1
|
Repici A, Ardizzone A, Filippone A, Colarossi C, Mare M, Raciti G, Mannino D, Cuzzocrea S, Paterniti I, Esposito E. Interleukin-21 Influences Glioblastoma Course: Biological Mechanisms and Therapeutic Potential. Cells 2023; 12:2284. [PMID: 37759505 PMCID: PMC10526836 DOI: 10.3390/cells12182284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain tumors represent a heterogeneous group of neoplasms involving the brain or nearby tissues, affecting populations of all ages with a high incidence worldwide. Among the primary brain tumors, the most aggressive and also the most common is glioblastoma (GB), a type of glioma that falls into the category of IV-grade astrocytoma. GB often leads to death within a few months after diagnosis, even if the patient is treated with available therapies; for this reason, it is important to continue to discover new therapeutic approaches to allow for a better survival rate of these patients. Immunotherapy, today, seems to be one of the most innovative types of treatment, based on the ability of the immune system to counteract various pathologies, including cancer. In this context, interleukin 21 (IL-21), a type I cytokine produced by natural killer (NK) cells and CD4+ T lymphocytes, appears to be a valid target for new therapies since this cytokine is involved in the activation of innate and adaptive immunity. To match this purpose, our review deeply evaluated how IL-21 could influence the progression of GB, analyzing its main biological processes and mechanisms while evaluating the potential use of the latest available therapies.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Marzia Mare
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Gabriele Raciti
- IOM Ricerca, Via Penninazzo 11, 95029 Viagrande, Italy;
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| |
Collapse
|
2
|
Eivary SHA, Kheder RK, Najmaldin SK, Kheradmand N, Esmaeili SA, Hajavi J. Implications of IL-21 in solid tumor therapy. Med Oncol 2023; 40:191. [PMID: 37249661 DOI: 10.1007/s12032-023-02051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Cancer, the most deadly disease, is known as a recent dilemma worldwide. Presently different treatments are used for curing cancers, especially solid cancers. Because of the immune-enhancing functions of cytokine, IL-21 as a cytokine may have new possibilities to manipulate the immune system in disease conditions, as it stimulates NK and CTL functions and drives IgG antibody production. Indeed, IL-21 has been revealed to elicit antitumor-immune responses in several tumor models. Combining IL-21 with other agents, which target tumor cells, immune-regulatory circuits, or other immune-enhancing molecules enhances this activity. The exciting breakthrough in the results obtained in pre-clinical situations has led to the early outset of present developing clinical trials in cancer patients. In the paper, we have reviewed the function of IL-21 in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Seyed Hossein Abtahi Eivary
- Department of Medical Sciences of Laboratory, Infectious Diseases Research Center, School of Para-Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| |
Collapse
|
3
|
Lin A, Yao J, Cheng Q, Liu Z, Luo P, Zhang J. Mutations Status of NOTCH Signaling Pathway Predict Prognosis of Immune Checkpoint Inhibitors in Colorectal Cancer. J Inflamm Res 2023; 16:1693-1709. [PMID: 37092128 PMCID: PMC10120821 DOI: 10.2147/jir.s394894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose In recent years, tumour immunotherapy has ushered in a new era of oncology treatment. However, the use of immune checkpoint inhibitors (ICIs) in the treatment of CRC remains limited. There is an urgent clinical need for precise biomarkers that can aid in the screening and treatment of CRC subtypes. Therefore, we focused on the NOTCH pathway mutation status and conducted a systematic analysis for its predictive value of ICI therapy efficacy. Methods We collected mutational and clinical data from cohorts of CRC patients treated with ICIs. The relationship between NOTCH pathway mutations (NOTCH-MT) and CRC immunotherapy prognosis was analysed using univariate and multivariate Cox regression models. CRC cohort data from The Cancer Genome Atlas (TCGA) database were combined to obtain a comprehensive overview of immunogenicity and tumour microenvironment (TME) differences among different NOTCH pathway mutation statuses. Results We observed greater infiltration of M1 macrophages, CD8+ T cells, neutrophils, and activated natural killer (NK) cells with NOTCH-MT status. Immunogenicity was also significantly higher in patients with NOTCH-MT, as were tumour mutational burden (TMB), neoantigen load (NAL), and the number of mutations in DNA damage repair (DDR) pathways. Conclusion NOTCH-MT status was strongly associated with the prognosis of CRC patients treated with ICIs and is expected to serve as a novel biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiarong Yao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Peng Luo; Jian Zhang, Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China, Tel +86-18588447321; +86-13925091863, Email ;
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
5
|
Natural killer cell awakening: unleash cancer-immunity cycle against glioblastoma. Cell Death Dis 2022; 13:588. [PMID: 35803912 PMCID: PMC9270460 DOI: 10.1038/s41419-022-05041-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Due to the negligence of the complex tumor immune microenvironment, traditional treatment for glioblastoma has reached its limitation and cannot achieve a satisfying outcome in the past decade. The emergence of immunotherapy based on the theory of cancer-immunity cycle has brought a new dawn to glioblastoma patients. However, the results of most phase II and phase III clinical trials are not optimistic due to the simple focus on T cells activation rather than other immune cells involved in anti-tumor immunity. NK cells play a critical role in both innate and adaptive immunity, having the ability to coordinate immune response in inflammation, autoimmune disease and cancer. They are expected to cooperate with T cells to maximize the anti-tumor immune effect and have great potential in treating glioblastoma. Here, we describe the traditional treatment methods and current immunotherapy strategies for glioblastoma. Then, we list a microenvironment map and discuss the reasons for glioblastoma inhibitory immunity from multiple perspectives. More importantly, we focus on the advantages of NK cells as potential immune regulatory cells and the ways to maximize their anti-tumor immune effect. Finally, our outlook on the directions and potential applications of NK cell-based therapy combining with the advance technologies is presented. This review depicts NK cell awakening as the precondition to unleash the cancer-immunity cycle against glioblastoma and elaborate this idea from biology to clinical treatment.
Collapse
|
6
|
Li M, Sun F, Xu Y, Chen L, Chen C, Cui L, Qian J, Li D, Wang S, Du M. Tim-3 + decidual Mφs induced Th2 and Treg bias in decidual CD4 +T cells and promoted pregnancy maintenance via CD132. Cell Death Dis 2022; 13:454. [PMID: 35550500 PMCID: PMC9098864 DOI: 10.1038/s41419-022-04899-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
T-cell immunoglobulin mucin-3 (Tim-3) plays roles in the functional regulation of both adaptive and innate immune cells and is greatly involved in many diseases. However, the precise roles of Tim-3 on macrophages (Mφs) in pregnancy remain unstated. In the current study, we found the higher frequency of Tim-3+ decidual Mφs (dMφs) in response to trophoblasts. The reduced abundance of Tim-3 on Mφs was accompanied by disordered anti- and pro-inflammatory cytokine profiles in miscarriage. Adoptive transfer of Tim-3+Mφs, but not Tim-3-Mφs, relieved murine embryo absorption induced by Mφ depletion. Our flow cytometry results and the extensive microarray analysis confirmed that Tim-3+ and Tim-3-dMφs were neither precisely pro-inflammatory (M1) nor anti-inflammatory (M2) Mφs. However, with higher CD132 expression, Tim-3+dMφs subset induced Th2 and Treg bias in decidual CD4+T cells and promoted pregnancy maintenance. Blockade of Tim-3 or CD132 pathways leaded to the dysfunction of maternal-fetal tolerance and increased fetal loss. These findings underscored the important roles of Tim-3 in regulating dMφ function and maintaining normal pregnancy, and suggested that Tim-3 on Mφs is a potential biomarker for diagnosis of miscarriage. Our study also emphasized the importance of careful consideration of reproductive safety when choosing immune checkpoint blockade therapies in real world clinical care. Though IL-4 treated Tim-3-Mφs could rescue the fetal resorption induced by Mφ depletion, whether IL-4 represent novel therapeutic strategy to prevent pregnancy loss induced by checkpoint inhibition still needs further research.
Collapse
Affiliation(s)
- Mengdie Li
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Fengrun Sun
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Yuanyuan Xu
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Lanting Chen
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Chunqin Chen
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Liyuan Cui
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Jinfeng Qian
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Dajin Li
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Songcun Wang
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| | - Meirong Du
- grid.11841.3d0000 0004 0619 8943Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, PR China
| |
Collapse
|
7
|
Wolfarth AA, Dhar S, Goon JB, Ezeanya UI, Ferrando-Martínez S, Lee BH. Advancements of Common Gamma-Chain Family Cytokines in Cancer Immunotherapy. Immune Netw 2022; 22:e5. [PMID: 35291658 PMCID: PMC8901704 DOI: 10.4110/in.2022.22.e5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Swati Dhar
- NeoImmuneTech, Inc., Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
8
|
Xiao J, Jiang J, He X, Zhang S, Wang Z, Wang F, Wang L, Guo D. Evaluation of Immunoprotective Effects of Fusobacterium necrophorum Outer Membrane Proteins 43K OMP, Leukotoxin and Hemolysin Multi-Component Recombinant Subunit Vaccine in Mice. Front Vet Sci 2021; 8:780377. [PMID: 34938794 PMCID: PMC8685265 DOI: 10.3389/fvets.2021.780377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
We evaluated the efficacy of three vaccine formulations containing different combinations of proteins (43K OMP, leukotoxin recombinant protein PL4 and hemolysin recombinant protein H2) and killed whole cell Fusobacterium necrophorum in preventing liver abscess. Four subcutaneous vaccines were formulated: vaccine 1 (43K OMP), vaccine 2 (PL4 and H2), vaccine 3 (43K OMP, PL4 and H2), and vaccine 4 (killed whole bacterial cell). 43K OMP, PL4, and H2 proteins were produced by using recombinant protein expression. To evaluate vaccine efficacy, we randomly allocated 50 BALB/c female mice to one of five different treatment groups: PBS control group, vaccine 1, vaccine 2, vaccine 3, and vaccine 4. Mice were vaccinated three times, with 14 days between each immunization. After immunization, the mice were challenged with F. necrophorum. The three key findings of this study are as follows: (1) Vaccine 3 has enabled mice to produce higher antibody titer following bacterial challenge, (2) in the liver pathology of mice, the vaccine 3 liver showed the least pathology, and (3) all four vaccines produced high levels of antibodies and cytokines in mice, but the level of vaccine 3 was the highest. Based on our results, it has been demonstrated that a mixture of F. necrophorum 43K OMP, PL4, and H2 proteins inoculated with mice can achieve protection against liver abscess in mice. Our research may therefore provide the basis for the development of a vaccine against F. necrophorum bovine infections.
Collapse
|
9
|
Ren A, Sun J, Yin W, Westerberg LS, Miller H, Lee P, Candotti F, Guan F, Lei J, Gong Q, Chen Y, Liu C. Signaling networks in B cell development and related therapeutic strategies. J Leukoc Biol 2021; 111:877-891. [PMID: 34528729 DOI: 10.1002/jlb.2ru0221-088rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Farhat AM, Weiner AC, Posner C, Kim ZS, Orcutt-Jahns B, Carlson SM, Meyer AS. Modeling cell-specific dynamics and regulation of the common gamma chain cytokines. Cell Rep 2021; 35:109044. [PMID: 33910015 PMCID: PMC8179794 DOI: 10.1016/j.celrep.2021.109044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/01/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
The γ-chain receptor dimerizes with complexes of the cytokines interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 and their corresponding "private" receptors. These cytokines have existing uses and future potential as immune therapies because of their ability to regulate the abundance and function of specific immune cell populations. Here, we build a binding reaction model for the ligand-receptor interactions of common γ-chain cytokines, which includes receptor trafficking dynamics, enabling quantitative predictions of cell-type-specific response to natural and engineered cytokines. We then show that tensor factorization is a powerful tool to visualize changes in the input-output behavior of the family across time, cell types, ligands, and concentrations. These results present a more accurate model of ligand response validated across a panel of immune cell types as well as a general approach for generating interpretable guidelines for manipulation of cell-type-specific targeting of engineered ligands.
Collapse
Affiliation(s)
- Ali M Farhat
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Adam C Weiner
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Zoe S Kim
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Brian Orcutt-Jahns
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Aaron S Meyer
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
11
|
The Advances and Challenges of NK Cell-Based Cancer Immunotherapy. ACTA ACUST UNITED AC 2021; 28:1077-1093. [PMID: 33652996 PMCID: PMC8025748 DOI: 10.3390/curroncol28020105] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells can be widely applied for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization or human leukocyte antigens-matching. Several NK-based therapeutic approaches have been attempted in clinical practice, but their efficacy is not sufficient to suppress tumor development mainly because of lacking specificity. To this end, the engineering of NK cells with T cell receptor along with CD3 subunits (TCR-NK) has been developed to increase the reactivity and recognition specificity of NK cells toward tumor cells. Here, we review recent advances in redirecting NK cells for cancer immunotherapy and discuss the major challenges and future explorations for their clinical applications.
Collapse
|
12
|
Marton C, Mercier-Letondal P, Galaine J, Godet Y. An unmet need: Harmonization of IL-7 and IL-15 combination for the ex vivo generation of minimally differentiated T cells. Cell Immunol 2021; 363:104314. [PMID: 33677140 DOI: 10.1016/j.cellimm.2021.104314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
T cell-based adoptive cell transfer therapy is now clinically used to fight cancer with CD19-targeting chimeric antigen receptor T cells. The use of other T cell-based immunotherapies relying on antigen-specific T cells, genetically modified or not, is expanding in various neoplastic diseases. T cell manufacturing has evolved through sophisticated processes to produce T cells with improved therapeutic potential. Clinical-grade manufacturing processes associated with these therapies must meet pharmaceutical requirements and therefore be standardized. Here, we focus on the use of cytokines to expand minimally differentiated T cells, as well as their standardization and harmonization in research and clinical settings.
Collapse
Affiliation(s)
- Chrystel Marton
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| |
Collapse
|
13
|
Kim JH, Kim YM, Choi D, Jo SB, Park HW, Hong SW, Park S, Kim S, Moon S, You G, Kang YW, Park Y, Lee BH, Lee SW. Hybrid Fc-fused interleukin-7 induces an inflamed tumor microenvironment and improves the efficacy of cancer immunotherapy. Clin Transl Immunology 2020; 9:e1168. [PMID: 32994996 PMCID: PMC7507498 DOI: 10.1002/cti2.1168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Emerging oncotherapeutic strategies require the induction of an immunostimulatory tumor microenvironment (TME) containing numerous tumor‐reactive CD8+ T cells. Interleukin‐7 (IL‐7), a T‐cell homeostatic cytokine, induces an antitumor response; however, the detailed mechanisms underlying the contributions of the IL‐7 to TME remain unclear. Here, we aimed to investigate the mechanism underlying the induction of antitumor response by hybrid Fc‐fused long‐acting recombinant human IL‐7 (rhIL‐7‐hyFc) through regulation of both adaptive and innate immune cells in the TME. Methods We evaluated rhIL‐7‐hyFc‐mediated antitumor responses in murine syngeneic tumor models. We analysed the cellular and molecular features of tumor‐infiltrating lymphocytes (TILs) and changes in the TME after rhIL‐7‐hyFc treatment. Furthermore, we evaluated the antitumor efficacy of rhIL‐7‐hyFc combined with chemotherapy and checkpoint inhibitors (CPIs). Results Systemic delivery of rhIL‐7‐hyFc induced significant therapeutic benefits by expanding CD8+ T cells with enhanced tumor tropism. In tumors, rhIL‐7‐hyFc increased both tumor‐reactive and bystander CD8+ TILs, all of which displayed enhanced effector functions but less exhausted phenotypes. Moreover, rhIL‐7‐hyFc suppressed the generation of immunosuppressive myeloid cells in the bone marrow of tumor‐bearing mice, resulting in the immunostimulatory TME. Combination therapy with chemotherapy and CPIs, rhIL‐7‐hyFc elicited a strong antitumor response and even under a T lymphopenic condition by restoring CD8+ T cells. When combined with chemotherapy and CPIs, rhIL‐7‐hyFc administration enhanced antitumor response under intact andlymphopenic conditions by restoring CD8+ T cells. Conclusion Taken together, these data demonstrate that rhIL‐7‐hyFc induces antitumor responses by generating T‐cell‐inflamed TME and provide a preclinical proof of concept of immunotherapy with rhIL‐7‐hyFc to enhance therapeutic responses in the clinic.
Collapse
Affiliation(s)
- Ji-Hae Kim
- Laboratory of Cellular Immunology Department of Life Sciences Pohang University of Science and Technology Pohang Korea
| | - Young-Min Kim
- Laboratory of Cellular Immunology Department of Life Sciences Pohang University of Science and Technology Pohang Korea
| | - Donghoon Choi
- Research Institute of NeoImmuneTech, Inc. Rockville MD USA
| | - Saet-Byeol Jo
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Han Wook Park
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Sung-Wook Hong
- Laboratory of T Cell Biology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea.,Department of Microbiology and Immunology Center for Immunology University of Minnesota Medical School Minneapolis MN USA
| | - Sujeong Park
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Sora Kim
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Sookjin Moon
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Gihoon You
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Yeon-Woo Kang
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Yunji Park
- Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| | - Byung Ha Lee
- Research Institute of NeoImmuneTech, Inc. Rockville MD USA
| | - Seung-Woo Lee
- Laboratory of Cellular Immunology Department of Life Sciences Pohang University of Science and Technology Pohang Korea.,Laboratory of Cellular Immunology Division of Integrative Biosciences and Biotechnology Pohang University of Science and Technology Pohang Korea
| |
Collapse
|
14
|
Ma X, Shou P, Smith C, Chen Y, Du H, Sun C, Porterfield Kren N, Michaud D, Ahn S, Vincent B, Savoldo B, Pylayeva-Gupta Y, Zhang S, Dotti G, Xu Y. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat Biotechnol 2020; 38:448-459. [PMID: 32015548 PMCID: PMC7466194 DOI: 10.1038/s41587-019-0398-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cytokines that stimulate T cell proliferation, such as interleukin (IL)-15, have been explored as a means of boosting the antitumor activity of chimeric antigen receptor (CAR) T cells. However, constitutive cytokine signaling in T cells and activation of bystander cells may cause toxicity. IL-23 is a two-subunit cytokine known to promote proliferation of memory T cells and T helper type 17 cells. We found that, upon T cell antigen receptor (TCR) stimulation, T cells upregulated the IL-23 receptor and the IL-23α p19 subunit, but not the p40 subunit. We engineered expression of the p40 subunit in T cells (p40-Td cells) and obtained selective proliferative activity in activated T cells via autocrine IL-23 signaling. In comparison to CAR T cells, p40-Td CAR T cells showed improved antitumor capacity in vitro, with increased granzyme B and decreased PD-1 expression. In two xenograft and two syngeneic solid tumor mouse models, p40-Td CAR T cells showed superior efficacy in comparison to CAR T cells and attenuated side effects in comparison to CAR T cells expressing IL-18 or IL-15.
Collapse
MESH Headings
- Animals
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Cell Proliferation
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-12 Subunit p40/genetics
- Interleukin-12 Subunit p40/metabolism
- Interleukin-23/genetics
- Interleukin-23/metabolism
- Lymphocyte Activation
- Mice
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xingcong Ma
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Oncology, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christof Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongwei Du
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy Porterfield Kren
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Michaud
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuqun Zhang
- Department of Oncology, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Yang Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Zhang M, Li M, Du L, Zeng J, Yao T, Jin Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int J Pharm 2020; 578:119177. [PMID: 32105724 DOI: 10.1016/j.ijpharm.2020.119177] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 01/27/2023]
Abstract
Bacterial therapy is emerging for the treatment of cancers though some scientific and clinical problems have not been addressed. Here, a live drug-loaded carrier, paclitaxel-in-liposome-in-bacteria (LPB), was prepared for inhalation treatment of primary lung cancer, where liposomal paclitaxel (LP) was highly effectively internalized into bacteria (E. coli or L. casei) to get LP-in-E. coli (LPE) or LP-in-L. casei (LPL) by electroporation that had no influence on the growth of these bacteria. Bacteria, LP, the simple mixture of LP and bacteria, and LPB remarkably inhibited the proliferation of A549 lung cancer cells, where LPE was the strongest one. Drug-loaded bacteria delivered the cargos into the cells more quickly than the mixture of drugs and bacteria and the cargos alone. LPE also showed the highest anticancer effect on the rat primary lung cancer among them with the downregulation of VEGF and HIF-1α and the improvement of cancer cell apoptosis after intratracheal administration. Moreover, the bacterial formulations significantly enhanced the expressions of immune markers (TNF-α, IL-4, and IFN-γ) and immune cells (leukocytes and neutrophils). LPB showed much higher bacterial distribution in the lung than other organs after intratracheal administration. LPB is a promising medicine for inhalation treatment of primary lung cancer.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Ji Zeng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Tianbing Yao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China.
| |
Collapse
|
16
|
Hewitt SL, Bai A, Bailey D, Ichikawa K, Zielinski J, Karp R, Apte A, Arnold K, Zacharek SJ, Iliou MS, Bhatt K, Garnaas M, Musenge F, Davis A, Khatwani N, Su SV, MacLean G, Farlow SJ, Burke K, Frederick JP. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci Transl Med 2020; 11:11/477/eaat9143. [PMID: 30700577 DOI: 10.1126/scitranslmed.aat9143] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/31/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Many solid cancers contain dysfunctional immune microenvironments. Immune system modulators that initiate responses to foreign pathogens could be promising candidates for reigniting productive responses toward tumors. Interleukin-1 (IL-1) and IL-12 cytokine family members cooperate at barrier tissues after microbial invasion, in human inflammatory diseases, and in antitumoral immunity. IL-36γ, in classic alarmin fashion, acts in damaged tissues, whereas IL-23 centrally coordinates immune responses to danger signals. In this study, direct intratumoral delivery of messenger RNAs (mRNAs) encoding these cytokines produced robust anticancer responses in a broad range of tumor microenvironments. The addition of mRNA encoding the T cell costimulator OX40L increased complete response rates in treated and untreated distal tumors compared to the cytokine mRNAs alone. Mice exhibiting complete responses were subsequently protected from tumor rechallenge. Treatments with these mRNA mixtures induced downstream cytokine and chemokine expression, and also activated multiple dendritic cell (DC) and T cell types. Consistent with this, efficacy was dependent on Batf3-dependent cross-presenting DCs and cytotoxic CD8+ T cells. IL-23/IL-36γ/OX40L triplet mRNA mixture triggered substantial immune cell recruitment into tumors, enabling effective tumor destruction irrespective of previous tumoral immune infiltrates. Last, combining triplet mRNA with checkpoint blockade led to efficacy in models otherwise resistant to systemic immune checkpoint inhibition. Human cell studies showed similar cytokine responses to the individual components of this mRNA mixture, suggesting translatability of immunomodulatory activity to human patients.
Collapse
Affiliation(s)
| | - Ailin Bai
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Dyane Bailey
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Kana Ichikawa
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - John Zielinski
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Russell Karp
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Ameya Apte
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Kristen Arnold
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Sima J Zacharek
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Maria S Iliou
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Khushbu Bhatt
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Maija Garnaas
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Faith Musenge
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Ashley Davis
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Nikhil Khatwani
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Stephen V Su
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Graham MacLean
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Samuel J Farlow
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Kristine Burke
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
Vuletić A, Jovanić I, Jurišić V, Milovanović Z, Nikolić S, Spurnić I, Konjević G. IL-2 And IL-15 Induced NKG2D, CD158a and CD158b Expression on T, NKT- like and NK Cell Lymphocyte Subsets from Regional Lymph Nodes of Melanoma Patients. Pathol Oncol Res 2020; 26:223-231. [PMID: 29948616 DOI: 10.1007/s12253-018-0444-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 06/01/2018] [Indexed: 01/03/2023]
Abstract
Regional lymph nodes (LN)s represent important immunological barriers in spreading of malignant tumors. However, they are the most frequent early metastatic site in melanoma. Immunomodulatory agents including cytokines have been included in therapy of melanoma and have shown severe side effects and toxicity. In this sense, there is a growing need for bringing these agents to further in vitro testing that may enlighten aspects of their regional application. Therefore, the aim of this study was to investigate the effect of interleukin (IL)-2 and IL-15, the two cytokines with similar immune-enhancing effects, on the expression of activating NKG2D, inhibitory CD158a and CD158b receptors on CD8+ T, NKT-like and NK cell lymphocyte subsets from regional LNs of melanoma patients. In this study, we showed significant effects of IL-2 and IL-15 cytokine treatments on the expression of activating NKG2D and on inhibitory CD158a and CD158b receptors on lymphocytes, CD8+ T, NKT-like and NK cell lymphocyte subsets originating from regional LNs of melanoma patients. Furthermore, IL-2 and IL-15 by inducing the expression of NKG2D activating receptor on innate and on adaptive lymphocyte subsets and by augmenting NK cell antitumor cytotoxicity that correlated with the cytokine-induced NKG2D expression, increased antitumor potential of immune cells in regional LNs of melanoma patients irrespective of LN involvement. These findings indicate the importance of immune cell population from regional LNs of melanoma patients in the development of immune intervention strategies that may if applied locally increase antitumor potential to the level that controls tumor progressions.
Collapse
Affiliation(s)
- Ana Vuletić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia.
| | - Irena Jovanić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Vladimir Jurišić
- Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Zorka Milovanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Srđan Nikolić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Igor Spurnić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Gordana Konjević
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Hulett TW, Fox BA, Messenheimer DJ, Marwitz S, Moudgil T, Afentoulis ME, Wegman KW, Ballesteros-Merino C, Jensen SM. Future Research Goals in Immunotherapy. Surg Oncol Clin N Am 2019; 28:505-518. [DOI: 10.1016/j.soc.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
20
|
Lemarquis AL, Theodors F, Einarsdottir HK, Ludviksson BR. Mapping of Signaling Pathways Linked to sIgAD Reveals Impaired IL-21 Driven STAT3 B-Cell Activation. Front Immunol 2019; 10:403. [PMID: 30936864 PMCID: PMC6431630 DOI: 10.3389/fimmu.2019.00403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Objectives: It has recently been shown that individuals with selective IgA deficiency (sIgAD) have defective B cell responses both to T cell dependent and independent mimicking stimulations. The complex intracellular signaling pathways from different stimuli leading to IgA isotype switching have not been fully elucidated. Thus, the main objective of this study was to delineate these pathways and their potential role in the immunopathology linked to sIgAD. Materials and Methods: PBMCs from 10 individuals with sIgAD and 10 healthy controls (HC) were activated in vitro via either a T cell dependent or independent mimicking stimulation. Intracellular phosphorylation of pSTAT3, pSTAT5, pSTAT6, and as pERK1/2 was evaluated in T and B cells using phosphoflow cytometry. Results: By evaluating T cell dependent cytokine driven pathways linked to IgA isotype induction we identified a defect involving an IL-21 driven STAT3 activation isolated to B cells in sIgAD individuals. However, all other signaling pathways studied were found to be normal compared to HC. In T cell dependent cytokine driven stimulations linked to IgA isotype induction the following patterns emerged: (i) IL-10 led to significant STAT3 activation in both T- and B cells; (ii) IL-4 stimulation was predominantly confined to STAT6 activation in both T- and B cells, with some effects on STAT3 activation in T-cells; (iii) as expected, of tested stimuli, IL-2 alone activated STAT5 and some STAT3 activation though in both cases only in T-cells; (iv) IL-21 induced significant activation of STAT3 in both T- and B cells, with some effects on STAT5 activation in T-cells; and finally (v) synergistic effects were noted of IL-4+IL-10 on STAT5 activation in T-cells, and possibly STAT6 in both T- and B cells. On the other hand, CPG induced T cell independent activation was confined to ERK1/2 activation in B cells. Conclusion: Our results indicate a diminished STAT3 phosphorylation following IL-21 stimulation solely in B cells from sIgAD individuals. This can represent aberrant germinal center reactions or developmental halt. Thus, our work provides further insight into the unraveling of the previously hypothesized role of IL-21 to reconstitute immunoglobulin production in primary antibody deficiencies.
Collapse
Affiliation(s)
- Andri L Lemarquis
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Fannar Theodors
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Helga K Einarsdottir
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland
| | - Bjorn R Ludviksson
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
21
|
Konjević GM, Vuletić AM, Mirjačić Martinović KM, Larsen AK, Jurišić VB. The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 2019; 117:30-40. [PMID: 30784898 DOI: 10.1016/j.cyto.2019.02.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells that are important effectors in the first line of defense toward transformed cells. This is mediated both by direct cytotoxic mechanisms and by production of immunoregulatory cytokines. Recent evidence has shown that NK cells also display memory, similar to the cells of the adaptive immune system. Cytokines are pivotal for the maturation, activation and survival of NK cells. Interleukins (IL)-2, IL-12, IL-15, IL-18, IL-21 and type I interferons positively regulate NK cell function, either independently or in cooperation, whereas other cytokines, such as IL-23 and IL-27, may enhance or suppress NK cell function depending on the context. In the tumor microenvironment, TGFβ, IL-10 and IL-6 suppress NK cell activity not only directly, but also indirectly, by affecting immunosuppressive cells and by antagonizing the effect of stimulatory cytokines, thereby dampening the antitumor response of NK cells and promoting subsequent tumor evasion and progression. Increased understanding of the NK cell response to cytokines has provided a better understanding of their impaired function in tumors which may aid in the development of novel immunotherapeutic strategies to enhance NK cell responses in cancer patients.
Collapse
Affiliation(s)
- Gordana M Konjević
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Beograd, Serbia
| | - Ana M Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Katarina M Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM U938 and Sorbonne University, Kourilsky Building 1st Floor, Hôpital Saint-Antoine, 184 rue du Faubourg Saint Antoine, 75571 PARIS Cédex 12 France
| | - Vladimir B Jurišić
- Faculty of Medical Sciences, University of Kragujevac, P.BOX 124, 34000 Kragujevac, Serbia.
| |
Collapse
|
22
|
Yang H, Kureshi R, Spangler JB. Structural Basis for Signaling Through Shared Common γ Chain Cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:1-19. [PMID: 31628649 DOI: 10.1007/978-981-13-9367-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The common γ chain (γc) family of hematopoietic cytokines consists of six distinct four α-helix bundle soluble ligands that signal through receptors which include the shared γc subunit to coordinate a wide range of physiological processes, in particular, those related to innate and adaptive immune function. Since the first crystallographic structure of a γc family cytokine/receptor signaling complex (the active Interleukin-2 [IL-2] quaternary complex) was determined in 2005 [1], tremendous progress has been made in the structural characterization of this protein family, transforming our understanding of the molecular mechanisms underlying immune activity. Although many conserved features of γc family cytokine complex architecture have emerged, distinguishing details have been observed for individual cytokine complexes that rationalize their unique functional properties. Much work remains to be done in the molecular characterization of γc family signaling, particularly with regard to intracellular activation events, and looking forward, new technologies in structural biophysics will offer further insight into the biology of cytokine signaling to inform the design of targeted therapeutics for treatment of immune-linked diseases such as cancer, infection, and autoimmune disorders.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
23
|
Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue. PLoS One 2018; 13:e0208562. [PMID: 30532160 PMCID: PMC6287822 DOI: 10.1371/journal.pone.0208562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
To acquire a deeper understanding of malignant melanoma (MM), it is essential to study the proteome of patient tissues. In particular, phosphoproteomics of MM has become of significant importance because of the central role that phosphorylation plays in the development of MM. Investigating clinical samples, however, is an extremely challenging task as there is usually only very limited quantities of material available to perform targeted enrichment approaches. Here, an automated phosphopeptide enrichment protocol using the AssayMap Bravo platform was applied to MM tissues and assessed for performance. The strategy proved to be highly-sensitive, less prone to variability, less laborious than existing techniques and adequate for starting quantities at the microgram level. An Fe(III)-NTA-IMAC-based enrichment workflow was applied to a dilution series of MM tissue lysates. The workflow was efficient in terms of sensitivity, reproducibility and phosphosite localization; and from only 12.5 μg of sample, more than 1,000 phosphopeptides were identified. In addition, from 60 μg of protein material the number of identified phosphoproteins from individual MM samples was comparable to previous reports that used extensive fractionation methods. Our data set included key pathways that are involved in MM progression; such as MAPK, melanocyte development and integrin signaling. Moreover, tissue-specific immunological proteins were identified, that have not been previously observed in the proteome of MM-derived cell lines. In conclusion, this workflow is suitable to study large cohorts of clinical samples that demand automatic and careful handling.
Collapse
|
24
|
Lin JX, Leonard WJ. The Common Cytokine Receptor γ Chain Family of Cytokines. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028449. [PMID: 29038115 DOI: 10.1101/cshperspect.a028449] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain (γc), which was originally discovered as the third receptor component of the IL-2 receptor, IL-2Rγ. The IL2RG gene is located on the X chromosome and is mutated in humans with X-linked severe combined immunodeficiency (XSCID). The breadth of the defects in XSCID could not be explained solely by defects in IL-2 signaling, and it is now clear that γc is a shared receptor component of the six cytokines noted above, making XSCID a disease of defective cytokine signaling. Janus kinase (JAK)3 associates with γc, and JAK3-deficient SCID phenocopies XSCID, findings that served to stimulate the development of JAK3 inhibitors as immunosuppressants. γc family cytokines collectively control broad aspects of lymphocyte development, growth, differentiation, and survival, and these cytokines are clinically important, related to allergic and autoimmune diseases and cancer as well as immunodeficiency. In this review, we discuss the actions of these cytokines, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| |
Collapse
|
25
|
Dondero A, Casu B, Bellora F, Vacca A, De Luisi A, Frassanito MA, Cantoni C, Gaggero S, Olive D, Moretta A, Bottino C, Castriconi R. NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget 2018; 8:35088-35102. [PMID: 28456791 PMCID: PMC5471037 DOI: 10.18632/oncotarget.17070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis represents a hallmark of tumor progression in Multiple Myeloma (MM), a still incurable malignancy. Here we analyzed the activity of cytokine-stimulated NK cells against tumor-associated endothelial cells isolated from bone marrow aspirates of MM patients with active disease (MMECs). We show that NK cells activated with optimal doses of IL-15 killed MMECs thanks to the concerted action of multiple activating receptors. In particular, according to the high expression of PVR and Nectin-2 on MMECs, DNAM-1 actively participated in target recognition. Interestingly, in MMECs the surface density of PVR was significantly higher than that detected in endothelium from patients with MM in complete remission or with monoclonal gammopathy of undetermined significance (MGUS). Importantly, IL-27, which unlike IL-15 does not display pro-angiogenic properties, maintained or increased the NK cell functions induced by suboptimal concentrations of IL-15. NK cell properties included killing of MMECs, IFN-γ production as well as a peculiar increase of NKp46 expression on NK cell surface. Finally, IL-27 showed a striking capability of up-regulating the expression of PD-L2 and HLA-I on tumor endothelium, whereas it did not modify that of PD-L1 and HLA-II. Our results suggest that cytokine-activated endogenous or adoptively transferred NK cells might support conventional therapies improving the outcome of MM patients.
Collapse
Affiliation(s)
- Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Beatrice Casu
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Francesca Bellora
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Annunziata De Luisi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy
| | | | - Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Istituto Giannina Gaslini, 16147 Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Silvia Gaggero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Daniel Olive
- U1068, CRCM, Immunity and Cancer, INSERM, 13009 Marseille, France
| | - Alessandro Moretta
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| |
Collapse
|
26
|
Felices M, Lenvik AJ, McElmurry R, Chu S, Hinderlie P, Bendzick L, Geller MA, Tolar J, Blazar BR, Miller JS. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight 2018; 3:96219. [PMID: 29415897 PMCID: PMC5821201 DOI: 10.1172/jci.insight.96219] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
NK cell-based immunotherapies have been gaining traction in the clinic for treatment of cancer. IL-15 is currently being used in number of clinical trials to improve NK cell expansion and function. The objective of this study is to evaluate the effect of repetitive IL-15 exposure on NK cells. An in vitro model in which human NK cells are continuously (on on on) or intermittently (on off on) treated with IL-15 was used to explore this question. After treatment, cells were evaluated for proliferation, survival, cell cycle gene expression, function, and metabolic processes. Our data indicate that continuous treatment of NK cells with IL-15 resulted in decreased viability and a cell cycle arrest gene expression pattern. This was associated with diminished signaling, decreased function both in vitro and in vivo, and reduced tumor control. NK cells continuously treated with IL-15 also displayed a reduced mitochondrial respiration profile when compared with NK cells treated intermittently with IL-15. This profile was characterized by a decrease in the spare respiratory capacity that was dependent on fatty acid oxidation (FAO). Limiting the strength of IL-15 signaling via utilization of an mTOR inhibitor rescued NK cell functionality in the group continuously treated with IL-15. The findings presented here show that human NK cells continuously treated with IL-15 undergo a process consistent with exhaustion that is accompanied by a reduction in FAO. These findings should inform IL-15-dosing strategies in NK cell cancer immunotherapeutic settings.
Collapse
Affiliation(s)
- Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Alexander J. Lenvik
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | | | - Sami Chu
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Peter Hinderlie
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Laura Bendzick
- Department of Obstetrics, Gynecology and Women’s Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa A. Geller
- Department of Obstetrics, Gynecology and Women’s Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Jeffrey S. Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| |
Collapse
|
27
|
Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and Beyond in Cancer Immunotherapy. J Interferon Cytokine Res 2018; 38:45-68. [PMID: 29443657 PMCID: PMC5815463 DOI: 10.1089/jir.2017.0101] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Collapse
Affiliation(s)
- John M. Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - C. Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel J. Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chadrick E. Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
28
|
Huang S, Shen Y, Pham D, Jiang L, Wang Z, Kaplan MH, Zhang G, Sun J. IRF4 Modulates CD8 + T Cell Sensitivity to IL-2 Family Cytokines. Immunohorizons 2017; 1:92-100. [PMID: 29564420 PMCID: PMC5858712 DOI: 10.4049/immunohorizons.1700020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IFN regulatory factor 4 (IRF4) is a key transcription factor that promotes effector CD8+ T cell differentiation and expansion. The roles of IRF4 in regulating the CD8+ T cell response to cytokines have not been explored. In this article, we show that IL-2 and IL-15 signaling and STAT5 activation regulate IRF4 expression in CD8+ T cells. Gene-expression profile analysis has also revealed that IRF4 is required for expression of the receptors of IL-2 family cytokines CD122 and CD127. We found that IRF4 binds directly to CD122 and CD127 gene loci, indicating that it may directly promote CD122 and CD127 gene transcription. As a consequence, IRF4-deficient CD8+ T cells show diminished sensitivity to IL-2, IL-15, and IL-7 treatment in vitro. Furthermore, we found that IRF4-deficient CD8+ T cells had lower expression of CD122 and CD127 in vivo during influenza virus infection. These data suggest that IRF4 regulates the sensitivity of CD8+ T cells to IL-2 family cytokines, which correlates with the diminished effector and memory CD8+ T cell responses in IRF4-deficient CD8+ T cells.
Collapse
Affiliation(s)
- Su Huang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Duy Pham
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Li Jiang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Zheng Wang
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H. Kaplan
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Guangjun Zhang
- Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
29
|
|
30
|
Quéméner A, Maillasson M, Arzel L, Sicard B, Vomiandry R, Mortier E, Dubreuil D, Jacques Y, Lebreton J, Mathé-Allainmat M. Discovery of a Small-Molecule Inhibitor of Interleukin 15: Pharmacophore-Based Virtual Screening and Hit Optimization. J Med Chem 2017; 60:6249-6272. [DOI: 10.1021/acs.jmedchem.7b00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Agnès Quéméner
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Mike Maillasson
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Laurence Arzel
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Benoit Sicard
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Romy Vomiandry
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Erwan Mortier
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Didier Dubreuil
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Yannick Jacques
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Jacques Lebreton
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | | |
Collapse
|
31
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
32
|
Liu H, Zhang Y, Liu Z, Wang P, Mo X, Fu W, Liu W, Cheng Y, Han W. LYG1 exerts antitumor function through promoting the activation, proliferation, and function of CD4 + T cells. Oncoimmunology 2017; 6:e1292195. [PMID: 28507796 DOI: 10.1080/2162402x.2017.1292195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/04/2023] Open
Abstract
Identification of novel stimulatory cytokines with antitumor function would have great value in tumor immunotherapy investigations. Here, we report LYG1 (Lysozyme G-like 1) identified through the strategy of Immunogenomics as a novel classical secretory protein with tumor-inhibiting function. LYG1 recombinant protein (rhLYG1) could significantly suppress the growth of B16 tumors in WT B6 mice, but not in SCID-beige mice, Rag1-/- mice, CD4+- or CD8+ T cell-deleted mice. It could increase the number of CD4+ and CD8+ T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes, and spleens, and promote IFNγ production by T cells in tumor-bearing mice. In vitro experiments demonstrated that rhLYG1 could directly enhance IFNγ secretion by CD4+ T cells, but not CD8+ T cells. Moreover, it could promote the activation, proliferation, and IFNγ production of tumor antigen-specific CD4+ T cells. The tumor-inhibiting effect of LYG1 was eliminated in Ifng-/- mice. Furthermore, LYG1 deficiency accelerated B16 and LLC1 tumor growth and inhibited the function of T cells. In summary, our findings reveal a tumor-inhibiting role for LYG1 through promoting the activation, proliferation, and function of CD4+ T cells in antitumor immune responses, offering implications for novel tumor immunotherapy.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China.,Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yanfei Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China.,Genomic Medicine Institute, Geisinger Health System, Danville, CA, USA
| | - Zhengyang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Weiwei Fu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Wanchang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Yingying Cheng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| |
Collapse
|
33
|
Affiliation(s)
- Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Ng S, Deng J, Chinnadurai R, Yuan S, Pennati A, Galipeau J. Stimulation of Natural Killer Cell-Mediated Tumor Immunity by an IL15/TGFβ-Neutralizing Fusion Protein. Cancer Res 2016; 76:5683-5695. [PMID: 27488533 DOI: 10.1158/0008-5472.can-16-0386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/19/2016] [Indexed: 11/16/2022]
Abstract
The clinical efficacy of immune cytokines used for cancer therapy is hampered by elements of the immunosuppressive tumor microenvironment such as TGFβ. Here we demonstrate that FIST15, a recombinant chimeric protein composed of the T-cell-stimulatory cytokine IL15, the sushi domain of IL15Rα and a TGFβ ligand trap, can overcome immunosuppressive TGFβ to effectively stimulate the proliferation and activation of natural killer (NK) and CD8+ T cells with potent antitumor properties. FIST15-treated NK and CD8+ T cells produced more IFNγ and TNFα compared with treatment with IL15 and a commercially available TGFβ receptor-Fc fusion protein (sTβRII) in the presence of TGFβ. Murine B16 melanoma cells, which overproduce TGFβ, were lysed by FIST15-treated NK cells in vitro at doses approximately 10-fold lower than NK cells treated with IL15 and sTβRII. Melanoma cells transduced to express FIST15 failed to establish tumors in vivo in immunocompetent murine hosts and could only form tumors in beige mice lacking NK cells. Mice injected with the same cells were also protected from subsequent challenge by unmodified B16 melanoma cells. Finally, mice with pre-established B16 melanoma tumors responded to FIST15 treatment more strongly compared with tumors treated with control cytokines. Taken together, our results offer a preclinical proof of concept for the use of FIST15 as a new class of biological therapeutics that can coordinately neutralize the effects of immunosuppressive TGFβ in the tumor microenvironment while empowering tumor immunity. Cancer Res; 76(19); 5683-95. ©2016 AACR.
Collapse
Affiliation(s)
- Spencer Ng
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jiusheng Deng
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Raghavan Chinnadurai
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shala Yuan
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Andrea Pennati
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia. Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia.
| |
Collapse
|
35
|
Pulliam SR, Pellom ST, Shanker A, Adunyah SE. Butyrate regulates the expression of inflammatory and chemotactic cytokines in human acute leukemic cells during apoptosis. Cytokine 2016; 84:74-87. [PMID: 27253488 DOI: 10.1016/j.cyto.2016.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
Abstract
Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24h, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines.
Collapse
Affiliation(s)
- Stephanie R Pulliam
- School of Graduate Studies and Research, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA; Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA
| | - Samuel T Pellom
- School of Graduate Studies and Research, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA; Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA; Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA
| | - Anil Shanker
- School of Graduate Studies and Research, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA; Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA; Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel E Adunyah
- School of Graduate Studies and Research, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA; Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 Dr. DB Todd, Jr. Blvd., Nashville, TN 37208, USA.
| |
Collapse
|
36
|
Campbell AM, Decker RH. Mini-review of conventional and hypofractionated radiation therapy combined with immunotherapy for non-small cell lung cancer. Transl Lung Cancer Res 2007; 6:220-229. [PMID: 28529904 DOI: 10.21037/tlcr.2017.03.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A successful antitumoral response requires immunological activation as well as an antigenic pool capable of stimulating both the innate and the adaptive immune system. Recent advances in immunotherapy have been aimed at boosting the activation status of the innate and adaptive immune system, including cytokine administration, monoclonal antibodies engineered to target high yield elements in oncogenic signaling pathways, cancer vaccines, and checkpoint inhibitors. Herein, we examine the ways that radiation therapy induced cell death provides a pool of stimulus antigen, and draw parallels from the immunobiology of autoimmunity to explore how the immunogenicity of antigen derived from radiation-induced cell death might augment the antitumoral response. We also review basic research into the ability of different radiation dose fractionation schedules to induce an antitumoral response. After a discussion of basic immunotherapeutic principles, we review the published literature in the field of non-small cell lung cancer (NSCLC) and examine the ways that combining radiation and immunotherapy have begun to change the therapeutic terrain. We provide a summary of ongoing clinical trials aimed at combining immunotherapy and radiation therapy in NSCLC while emphasizing the need for identification of biomarkers with predictive power and the assessment of efficacy as a function of fractionation strategy.
Collapse
Affiliation(s)
- Allison M Campbell
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Roy H Decker
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|