasano A, Iris F. Autonomic Nervous System Neuroanatomical Alterations Could Provoke and Maintain Gastrointestinal Dysbiosis in Autism Spectrum Disorder (ASD): A Novel Microbiome-Host Interaction Mechanistic Hypothesis. Nutrients 2021; 14:65. [PMID: 35010940 PMCID: PMC8746684 DOI: 10.3390/nu14010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Dysbiosis secondary to environmental factors, including dietary patterns, antibiotics use, pollution exposure, and other lifestyle factors, has been associated to many non-infective chronic inflammatory diseases. Autism spectrum disorder (ASD) is related to maternal inflammation, although there is no conclusive evidence that affected individuals suffer from systemic low-grade inflammation as in many psychological and psychiatric diseases. However, neuro-inflammation and neuro-immune abnormalities are observed within ASD-affected individuals. Rebalancing human gut microbiota to treat disease has been widely investigated with inconclusive and contradictory findings. These observations strongly suggest that the forms of dysbiosis encountered in ASD-affected individuals could also originate from autonomic nervous system (ANS) functioning abnormalities, a common neuro-anatomical alteration underlying ASD. According to this hypothesis, overactivation of the sympathetic branch of the ANS, due to the fact of an ASD-specific parasympathetic activity deficit, induces deregulation of the gut-brain axis, attenuating intestinal immune and osmotic homeostasis. This sets-up a dysbiotic state, that gives rise to immune and osmotic dysregulation, maintaining dysbiosis in a vicious cycle. Here, we explore the mechanisms whereby ANS imbalances could lead to alterations in intestinal microbiome-host interactions that may contribute to the severity of ASD by maintaining the brain-gut axis pathways in a dysregulated state.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA 022114, USA;
| | - François Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| |
Collapse
|
34
|
Baecher KM, Ford ML. Intersection of FcγRIIB, the microbiome, and checkpoint inhibitors in antitumor immunity. Cancer Immunol Immunother 2021; 70:3397-3404. [PMID: 34241677 PMCID: PMC10992943 DOI: 10.1007/s00262-021-03004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Fc receptors (FcRs) and the microbiome are both known to have an effect on the development and progression of cancers. Checkpoint inhibitors are a novel class of therapeutics which are used to combat cancer and are integrally linked to both FcRs and the microbiome. The use of checkpoint inhibitors has grown exponentially over the past decade, although many host factors affect both the efficacy and the safety of these therapeutics. Some of these host factors, including the microbiome and the expression of FcRs, are currently being investigated. Here we discuss the current understanding of FcRs (particularly the inhibitory FcγRIIB) and the microbiome in context of T cell immunity, inflammation, cancer, and checkpoint inhibition.
Collapse
Affiliation(s)
- Kirsten M Baecher
- Division of Transplant, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Division of Transplant, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
35
|
Li YS, San Andres JV, Trenhaile-Grannemann MD, van Sambeek DM, Moore KC, Winkel SM, Fernando SC, Burkey TE, Miller PS. Effects of mannan oligosaccharides and Lactobacillus mucosae on growth performance, immune response, and gut health of weanling pigs challenged with Escherichia coli lipopolysaccharides. J Anim Sci 2021; 99:6456512. [PMID: 34879142 DOI: 10.1093/jas/skab286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Addition of pre- and probiotics may confer growth and health benefits when added to the diet of pigs. To determine the effects of feeding mannan oligosaccharide (MOS) and Lactobacillus mucosae (LM) as prebiotic and probiotic sources in weanling pigs under immune challenge, 96 weaned pigs were randomly allotted to 16 experimental pens within a 2 × 2 factorial arrangement of treatments. Control diets with or without 0.1% yeast-derived MOS were randomly assigned to pens and 109 cfu/pig LM broth or a control broth were top-dressed daily. Pigs were fed one of four dietary treatments (control, MOS, LM, and MOS+LM) in Phases I and II (days 0 to 7 and days 7 to 21 postweaning, respectively) and a common diet during Phase III (days 21 to 35 postweaning). On day 14, all pigs were challenged with 100 µg/kg body weight (BW) Escherichia coli lipopolysaccharide (LPS) via intraperitonial injection. Feed disappearance and pig BW were measured weekly. Blood and fecal samples were collected weekly, and additional blood samples were collected on days 1 and 3 post-LPS challenge. On days 15 and 21, one pig per pen was euthanized for collection of ileal mucosa and duodenal and ileal tissue samples. From days 0 to 14, feeding LM decreased gain-to-feed ratio (G:F; P < 0.05). An interaction between LM and MOS was observed for G:F on days 14 to 21 (P < 0.05); G:F in LM (715 g/kg) was greater compared with MOS+LM (P < 0.05; 600 g/kg) and control (P < 0.10; 615 g/kg), but was not different (P > 0.10) from MOS (674 g/kg). After pigs were fed a common diet (days 21 to 35), G:F was decreased (P < 0.05) in the LM treatment groups. Pigs fed diets that included MOS had increased serum immunoglobulin (Ig) G on days 1 and 3 post-LPS challenge and 2 wk after removal of treatments (P < 0.05) and on days 14 and 21 postweaning (P < 0.10) compared with pigs fed diets without MOS. On day 15, mucosal immunoglobulin G was increased (P < 0.05) in control vs. MOS and LM groups. Circulating IL-1β in control and MOS+LM pigs increased (P < 0.05) on day 1 post-LPS challenge but did not change (P > 0.10) in MOS and LM groups. On day 15, pigs fed LM had decreased (P < 0.05) ileal crypt depth compared with pigs fed the control diet. On day 21, fecal propionate and butyrate tended to be lower (P < 0.10) in pigs fed MOS vs. control and MOS+LM diet. These preliminary findings suggest that feeding LM alone improved feed efficiency and ileal morphological structure during the first week of LPS challenge; additionally, feeding LM and MOS may have beneficial effects relative to immune biomarkers.
Collapse
Affiliation(s)
- Yanshuo S Li
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Joice V San Andres
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA.,Department of Animal Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | | | | | - Kelly C Moore
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Shana M Winkel
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Phillip S Miller
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
36
|
Liu N, Feng G, Zhang X, Hu Q, Sun S, Sun J, Sun Y, Wang R, Zhang Y, Wang P, Li Y. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Front Nutr 2021; 8:759507. [PMID: 34901112 PMCID: PMC8655231 DOI: 10.3389/fnut.2021.759507] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is one of the main types of intestinal inflammatory diseases with intestine mucosal immune disorder. Intestine mucosal immune system plays a remarkable and important role in the etiology and pathogenesis of IBD. Therefore, understanding the intestine mucosal immune mechanism is a key step to develop therapeutic interventions for IBD. Intestine mucosal immune system and IBD are influenced by various factors, such as inflammation, gut permeability, gut microbiota, and nutrients. Among these factors, emerging evidence show that nutrients play a key role in inflammation activation, integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly found in mammalian milk. Notably, LF has been reported to perform diverse biological functions including antibacterial activity, anti-inflammatory activity, intestinal barrier protection, and immune cell modulation, and is involved in maintaining intestine mucosal immune homeostasis. The improved understanding of the properties of LF in intestine mucosal immune system and IBD will facilitate its application in nutrition, clinical medicine, and health. Herein, this review outlines the recent advancements on LF as a potential therapeutic intervention for IBD associated with intestine mucosal immune system dysfunction. We hope this review will provide a reference for future studies and lay a theoretical foundation for LF-based therapeutic interventions for IBD by understanding the particular effects of LF on intestine mucosal immune system.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Gang Feng
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Qingjuan Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jiaqi Sun
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Genetic background affects the mucosal SIgA levels, parasite burden, lung inflammation and susceptibility of male mice to Ascaris suum infection. Infect Immun 2021; 90:e0059521. [PMID: 34807734 DOI: 10.1128/iai.00595-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ascariasis is a neglected tropical disease, widespread in the world and causing important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosa induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminthes, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Then, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosa in male mice with early ascariasis. Therefore, two mice strains showed a different susceptibility to ascariasis (BALB/c and C57BL6/j), when experimentally infected with 2,500 infective eggs of Ascaris suum from time-point 0 and the immune parasitological parameters evaluated each two days after infection, during the period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary SIgA contributing for the protection against early ascariasis by reducing the amount of migrating larval as well as the influx of leukocytes in the lung and the consequent impair of the pulmonary capacity.
Collapse
|
38
|
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2021; 10:1996830. [PMID: 34719339 PMCID: PMC9359365 DOI: 10.1080/21688370.2021.1996830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.
Collapse
Affiliation(s)
- Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Akbari
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Haniuda K, Gommerman JL, Reich HN. The microbiome and IgA nephropathy. Semin Immunopathol 2021; 43:649-656. [PMID: 34664087 DOI: 10.1007/s00281-021-00893-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
The immunopathogenic mechanisms underlying immunoglobulin A nephropathy (IgAN) are poorly understood, yet it is one of the most common causes of kidney failure globally. The commonly referenced syndrome of synpharyngitic gross hematuria as a presenting feature of IgAN has led to a logical association between infections and development of IgAN, however no pathogenic organism has been clearly linked to IgAN. Advances in sequencing technology have enabled more detailed characterization of host microbial communities, and highlighted the interrelationship between microbiota and immune responses in health and disease. This review will summarize current thinking on the relationship between microbiota and development of IgAN with a focus on recent studies relating aberrant mucosal IgA-biased immune responses to microbiota and how this may be related to the immunopathogenesis of IgAN.
Collapse
Affiliation(s)
- Kei Haniuda
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Heather N Reich
- Division of Nephrology, Department of Medicine, University of Toronto and University Health Network, Toronto, ON, Canada.
| |
Collapse
|
40
|
Zhao C, Qu Q, Yang F, Li Z, Yang P, Han L, Shi X. Monascus ruber fermented Panax ginseng ameliorates lipid metabolism disorders and modulate gut microbiota in rats fed a high-fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114300. [PMID: 34098018 DOI: 10.1016/j.jep.2021.114300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng Meyer) is rich in a variety of biologically active ingredients, which shows good effect in the treatment of metabolic diseases. Monascus has lipid-lowering activity and one of its metabolites, lovastatin, is widely used in clinical practice. AIM OF THE STUDY The main purpose of this study was to clarify the effects of fermented Panax ginseng by Monascus ruber (PM) on lipid metabolism and gut microbiota in rats fed a high-fat diet. MATERIALS AND METHODS SPF Sprague-Dawley rats were randomly divided into 5 groups, the therapeutic effect of PM on HFD-induced obesity, hyperlipidemia, hepatic steatosis, and disordered gut microbiota were determined in rats. RESULTS PM could attenuate features of obesity in rats, decrease serum TC, LDL-C and IgA levels, increase excretion of bile acids in feces. Hepatic histopathologic analysis revealed that PM decrease lipid accumulation in hepatocytes. Consistently, mRNA expression levels of cholesterol metabolism-related genes were regulated in the livers of HFD-fed rats administered with PM. In addition, PM could enhance the diversity and relative abundance of gut microbiota, reduce the Firmicutes/Bacteroidetes (F/B) ratio, increase significantly the relative abundance of Prevotella_9, and decrease these of Muribaculaceae. CONCLUSIONS PM could regulate lipid metabolism and the structure of the gut microbiota in the HFD rats. Our findings provide valuable experience for the development of ginseng. PM could be a potentially effective strategy to prevent and treat metabolic diseases and alleviate the gut microbiota disturbance caused by it.
Collapse
Affiliation(s)
- Chongyan Zhao
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Zhixun Li
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Lu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
41
|
Fang J, Wang H, Zhou Y, Zhang H, Zhou H, Zhang X. Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med 2021; 53:772-787. [PMID: 34002011 PMCID: PMC8178360 DOI: 10.1038/s12276-021-00617-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/14/2021] [Accepted: 01/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent intestinal inflammatory disease characterized by high incidence and young onset age. Recently, there have been some interesting findings in the pathogenesis of UC. The mucus barrier, which is composed of a mucin complex rich in O-glycosylation, not only provides nutrients and habitat for intestinal microbes but also orchestrates the taming of germs. In turn, the gut microbiota modulates the production and secretion of mucins and stratification of the mucus layers. Active bidirectional communication between the microbiota and its 'slimy' partner, the mucus barrier, seems to be a continually performed concerto, maintaining homeostasis of the gut ecological microenvironment. Any abnormalities may induce a disorder in the gut community, thereby causing inflammatory damage. Our review mainly focuses on the complicated communication between the mucus barrier and gut microbiome to explore a promising new avenue for UC therapy.
Collapse
Affiliation(s)
- Jian Fang
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China ,grid.412551.60000 0000 9055 7865College of Medicine, Shaoxing University, 508 Huancheng Road, Shaoxing, Zhejiang Province People’s Republic of China
| | - Hui Wang
- grid.415644.60000 0004 1798 6662Department of Colorectal Surgery, Shaoxing people’s Hospital, 568 North Zhongxing Road, Shaoxing, Zhejiang Province People’s Republic of China
| | - Yuping Zhou
- grid.203507.30000 0000 8950 5267The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang People’s Republic of China
| | - Hui Zhang
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China
| | - Huiting Zhou
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China
| | - Xiaohong Zhang
- grid.203507.30000 0000 8950 5267Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang People’s Republic of China
| |
Collapse
|
42
|
Bhaskara V, Leal MT, Seigner J, Friedrich T, Kreidl E, Gadermaier E, Tesarz M, Rogalli A, Stangl L, Wallwitz J, Hammel K, Rothbauer M, Moll H, Ertl P, Hahn R, Himmler G, Bauer A, Casanova E. Efficient production of recombinant secretory IgA against Clostridium difficile toxins in CHO-K1 cells. J Biotechnol 2021; 331:1-13. [PMID: 33689865 DOI: 10.1016/j.jbiotec.2021.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Despite the essential role secretory IgAs play in the defense against pathogenic invasion and the proposed value of recombinant secretory IgAs as novel therapeutics, currently there are no IgA-based therapies in clinics. Secretory IgAs are complex molecules and the major bottleneck limiting their therapeutic potential is a reliable recombinant production system. In this report, we addressed this issue and established a fast and robust production method for secretory IgAs in CHO-K1 cells using BAC-based expression vectors. As a proof of principle, we produced IgAs against Clostridium difficile toxins TcdA and TcdB. Recombinant secretory IgAs produced using our expression system showed comparable titers to IgGs, widely used as therapeutic biologicals. Importantly, secretory IgAs produced using our method were functional and could efficiently neutralize Clostridium difficile toxins TcdA and TcdB. These results show that recombinant secretory IgAs can be efficiently produced, thus opening the possibility to use them as therapeutic agents in clinics.
Collapse
Affiliation(s)
- Venugopal Bhaskara
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria.
| | - Maria Trinidad Leal
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Jacqueline Seigner
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Friedrich
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | - Laura Stangl
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | | | - Katharina Hammel
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, 1060 Vienna, Austria
| | - Herwig Moll
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, 1060 Vienna, Austria
| | - Rainer Hahn
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Anton Bauer
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; The Antibody Lab GmbH, 1210 Vienna, Austria.
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
43
|
Liu Y, Chen L, Wang L, Xiong Y. Effects of intestinal lymphatic ligation on intestinal immunity in rats with severe acute pancreatitis. FEBS Open Bio 2021; 11:1109-1121. [PMID: 33576136 PMCID: PMC8016124 DOI: 10.1002/2211-5463.13115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/30/2023] Open
Abstract
Severe acute pancreatitis (SAP) is one of the most common diseases of the gastrointestinal tract, characterized by a complicated pathogenesis, multiple organ failure, and high mortality. The primary aim of the present study was to observe the effect of intestinal lymphatic ligation on intestinal injury and modification in rats with SAP. Male Sprague‐Dawley (SD) rats were randomly divided into: (a) Saline group (SO); (b) SAP group; and (c) SAP + ligation group. We evaluated the effect of mesenteric lymphatic duct ligation on the pancreas and intestine tissue by HE. The histopathology of the pancreas in SAP + ligation rats was alleviated slightly compared with SAP rats, but aggravated in the intestine of SAP + ligation rats. Treatment of mesenteric lymphatic duct ligation resulted in an increase in the levels of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and myeloperoxidase compared with the small intestinal tissues of SAP rats. In addition, the expression of nucleotide‐binding oligomerization domain‐like receptors 3, apoptosis‐associated speck‐like protein containing a caspase recruitment domain (CARD) (ASC), and caspase‐1 in the intestine were higher in the SAP + ligation group. The ratio of Th1/Th2 and regulatory T cells (Tregs) in the mesenteric lymph nodes of the SAP group was lower than those in the SAP + ligation group. The present results indicated that ligation of the mesenteric lymph duct can effectively prevent intestinal inflammatory mediators entering the body through the mesenteric lymph duct, but these mediators assembled in the intestine where they induced an excessive immune response and intestinal injury during SAP.
Collapse
Affiliation(s)
- Yuanqi Liu
- College of Comprehensive Health Management, Xihua University, Chengdu, China
| | - Li Chen
- Department of Pharmacy, The Affiliated T.C.M. Hospital of Southwest Medical University, Luzhou, China
| | - Lulu Wang
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- College of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|
45
|
Cortez V, Schultz-Cherry S. The role of goblet cells in viral pathogenesis. FEBS J 2021; 288:7060-7072. [PMID: 33507606 PMCID: PMC8013445 DOI: 10.1111/febs.15731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Goblet cells are specialized epithelial cells that are essential to the formation of the mucus barriers in the airways and intestines. Armed with an arsenal of defenses, goblet cells can rapidly respond to infection but must balance this response with maintaining homeostasis. Whereas goblet cell defenses against bacterial and parasitic infections have been characterized, we are just beginning to understand their responses to viral infections. Here, we outline what is known about the enteric and respiratory viruses that target goblet cells, the direct and bystander effects caused by viral infection and how viral interactions with the mucus barrier can alter the course of infection. Together, these factors can play a significant role in driving viral pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
46
|
Alagawany M, Attia YA, Farag MR, Elnesr SS, Nagadi SA, Shafi ME, Khafaga AF, Ohran H, Alaqil AA, Abd El-Hack ME. The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Front Vet Sci 2021; 7:570748. [PMID: 33490124 PMCID: PMC7820179 DOI: 10.3389/fvets.2020.570748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) infection (COVID-19) has raised considerable concern on the entire planet. On March 11, 2020, COVID-19 was categorized by the World Health Organization (WHO) as a pandemic infection, and by March 18, 2020, it has spread to 146 countries. The first internal defense line against numerous diseases is personalized immunity. Although it cannot be claimed that personalized nutrition will have an immediate impact on a global pandemic, as the nutritional interventions required a long time to induce beneficial outcomes on immunity development, nutritional strategies are still able to clarify and have a beneficial influence on the interplay between physiology and diet, which could make a positive contribution to the condition in the next period. As such, a specific goal for every practitioner is to evaluate different tests to perceive the status of the patient, such as markers of inflammation, insulin regulation, and nutrient status, and to detect possible imbalances or deficiencies. During the process of disease development, the supplementation and addition of different nutrients and nutraceuticals can influence not only the viral replication but also the cellular mechanisms. It is essential to understand that every patient has its individual needs. Even though many nutrients, nutraceuticals, and drugs have beneficial effects on the immune response and can prevent or ameliorate viral infections, it is essential to detect at what stage in COVID-19 progression the patient is at the moment and decide what kind of nutrition intervention is necessary. Furthermore, understanding the pathogenesis of coronavirus infection is critical to make proper recommendations.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer A. Nagadi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Abdulaziz A. Alaqil
- Department of Animal and Fish Production, King Faisal University, Al-Hufof, Saudi Arabia
| | | |
Collapse
|
47
|
Bai Y, Huang F, Zhang R, Ma Q, Dong L, Su D, Chi J, Zhang M. Longan pulp polysaccharide protects against cyclophosphamide-induced immunosuppression in mice by promoting intestinal secretory IgA synthesis. Food Funct 2021; 11:2738-2748. [PMID: 32175536 DOI: 10.1039/c9fo02780g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to explore the effect of longan pulp polysaccharide (LP) on the systemic immunity and intestinal mucosal immunity of immunosuppressive mice. The synthesis process and secretion of intestinal secretory IgA (SIgA) were investigated. Results showed that LP increased the thymus index, spleen index, and serum IgA level in cyclophosphamide (CTX)-treated mice. SIgA secretion in the intestinal lumen was increased by LP as well. The underlying mechanism comes down to the facts as follow: LP increased intestinal cytokines expression and TGFβRII that is associated with pathways of IgA class switch recombination (CSR). By improving protein expression of mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) and integrin α4β7, LP was beneficial to gut homing of IgA+ plasma cells. LP increased IgA, polymeric immunoglobulin receptor (pIgR), and secretory component (SC) to fortify the SIgA secretion. This study suggested that moderate consumption of LP is helpful for improving systemic immunity and intestinal mucosal immunity via promotion of intestinal SIgA to strengthen the mucosal barrier.
Collapse
Affiliation(s)
- Yajuan Bai
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Qin Ma
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jianwei Chi
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
48
|
Zhang Y, Zhang J, Chen X, Yang Z. Polymeric immunoglobulin receptor (PIGR) exerts oncogenic functions via activating ribosome pathway in hepatocellular carcinoma. Int J Med Sci 2021; 18:364-371. [PMID: 33390805 PMCID: PMC7757154 DOI: 10.7150/ijms.49790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: This report aimed to investigate the potential mechanism of polymeric immunoglobulin receptor (PIGR) in promoting cancer development in hepatocellular carcinoma (HCC). Methods: PIGR expression was investigated in Gene Expression Omnibus (GEO), Oncomine, The Cancer Genome Atlas (TCGA) and The Human Protein Atlas (HPA) databases. Relationships between PIGR and HCC survival and clinico-pathological features were conducted in TCGA. RNAseq of PIGR overexpression and knockdown samples in Bel-7404 cells were performed for identifying potential mechanisms. Results: PIGR was significantly overexpressed in tumors compared to nontumors and in HCC serum peripheral blood mononuclear cells (PBMC) than in healthy individuals (all p < 0.05). In TCGA, PIGR was highly altered in 14% HCC patients. PIGR upregulation was significantly associated with poor disease-free survival (p < 0.05). More patients recurred/progressed in PIGR altered group compared to unaltered group (p < 0.01). PIGR was significantly higher in HCC patients with incomplete cirrhosis (p < 0.001) and established cirrhosis (p < 0.05). Fewer patients had N0 lymph node stage in PIGR altered group than those in the unaltered group (p < 0.05). PIGR RNAseq revealed that ribosome signaling was the common pathway in PIGR overexpression and PIGR knockdown samples. RNAseq analysis indicated that RPL10, RPL10A, RPL12, RPL19, RPL36, RPL38, RPL41, RPL6, RPL8, RPS12, RPS14, RPS15A, RPS2, RPS27A and RPSA were significantly upregulated in PIGR overexpression group and downregulated in PIGR underexpression group (all p < 0.05). Conclusions: Aberrant PIGR was associated with HCC recurrence, and PIGR stimulated ribosome pathway might be a potential mechanism.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Datasets as Topic
- Disease Progression
- Disease-Free Survival
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Liver/pathology
- Liver Neoplasms/blood
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- RNA-Seq
- Receptors, Polymeric Immunoglobulin/blood
- Receptors, Polymeric Immunoglobulin/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Signal Transduction/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jijie Zhang
- Department of Oncology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu 212300, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- ✉ Corresponding authors: Zongguo Yang, M.D., Ph.D., Shanghai Public Health Clinical Center, Fudan University. 2901 Caolang Road, Shanghai 201508, China. E-mail:
| |
Collapse
|
49
|
Zhang Y, Lu W, Chen X, Cao Y, Yang Z. A Bioinformatic Analysis of Correlations between Polymeric Immunoglobulin Receptor (PIGR) and Liver Fibrosis Progression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5541780. [PMID: 33937393 PMCID: PMC8055406 DOI: 10.1155/2021/5541780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study is aimed at investigating the enriched functions of polymeric immunoglobulin receptor (PIGR) and its correlations with liver fibrosis stage. METHODS PIGR mRNA expression in normal liver, liver fibrosis, hepatic stellate cells (HSCs), and hepatitis virus infection samples was calculated in Gene Expression Omnibus (GEO) and Oncomine databases. Enrichment analysis of PIGR-related genes was conducted in Metascape and Gene Set Enrichment Analysis (GSEA). Logistic model and ROC curve were performed to evaluate the correlations between pIgR and liver fibrosis. RESULTS PIGR mRNA was upregulated in advanced liver fibrosis, cirrhosis compared to normal liver (all p < 0.05). PIGR mRNA was also overexpressed in activated HSCs compared to senescent HSCs, liver stem/progenitor cells, and reverted HSCs (all p < 0.05). Enrichment analysis revealed that PIGR-related genes involved in the defense response to virus and interferon (IFN) signaling. In GEO series, PIGR mRNA was also upregulated by hepatitis virus B, C, D, and E infection (all p < 0.05). After adjusting age and gender, multivariate logistic regression models revealed that high PIGR in the liver was a risk factor for liver fibrosis (OR = 82.2, p < 0.001). The area under curve (AUC), positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of PIGR for liver fibrosis stage >2 were 0.84, 0.86, 0.7, 0.61, and 0.90. CONCLUSION PIGR was correlated with liver fibrosis and might involve in hepatitis virus infection and HSC transdifferentiation.
Collapse
Affiliation(s)
- Yuan Zhang
- 1Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wenjun Lu
- 2Department of Rheumatology and Immunology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu 212300, China
| | - Xiaorong Chen
- 1Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yajuan Cao
- 3Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
- 4Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zongguo Yang
- 1Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
50
|
Diet, Microbioma, and Diabetes in Aging. CURRENT GERIATRICS REPORTS 2020. [DOI: 10.1007/s13670-020-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|