1
|
Lee NY, Ture HY, Lee EJ, Jang JA, Kim G, Nam EJ. Syndecan-1 Plays a Role in the Pathogenesis of Sjögren's Disease by Inducing B-Cell Chemotaxis through CXCL13-Heparan Sulfate Interaction. Int J Mol Sci 2024; 25:9375. [PMID: 39273320 PMCID: PMC11394922 DOI: 10.3390/ijms25179375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In Sjögren's disease (SjD), the salivary glandular epithelial cells can induce the chemotaxis of B cells by secreting B-cell chemokines such as C-X-C motif chemokine ligand 13 (CXCL13). Syndecan-1 (SDC-1) is a major transmembrane heparan sulfate proteoglycan (HSPG) predominantly expressed on epithelial cells that binds to and regulates heparan sulfate (HS)-binding molecules, including chemokines. We aimed to determine whether SDC-1 plays a role in the pathogenesis of SjD by acting on the binding of HS to B-cell chemokines. To assess changes in glandular inflammation and SDC-1 concentrations in the submandibular gland (SMG) and blood, female NOD/ShiLtJ and sex- and age-matched C57BL/10 mice were used. In the SMG of NOD/ShiLtJ mice, inflammatory responses were identified at 8 weeks of age, but increased SDC-1 concentrations in the SMG and blood were observed at 6 weeks of age, when inflammation had not yet started. As the inflammation of the SMG worsened, the SDC-1 concentrations in the SMG and blood increased. The expression of the CXCL13 and its receptor C-X-C chemokine receptor type 5 (CXCR5) began to increase in the SMG at 6 weeks of age and continued until 12 weeks of age. Immunofluorescence staining in SMG tissue and normal murine mammary gland cells confirmed the co-localization of SDC-1 and CXCL13, and SDC-1 formed a complex with CXCL13 in an immunoprecipitation assay. Furthermore, NOD/ShiLtJ mice were treated with 5 mg/kg HS intraperitoneally thrice per week for 6-10 weeks of age, and the therapeutic effects in the SMG were assessed at the end of 10 weeks of age. NOD/ShiLtJ mice treated with HS showed attenuated salivary gland inflammation with reduced B-cell infiltration, germinal center formation and CXCR5 expression. These findings suggest that SDC-1 plays a pivotal role in the pathogenesis of SjD by binding to CXCL13 through the HS chain.
Collapse
Affiliation(s)
- Nan Young Lee
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Hirut Yadeta Ture
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Eun Ju Lee
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Ji Ae Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Gunwoo Kim
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Eon Jeong Nam
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| |
Collapse
|
2
|
Leisching G, Yennemadi A, Gogan K, Keane J. Interferon α and β induce differential transcriptional and functional metabolic phenotypes in human macrophages and blunt glycolysis in response to antigenic stimuli. Eur J Immunol 2024:e2451032. [PMID: 38993003 DOI: 10.1002/eji.202451032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
The impact of chronic exposure to type I interferons (IFN)-α2a, 2b, and β on macrophage metabolism, intimately linked to macrophage function, is not well understood. This study assesses the nuanced host responses induced by type I IFN cytokines, offering insights into potential therapeutic approaches in diseases associated with these cytokines. Employing a combination of transcriptional profiling and real-time functional analysis, we delineated metabolic reprogramming in response to chronic IFN exposure. Our results reveal distinct transcriptional metabolic profiles between macrophages chronically exposed to IFN-α and IFN-β. IFN-β significantly diminishes the oxygen consumption rate and glycolytic proton extrusion rate in macrophages. Conversely, IFN-α2b decreased parameters of mitochondrial fitness and induced a shift toward glutamine oxidation. Assessing the ability of macrophages to induce glycolysis in response to antigenic stimuli (LPS and iH37Rv), we found that chronic exposure to all IFN subtypes limited glycolytic induction. This study addresses a critical oversight in the literature, where individual roles of IFN subtypes are frequently amalgamated and lack distinction. These findings not only provide novel insights into the divergent effects of IFN-α2a, α2b, and β on macrophage metabolism but also highlight their potential implications for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gina Leisching
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Anjali Yennemadi
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Karl Gogan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Qi W, Tian J, Wang G, Yan Y, Wang T, Wei Y, Wang Z, Zhang G, Zhang Y, Wang J. Advances in cellular and molecular pathways of salivary gland damage in Sjögren's syndrome. Front Immunol 2024; 15:1405126. [PMID: 39050857 PMCID: PMC11266040 DOI: 10.3389/fimmu.2024.1405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disorder characterized by dysfunction of exocrine glands. Primarily affected are the salivary glands, which exhibit the most frequent pathological changes. The pathogenesis involves susceptibility genes, non-genetic factors such as infections, immune cells-including T and B cells, macrophage, dendritic cells, and salivary gland epithelial cells. Inflammatory mediators such as autoantibodies, cytokines, and chemokines also play a critical role. Key signaling pathways activated include IFN, TLR, BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding of these mechanisms is crucial for developing targeted therapeutic interventions. Thus, this study explores the cellular and molecular mechanisms underlying SS-related salivary gland damage, aiming to propose novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wenxia Qi
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yanfeng Yan
- Fourth Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Lanzhou, China
| | - Tao Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yong Wei
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Guohua Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Yuanyuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Jia Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| |
Collapse
|
4
|
Oliveira KB, de Souza FMA, de Sá LBM, Pacheco ALD, Prado MR, de Sousa Rodrigues CF, Bassi ÊJ, Santana-Melo I, Silva-Júnior A, Sabino-Silva R, Shetty AK, de Castro OW. Potential Mechanisms Underlying COVID-19-Mediated Central and Peripheral Demyelination: Roles of the RAAS and ADAM-17. Mol Neurobiol 2024:10.1007/s12035-024-04329-8. [PMID: 38965171 DOI: 10.1007/s12035-024-04329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Demyelination is among the most conspicuous neurological sequelae of SARS-CoV-2 infection (COVID-19) in both the central (CNS) and peripheral (PNS) nervous systems. Several hypotheses have been proposed to explain the mechanisms underlying demyelination in COVID-19. However, none have considered the SARS-CoV-2's effects on the renin-angiotensin-aldosterone system (RAAS). Therefore, our objective in this review is to evaluate how RAAS imbalance, caused by direct and indirect effects of SARS-CoV-2 infection, could contribute to myelin loss in the PNS and CNS. In the PNS, we propose that demyelination transpires from two significant changes induced by SARS-CoV-2 infection, which include upregulation of ADAM-17 and induction of lymphopenia. Whereas, in the CNS, demyelination could result from RAAS imbalance triggering two alterations: (1) a decrease in angiotensin type II receptor (AT2R) activity, responsible for restraining defense cells' action on myelin; (2) upregulation of ADAM-17 activity, leading to impaired maturation of oligodendrocytes and myelin formation. Thus, we hypothesize that increased ADAM-17 activity and decreased AT2R activity play roles in SARS-CoV-2 infection-mediated demyelination in the CNS.
Collapse
Affiliation(s)
- Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Fernanda Maria Araujo de Souza
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Letícia Barros Maurício de Sá
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Mariana Reis Prado
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Célio Fernando de Sousa Rodrigues
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Ênio José Bassi
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Abelardo Silva-Júnior
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA.
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, 77843, USA.
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil.
| |
Collapse
|
5
|
Dwivedi SD, Shukla R, Yadav K, Rathor LS, Singh D, Singh MR. Mechanistic insight on the role of iRhom2-TNF-α-BAFF signaling pathway in various autoimmune disorders. Adv Biol Regul 2024; 92:101011. [PMID: 38151421 DOI: 10.1016/j.jbior.2023.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
iRhom2 is a crucial cofactor involved in upregulation of TNF receptors (TNFRs) and the pro-inflammatory cytokine tumor necrosis factor (TNF-) from the cell surface by ADAM17. Tumor necrosis factor- α converting enzyme (TACE) is another name given to ADAM17. Many membrane attached biologically active molecules are cleaved by this enzyme which includes TNFRs and the pro-inflammatory cytokine tumor necrosis factor- α. The TNF receptors are of two types TNFR1 and TNFR2. iRhom2 belongs to the pseudo-protease class of rhomboid family, its abundance is observed in the immune cells. Biological activity of ADAM17 is affected in multiple levels by the iRhom2. ADAM17 is trafficked into the Golgi apparatus by the action of iRhom2, where it gets matured proteolytically and is stimulated to perform its function on the cell surface. This process of activation of ADAM17 results in the protection of the organism from the cascade of inflammatory reactions, as this activation blocks the TNF- α mediated secretion responsible for inflammatory responses produced. Present paper illustrates about the iRhom2-TNF-α-BAFF signaling pathway and its correlation with several autoimmune disorders such as Rheumatoid Arthritis, Systemic Lupus Erythematosus, Hemophilia Arthropathy, Alzheimer's disease and Tylosis with esophageal cancer etc.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Rashi Shukla
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Krishna Yadav
- Raipur Institute of Pharmaceutical Educations and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Lokendra Singh Rathor
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India.
| |
Collapse
|
6
|
Zhang M, Zhao Y, Umar A, Zhang H, Yang L, Huang J, Long Y, Yu Z. Comparative analysis of microbial composition and functional characteristics in dental plaque and saliva of oral cancer patients. BMC Oral Health 2024; 24:411. [PMID: 38575895 PMCID: PMC10993480 DOI: 10.1186/s12903-024-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The oral cavity is home to various ecological niches, each with its own unique microbial composition. Understanding the microbial communities and gene composition in different ecological niches within the oral cavity of oral cancer (OC) patients is crucial for determining how these microbial populations contribute to disease progression. METHODS In this study, saliva and dental plaque samples were collected from patients with OC. Metagenomic sequencing was employed to analyze the microbial community classification and functional composition of the different sample groups. RESULTS The results of the study revealed significant differences in both the function and classification of microbial communities between saliva and dental plaque samples. The diversity of microbial species in saliva was found to be higher compared to that in plaque samples. Notably, Actinobacteria were enriched in the dental plaque of OC patients. Furthermore, the study identified several inter-group differential marker species, including Prevotella intermedia, Haemophilus parahaemolyticus, Actinomyces radius, Corynebacterium matruchitii, and Veillonella atypica. Additionally, 1,353 differential genes were annotated into 23 functional pathways. Interestingly, a significant correlation was observed between differentially labeled species and Herpes simplex virus 1 (HSV-1) infection, which may be related to the occurrence and development of cancer. CONCLUSIONS Significant differences in the microbial and genetic composition of saliva and dental plaque samples were observed in OC patients. Furthermore, pathogenic bacteria associated with oral diseases were predominantly enriched in saliva. The identification of inter-group differential biomarkers and pathways provide insights into the relationship between oral microbiota and the occurrence and development of OC.
Collapse
Affiliation(s)
- Man Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hailin Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lirong Yang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ying Long
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Frodella CM, Liu L, Tan W, Pruett SB, Kaplan BLF. The mechanism by which cannabidiol (CBD) suppresses TNF-α secretion involves inappropriate localization of TNF-α converting enzyme (TACE). Cell Immunol 2024; 397-398:104812. [PMID: 38245915 PMCID: PMC10947891 DOI: 10.1016/j.cellimm.2024.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis sativa that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.
Collapse
Affiliation(s)
- Christa M Frodella
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Liyuan Liu
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Stephen B Pruett
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
8
|
Stalin J, Coquoz O, Jeitziner Marcone R, Jemelin S, Desboeufs N, Delorenzi M, Blot-Chabaud M, Imhof BA, Ruegg C. Targeting of the NOX1/ADAM17 Enzymatic Complex Regulates Soluble MCAM-Dependent Pro-Tumorigenic Activity in Colorectal Cancer. Biomedicines 2023; 11:3185. [PMID: 38137406 PMCID: PMC10740863 DOI: 10.3390/biomedicines11123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The melanoma cell adhesion molecule, shed from endothelial and cancer cells, is a soluble growth factor that induces tumor angiogenesis and growth. However, the molecular mechanism accounting for its generation in a tumor context is still unclear. To investigate this mechanism, we performed in vitro experiments with endothelial/cancer cells, gene expression analyses on datasets from human colorectal tumor samples, and applied pharmacological methods in vitro/in vivo with mouse and human colorectal cancer cells. We found that soluble MCAM generation is governed by ADAM17 proteolytic activity and NOX1-regulating ADAM17 expression. The treatment of colorectal tumor-bearing mice with pharmacologic NOX1 inhibitors or tumor growth in NOX1-deficient mice reduced the blood concentration of soluble MCAM and abrogated the anti-tumor effects of anti-soluble MCAM antibodies while ADAM17 pharmacologic inhibitors reduced tumor growth and angiogenesis in vivo. Especially, the expression of MCAM, NOX1, and ADAM17 was more prominent in the angiogenic, colorectal cancer-consensus molecular subtype 4 where high MCAM expression correlated with angiogenic and lymphangiogenic markers. Finally, we demonstrated that soluble MCAM also acts as a lymphangiogenic factor in vitro. These results identify a role for NOX1/ADAM17 in soluble MCAM generation, with potential clinical therapeutic relevance to the aggressive, angiogenic CMS4 colorectal cancer subtype.
Collapse
Affiliation(s)
- Jimmy Stalin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
- C2VN, Inserm 1263, Inra 1260, UFR Pharmacie, Aix-Marseille University, 27 Bd J. Moulin, 13005 Marseille, France;
| | - Oriana Coquoz
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| | - Rachel Jeitziner Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.M.); (M.D.)
| | - Stephane Jemelin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
| | - Nina Desboeufs
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.M.); (M.D.)
| | - Marcel Blot-Chabaud
- C2VN, Inserm 1263, Inra 1260, UFR Pharmacie, Aix-Marseille University, 27 Bd J. Moulin, 13005 Marseille, France;
| | - Beat A. Imhof
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
| | - Curzio Ruegg
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| |
Collapse
|
9
|
Sikora H, Gruba N, Wysocka M, Piwkowska A, Lesner A. Optimization of fluorescent substrates for ADAM17 and their utility in the detection of diabetes. Anal Biochem 2023; 681:115337. [PMID: 37783443 DOI: 10.1016/j.ab.2023.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ADAM17 (a disintegrin and metalloproteinase 17) is a sheddase that releases various types of membrane-associated proteins, including adhesive molecules, cytokines and their receptors, and inflammatory mediators. Evidence suggests that the enzyme is involved in the proteolytic cleavage of antiaging transmembrane protein Klotho (KL). What is more, reduced serum and urinary KL levels are observed in the early stages of chronic kidney disease. This study aimed to optimise the ADAM17 specific and selective fluorescent substrates. Then, the obtained substrate was used to detect the enzyme in urine samples of patients diagnosed with diabetes. It turned out that in all cases we were able to detect proteolytic activity, which was the opposite of the healthy samples.
Collapse
Affiliation(s)
- Honorata Sikora
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL, 80-308, Gdańsk, Poland.
| | - Magdalena Wysocka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, Wita Stwosza 63, 80-308, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL, 80-308, Gdańsk, Poland
| |
Collapse
|
10
|
Lischka J, Schanzer A, de Gier C, Greber-Platzer S, Zeyda M. Macrophage-associated markers of metaflammation are linked to metabolic dysfunction in pediatric obesity. Cytokine 2023; 171:156372. [PMID: 37729736 DOI: 10.1016/j.cyto.2023.156372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
BACKGPOUND Metabolically driven chronic low-grade adipose tissue inflammation, so-called metaflammation, is a central feature in obesity. This inflammatory tone is largely driven by adipose tissue macrophages (ATM), which express pro- and anti-inflammatory markers and cytokines such as, e.g., IL-1 receptor antagonist (IL-1RA), CD163 and osteopontin (OPN). Metaflammation ultimately leads to the development of cardiometabolic diseases. This study aimed to evaluate the association between selected adipose tissue macrophage-associated markers and metabolic comorbidities in pediatric obesity. METHODS From a pediatric cohort with obesity (n = 108), clinically thoroughly characterized including diverse routine blood parameters, oral glucose tolerance test and liver MRI, plasma IL-1RA, soluble (s)CD163 and OPN were measured by ELISA. RESULTS We observed significantly higher IL-1RA, sCD163, and OPN levels in the plasma of children with metabolic-dysfunction associated fatty liver disease (MAFLD) and metabolic syndrome. Moreover, IL-1RA and sCD163 correlated with hepatic disease and apoptosis markers alanine aminotransferase and CK-18. IL-1RA concentrations additionally correlated with insulin resistance, while children with disturbed glucose metabolism had significantly higher levels of sCD163. CONCLUSION MAFLD and other metabolic disorders in pediatric patients with obesity are associated with an elevation of adipose tissue macrophage-related inflammation markers.
Collapse
Affiliation(s)
- Julia Lischka
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria; Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Schanzer
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Charlotte de Gier
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Susanne Greber-Platzer
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maximilian Zeyda
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Sisto M, Lisi S. Towards a Unified Approach in Autoimmune Fibrotic Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109060. [PMID: 37240405 DOI: 10.3390/ijms24109060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmunity is a chronic process resulting in inflammation, tissue damage, and subsequent tissue remodelling and organ fibrosis. In contrast to acute inflammatory reactions, pathogenic fibrosis typically results from the chronic inflammatory reactions characterizing autoimmune diseases. Despite having obvious aetiological and clinical outcome distinctions, most chronic autoimmune fibrotic disorders have in common a persistent and sustained production of growth factors, proteolytic enzymes, angiogenic factors, and fibrogenic cytokines, which together stimulate the deposition of connective tissue elements or epithelial to mesenchymal transformation (EMT) that progressively remodels and destroys normal tissue architecture leading to organ failure. Despite its enormous impact on human health, there are currently no approved treatments that directly target the molecular mechanisms of fibrosis. The primary goal of this review is to discuss the most recent identified mechanisms of chronic autoimmune diseases characterized by a fibrotic evolution with the aim to identify possible common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| |
Collapse
|
12
|
Ghareeb D, El-Zeftawy M, Balbaa M. The Hepatotoxicity of Nigella sativa Oil Linked to the Route of Administration. THE NATURAL PRODUCTS JOURNAL 2023; 13. [DOI: 10.2174/2210315512666220519092602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 08/27/2024]
Abstract
Background:
Even Nigella sativa oil (NSO) has several pharmacological effects; the route
of administration is critical to obtain the desired activity in which intraperitoneal injection (IP) of oil
recruits macrophages and induces inflammation.
Objective:
The current study aimed to determine the best administration route of NSO in rats either
oral or IP.
Methods:
The components of NSO, routine blood analyses, hepatic oxidative stress and proinflammatory
parameters, and liver histopathological study were evaluated.
Results:
NSO contained 32.14% E,E,Z- 1, 3 , 12- nonadecatriene- 5, 14 diol, 25% thymoquinone (TQ)
and 3.74% dimethyl sulfoxide (DMSO). In addition, the rats who received IP injection of NSO
showed an increase in hepatic enzymes, lipid profiles, oxidative stress, and inflammatory markers.
This was associated with hepatic up-regulation of the A disintegrin and metalloproteinase 17 (ADAM-
17) genes, which are corroborated by a reduction in hepatic tissue inhibitor of metalloproteinase 3
(TIMP-3) concentration. These indications were seen in rats given a small amount of DMSO (NSO
vehicle), indicating that NSO-oral delivery was safer than IP.
Conclusion:
NSO-IP administration promotes the hepatic oxidative stress-inflammation axis; thus,
NSO is a generally safe chemical, especially when administered orally to experimental animals.
Collapse
Affiliation(s)
- Doaa Ghareeb
- Department
of Biochemistry, Biological Screening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria,
Egypt
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa El-Zeftawy
- Department of Biochemistry, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
- Department
of Biochemistry, Biological Screening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria,
Egypt
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Zhang X, Guo C. Recent advances in inhibition of porcine reproductive and respiratory syndrome virus through targeting CD163. Front Microbiol 2022; 13:1006464. [PMID: 36187992 PMCID: PMC9522899 DOI: 10.3389/fmicb.2022.1006464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has plagued the pig industry for more than 30 years and causes great economic losses. At present different commercial vaccines are available but limited tools. Until now at least six potential host factors are identified as the key receptors for PRRSV infection. Among them, CD163 molecule is the most important and critical in PRRSV life cycle responsible for mediating virus uncoating and genome release. It determines the susceptibility of target cells to the virus. Several PRRSV non-permissive cells (such as PK-15, 3D4/21, and BHK-21) are demonstrated to become completely susceptible to PRRSV infection in the presence of expression of porcine CD163 protein. Therefore, CD163 has become the target for the design of novel antiviral molecules disrupting the interaction between CD163 and viral glycoproteins, or the breeding of gene-modified animals against PRRSV infection. In this review, we comprehensively summarize the recent progress in inhibition of PRRSV replication via targeting CD163 receptor. In addition, whether there are other potential molecules interacting with CD163 in the process of uncoating of virus life cycle is also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Chunhe Guo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- *Correspondence: Chunhe Guo,
| |
Collapse
|
14
|
Qi H, Wang P, Sun H, Li X, Hao X, Tian W, Yu L, Tang J, Dong J, Wang H. ADAMDEC1 accelerates GBM progression via activation of the MMP2-related pathway. Front Oncol 2022; 12:945025. [PMID: 36172139 PMCID: PMC9511150 DOI: 10.3389/fonc.2022.945025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ADAM (a disintegrin and metalloprotease) gene-related family including ADAM, ADAMTS, and ADAM-like decysin-1 has been reported to play an important role in the pathogenesis of multiple diseases, including cancers (lung cancer, gliomas, colorectal cancer, and gastrointestinal cancer). However, its biological role in gliomas remains largely unknown. Here, we aimed to investigate the biological functions and potential mechanism of ADAMDEC1 in gliomas. The mRNA and protein expression levels of ADAMDEC1 were upregulated in glioma tissues and cell lines. ADAMDEC1 showed a phenomenon of “abundance and disappear” expression in gliomas and normal tissues in that the higher the expression of ADAMDEC1 presented, the higher the malignancy of gliomas and the worse the prognosis. High expression of ADAMDEC1 was associated with immune response. Knockdown of ADAMDEC1 could decrease the proliferation and colony-forming ability of LN229 cells, whereas ADAMDEC1 overexpression has opposite effects in LN229 cells in vitro. Furthermore, we identified that ADAMDEC1 accelerates GBM progression via the activation of the MMP2 pathway. In the present study, we found that the expression levels of ADAMDEC1 were significantly elevated compared with other ADAMs by analyzing the expression levels of ADAM family proteins in gliomas. This suggests that ADAMDEC1 has potential as a glioma clinical marker and immunotherapy target.
Collapse
Affiliation(s)
- Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Hongliang Sun
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Xiaohan Li
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Xinwei Hao
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, China
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Liting Yu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiajian Tang
- School of Medicine, Southeast University, Nanjing, China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Junhong Dong, ; Hongmei Wang,
| | - Hongmei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Junhong Dong, ; Hongmei Wang,
| |
Collapse
|
15
|
Łukaszewicz-Zając M, Pączek S, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2022; 14:cancers14092307. [PMID: 35565436 PMCID: PMC9101749 DOI: 10.3390/cancers14092307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
The global burden of gastrointestinal (GI) cancers is expected to increase. Therefore, it is vital that novel biomarkers useful for the early diagnosis of these malignancies are established. A growing body of data has linked secretion of proteolytic enzymes, such as metalloproteinases (MMPs), which destroy the extracellular matrix, to pathogenesis of GI tumours. A disintegrin and metalloproteinase (ADAM) proteins belong to the MMP family but have been proven to be unique due to both proteolytic and adhesive properties. Recent investigations have demonstrated that the expression of several ADAMs is upregulated in GI cancer cells. Thus, the objective of this review is to present current findings concerning the role of ADAMs in the pathogenesis of GI cancers, particularly their involvement in the development and progression of colorectal, pancreatic and gastric cancer. Furthermore, the prognostic significance of selected ADAMs in patients with GI tumours is also presented. It has been proven that ADAM8, 9, 10, 12, 15, 17 and 28 might stimulate the proliferation and invasion of GI malignancies and may be associated with unfavourable survival. In conclusion, this review confirms the role of selected ADAMs in the pathogenesis of the most common GI cancers and indicates their promising significance as potential prognostic biomarkers as well as therapeutic targets for GI malignancies. However, due to their non-specific nature, future research on ADAM biology should be performed to elucidate new strategies for the diagnosis of these common and deadly malignancies and treatment of patients with these diseases.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence:
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
16
|
Kaneko T, Horiuchi K, Chijimatsu R, Mori D, Nagata K, Omata Y, Yano F, Inui H, Moro T, Tanaka S, Saito T. Regulation of osteoarthritis development by ADAM17/Tace in articular cartilage. J Bone Miner Metab 2022; 40:196-207. [PMID: 34751824 DOI: 10.1007/s00774-021-01278-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A disintegrin and metalloproteinase 17 (Adam17), also known as TNFα-converting enzyme (Tace), is a membrane-anchored protein involved in shedding of TNF, IL-6 receptor, ligands of epidermal growth factor receptor (EGFR), and Notch receptor. This study aimed to examine the role of Adam17 in adult articular cartilage and osteoarthritis (OA) pathophysiology. MATERIALS AND METHODS Adam17 expression was examined in mouse knee joints during OA development. We analyzed OA development in tamoxifen-inducible chondrocyte-specific Adam17 knockout mice of a resection of the medial meniscus and medial collateral ligament (medial) model, destabilization of the medial meniscus (DMM) model, and aging model. We analyzed downstream pathways by in vitro experiments, and further performed intra-articular administration of an Adam17 inhibitor TAPI-0 for surgically induced mouse OA. RESULTS Adam17 expression in mouse articular cartilage was increased by OA progression. In all models, Adam17 knockout mice showed ameliorated progression of articular cartilage degradation. Adam17 knockout decreased matrix metallopeptidase 13 (Mmp13) expression in both in vivo and in vitro experiments, whereas Adam17 activation by phorbol-12-myristate-13-acetate (PMA) increased Mmp13 and decreased aggrecan in mouse primary chondrocytes. Adam17 activation enhanced release of soluble TNF and transforming growth factor alpha, a representative EGF ligand, from mouse primary chondrocytes, while it did not change release of soluble IL-6 receptor or nuclear translocation of Notch1 intercellular domain. Intra-articular administration of the Adam17 inhibitor ameliorated OA progression. CONCLUSIONS This study demonstrates regulation of OA development by Adam17, involvement of EGFR and TNF pathways, and the possibility of Adam17 as a therapeutic target for OA.
Collapse
Affiliation(s)
- Taizo Kaneko
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, 359-8513, Japan
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daisuke Mori
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kosei Nagata
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasunori Omata
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Inui
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toru Moro
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
17
|
Almishri W, Swain LA, D'Mello C, Le TS, Urbanski SJ, Nguyen HH. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol 2022; 12:779119. [PMID: 35095853 PMCID: PMC8793775 DOI: 10.3389/fimmu.2021.779119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a ubiquitously expressed membrane-bound enzyme that mediates shedding of a wide variety of important regulators in inflammation including cytokines and adhesion molecules. Hepatic expression of numerous cytokines and adhesion molecules are increased in cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), however, the pathophysiological role of ADAM17 in regulating these conditions remains unknown. Therefore, we evaluated the role of ADAM17 in a mouse model of cholestatic liver injury due to bile duct ligation (BDL). We found that BDL enhanced hepatic ADAM17 protein expression, paralleled by increased ADAM17 bioactivity. Moreover, inhibition of ADAM17 bioactivity with the specific inhibitor DPC 333 significantly improved both biochemical and histological evidence of liver damage in BDL mice. Patients with cholestatic liver disease commonly experience adverse behavioral symptoms, termed sickness behaviors. Similarly, BDL in mice induces reproducible sickness behavior development, driven by the upregulated expression of cytokines and adhesion molecules that are in turn regulated by ADAM17 activity. Indeed, inhibition of ADAM17 activity significantly ameliorated BDL-associated sickness behavior development. In translational studies, we evaluated changes in ADAM17 protein expression in liver biopsies obtained from patients with PBC and PSC, compared to normal control livers. PSC and PBC patients demonstrated increased hepatic ADAM17 expression in hepatocytes, cholangiocytes and in association with liver-infiltrating immune cells compared to normal controls. In summary, cholestatic liver injury in mice and humans is associated with increased hepatic ADAM17 expression. Furthermore, inhibition of ADAM17 activity improves both cholestatic liver injury and associated sickness behavior development, suggesting that ADAM17 inhibition may represent a novel therapeutic approach for treating patients with PBC/PSC.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam A Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyson S Le
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan J Urbanski
- Department of Pathology & Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henry H Nguyen
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Krauss PL, Pfeiffenberger M, Damerau A, Buttgereit T, Chen Y, Gaber T, Buttgereit F. Production of IL-6 and Phagocytosis Are the Most Resilient Immune Functions in Metabolically Compromised Human Monocytes. Front Immunol 2021; 12:730672. [PMID: 34737742 PMCID: PMC8562108 DOI: 10.3389/fimmu.2021.730672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/01/2021] [Indexed: 01/23/2023] Open
Abstract
At sites of inflammation, monocytes carry out specific immune functions while facing challenging metabolic restrictions. Here, we investigated the potential of human monocytes to adapt to conditions of gradually inhibited oxidative phosphorylation (OXPHOS) under glucose free conditions. We used myxothiazol, an inhibitor of mitochondrial respiration, to adjust two different levels of decreased mitochondrial ATP production. At these levels, and compared to uninhibited OXPHOS, we assessed phagocytosis, production of reactive oxygen species (ROS) through NADPH oxidase (NOX), expression of surface activation markers CD16, CD80, CD11b, HLA-DR, and production of the inflammatory cytokines IL-1β, IL-6 and TNF-α in human monocytes. We found phagocytosis and the production of IL-6 to be least sensitive to metabolic restrictions while surface expression of CD11b, HLA-DR, production of TNF-α, IL-1β and production of ROS through NOX were most compromised by inhibition of OXPHOS in the absence of glucose. Our data demonstrate a short-term hierarchy of immune functions in human monocytes, which represents novel knowledge potentially leading to the development of new therapeutics in monocyte-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Pierre-Louis Krauss
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Moritz Pfeiffenberger
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Thomas Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Dermatology, Venerology, and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuling Chen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|
20
|
ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J Clin Med 2021; 10:jcm10153373. [PMID: 34362154 PMCID: PMC8347979 DOI: 10.3390/jcm10153373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
For decades, metalloproteinase 17 (ADAM17) has been the goal of wide investigation. Since its discovery as the tumour necrosis factor-α convertase, it has been studied as the main drug target, especially in the context of inflammatory conditions and tumour. In fact, evidence is mounting to support a key role of ADAM17 in the induction of the proliferation, migration and progression of tumour cells and the trigger of the pro-fibrotic process during chronic inflammatory conditions; this occurs, probably, through the activation of epithelial-to-mesenchymal transition (EMT). EMT is a central morphologic conversion that occurs in adults during wound healing, tumour progression and organ fibrosis. EMT is characterised by the disassembly of cell–cell contacts, remodelling of the actin cytoskeleton and separation of cells, and generates fibroblast-like cells that express mesenchymal markers and have migratory properties. This transition is characterised by loss of epithelial proteins such as E-cadherin and the acquisition of new mesenchymal markers, including vimentin and a-smooth muscle actin. The present review discusses the current understanding of molecular mechanisms involved in ADAM17-dependent EMT in order to individuate innovative therapeutic strategies using ADAM17-related pathways.
Collapse
|
21
|
Kavarthapu A, Gurumoorthy K. Linking chronic periodontitis and oral cancer: A review. Oral Oncol 2021; 121:105375. [PMID: 34140233 DOI: 10.1016/j.oraloncology.2021.105375] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
The aim of this article is to survey the accessible writing on the pathogenetic systems engaged with the relationship between oral malignancy and periodontitis. Gingival tissue contains multiple microbiota, which can induce inflammatory reactions. This reaction plays a crucial role in assessing the susceptibility of patients to periodontal diseases. The link between chronic periodontitis and the risk of malignancy through this inflammation of the affected epithelium have been studied thoroughly. Many studies have reported that, chronic periodontitis has systemic influence which has high risk of developing different types of cancers. Also, various confounding factors such as consumption of alcohol, smoking, diet, age and gender have been found to be associated with both chronic periodontitis and oral cancer. An online quest for a wide range of articles distributed was started utilizing MEDLINE/PubMed, with the keywords, for example, 'oral squamous cell carcinoma (OSCC)', 'oral microbiota,' 'microorganisms and malignancy and Porphyromonas gingivalis. This review aimed to study the current literature linking chronic periodontitis and oral cancer.
Collapse
Affiliation(s)
- Avinash Kavarthapu
- Department of Periodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences. Chennai, India.
| | - Kaarthikeyan Gurumoorthy
- Department of Periodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences. Chennai, India.
| |
Collapse
|
22
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Couselo-Seijas M, Almengló C, M Agra-Bermejo R, Luis Fernandez Á, Alvarez E, R González-Juanatey J, Eiras S. Higher ACE2 expression levels in epicardial cells than subcutaneous stromal cells from patients with cardiovascular disease: Diabetes and obesity as possible enhancer. Eur J Clin Invest 2021; 51:e13463. [PMID: 33251580 PMCID: PMC7744875 DOI: 10.1111/eci.13463] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
AIMS Obesity, diabetes and cardiovascular disease are associated with COVID-19 risk and severity. Because epicardial adipose tissue (EAT) expresses ACE2, we wanted to identify the main factors associated with ACE2 levels and its cleavage enzyme, ADAM17, in epicardial fat. MATERIALS AND METHODS Epicardial and subcutaneous fat biopsies were obtained from 43 patients who underwent open-heart surgery. From 36 patients, biopsies were used for RNA expression analysis by real-time PCR of ACE1, ACE2 and ADAM17. From 8 patients, stromal vascular cells were submitted to adipogenesis or used for studying the treatment effects on gene expression levels. Soluble ACE2 was determined in supernatants by ELISA. RESULTS Epicardial fat biopsies expressed higher levels of ACE2 (1.53 [1.49-1.61] vs 1.51 [1.47-1.56] a.u., P < .05) and lower ADAM17 than subcutaneous fat (1.67 [1.65-1.70] vs 1.70 [1.66-1.74] a.u., P < .001). Both genes were increased in epicardial fat from patients with type 2 diabetes mellitus (T2DM) (1.62 [1.50-2.28] vs 1.52 [1.49-1.55] a.u., P = .05 for ACE2 and 1.68 [1.66-1.78] vs 1.66 [1.63-1.69] a.u., P < .05 for ADAM17). Logistic regression analysis determined that T2DM was the main associated factor with epicardial ACE2 levels (P < .01). The highest ACE2 levels were found on patients with diabetes and obesity. ACE1 and ACE2 levels were not upregulated by antidiabetic treatment (metformin, insulin or thiazolidinedione). Its cellular levels, which were higher in epicardial than in subcutaneous stromal cells (1.61 [1.55-1.63] vs 1 [1-1.34]), were not correlated with the soluble ACE2. CONCLUSION Epicardial fat cells expressed higher levels of ACE2 in comparison with subcutaneous fat cells, which is enhanced by diabetes and obesity presence in patients with cardiovascular disease. Both might be risk factors for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marinela Couselo-Seijas
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Almengló
- University of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
| | - Rosa M Agra-Bermejo
- Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| | - Ángel Luis Fernandez
- University of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain.,Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ezequiel Alvarez
- University of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| | - Jose R González-Juanatey
- University of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| | - Sonia Eiras
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
24
|
Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 2020; 41:1539-1546. [PMID: 33110240 PMCID: PMC7588589 DOI: 10.1038/s41401-020-00554-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) and its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the greatest current threat to global public health. The highly infectious SARS-CoV-2 virus primarily attacks pulmonary tissues and impairs gas exchange leading to acute respiratory distress syndrome (ARDS) and systemic hypoxia. The current pharmacotherapies for COVID-19 largely rely on supportive and anti-thrombi treatment and the repurposing of antimalarial and antiviral drugs such as hydroxychloroquine and remdesivir. For a better mechanistic understanding of COVID-19, our present review focuses on its primary pathophysiologic features: hypoxia and cytokine storm, which are a prelude to multiple organ failure and lethality. We discussed a possible link between the activation of hypoxia inducible factor 1α (HIF-1α) and cell entry of SARS-CoV-2, since HIF-1α is shown to suppress the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) and upregulate disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). In addition, the protein targets of HIF-1α are involved with the activation of pro-inflammatory cytokine expression and the subsequent inflammatory process. Furthermore, we hypothesized a potential utility of so-called "hypoxic conditioning" to activate HIF-1α-induced cytoprotective signaling for reduction of illness severity and improvement of vital organ function in patients with COVID-19. Taken together, we would propose further investigations into the hypoxia-related molecular mechanisms, from which novel targeted therapies can be developed for the improved management of COVID-19.
Collapse
|
25
|
Functional Characterization of Colon-Cancer-Associated Variants in ADAM17 Affecting the Catalytic Domain. Biomedicines 2020; 8:biomedicines8110463. [PMID: 33143292 PMCID: PMC7692748 DOI: 10.3390/biomedicines8110463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Although extensively investigated, cancer is still one of the most devastating and lethal diseases in the modern world. Among different types, colorectal cancer (CRC) is most prevalent and mortal, making it an important subject of research. The metalloprotease ADAM17 has been implicated in the development of CRC due to its involvement in signaling pathways related to inflammation and cell proliferation. ADAM17 is capable of releasing membrane-bound proteins from the cell surface in a process called shedding. A deficiency of ADAM17 activity has been previously shown to have protective effects against CRC in mice, while an upregulation of ADAM17 activity is suspected to facilitate tumor development. In this study, we characterize ADAM17 variants found in tissue samples of cancer patients in overexpression studies. We here focus on point mutations identified within the catalytic domain of ADAM17 and could show a functional dysregulation of the CRC-associated variants. Since the catalytic domain of ADAM17 is the only region structurally determined by crystallography, we study the effect of each point mutation not only to learn more about the role of ADAM17 in cancer, but also to investigate the structure–function relationships of the metalloprotease.
Collapse
|
26
|
Selective Increment of Synovial Soluble TYRO3 Correlates with Disease Severity and Joint Inflammation in Patients with Rheumatoid Arthritis. J Immunol Res 2020; 2020:9690832. [PMID: 32964059 PMCID: PMC7502136 DOI: 10.1155/2020/9690832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the role of TAM receptors in rheumatoid arthritis (RA) by determining synovial tissue TAM receptor expression, synovial fluid levels of soluble TAM receptors, and the relationship between soluble TAM receptors, joint inflammation and disease activity. Methods TAM receptor expression was determined by immunohistochemistry on the synovium from RA and osteoarthritis (OA) patients. Soluble (s) Tyro3, sAxl, sMer, and their ligand Gas6 were measured by ELISA in the synovial fluid of RA (n = 28) and OA (n = 12) patients and cytokine levels by multiplex immunoassay in RA samples. Correlation analyses were performed among sTAM receptors with local cytokine levels; systemic disease parameters like erythrocyte sedimentation rate (ESR), rheumatoid factor (RF), and anticyclic citrullinated peptide antibodies (ACPA); and disease activity scores (DAS28-ESR) in RA patients. Results TAM receptors were expressed on different locations in the synovial tissue (lining, sublining, and blood vessels), and a similar expression pattern was observed in RA and OA patients. Synovial fluid sTyro3 and sMer were significantly enhanced in RA compared to OA patients, whereas no significant differences in sAxl and Gas6 levels were found. In RA samples, sTyro3 levels, but not sMer, correlated positively with proinflammatory local cytokines and the systemic factor erythrocyte sedimentation rate. Moreover, stratification analysis showed high sTyro3 levels positively correlated with higher DAS28-ESR and in RF and ACPA double positive RA patients. Conclusion sTyro3 in the synovial fluid of RA patients correlates with local inflammatory molecules and systemic disease activity. These findings suggest that the reduced negative control of cell activation by TAM receptors due to their shedding in the synovial fluid, mainly sTyro3, favoring joint inflammation in RA patients.
Collapse
|
27
|
Ni P, Yu M, Zhang R, He M, Wang H, Chen S, Duan G. Prognostic Significance of ADAM17 for Gastric Cancer Survival: A Meta-Analysis. ACTA ACUST UNITED AC 2020; 56:medicina56070322. [PMID: 32610677 PMCID: PMC7404708 DOI: 10.3390/medicina56070322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Background and objectives: The prognostic role of a disintegrin and metalloproteinase (ADAM) 17 has been widely assessed in gastric cancer. However, the results are inconsistent. We performed a meta-analysis to evaluate the prognostic significance of ADAM17 and its association with clinicopathological parameters. Methods: The databases of PubMed, Web of Science, and Embase were searched for relevant articles published up to April 2020. The reported hazard ratios (HRs) and odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were pooled to evaluate the strength of the association. Stata 12.1 was used to perform statistical analyses. Results: Seven studies, including 1757 patients, were screened for the meta-analysis. Compared with the high ADAM17 expression group, the pooled HR was higher in the low ADAM17 expression group (HR = 2.04, 95% CI 1.66–2.50; I2 = 18.1%; p = 0.299). High ADAM17 expression was also related to the tumor node metastasis (TNM) stages (OR = 4.09, 95% CI 1.85–9.04; I2 = 84.1%; p = 0.000), lymph node metastasis (OR = 3.08, 95% CI 1.13–8.36; I2 = 79.7%; p = 0.007), and ages (OR = 1.65, 95% CI 1.24–2.21; I2 = 0%; p = 0.692) of the gastric patients. Conclusions: This meta-analysis revealed that ADAM17 is a significant biomarker for poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Mingyang Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
- College of Public Health, Hainan Medical University, Haikou 571199, China
- Correspondence: ; Tel.: +86-135-2558-3039; Fax: +86-371-6699-7182
| | - Mengya He
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Haiyan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| |
Collapse
|
28
|
Zhu Z, Zhang X, Dong W, Wang X, He S, Zhang H, Wang X, Wei R, Chen Y, Liu X, Guo C. TREM2 suppresses the proinflammatory response to facilitate PRRSV infection via PI3K/NF-κB signaling. PLoS Pathog 2020; 16:e1008543. [PMID: 32401783 PMCID: PMC7250469 DOI: 10.1371/journal.ppat.1008543] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/26/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) serves as an anti-inflammatory receptor, negatively regulating the innate immune response. TREM2 is mainly expressed on dendritic cells and macrophages, the target cells of porcine reproductive and respiratory syndrome virus (PRRSV). Thus, we investigated the potential role of TREM2 in PRRSV infection in porcine alveolar macrophages (PAMs). We found that there was an increased expression of TREM2 upon PRRSV infection in vitro. TREM2 silencing restrained the replication of PRRSV, whereas TREM2 overexpression facilitated viral replication. The cytoplasmic tail domain of TREM2 interacted with PRRSV Nsp2 to promote infection. TREM2 downregulation led to early activation of PI3K/NF-κB signaling, thus reinforcing the expression of proinflammatory cytokines and type I interferons. Due to the enhanced cytokine expression, a disintegrin and metalloproteinase 17 was activated to promote the cleavage of membrane CD163, which resulted in suppression of infection. Furthermore, exogenous soluble TREM2 (sTREM2)-mediated inhibition of PRRSV attachment might be attributed to its competitive binding to viral envelope proteins. In pigs, following PRRSV challenge in vivo, the expression of TREM2 in lungs and lymph nodes as well as the production of sTREM2 were significantly increased. These novel findings indicate that TREM2 plays a role in regulating PRRSV replication via the inflammatory response. Therefore, our work describes a novel antiviral mechanism against PRRSV infection and suggests that targeting TREM2 could be a new approach in the control of the PRRSV infection.
Collapse
Affiliation(s)
- Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xun Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
- * E-mail:
| |
Collapse
|
29
|
Kim HJ, Trinh NT, Choi Y, Kim W, Min KH, Kang SO, Kim JH, Kim HA, Jung JY, Choi IA, Lee KE. <p>ADAM17 Genetic Variants and the Response of TNF-α Inhibitor in Rheumatoid Arthritis Patients</p>. Pharmgenomics Pers Med 2020; 13:81-88. [PMID: 32214841 PMCID: PMC7083627 DOI: 10.2147/pgpm.s235035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose TNF-α is a transmembrane protein which requires cleavage by ADAM17 in order to act systemically. The activation of ADAM17 to generate soluble TNF‑α results in an increased inflammatory activity. We hypothesized that variants spanning the ADAM17 gene contribute towards the observed variation in patient response defined by the number of changes in TNF‑α inhibitors. Patients and Methods Seven single-nucleotide polymorphisms (SNPs) of ADAM17 in 63 patients with rheumatoid arthritis who received TNF-α inhibitors were analyzed: rs57467365, rs62117540, rs117645314, rs6432013, rs532704607, rs117179141, and rs12692386. Univariate and multivariate regression analysis were employed to investigate the independent predictable factors for changes in TNF-α inhibitors. Results ADAM17 rs117645314 and rs117179141 showed significant association with the number of changes in TNF-α inhibitors. Patients with GA in rs117645314 and AT in rs117179141 had significantly higher chance of two or more changes of TNF-α inhibitors than those with wild homozygous alleles. Multivariate analysis showed that rs117179141 explained 5.7% of the 23.8% variability in TNF-α inhibitor response. Conclusion This study showed that the number of changes in TNF-α inhibitor is associated with ADAM17 SNPs.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Nga Thi Trinh
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Yunjeong Choi
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Woorim Kim
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Kyung Hyun Min
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Sang Oh Kang
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - In Ah Choi
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
- Correspondence: Kyung Eun Lee College of Pharmacy, Chungbuk National University, 660-1 Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si28160, Republic of KoreaTel +82 43 261 3590Fax +82 43 268 2732 Email
| |
Collapse
|
30
|
Zhang L, Liu Y, Zheng HJ, Zhang CP. The Oral Microbiota May Have Influence on Oral Cancer. Front Cell Infect Microbiol 2020; 9:476. [PMID: 32010645 PMCID: PMC6974454 DOI: 10.3389/fcimb.2019.00476] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The oral microbiota plays an important role in the human microbiome and human health, and imbalances between microbes and their hosts can lead to oral and systemic diseases and chronic inflammation, which is usually caused by bacteria and contributes to cancer. There may be a relationship between oral bacteria and oral squamous cell carcinoma (OSCC); however, this relationship has not been thoroughly characterized. Therefore, in this study, we compared the microbiota compositions between tumor sites and opposite normal tissues in buccal mucosal of 50 patients with OSCC using the 16S rDNA sequencing. Richness and diversity of bacteria were significantly higher in tumor sites than in the control tissues. Cancer tissues were enriched in six families (Prevotellaceae, Fusobacteriaceae, Flavobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, and Campylobacteraceae) and 13 genera, including Fusobacterium, Alloprevotella and Porphyromonas. At the species level, the abundances of Fusobacterium nucleatum, Prevotella intermedia, Aggregatibacter segnis, Capnocytophaga leadbetteri, Peptostreptococcus stomatis, and another five species were significantly increased, suggesting a potential association between these bacteria and OSCC. Furthermore, the functional prediction revealed that genes involved in bacterial chemotaxis, flagellar assembly and lipopolysaccharide (LPS) biosynthesis which are associated with various pathological processes, were significantly increased in the OSCC group. Overall, oral bacterial profiles showed significant difference between cancer sites and normal tissue of OSCC patients, which might be onsidered diagnostic markers and treatment targets. Our study has been registered in the Chinese clinical trial registry (ChiCTR1900025253, http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jun Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Chen Ping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
32
|
Camodeca C, Cuffaro D, Nuti E, Rossello A. ADAM Metalloproteinases as Potential Drug Targets. Curr Med Chem 2019; 26:2661-2689. [PMID: 29589526 DOI: 10.2174/0929867325666180326164104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
The ADAMs, together with ADAMTSs and snake venom metalloproteases (SVMPs), are members of the Adamalysin family. Differences in structural organization, functions and localization are known and their domains, catalytic or non-catalytic, show key roles in the substrate recognition and protease activity. Some ADAMs, as membrane-bound enzymes, show sheddase activity. Sheddases are key to modulation of functional proteins such as the tumor necrosis factor, growth factors, cytokines and their receptors, adhesion proteins, signaling molecules and stress molecules involved in immunity. These activities take part in the regulation of several physiological and pathological processes including inflammation, tumor growth, metastatic progression and infectious diseases. On these bases, some ADAMs are currently investigated as drug targets to develop new alternative therapies in many fields of medicine. This review will be focused on these aspects.
Collapse
Affiliation(s)
- Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| |
Collapse
|
33
|
Peng S, Chen SB, Li LD, Tong CF, Li N, Lü SQ, Long M. Impact of real-time shedding on binding kinetics of membrane-remaining L-selectin to PSGL-1. Am J Physiol Cell Physiol 2019; 316:C678-C689. [DOI: 10.1152/ajpcell.00212.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-selectin shedding induced by various cytokines is crucial in activating neutrophils (PMNs) in inflammatory cascade. While the real-time shedding in vivo lasts ~10 min after PMN activation, the impact of time-dependent shedding on binding kinetics of membrane-remaining L-selectins to its ligands is poorly understood at transient or steady state. Here, we developed an in vitro L-selectin shedding dynamics approach, together with competitive assays of cell adhesion, and proposed a theoretical model for quantifying the impact of real-time shedding on the binding kinetics of membrane-remaining L-selectins to P-selectin glycoprotein ligand-1 (PSGL-1). Our data indicated that the extent of L-selectin shedding on PMA activation is higher, but the terminating time is longer for Jurkat cells than those for human PMNs. Meanwhile, fMLF or IL-8 stimulation yields the longer terminating time than that on PMA stimulation but results in a similar shedding extent for PMNs. L-selectin shedding reduces L-selectin-PSGL-1-mediated cell adhesion in three ways: decreasing membrane-anchored L-selectins, increasing soluble L-selectins competitively binding to ligands, and presenting conformational alteration of membrane-remaining L-selectins themselves. Compared with those on intact cells, the binding affinities of membrane-remaining L-selectin-PSGL-1 pairs were all enhanced at initial and lowered at the late shedding phase for both PMN and Jurkat cells even with varied transition time points. The rolling velocities of both PMNs and Jurkat cells were increased following mechanically or biochemically induced shedding of L-selectin under shear flow. These findings help to further our understanding of the function of time-dependent L-selectin shedding during the inflammation cascade.
Collapse
Affiliation(s)
- Shuang Peng
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shen-Bao Chen
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Da Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Chun-Fang Tong
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shou-Qin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Proestling K, Yotova I, Gamperl S, Hauser C, Wenzl R, Schneeberger C, Szabo L, Mairhofer M, Husslein H, Kuessel L. Enhanced expression of TACE contributes to elevated levels of sVCAM-1 in endometriosis. Mol Hum Reprod 2019; 25:76-87. [PMID: 30395261 DOI: 10.1093/molehr/gay042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Are increased sVCAM-1 and sICAM-1 levels associated with tumor necrosis factor-alpha-converting enzyme (TACE) activity in endometriosis? SUMMARY ANSWER Here we provide the first functional evidence that induced TACE activity in human endometriotic epithelial cells is at least in part responsible for the enhanced release of sVCAM-1 from these cells. WHAT IS KNOWN ALREADY We and others have shown that serum-soluble (s)VCAM-1 levels are significantly higher in women with endometriosis, compared to disease-free controls. Experimental evidence exists suggesting a role of sICAM-1 and sVCAM-1 in the pathogenesis of endometriosis. TACE was identified as the protease responsible for phorbol 12-myristate 13-acetate (PMA)-induced VCAM-1 release in murine endothelial cells. Additionally, it has recently been shown that TACE is upregulated in the endometrial luminal epithelium of the mid-secretory phase in infertile women. STUDY DESIGN, SIZE, DURATION This study was conducted at the Tertiary Endometriosis Referral Center of the Medical University of Vienna. Samples from a total number of 97 women were collected between July 2013 and September 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS After complete surgical exploration of the abdominopelvic cavity, 49 women with histologically proven endometriosis and 48 endometriosis-free control women were enrolled. Each participating woman contributed only one sample of eutopic endometrium and normal peritoneum, and some of the women with endometriosis contributed samples of diverse types of endometriotic lesions (in total 52 ectopic samples). Among the 49 women with endometriosis, 36 matched samples of endometriotic lesions and corresponding eutopic endometrium were collected. In order to detect sVCAM-1 and TACE protein by ELISA, peritoneal fluid (PF) samples were collected from 44 cases and 32 controls during surgery. Expression of TACE mRNA was analyzed by qRT-PCR in 111 endometrium tissue samples (28 eutopic control samples, 33 eutopic samples from women with endometriosis, 50 ectopic samples from lesions) and 37 healthy peritoneum samples. Immunohistochemistry was performed in 123 tissue samples (39 eutopic control samples, 42 eutopic samples from women with endometriosis, 42 ectopic samples from lesions) and the relation between tissue TACE protein levels and sVCAM-1 secretion was examined. PMA-induced sVCAM-1 release, and TACE- and VCAM-1-transcripts or proteins were measured in an immortalized endometriotic epithelial cell line (11Z) pre-incubated either with TACE inhibitors or following TACE siRNA knockdown. MAIN RESULTS AND THE ROLE OF CHANCE Here, we demonstrate that TACE protein is overexpressed in epithelium of tissue samples of both eutopic endometrium and ectopic lesions of women with endometriosis compared to disease-free controls (P < 0.001 both) and that the overexpression of the protein in the lesions is due to activation of TACE gene transcription (P < 0.001). Moreover, epithelial TACE protein was significantly higher in ectopic samples than in corresponding eutopic tissue of women with the disease (P < 0.001). High endometrial tissue TACE protein expression correlated with higher serum sVCAM-1 levels (P < 0.05) but not with sICAM-1 levels. Inhibition of TACE either by TACE inhibitors or by TACE siRNA knockdown resulted in decreased PMA-induced shedding of sVCAM-1 in vitro (P < 0.005 or P < 0.01, respectively), but the TACE inhibitors did not affect transcription of TACE or VCAM-1. Additionally, we observed an upregulation of TACE in proliferative endometrial epithelium of infertile (P < 0.005), compared to fertile women. TACE was increased in infertile women with endometriosis (P = 0.051) but not in infertile women without endometriosis. LIMITATIONS, REASONS FOR CAUTION Albeit well characterized, our control population included women with other gynecologic diseases, which may have impacted the levels of sVCAM-1 and tissue TACE expression levels, e.g. benign ovarian cysts or uterine fibroids. Thus, the results of our analysis have to be interpreted carefully and in the context of the current experimental settings. WIDER IMPLICATIONS OF THE FINDINGS The dysregulation of TACE substrate shedding represents a promising yet relatively unexplored area of endometriosis progression and could serve as a basis for the development of new treatments of the disease. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by the Ingrid Flick Foundation. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Katharina Proestling
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Christoph Hauser
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Rene Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Christian Schneeberger
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Ladislaus Szabo
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Mario Mairhofer
- TIMed CENTER, University of Applied Sciences Upper Austria, Linz, Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Lorenz Kuessel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| |
Collapse
|
35
|
Zhao Z, Kesti T, Uğurlu H, Baur AS, Fagerlund R, Saksela K. Tyrosine phosphorylation directs TACE into extracellular vesicles via unconventional secretion. Traffic 2019; 20:202-212. [PMID: 30569492 DOI: 10.1111/tra.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
When studying how HIV-1 Nef can promote packaging of the proinflammatory transmembrane protease TACE (tumor necrosis factor-α converting enzyme) into extracellular vesicles (EVs) we have revealed a novel tyrosine kinase-regulated unconventional protein secretion (UPS) pathway for TACE. When TACE was expressed without its trafficking cofactor iRhom allosteric Hck activation by Nef triggered translocation of TACE into EVs. This process was insensitive to blocking of classical secretion by inhibiting endoplasmic reticulum (ER) to Golgi transport, and involved a distinct form of TACE devoid of normal glycosylation and incompletely processed for prodomain removal. Like most other examples of UPS this process was Golgi reassembly stacking protein (GRASP)-dependent but was not associated with ER stress. These data indicate that Hck-activated UPS provides an alternative pathway for TACE secretion that can bypass iRhom-dependent ER to Golgi transfer, and suggest that tyrosine phosphorylation might have a more general role in regulating UPS.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Kesti
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andreas S Baur
- Department of Dermatology, Translational Research Center, University Hospital Erlangen, Erlangen, Germany
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
36
|
Dong W, Liu L, Dou Y, Xu M, Liu T, Wang S, Zhang Y, Deng B, Wang B, Cao H. Deoxycholic acid activates epidermal growth factor receptor and promotes intestinal carcinogenesis by ADAM17-dependent ligand release. J Cell Mol Med 2018; 22:4263-4273. [PMID: 29956475 PMCID: PMC6111862 DOI: 10.1111/jcmm.13709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
High fat diet is implicated in the elevated deoxycholic acid (DCA) in the intestine and correlated with increased colon cancer risk. However, the potential mechanisms of intestinal carcinogenesis by DCA remain unclarified. Here, we investigated the carcinogenic effects and mechanisms of DCA using the intestinal tumour cells and Apcmin/+ mice model. We found that DCA could activate epidermal growth factor receptor (EGFR) and promote the release of EGFR ligand amphiregulin (AREG), but not HB‐EGF or TGF‐α in intestinal tumour cells. Moreover, ADAM‐17 was required in DCA‐induced promotion of shedding of AREG and activation of EGFR/Akt signalling pathway. DCA significantly increased the multiplicity of intestinal tumours and accelerated adenoma‐carcinoma sequence in Apcmin/+ mice. ADAM‐17/EGFR signalling axis was also activated in intestinal tumours of DCA‐treated Apcmin/+ mice, whereas no significant change occurred in tumour adjacent tissues after DCA exposure. Conclusively, DCA activated EGFR and promoted intestinal carcinogenesis by ADAM17‐dependent ligand release.
Collapse
Affiliation(s)
- Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Dou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Baoru Deng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Gardiner EE. Proteolytic processing of platelet receptors. Res Pract Thromb Haemost 2018; 2:240-250. [PMID: 30046726 PMCID: PMC6055504 DOI: 10.1002/rth2.12096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Platelets have a major role in hemostasis and an emerging role in biological processes including inflammation and immunity. Many of these processes require platelet adhesion and localization at sites of tissue damage or infection and regulated platelet activation, mediated by platelet adheso-signalling receptors, glycoprotein (GP) Ib-IX-V and GPVI. Work from a number of laboratories has demonstrated that levels of these receptors are closely regulated by metalloproteinases of the A Disintegrin And Metalloproteinase (ADAM) family, primarily ADAM17 and ADAM10. It is becoming increasingly evident that platelets have important roles in innate immunity, inflammation, and in combating infection that extends beyond processes of hemostasis. This overview will examine the molecular events that regulate levels of platelet receptors and then assess ramifications for these events in settings where hemostasis, inflammation, and infection processes are triggered.
Collapse
Affiliation(s)
- Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
38
|
Hirayama A, Awano S, Seta Y, Ansai T. ADAM17 regulates TNF-α expression upon lipopolysaccharide stimulation in oral keratinocytes. Biomed Res 2018. [PMID: 28637950 DOI: 10.2220/biomedres.38.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a tumor necrosis factor (TNF)-converting enzyme and was first identified as the enzyme that cleaves the prodomain of TNF-α, a proinflammatory cytokine that plays a central role in immune regulation and a variety of inflammatory responses in destructive periodontal disease. The aim of the present study was to verify the presence of ADAM17 in the gingival epithelium and elucidate its involvement in the release of TNF-αin oral keratinocytes. Immunohistochemical analyses of ADAM17 were performed in gingival tissues obtained from patients and in human oral keratinocytes (HOKs). Additionally, levels of TNF-α and ADAM17 in HOKs exposed to lipopolysaccharide (LPS) were assessed using enzyme-linked immunosorbent assays. Moreover, the effects of ADAM17 inhibitor, matrix metalloproteinase (MMP) inhibitor, and ADAM17 siRNA on TNF-α concentration were assessed. Strong immunoreactivity for ADAM17 was observed in the epithelium of the inflamed gingival tissues and in HOKs. Furthermore, treatment with either ADAM17 inhibitor or ADAM17 siRNA inhibited the generation of TNF-α induced by LPS in HOKs. The present study demonstrates that ADAM17 is strongly expressed in the epithelium of gingival tissues and suggests that ADAM17 may be a key enzyme that regulates the generation of TNF-α in oral keratinocytes.
Collapse
Affiliation(s)
- Aya Hirayama
- Division of Community Oral Health Development, Kyushu Dental University
| | - Shuji Awano
- Department of Clinical Education Development and Research, Kyushu Dental University
| | - Yuji Seta
- Department of Anatomy, Kyushu Dental University
| | - Toshihiro Ansai
- Division of Community Oral Health Development, Kyushu Dental University
| |
Collapse
|
39
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
40
|
Barberà-Cremades M, Gómez AI, Baroja-Mazo A, Martínez-Alarcón L, Martínez CM, de Torre-Minguela C, Pelegrín P. P2X7 Receptor Induces Tumor Necrosis Factor-α Converting Enzyme Activation and Release to Boost TNF-α Production. Front Immunol 2017; 8:862. [PMID: 28791020 PMCID: PMC5523084 DOI: 10.3389/fimmu.2017.00862] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/07/2017] [Indexed: 01/15/2023] Open
Abstract
Tumor necrosis factor (TNF)-α is a major pro-inflammatory cytokine produced in response to toll-like receptor stimulation. TNF-α release is controlled by the activity of TNF-α converting enzyme (TACE) that cut membrane-bound TNF-α to shed its ectodomain as a soluble cytokine. The purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is activated in response to elevated concentrations of extracellular ATP and induces different pro-inflammatory pathways in macrophages to establish an inflammatory response. P2X7 receptor promotes the activation of the inflammasome and the release of interleukin-1β, the production of inflammatory lipids, and the generation of reactive oxygen species. In this study, we analyzed the mechanism of P2X7 receptor responsible of TNF-α release after priming macrophages with LPS doses ≤100 ng/ml. We found that P2X7 receptor increases the extracellular activity of TACE through the release of the mature form of TACE in exosomes. This effect was blocked using P2X7 receptor inhibitors or in macrophages obtained from P2X7 receptor-deficient mice. Elevation of intracellular Ca2+ and p38 mitogen-activated protein kinase after P2X7 receptor activation were involved in the release of TACE, which was able to process TNF-α on nearby expressing cells. Finally, we observed an increase of TNF-α in the peritoneal lavage of mice treated with LPS and ATP. In conclusion, P2X7 receptor induces the release of TACE in exosomes to the extracellular compartment that could amplify the pro-inflammatory signal associated to this receptor. These results are important for the development of therapeutics targeting P2X7 receptor.
Collapse
Affiliation(s)
- Maria Barberà-Cremades
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Ana I Gómez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Carlos M Martínez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Carlos de Torre-Minguela
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
41
|
How tetraspanins shape endothelial and leukocyte nano-architecture during inflammation. Biochem Soc Trans 2017; 45:999-1006. [PMID: 28710286 DOI: 10.1042/bst20170163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/13/2023]
Abstract
Tetraspanins are ubiquitous membrane proteins that induce local membrane curvature and hence co-ordinate cell-to-cell contacts. This review highlights their role in inflammation, which requires control of the nano-architecture of attachment sites between endothelial cells and leukocytes. The active role of endothelial cells in preparing for transmigration of leukocytes and determining the severity of an inflammation is often underscored. A clear hint to endothelial pre-activation is their ability to protrude clustered adhesion proteins upward prior to leukocyte contact. The elevation of molecular adhesive platforms toward the blood stream is crucially dependent on tetraspanins. In addition, leukocytes require tetraspanins for their activation. The example of the B-cell receptor is referenced in some detail here, since it provides deeper insights into the receptor-coreceptor interplay. To lift the role of tetraspanins from an abstract model of inflammation toward a player of clinical significance, two pathologies are analyzed for the known contributions of tetraspanins. The recent publication of the first crystal structure of a full-length tetraspanin revealed a cholesterol-binding site, which provides a strong link to the pathophysiological condition of atherosclerosis. Dysregulation of the inflammatory cascade in autoimmune diseases by endothelial cells is exemplified by the involvement of tetraspanins in multiple sclerosis.
Collapse
|
42
|
Abstract
Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.
Collapse
|
43
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
44
|
Growth Hormone Resistance-Special Focus on Inflammatory Bowel Disease. Int J Mol Sci 2017; 18:ijms18051019. [PMID: 28486400 PMCID: PMC5454932 DOI: 10.3390/ijms18051019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022] Open
Abstract
Growth hormone (GH) plays major anabolic and catabolic roles in the body and is important for regulating several aspects of growth. During an inflammatory process, cells may develop a state of GH resistance during which their response to GH stimulation is limited. In this review, we will emphasize specific mechanisms governing the formation of GH resistance in the active phase of inflammatory bowel disease. The specific molecular effects mediated through individual inflammatory mediators and processes will be highlighted to provide an overview of the transcriptional, translational and post-translational inflammation-mediated impacts on the GH receptor (GHR) along with the impacts on GH-induced intracellular signaling. We also will review GH’s effects on mucosal healing and immune cells in the context of experimental colitis, human inflammatory bowel disease and in patients with short bowel syndrome.
Collapse
|
45
|
Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2200-2209. [PMID: 28460881 DOI: 10.1016/j.bbamcr.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Rhomboids are intramembrane serine proteases that cleave the transmembrane helices of substrate proteins, typically releasing luminal/extracellular domains from the membrane. They are conserved in all branches of life and there is a growing recognition of their association with a wide range of human diseases. Human rhomboids, for example, have been implicated in cancer, metabolic disease and neurodegeneration, while rhomboids in apicomplexan parasites appear to contribute to their invasion of host cells. Recent advances in our knowledge of the structure and the enzyme function of rhomboids, and increasing efforts to identify specific inhibitors, are beginning to provide important insight into the prospect of rhomboids becoming future therapeutic targets. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ulrike Künzel
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
46
|
Abstract
Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines present at elevated levels in the synovial fluid of individuals with confirmed clinical diagnosis of rheumatoid arthritis (RA) and osteoarthritis (OA). The mechanism of action of IL-6 was shown to involve its capacity to interact with a membrane-bound IL-6 receptor (mIL-6Rα), also known as the "classical" IL-6 pathway, or through its interaction with a soluble IL-6 receptor (sIL-6R) termed the "trans-signaling" pathway. Activation of downstream signaling is transduced via these IL-6 receptors and principally involves the Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) signaling pathway that is further regulated by glycoprotein-130 (gp130) interacting with the IL-6/mIL-6R complex. Phosphorylation of STAT proteins via JAK activation facilitates STAT proteins to act as transcription factors in inflammation. However, the biological function(s) of the sIL-6R in human chondrocytes requires further elucidation, although we previously showed that exogenous sIL-6R significantly suppressed the synthesis of neutrophil gelatinase-associated lipocalin (NGAL) in the immortalized line of human chondrocytes, C28/I2. NGAL was shown to regulate the activity of matrix metalloproteinase-9 (MMP-9), whose activity is crucial in OA for the destruction of articular cartilage. The "shedding" of sIL-6R from the plasma membrane is carried out by a family of enzymes known as A Distintegrin and Metalloproteinase (ADAM), which are also elevated in OA. In this paper, we have systematically reviewed the role played by IL-6 in OA. We have proposed that sIL-6R may be an important target for future drug development in OA by ameliorating cartilage extracellular protein degradation.
Collapse
Affiliation(s)
- Graham Akeson
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J. Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, USA
- Correspondence: ; Tel.: +1-(216)-844-7846 or +1-(216)-536-1945; Fax: +1-(216)-844-2288
| |
Collapse
|
47
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Altara R, Booz GW. Deleting Vascular ADAM17 Sheds New Light on Hypertensive Cardiac Hypertrophy. Hypertension 2016; 68:849-50. [DOI: 10.1161/hypertensionaha.116.07715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Raffaele Altara
- From the Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson
| | - George W. Booz
- From the Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson
| |
Collapse
|
49
|
Sisto M, Lorusso L, Lisi S. Interleukin-15 as a potential new target in Sjögren's syndrome-associated inflammation. Pathology 2016; 48:602-7. [PMID: 27567226 DOI: 10.1016/j.pathol.2016.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022]
Abstract
IL-15 is a key regulatory cytokine that shares many biological properties with IL-2. Recently, it has been shown that IL-15 could be up-regulated in T cell-mediated inflammatory disorders, such as rheumatoid arthritis and inflammatory bowel diseases. However, the role and expression of IL-15 in the inflammatory autoimmune disease Sjögren's syndrome (SS) has not been investigated. In the present study we evaluated the expression of IL-15 mRNA and protein in minor salivary gland (MSG) biopsy specimens and in human salivary gland epithelial cell (SGEC) cultures obtained from patients with primary SS (pSS) and compared their expression with that seen in normal healthy control subjects. IL-15 gene and protein analysis revealed that SGEC are able to produce IL-15. Results obtained demonstrated that the number of IL-15(+) cultured SGEC was significantly higher in cells derived from patients with pSS in comparison with SGEC from healthy subjects; similar results were obtained for IL-15 immunoreactivity by using immunohistochemistry that revealed a strong expression both in acinar and in ductal cells from pSS MSG. These studies could provide a rational basis to determine whether IL-15 could be a good candidate for anti-cytokine therapy in chronic inflammatory pSS diseases.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
50
|
A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions. Toxins (Basel) 2016; 8:122. [PMID: 27120619 PMCID: PMC4848645 DOI: 10.3390/toxins8040122] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs' function that have underscored the importance of these proteins in physiological and pathological processes over the years.
Collapse
|