1
|
Luo J, Mo F, Zhang Z, Hong W, Lan T, Cheng Y, Fang C, Bi Z, Qin F, Yang J, Zhang Z, Li X, Que H, Wang J, Chen S, Wu Y, Yang L, Li J, Wang W, Chen C, Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol Immunol 2024; 21:1251-1265. [PMID: 39164536 PMCID: PMC11528120 DOI: 10.1038/s41423-024-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
The preferable antigen delivery profile accompanied by sufficient adjuvants favors vaccine efficiency. Mitochondria, which feature prokaryotic characteristics and contain various damage-associated molecular patterns (DAMPs), are easily taken up by phagocytes and simultaneously activate innate immunity. In the current study, we established a mitochondria engineering platform for generating antigen-enriched mitochondria as cancer vaccine. Ovalbumin (OVA) and tyrosinase-related protein 2 (TRP2) were used as model antigens to synthesize fusion proteins with mitochondria-localized signal peptides. The lentiviral infection system was then employed to produce mitochondrial vaccines containing either OVA or TRP2. Engineered OVA- and TRP2-containing mitochondria (OVA-MITO and TRP2-MITO) were extracted and evaluated as potential cancer vaccines. Impressively, the engineered mitochondria vaccine demonstrated efficient antitumor effects when used as both prophylactic and therapeutic vaccines in murine tumor models. Mechanistically, OVA-MITO and TRP2-MITO potently recruited and activated dendritic cells (DCs) and induced a tumor-specific cell-mediated immunity. Moreover, DC activation by mitochondria vaccine critically involves TLR2 pathway and its lipid agonist, namely, cardiolipin derived from the mitochondrial membrane. The results demonstrated that engineered mitochondria are natively well-orchestrated carriers full of immune stimulants for antigen delivery, which could preferably target local dendritic cells and exert strong adaptive cellular immunity. This proof-of-concept study established a universal platform for vaccine construction with engineered mitochondria bearing alterable antigens for cancers as well as other diseases.
Collapse
Affiliation(s)
- Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunju Fang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Ben Saad E, Oroya A, Anto NP, Bachais M, Rudd CE. PD-1 endocytosis unleashes the cytolytic potential of checkpoint blockade in tumor immunity. Cell Rep 2024; 43:114907. [PMID: 39471174 DOI: 10.1016/j.celrep.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
PD-1 immune checkpoint blockade (ICB) is a key cancer treatment. While blocking PD-1 binding to ligand is known, the role of internalization in enhancing ICB efficacy is less explored. Our study reveals that PD-1 internalization helps unlock ICB's full potential in cancer immunotherapy. Anti-PD-1 induces 50%-60% surface PD-1 internalization from human and mouse cells, leaving low to intermediate levels of resistant receptors. Complexes then appear in early and late endosomes. Both CD4 and CD8 T cells, especially CD8+ effectors, are affected. Nivolumab outperforms pembrolizumab in human T cells, while PD-1 internalization requires crosslinking by bivalent antibody. While mono- and bivalent anti-PD-1 inhibit tumor growth with CD8 tumor-infiltrating cells expressing increased granzyme B, bivalent antibody is more effective where the combination of steric blockade and endocytosis induces greater CD8+ T cell tumor infiltration and the expression of the cytolytic pore protein, perforin. Our findings highlight an ICB mechanism that combines steric blockade and PD-1 endocytosis for optimal checkpoint immunotherapy.
Collapse
Affiliation(s)
- Elham Ben Saad
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada
| | - Andres Oroya
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Nikhil Ponnoor Anto
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Meriem Bachais
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Rui X, Alvarez Calderon F, Wobma H, Gerdemann U, Albanese A, Cagnin L, McGuckin C, Michaelis KA, Naqvi K, Blazar BR, Tkachev V, Kean LS. Human OX40L-CAR-T regs target activated antigen-presenting cells and control T cell alloreactivity. Sci Transl Med 2024; 16:eadj9331. [PMID: 39413160 DOI: 10.1126/scitranslmed.adj9331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Regulatory T cells (Tregs) make major contributions to immune homeostasis. Because Treg dysfunction can lead to both allo- and autoimmunity, there is interest in correcting these disorders through Treg adoptive transfer. Two of the central challenges in clinically deploying Treg cellular therapies are ensuring phenotypic stability and maximizing potency. Here, we describe an approach to address both issues through the creation of OX40 ligand (OX40L)-specific chimeric antigen receptor (CAR)-Tregs under the control of a synthetic forkhead box P3 (FOXP3) promoter. The creation of these CAR-Tregs enabled selective Treg stimulation by engagement of OX40L, a key activation antigen in alloimmunity, including both graft-versus-host disease and solid organ transplant rejection, and autoimmunity, including rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus. We demonstrated that OX40L-CAR-Tregs were robustly activated in the presence of OX40L-expressing cells, leading to up-regulation of Treg suppressive proteins without induction of proinflammatory cytokine production. Compared with control Tregs, OX40L-CAR-Tregs more potently suppressed alloreactive T cell proliferation in vitro and were directly inhibitory toward activated monocyte-derived dendritic cells (DCs). We identified trogocytosis as one of the central mechanisms by which these CAR-Tregs effectively decrease extracellular display of OX40L, resulting in decreased DC stimulatory capacity. OX40L-CAR-Tregs demonstrated an enhanced ability to control xenogeneic graft-versus-host disease compared with control Tregs without abolishing the graft-versus-leukemia effect. These results suggest that OX40L-CAR-Tregs may have wide applicability as a potent cellular therapy to control both allo- and autoimmune diseases.
Collapse
Affiliation(s)
- Xianliang Rui
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Francesca Alvarez Calderon
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Holly Wobma
- Harvard Medical School, Boston, MA 02115, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Ulrike Gerdemann
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre Albanese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lorenzo Cagnin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Kisa Naqvi
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Leslie S Kean
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Zhang J, Geng M, Xiao J, Chen L, Cao Y, Li K, Yang J, Wei X. Comparative analysis of T-cell immunity between Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109967. [PMID: 39414096 DOI: 10.1016/j.fsi.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the important economic fish species cultured worldwide. However, Streptococcus agalactiae has emerged as a significant bacterial threat, severely impacting the economy of tilapia industry. The immune response underlying the resistance of tilapia to S. agalactiae are not well understood, hindering the reasonable evaluation of breeding and the formulation of effective strategies. In this study, we investigated the differences in T-cell immunity between S. agalactiae-resistant and -susceptible tilapia. Compared with susceptible tilapia, resistant tilapia exhibited a higher percentage of T cells and BrdU+ T cells during infection, indicating a superior proliferative capacity. Whether infected or not, T cells from resistant fish demonstrated a greater ability to resist apoptosis. Additionally, T cell effector genes, including interleukin (IL)-2, interferon (IFN)-γ, perforin A, and granzyme B were expressed at higher levels in resistant tilapia after infection. Along with these T-cell immune responses, resistant fish showed more effective clearance of infection. Our study elucidates the T-cell immune responses in resistant tilapia, which may contribute to the high resistance of tilapia to S. agalactiae, and provide valuable theoretical references for the selection and evaluation of disease-resistant fish strains in the future.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
| | - Liting Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Ho CH, Dippel MA, McQuade MS, Mishra A, Pribitzer S, Nguyen LP, Hardy S, Chandok H, Chardon F, McDiarmid TA, DeBerg HA, Buckner JH, Shendure J, de Boer CG, Guo MH, Tewhey R, Ray JP. Linking candidate causal autoimmune variants to T cell networks using genetic and epigenetic screens in primary human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617092. [PMID: 39416200 PMCID: PMC11482744 DOI: 10.1101/2024.10.07.617092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Genetic variants associated with autoimmune diseases are highly enriched within putative cis -regulatory regions of CD4 + T cells, suggesting that they alter disease risk via changes in gene regulation. However, very few genetic variants have been shown to affect T cell gene expression or function. We tested >18,000 autoimmune disease-associated variants for allele-specific expression using massively parallel reporter assays in primary human CD4 + T cells. The 545 expression-modulating variants (emVars) identified greatly enrich for likely causal variants. We provide evidence that many emVars are mediated by common upstream regulatory conduits, and that putative target genes of primary T cell emVars are highly enriched within a lymphocyte activation network. Using bulk and single-cell CRISPR-interference screens, we confirm that emVar-containing T cell cis -regulatory elements modulate both known and novel target genes that regulate T cell proliferation, providing plausible mechanisms by which these variants alter autoimmune disease risk.
Collapse
|
6
|
Zhang F, Zhang H, Zhou S, Plewka J, Wang M, Sun S, Wu C, Yu Q, Zhu M, Awadasseid A, Wu Y, Magiera-Mularz K, Zhang W. Design, synthesis, and evaluation of antitumor activity of 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives as PD-1/PD-l1 inhibitors. Eur J Med Chem 2024; 276:116683. [PMID: 39032403 DOI: 10.1016/j.ejmech.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
A series of novel 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives was designed, synthesized, and evaluated for their antitumor effects as PD-1/PD-L1 inhibitors both in vitro and in vivo. Firstly, the ability of these compounds to block the PD-1/PD-L1 immune checkpoint was assessed using the homogeneous time-resolved fluorescence (HTRF) assay. Two of the compounds can strongly block the PD-1/PD-L1 interaction, with IC50 values of less than 10 nM, notably, compound HD10 exhibited significant clinical potential by inhibiting the PD-1/PD-L1 interaction with an IC50 value of 3.1 nM. Further microscale thermophoresis (MST) analysis demonstrated that HD10 had strong interaction with PD-L1 protein. Co-crystal structure (2.7 Å) analysis of HD10 in complex with the PD-L1 protein revealed a strong affinity between the compound and the target PD-L1 dimer. This provides a solid theoretical basis for further in vitro and in vivo studies. Next, a typical cell-based experiment demonstrated that HD10 could remarkably prevent the interaction of hPD-1 293 T cells from human recombinant PD-L1 protein, effectively restoring T cell function, and promoting IFN-γ secretion in a dose-dependent manner. Moreover, HD10 was effective in suppressing tumor growth (TGI = 57.31 %) in a PD-1/PD-L1 humanized mouse model without obvious toxicity. Flow cytometry, qPCR, and immunohistochemistry data suggested that HD10 inhibits tumor growth by activating the immune system in vivo. Based on these results, it seems likely that HD10 is a promising clinical candidate that should be further investigated.
Collapse
Affiliation(s)
- Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Hua Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Department of Pharmacy, Changzhi Medical College, Shanxi, 046012, China
| | - Shijia Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ming Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Shishi Sun
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Caiyun Wu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Qimeng Yu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Mengyu Zhu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Moganshan Institute, Zhejiang University of Technology, Deqing, 313200, China.
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China.
| |
Collapse
|
7
|
Xiao ZF, Chai WH, Shu XL, Yuan HR, Guo F. Immune cell traits and causal relationships with cholecystitis: a mendelian randomization analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03493-x. [PMID: 39358644 DOI: 10.1007/s00210-024-03493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cholecystitis, characterized by inflammation of the gallbladder, is intricately linked to immune cells and the cytokines they produce. Despite this association, the specific contributions of immune cells to the onset and progression of cholecystitis remain to be fully understood. To delineate this relationship, we utilized the Mendelian randomization (MR) method to scrutinize the causal connections between 731 immune cell phenotypes and cholecystitis. By conducting MR analysis on 731 immune cell markers from public datasets, this study seeks to understand their potential impact on the risk of cholecystitis. It aims to elucidate the interactions between immune phenotypes and the disease, aiming to lay the groundwork for advancing precision medicine and developing effective treatment strategies for cholecystitis. Taking immune cell phenotypes as the exposure factor and cholecystitis as the outcome event, this study used single nucleotide polymorphisms (SNPs) closely associated with both immune cell phenotypes and cholecystitis as genetic instrumental variables. We conducted a two-sample MR analysis on genome-wide association studies (GWAS) data. Our research thoroughly examined 731 immune cell markers, to determine potential causal relationships with susceptibility to cholecystitis. Sensitivity analyses were performed to ensure the robustness of our findings, excluding the potential impacts of heterogeneity and pleiotropy. To avoid reverse causality, we conducted reverse MR analyses with cholecystitis as the exposure factor and immune cell phenotypes as the outcome event. Among the 731 immune phenotypes, our study identified 21 phenotypes with a causal relationship to cholecystitis (P < 0.05). Of these, eight immune phenotypes exhibited a protective effect against cholecystitis (odds ratio (OR) < 1), while the other 13 immune phenotypes were associated with an increased risk of developing cholecystitis (OR > 1). Additionally, employing the false discovery rate (FDR) method at a significance level of 0.2, no significant causal relationship was found between cholecystitis and immune phenotypes. Our research has uncovered a significant causal relationship between immune cell phenotypes and cholecystitis. This discovery not only enhances our understanding of the role of immune cells in the onset and progression of cholecystitis but also establishes a foundation for developing more precise biomarkers and targeted therapeutic strategies. It provides a scientific basis for more effective and personalized treatments in the future. These findings are expected to substantially improve the quality of life for patients with cholecystitis and mitigate the impact of the disease on patients and their families.
Collapse
Affiliation(s)
- Ze-Fa Xiao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei-Hao Chai
- Department of Graduate School, Xinjiang Medical University, Urumqi, China
| | - Xiao-Long Shu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Rui Yuan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
8
|
Hu Y, Paris S, Sahoo N, Wang Q, Wang Q, Barsoumian HB, Huang A, Da Silva J, Bienassis C, Leyton CSK, Voss TA, Masrorpour F, Riad T, Leuschner C, Puebla-Osorio N, Gandhi S, Nguyen QN, Wang J, Cortez MA, Welsh JW. Superior antitumor immune response achieved with proton over photon immunoradiotherapy is amplified by the nanoradioenhancer NBTXR3. J Nanobiotechnology 2024; 22:597. [PMID: 39354474 PMCID: PMC11445951 DOI: 10.1186/s12951-024-02855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Recent findings suggest that immunoradiotherapy (IRT), combining photon radiotherapy (XRT) or proton radiotherapy (PRT) with immune checkpoint blockade, can enhance systemic tumor control. However, the comparative efficacy of XRT and PRT in IRT remains understudied. To address this, we compared outcomes between XRT + αPD1 and PRT + αPD1 in murine αPD1-resistant lung cancer (344SQR). We also assessed the impact of the nanoparticle radioenhancer NBTXR3 on both XRT + αPD1 and PRT + αPD1 for tumor control and examined the tumor immune microenvironment using single-cell RNA sequencing (scRNAseq). Additionally, mice cured by NBTXR3 + PRT + αPD1 were rechallenged with three lung cancer cell lines to evaluate memory antitumor immunity. PRT + αPD1 showed superior local tumor control and abscopal effects compared to XRT + αPD1. NBTXR3 + PRT + αPD1 significantly outperformed NBTXR3 + XRT + αPD1 in tumor control, promoting greater infiltration of antitumor lymphocytes into irradiated tumors. Unirradiated tumors treated with NBTXR3 + PRT + αPD1 had more NKT cells, CD4 T cells, and B cells, with fewer Tregs, than those treated with NBTXR3 + XRT + αPD1. NBTXR3 + PRT + αPD1 also stimulated higher expression of IFN-γ, GzmB, and Nkg7 in lymphocytes, reduced the TGF-β pathway, and increased tumor necrosis factor alpha expression compared to NBTXR3 + XRT + αPD1. Moreover, NBTXR3 + PRT + αPD1 resulted in greater M1 macrophage polarization in both irradiated and unirradiated tumors. Mice achieving remission through NBTXR3 + PRT + αPD1 exhibited a robust memory immune response, effectively inhibiting growth of subsequent tumors from three distinct lung cancer cell lines. Proton IRT combined with NBTXR3 offers enhanced tumor control and survival rates over photon-based treatments in managing αPD1-resistant lung cancer, indicating its potential as a potent systemic therapy.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qianxia Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Jordan Da Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Célia Bienassis
- Department of Translational Science, Nanobiotix, Paris, France
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Thomas Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Ahamed MT, Forshed J, Levitsky A, Lehtiö J, Bajalan A, Pernemalm M, Eriksson LE, Andersson B. Multiplex plasma protein assays as a diagnostic tool for lung cancer. Cancer Sci 2024; 115:3439-3454. [PMID: 39080998 PMCID: PMC11447887 DOI: 10.1111/cas.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
Lack of the established noninvasive diagnostic biomarkers causes delay in diagnosis of lung cancer (LC). The aim of this study was to explore the association between inflammatory and cancer-associated plasma proteins and LC and thereby discover potential biomarkers. Patients referred for suspected LC and later diagnosed with primary LC, other cancers, or no cancer (NC) were included in this study. Demographic information and plasma samples were collected, and diagnostic information was later retrieved from medical records. Relative quantification of 92 plasma proteins was carried out using the Olink Immuno-Onc-I panel. Association between expression levels of panel of proteins with different diagnoses was assessed using generalized linear model (GLM) with the binomial family and a logit-link function, considering confounder effects of age, gender, smoking, and pulmonary diseases. The analysis showed that the combination of five plasma proteins (CD83, GZMA, GZMB, CD8A, and MMP12) has higher diagnostic performance for primary LC in both early and advanced stages compared with NC. This panel demonstrated lower diagnostic performance for other cancer types. Moreover, inclusion of four proteins (GAL9, PDCD1, CD4, and HO1) to the aforementioned panel significantly increased the diagnostic performance for primary LC in advanced stage as well as for other cancers. Consequently, the collective expression profiles of select plasma proteins, especially when analyzed in conjunction, might have the potential to distinguish individuals with LC from NC. This suggests their utility as predictive biomarkers for identification of LC patients. The synergistic application of these proteins as biomarkers could pave the way for the development of diagnostic tools for early-stage LC detection.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahamed
- Department of Learning, Informatics, Management and Ethics (LIME)Karolinska InstitutetStockholmSweden
| | - Jenny Forshed
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Adrian Levitsky
- Department of Learning, Informatics, Management and Ethics (LIME)Karolinska InstitutetStockholmSweden
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Amanj Bajalan
- Department of Microbiology, Tumor & Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Lars E. Eriksson
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- School of Health and Psychological Sciences, CityUniversity of LondonLondonUK
- Medical Unit Infectious DiseasesKarolinska University HospitalHuddingeSweden
| | - Björn Andersson
- Department of Cell and molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| |
Collapse
|
10
|
Wu X, Jiang X, Liu Z, Xue P, Chen Y, Cao L, Wen Z, Tang Y. Effect of photodynamic therapy on peripheral immune system for unresectable cholangiocarcinoma. Photodiagnosis Photodyn Ther 2024; 49:104279. [PMID: 39168069 DOI: 10.1016/j.pdpdt.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been emerging as a promising treatment for unresectable cholangiocarcinoma (CCA). A number of experiments have demonstrated that PDT could enhance antitumor immunity significantly. However, the impact of PDT on peripheral immune system for unresectable CCA remains unclear. METHODS In a clinical trial comparing the perioperative and long-term outcomes of PDT+stent treatment and stent alone treatment for unresectable CCA, we tested the levels of lymphocytes (CD4+ T cells, CD8+ T cells, NK cells, B cells and Treg cells) and immune-related cytokines (IL-4, IL-6, IL-10, TNF-α, TGF-β, perforin, GM-CSF and IFN-γ) in peripheral blood before and after PDT+stent treatment or stent alone treatment and analyzed the influence of PDT on peripheral immune system for unresectable CCA. RESULTS Before treatment, the levels of all the immune cells and immune-related cytokines did not show significant differences between the PDT+stent group and stent alone group. The ratio of CD8+ T cells increased significantly after PDT treatment, but other kinds of lymphocytes did not show significant difference. Increased level of IL-6 and decreased level of perforin and TGF-β after PDT treatment were demonstrated, whereas no significant changes were found for other immune-related cytokines. CONCLUSION PDT altered the levels of immune cells and immune-related cytokines in the peripheral blood of unresectable CCA patients, potentially correlating with the therapeutic efficacy of PDT in unresectable CCA treatment. Future studies could delve deeper into this aspect to explore how PDT can be more effectively utilized in the management of unresectable CCA.
Collapse
Affiliation(s)
- Xinqiang Wu
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zhaoyuan Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yubin Chen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zilong Wen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yunqiang Tang
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China.
| |
Collapse
|
11
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
Zhang W, Lee A, Tiwari AK, Yang MQ. Characterizing the Tumor Microenvironment and Its Prognostic Impact in Breast Cancer. Cells 2024; 13:1518. [PMID: 39329702 PMCID: PMC11429566 DOI: 10.3390/cells13181518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer development and therapeutic response. Immunotherapy is increasingly recognized as a critical component of cancer treatment. While immunotherapies have shown efficacy in various cancers, including breast cancer, patient responses vary widely. Some patients receive significant benefits, while others experience minimal or no improvement. This disparity underscores the complexity and diversity of the immune system. In this study, we investigated the immune landscape and cell-cell communication within the TME of breast cancer through integrated analysis of bulk and single-cell RNA sequencing data. We established profiles of tumor immune infiltration that span across a broad spectrum of adaptive and innate immune cells. Our clustering analysis of immune infiltration identified three distinct patient groups: high T cell abundance, moderate infiltration, and low infiltration. Patients with low immune infiltration exhibited the poorest survival rates, while those in the moderate infiltration group showed better outcomes than those with high T cell abundance. Moreover, the high cell abundance group was associated with a greater tumor burden and higher rates of TP53 mutations, whereas the moderate infiltration group was characterized by a lower tumor burden and elevated PIK3CA mutations. Analysis of an independent single-cell RNA-seq breast cancer dataset confirmed the presence of similar infiltration patterns. Further investigation into ligand-receptor interactions within the TME unveiled significant variations in cell-cell communication patterns among these groups. Notably, we found that the signaling pathways SPP1 and EGF were exclusively active in the low immune infiltration group, suggesting their involvement in immune suppression. This work comprehensively characterizes the composition and dynamic interplay in the breast cancer TME. Our findings reveal associations between the extent of immune infiltration and clinical outcomes, providing valuable prognostic information for patient stratification. The unique mutations and signaling pathways associated with different patient groups offer insights into the mechanisms underlying diverse tumor immune infiltration and the formation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Alex Lee
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| |
Collapse
|
13
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
14
|
Cai S, Gou Y, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8 + T lymphocyte infiltration. J Cell Mol Med 2024; 28:e18535. [PMID: 39267250 PMCID: PMC11392827 DOI: 10.1111/jcmm.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Liu X, Shen J, Yan H, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Luo P, Zhao M, Liu Y. Posttransplant complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e669. [PMID: 39224537 PMCID: PMC11366828 DOI: 10.1002/mco2.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Posttransplantation complications pose a major challenge to the long-term survival and quality of life of organ transplant recipients. These complications encompass immune-mediated complications, infectious complications, metabolic complications, and malignancies, with each type influenced by various risk factors and pathological mechanisms. The molecular mechanisms underlying posttransplantation complications involve a complex interplay of immunological, metabolic, and oncogenic processes, including innate and adaptive immune activation, immunosuppressant side effects, and viral reactivation. Here, we provide a comprehensive overview of the clinical features, risk factors, and molecular mechanisms of major posttransplantation complications. We systematically summarize the current understanding of the immunological basis of allograft rejection and graft-versus-host disease, the metabolic dysregulation associated with immunosuppressive agents, and the role of oncogenic viruses in posttransplantation malignancies. Furthermore, we discuss potential prevention and intervention strategies based on these mechanistic insights, highlighting the importance of optimizing immunosuppressive regimens, enhancing infection prophylaxis, and implementing targeted therapies. We also emphasize the need for future research to develop individualized complication control strategies under the guidance of precision medicine, ultimately improving the prognosis and quality of life of transplant recipients.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Junyi Shen
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongyan Yan
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Yu Y, Zhang C, Dong B, Zhang Z, Li X, Huang S, Tang D, Jing X, Yu S, Zheng T, Wu D, Tai S. Neutrophil extracellular traps promote immune escape in hepatocellular carcinoma by up-regulating CD73 through Notch2. Cancer Lett 2024; 598:217098. [PMID: 38969159 DOI: 10.1016/j.canlet.2024.217098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Immune escape is the main reason that immunotherapy is ineffective in hepatocellular carcinoma (HCC). Here, this study illustrates a pathway mediated by neutrophil extracellular traps (NETs) that can promote immune escape of HCC. Mechanistically, we demonstrated that NETs up-regulated CD73 expression through activating Notch2 mediated nuclear factor kappa B (NF-κB) pathway, promoting regulatory T cells (Tregs) infiltration to mediate immune escape of HCC. In addition, we found the similar results in mouse HCC models by hydrodynamic plasmid transfection. The treatment of deoxyribonuclease I (DNase I) could inhibit the action of NETs and improve the therapeutic effect of anti-programmed cell death protein 1 (PD-1). In summary, our results revealed that targeting of NETs was a promising treatment to improve the therapeutic effect of anti-PD-1.
Collapse
Affiliation(s)
- Yang Yu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Congyi Zhang
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Bowen Dong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaowei Jing
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Tongsen Zheng
- Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| |
Collapse
|
17
|
Richardson KC, Jung K, Matsubara JA, Choy JC, Granville DJ. Granzyme B in aging and age-related pathologies. Trends Mol Med 2024:S1471-4914(24)00204-1. [PMID: 39181801 DOI: 10.1016/j.molmed.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
Aging is a major risk factor for pathologies that manifest later in life. Much attention is devoted towards elucidating how prolonged environmental exposures and inflammation promote biological (accelerated) tissue aging. Granzymes, a family of serine proteases, are increasingly recognized for their emerging roles in biological aging and disease. Widely recognized as intracellular mediators of cell death, granzymes, particularly granzyme B (GzmB), also accumulate in the extracellular milieu of tissues with age, contributing to chronic tissue injury, inflammation, and impaired healing. Consequently, this has prompted the field to reconsider how GzmB regulation, accumulation, and proteolysis impact health and disease with age. While GzmB is observed in numerous age-related conditions, the current review focuses on mechanistic studies where proof-of-concept has been forwarded.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration On Repair Discoveries (ICORD) Centre, Department of Pathology and Laboratory Medicine, British Columbia Professional Firefighters' Burn and Wound Healing Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration On Repair Discoveries (ICORD) Centre, Department of Pathology and Laboratory Medicine, British Columbia Professional Firefighters' Burn and Wound Healing Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Department of Pathology and Laboratory Medicine, British Columbia Professional Firefighters' Burn and Wound Healing Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Martin-Liberal J, Garralda E, García-Donas J, Soto-Castillo JJ, Mussetti A, Codony C, Martin-Lluesma S, Muñoz S, Galvao V, Lostes J, Rotxes M, Prat-Vidal C, Palomero J, Muñoz A, Moreno R, García del Muro X, Sureda A, Alemany R, Gros A, Piulats JM. Clinical protocol phase II study of tumor infiltrating lymphocytes in advanced tumors with alterations in the SWI/SNF complex: the TILTS study. Future Oncol 2024; 20:2437-2445. [PMID: 39129675 PMCID: PMC11520549 DOI: 10.1080/14796694.2024.2385287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
The SWI/SNF complex is a chromatin remodeling complex comprised by several proteins such as SMARCA4 or SMARCB1. Mutations in its components can lead to the development of aggressive rhabdoid tumors such as epithelioid sarcoma, malignant rhabdoid tumor or small cell carcinoma of the ovary hypercalcemic type, among others. These malignancies tend to affect young patients and their prognosis is poor given the lack of effective treatments. Characteristically, these tumors are highly infiltrated by TILs, suggesting that some lymphocytes are recognizing tumor antigens. The use of those TILs as a therapeutic strategy is a promising approach worth exploring. Here, we report the clinical protocol of the TILTS study, a Phase II clinical trial assessing personalized adoptive cell therapy with TILs in patients affected by these tumor types.Clinical Trial Registration: 2023-504632-17-00 (www.clinicaltrialsregister.eu) (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | - Carles Codony
- Institute of Biomedical Research of Bellvitge (IDIBELL), Barcelona, Spain
| | | | - Susana Muñoz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vladimir Galvao
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Julia Lostes
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Rotxes
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Ainhoa Muñoz
- Institute of Biomedical Research of Bellvitge (IDIBELL), Barcelona, Spain
| | - Rafael Moreno
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | | | - Anna Sureda
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ramon Alemany
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Alena Gros
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | |
Collapse
|
19
|
Chawla AS, Vandereyken M, Arias M, Santiago L, Dikovskaya D, Nguyen C, Skariah N, Wenner N, Golovchenko NB, Thomson SJ, Ondari E, Garzón-Tituaña M, Anderson CJ, Bergkessel M, C D Hinton J, Edelblum KL, Pardo J, Swamy M. Distinct cell death pathways induced by granzymes collectively protect against intestinal Salmonella infection. Mucosal Immunol 2024:S1933-0219(24)00087-4. [PMID: 39137883 DOI: 10.1016/j.mucimm.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Intestinal intraepithelial T lymphocytes (IEL) constitutively express high amounts of the cytotoxic proteases Granzymes (Gzm) A and B and are therefore thought to protect the intestinal epithelium against infection by killing infected epithelial cells. However, the role of IEL granzymes in a protective immune response has yet to be demonstrated. We show that GzmA and GzmB are required to protect mice against oral, but not intravenous, infection with Salmonella enterica serovar Typhimurium, consistent with an intestine-specific role. IEL-intrinsic granzymes mediate the protective effects by controlling intracellular bacterial growth and aiding in cell-intrinsic pyroptotic cell death of epithelial cells. Surprisingly, we found that both granzymes play non-redundant roles. GzmB-/- mice carried significantly lower burdens of Salmonella, as predominant GzmA-mediated cell death effectively reduced bacterial translocation across the intestinal barrier. Conversely, in GzmA-/- mice, GzmB-driven apoptosis favored luminal Salmonella growth by providing nutrients, while still reducing translocation across the epithelial barrier. Together, the concerted actions of both GzmA and GzmB balance cell death mechanisms at the intestinal epithelium to provide optimal control that Salmonella cannot subvert.
Collapse
Affiliation(s)
- Amanpreet Singh Chawla
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Dina Dikovskaya
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Chi Nguyen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicolas Wenner
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom; Current address: Biozentrum, University of Basel, Basel, Switzerland
| | - Natasha B Golovchenko
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah J Thomson
- Biological Services, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Edna Ondari
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Christopher J Anderson
- Centre for Inflammation Research, Institute for Regeneration & Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Megan Bergkessel
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jay C D Hinton
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karen L Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
20
|
Cai S, Yang G, Hu M, Li C, Yang L, Zhang W, Sun J, Sun F, Xing L, Sun X. Spatial cell interplay networks of regulatory T cells predict recurrence in patients with operable non-small cell lung cancer. Cancer Immunol Immunother 2024; 73:189. [PMID: 39093404 PMCID: PMC11297009 DOI: 10.1007/s00262-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The interplay between regulatory T cells (Tregs) and neighboring cells, which is pivotal for anti-tumor immunity and closely linked to patient prognosis, remains to be fully elucidated. METHODS Tissue microarrays of 261 operable NSCLC patients were stained by multiplex immunofluorescence (mIF) assay, and the interaction between Tregs and neighboring cells in the tumor microenvironment (TME) was evaluated. Employing various machine learning algorithms, we developed a spatial immune signature to predict the prognosis of NSCLC patients. Additionally, we explored the interplay between programmed death-1/programmed death ligand-1 (PD-1/PD-L1) interactions and their relationship with Tregs. RESULTS Survival analysis indicated that the interplay between Tregs and neighboring cells in the invasive margin (IM) and tumor center was associated with recurrence in NSCLC patients. We integrated the intersection of the three algorithms to identify four crucial spatial immune features [P(CD8+Treg to CK) in IM, P(CD8+Treg to CD4) in IM, N(CD4+Treg to CK) in IM, N(CD4+Tcon to CK) in IM] and employed these characteristics to establish SIS, an independent prognosticator of recurrence in NSCLC patients [HR = 2.34, 95% CI (1.53, 3.58), P < 0.001]. Furthermore, analysis of cell interactions demonstrated that a higher number of Tregs contributed to higher PD-L1+ cells surrounded by PD-1+ cells (P < 0.001) with shorter distances (P = 0.004). CONCLUSION We dissected the cell interplay network within the TME, uncovering the spatial architecture and intricate interactions between Tregs and neighboring cells, along with their impact on the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Zhang
- Shandong Cancer Hospital and Institute and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|
21
|
Hasimu A, Bahabayi A, Xiong Z, Li Q, Zhang Z, Zeng X, Zheng M, Yuan Z, Liu C. SIT1 identifies circulating hypoactive T cells with elevated cytotoxic molecule secretion in systemic lupus erythematosus patients. Immunol Res 2024; 72:754-765. [PMID: 38691318 DOI: 10.1007/s12026-024-09481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
This study aims to elucidate the expression and functionality of SIT1 in circulating CD8/CD4 + T cells in humans and to delineate its significance in systemic lupus erythematosus (SLE) patients. We employed multiparametric flow cytometry to investigate the expression of SIT1 in circulating CD8/CD4 + T cells and their respective subsets, comparing healthy controls (HCs) with SLE patients. Furthermore, we assessed the levels of granzyme B, perforin, IL-17, and IFN-γ in SIT1-related CD8/CD4 + T cells from both HCs and SLE patients, both before and after PMA stimulation. Clinically, we conducted receiver operating characteristic curve analysis and correlation analysis to evaluate the clinical relevance of SIT1-related CD8/CD4 + T cells in SLE patients. SIT1 exhibited higher expression in CD4 + T cells, with SIT1 - T cells demonstrating elevated levels of granzyme B, perforin, and IFN-γ compared to SIT1 + T cells. PMA-stimulated T cells exhibited reduced SIT1 expression compared to unstimulated T cells. SLE patients displayed increased SIT1 + proportions in CD8 + T cells and decreased SIT1 + CD4 + T cell numbers. Additionally, SIT1 + cells in SLE patients exhibited significantly higher levels of granzyme B and perforin compared to HCs. SIT1 + cells demonstrated significant associations with clinical indicators in SLE patients, with indicators related to SIT1 proving valuable in the diagnosis of SLE patients. SIT1 is inversely correlated with T cell activation. In SLE patients, SIT1 expression is altered in T cells concomitant with an augmented secretion of cytotoxic molecules. This upregulation may contribute to the pathogenesis of SLE and enhance its diagnostic potential.
Collapse
Affiliation(s)
- Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, China.
| |
Collapse
|
22
|
Hu M, Deng F, Song X, Zhao H, Yan F. The crosstalk between immune cells and tumor pyroptosis: advancing cancer immunotherapy strategies. J Exp Clin Cancer Res 2024; 43:190. [PMID: 38987821 PMCID: PMC11234789 DOI: 10.1186/s13046-024-03115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Pyroptosis is a cell death process characterized by cell swelling until membrane rupture and release of intracellular contents. As an effective tumor treatment strategy, inducing tumor cell pyroptosis has received widespread attention. In this process, the immune components within the tumor microenvironment play a key regulatory role. By regulating and altering the functions of immune cells such as cytotoxic T lymphocytes, natural killer cells, tumor-associated macrophages, and neutrophils, tumor cell pyroptosis can be induced. This article provides a comprehensive review of the molecular mechanisms of cell pyroptosis, the impact of the tumor immune microenvironment on tumor cell pyroptosis, and its mechanisms. It aims to gain an in-depth understanding of the communication between the tumor immune microenvironment and tumor cells, and to provide theoretical support for the development of new tumor immunotherapies.
Collapse
Affiliation(s)
- Mengyuan Hu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Fengying Deng
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Xinlei Song
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650031, Yunnan, China.
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China.
| |
Collapse
|
23
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
24
|
Tsutsumi E, Macy AM, LoBello J, Hastings KT, Kim S. Tumor immune microenvironment permissive to metastatic progression of ING4-deficient breast cancer. PLoS One 2024; 19:e0304194. [PMID: 38968186 PMCID: PMC11226078 DOI: 10.1371/journal.pone.0304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Deficiencies in the ING4 tumor suppressor are associated with advanced stage tumors and poor patient survival in cancer. ING4 was shown to inhibit NF-kB in several cancers. As NF-kB is a key mediator of immune response, the ING4/NF-kB axis is likely to manifest in tumor-immune modulation but has not been investigated. To characterize the tumor immune microenvironment associated with ING4-deficient tumors, three approaches were employed in this study: First, tissue microarrays composed of 246 primary breast tumors including 97 ING4-deficient tumors were evaluated for the presence of selective immune markers, CD68, CD4, CD8, and PD-1, using immunohistochemical staining. Second, an immune-competent mouse model of ING4-deficient breast cancer was devised utilizing CRISPR-mediated deletion of Ing4 in a Tp53 deletion-derived mammary tumor cell line; mammary tumors were evaluated for immune markers using flow cytometry. Lastly, the METABRIC gene expression dataset was evaluated for patient survival related to the immune markers associated with Ing4-deleted tumors. The results showed that CD68, CD4, CD8, or PD-1, was not significantly associated with ING4-deficient breast tumors, indicating no enrichment of macrophages, T cells, or exhausted T cell types. In mice, Ing4-deleted mammary tumors had a growth rate comparable to Ing4-intact tumors but showed increased tumor penetrance and metastasis. Immune marker analyses of Ing4-deleted tumors revealed a significant increase in tumor-associated macrophages (Gr-1loCD11b+F4/80+) and a decrease in granzyme B-positive (GzmB+) CD4+ T cells, indicating a suppressive and/or less tumoricidal immune microenvironment. The METABRIC data analyses showed that low expression of GZMB was significantly associated with poor patient survival, as was ING4-low expression, in the basal subtype of breast cancer. Patients with GZMB-low/ING4-low tumors had the worst survival outcomes (HR = 2.80, 95% CI 1.36-5.75, p = 0.0004), supportive of the idea that the GZMB-low immune environment contributes to ING4-deficient tumor progression. Collectively, the study results demonstrate that ING4-deficient tumors harbor a microenvironment that contributes to immune evasion and metastasis.
Collapse
Affiliation(s)
- Emily Tsutsumi
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| | - Anne M. Macy
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Janine LoBello
- Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Karen T. Hastings
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Suwon Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
25
|
Huo R, Yang WJ, Liu Y, Liu T, Li T, Wang CY, Pan BS, Wang BL, Guo W. Stigmasterol: Remodeling gut microbiota and suppressing tumor growth through Treg and CD8+ T cells in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155225. [PMID: 38678948 DOI: 10.1016/j.phymed.2023.155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most primary malignant liver tumor and is ranked as the fifth most common malignancy worldwide. Despite various therapeutic approaches being used in clinical practice, the overall effectiveness remains insufficient. Stigmasterol, a compound known for its anti-tumor properties and ability to induce apoptosis in tumor cells, has been found to influenced the composition of the intestinal microbiota. However, the mechanism through which stigmasterol influences the intestinal microbial-host crosstalk in HCC remains elusive. PURPOSE This study was to investigate whether stigmasterol can remodel gut microbiota, and suppress tumor volume by regulating Treg and IFN-γ+ CD8+ cell in the host with HCC. METHOD Stigmasterol (at dosages of 0, 50, 100, or 200 mg/kg) was orally administered to Balb/c mice with subcutaneous tumor once every 2 days for 3 weeks. RESULTS We first found that tumors volume in the group treated with 100 mg/kg stigmasterol were significantly decreased compared with those in the control group (P < 0.05), which exhibited a similar effect as the sorafenib treatment in mice with HCC. This resulted in a significant upregulation of Caspase3, Bax, and P53 expressions, as well as a decrease in Cyclin D1 expression, ultimately leading to a reduction in tumor volume. Additionally, stigmasterol can alter the α and β diversity of the intestinal flora and significantly increase the abundance of Lactobacillus_johnsonii, Lactobacillus_murinus, and Lactobacillus_reuteri (P<0.05), which can lead to a decrease in the ratio of regulatory T cells (Tregs) to CD8+ T cells in the intestinal tract and tumor tissue, and consequently enhance immune response in the tumor microenvironment (TME) in the host with HCC. CONCLUSION In this study, we initially utilized different dosages of stigmasterol to intervene in mice with HCC and confirmed its inhibitory effects on tumor growth in vivo, and discovered that stigmasterol affected Lactobacillus johnsonii, Lactobacillus murinus, and Lactobacillus reuteri, resulting in an increased proportion of IFN-γ+ CD8+ T cells and Treg cells in both the intestinal mucosa and tumor tissues, and ultimately leading to increased levels of apoptotic proteins and the subsequent death of tumor cells, which shed light on the effect of stigmasterol on host intestinal tissue and intratumoral immune cells by reshaping the intestinal microbiota, and provide a theoretical foundation for the potential clinical application of stigmasterol in the treatment of HCC.
Collapse
Affiliation(s)
- Ran Huo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chu-Yu Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Si C, Gao J, Ma X. Natural killer cell-derived exosome-based cancer therapy: from biological roles to clinical significance and implications. Mol Cancer 2024; 23:134. [PMID: 38951879 PMCID: PMC11218398 DOI: 10.1186/s12943-024-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.
Collapse
Affiliation(s)
- Chaohua Si
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China
| | - Jianen Gao
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| | - Xu Ma
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| |
Collapse
|
27
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
28
|
Wu X, Chen PI, Whitener RL, MacDougall MS, Coykendall VMN, Yan H, Kim YB, Harper W, Pathak S, Iliopoulou BP, Hestor A, Saunders DC, Spears E, Sévigny J, Maahs DM, Basina M, Sharp SA, Gloyn AL, Powers AC, Kim SK, Jensen KP, Meyer EH. CD39 delineates chimeric antigen receptor regulatory T cell subsets with distinct cytotoxic & regulatory functions against human islets. Front Immunol 2024; 15:1415102. [PMID: 39007132 PMCID: PMC11239501 DOI: 10.3389/fimmu.2024.1415102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs, most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets, may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes, a human β cell line and human islet β cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet β cells. In exploring subsets and mechanisms that may explain this pattern, we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39- CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly, β cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased β cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet β cells in the setting of CAR immunotherapy. In summary, introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.
Collapse
Affiliation(s)
- Xiangni Wu
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Department of Internal Medicine, University of Missouri Kansas City, Kansas City, MO, United States
| | - Pin-I Chen
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Robert L. Whitener
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew S. MacDougall
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Vy M. N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Hao Yan
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Yong Bin Kim
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
| | - William Harper
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
| | - Shiva Pathak
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Bettina P. Iliopoulou
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Allison Hestor
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jean Sévigny
- Centre de recherche du centre hospitalier universitaire (CHU) de Québec – Université Laval, Québec City, QC, Canada
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - David M. Maahs
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marina Basina
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
| | - Seth A. Sharp
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Anna L. Gloyn
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs (VA) Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
- The Juvenile Diabetes Research Foundation (JDRF) Northern California Center of Excellence, Stanford University School of Medicine, Stanford, CA, United States
| | - Kent P. Jensen
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- The Juvenile Diabetes Research Foundation (JDRF) Northern California Center of Excellence, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Department of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- The Juvenile Diabetes Research Foundation (JDRF) Northern California Center of Excellence, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Department of Medicine, Stanford, CA, United States
- Department of Pediatrics, Division of Stem Cell Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
29
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2024:10.1007/s12035-024-04281-7. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
30
|
Yano H, Koga K, Sato T, Shinohara T, Iriguchi S, Matsuda A, Nakazono K, Shioiri M, Miyake Y, Kassai Y, Kiyoi H, Kaneko S. Human iPSC-derived CD4 + Treg-like cells engineered with chimeric antigen receptors control GvHD in a xenograft model. Cell Stem Cell 2024; 31:795-802.e6. [PMID: 38848686 DOI: 10.1016/j.stem.2024.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
CD4+ T cells induced from human iPSCs (iCD4+ T cells) offer a therapeutic opportunity for overcoming immune pathologies arising from hematopoietic stem cell transplantation. However, most iCD4+ T cells are conventional helper T cells, which secrete inflammatory cytokines. We induced high-level expression of FOXP3, a master transcription factor of regulatory T cells, in iCD4+ T cells. Human iPSC-derived, FOXP3-induced CD4+ T (iCD4+ Treg-like) cells did not secrete inflammatory cytokines upon activation. Moreover, they showed demethylation of the Treg-specific demethylation region, suggesting successful conversion to immunosuppressive iCD4+ Treg-like cells. We further assessed these iCD4+ Treg-like cells for CAR-mediated immunosuppressive ability. HLA-A2 CAR-transduced iCD4+ Treg-like cells inhibited CD8+ cytotoxic T cell (CTL) division in a mixed lymphocyte reaction assay with A2+ allogeneic CTLs and suppressed xenogeneic graft-versus-host disease (GVHD) in NSG mice treated with A2+ human PBMCs. In most cases, these cells suppressed the xenogeneic GvHD progression as much as natural CD25+CD127- Tregs did.
Collapse
Affiliation(s)
- Hisashi Yano
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; Department of Haematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Koga
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Takayuki Sato
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Tokuyuki Shinohara
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Atsushi Matsuda
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Kazuki Nakazono
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Maki Shioiri
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Yasuyuki Miyake
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yoshiaki Kassai
- Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Hitoshi Kiyoi
- Department of Haematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, CiRA, Kyoto University, Kyoto, Japan; Takeda-CiRA joint research program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
31
|
Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, Venuta A, Nasso R, Rocco N, Russo D, Cavaliere A, Altobelli GG, Masone S, Avagliano A, Arcucci A, Fiume G. Guardians and Mediators of Metastasis: Exploring T Lymphocytes, Myeloid-Derived Suppressor Cells, and Tumor-Associated Macrophages in the Breast Cancer Microenvironment. Int J Mol Sci 2024; 25:6224. [PMID: 38892411 PMCID: PMC11172575 DOI: 10.3390/ijms25116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.
Collapse
Affiliation(s)
- Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Nicola Rocco
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Daniela Russo
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | | | - Giovanna Giuseppina Altobelli
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
32
|
Li Z, Xie Q, Zhao F, Huo X, Ren D, Liu Z, Zhou X, Shen G, Zhao J. Exploring GZMK as a prognostic marker and predictor of immunotherapy response in breast cancer: unveiling novel insights into treatment outcomes. J Cancer Res Clin Oncol 2024; 150:286. [PMID: 38833021 PMCID: PMC11150209 DOI: 10.1007/s00432-024-05791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Granzyme K (GZMK) is a crucial mediator released by immune cells to eliminate tumor cells, playing significant roles in inflammation and tumorigenesis. Despite its importance, the specific role of GZMK in breast cancer and its mechanisms are not well understood. METHODS We utilized data from the TCGA and GEO databases and employed a range of analytical methods including GO, KEGG, GSEA, ssGSEA, and PPI to investigate the impact of GZMK on breast cancer. In vitro studies, including RT-qPCR, CCK-8 assay, cell cycle experiments, apoptosis assays, Celigo scratch assays, Transwell assays, and immunohistochemical methods, were conducted to validate the effects of GZMK on breast cancer cells. Additionally, Cox regression analysis integrating TCGA and our clinical data was used to develop an overall survival (OS) prediction model. RESULTS Analysis of clinical pathological features revealed significant correlations between GZMK expression and lymph node staging, differentiation grade, and molecular breast cancer subtypes. High GZMK expression was associated with improved OS, progression-free survival (PFS), and recurrence-free survival (RFS), as confirmed by multifactorial Cox regression analysis. Functional and pathway enrichment analyses of genes positively correlated with GZMK highlighted involvement in lymphocyte differentiation, T cell differentiation, and T cell receptor signaling pathways. A robust association between GZMK expression and T cell presence was noted in the breast cancer tumor microenvironment (TME), with strong correlations with ESTIMATEScore (Cor = 0.743, P < 0.001), ImmuneScore (Cor = 0.802, P < 0.001), and StromalScore (Cor = 0.516, P < 0.001). GZMK also showed significant correlations with immune checkpoint molecules, including CTLA4 (Cor = 0.856, P < 0.001), PD-1 (Cor = 0.82, P < 0.001), PD-L1 (Cor = 0.56, P < 0.001), CD48 (Cor = 0.75, P < 0.001), and CCR7 (Cor = 0.856, P < 0.001). Studies indicated that high GZMK expression enhances patient responsiveness to immunotherapy, with higher levels observed in responsive patients compared to non-responsive ones. In vitro experiments confirmed that GZMK promotes cell proliferation, cell division, apoptosis, cell migration, and invasiveness (P < 0.05). CONCLUSION Our study provides insights into the differential expression of GZMK in breast cancer and its potential mechanisms in breast cancer pathogenesis. Elevated GZMK expression is associated with improved OS and RFS, suggesting its potential as a prognostic marker for breast cancer survival and as a predictor of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zitao Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinfa Huo
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xiaofeng Zhou
- Pathology Department, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China.
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
33
|
Li Y, Tuerxun H, Zhao Y, Liu X, Li X, Wen S, Zhao Y. The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol 2024; 198:104359. [PMID: 38615871 DOI: 10.1016/j.critrevonc.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xi Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
34
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
35
|
Mengistu DT, Curtis JL, Freeman CM. A model of dysregulated crosstalk between dendritic, natural killer, and regulatory T cells in chronic obstructive pulmonary disease. Trends Immunol 2024; 45:428-441. [PMID: 38763820 PMCID: PMC11315412 DOI: 10.1016/j.it.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by infiltration of the airways and lung parenchyma by inflammatory cells. Lung pathology results from the cumulative effect of complex and aberrant interactions between multiple cell types. However, three cell types, natural killer cells (NK), dendritic cells (DCs), and regulatory T cells (Tregs), are understudied and underappreciated. We propose that their mutual interactions significantly contribute to the development of COPD. Here, we highlight recent advances in NK, DC, and Treg biology with relevance to COPD, discuss their pairwise bidirectional interactions, and identify knowledge gaps that must be bridged to develop novel therapies. Understanding their interactions will be crucial for therapeutic use of autologous Treg, an approach proving effective in other diseases with immune components.
Collapse
Affiliation(s)
- Dawit T Mengistu
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey L Curtis
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA; Pulmonary and Critical Care Medicine Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Christine M Freeman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA; Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Thompson R, Cao X. Reassessing granzyme B: unveiling perforin-independent versatility in immune responses and therapeutic potentials. Front Immunol 2024; 15:1392535. [PMID: 38846935 PMCID: PMC11153694 DOI: 10.3389/fimmu.2024.1392535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.
Collapse
Affiliation(s)
- Raylynn Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| |
Collapse
|
37
|
Ding T, Shang Z, Zhao H, Song R, Xiong J, He C, Liu D, Yi B. Anoikis-related gene signatures in colorectal cancer: implications for cell differentiation, immune infiltration, and prognostic prediction. Sci Rep 2024; 14:11525. [PMID: 38773226 PMCID: PMC11109202 DOI: 10.1038/s41598-024-62370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor originating from epithelial cells of the colon or rectum, and its invasion and metastasis could be regulated by anoikis. However, the key genes and pathways regulating anoikis in CRC are still unclear and require further research. The single cell transcriptome dataset GSE221575 of GEO database was downloaded and applied to cell subpopulation type identification, intercellular communication, pseudo time cell trajectory analysis, and receptor ligand expression analysis of CRC. Meanwhile, the RNA transcriptome dataset of TCGA, the GSE39582, GSE17536, and GSE17537 datasets of GEO were downloaded and merged into one bulk transcriptome dataset. The differentially expressed genes (DEGs) related to anoikis were extracted from these data sets, and key marker genes were obtained after feature selection. A clinical prognosis prediction model was constructed based on the marker genes and the predictive effect was analyzed. Subsequently, gene pathway analysis, immune infiltration analysis, immunosuppressive point analysis, drug sensitivity analysis, and immunotherapy efficacy based on the key marker genes were conducted for the model. In this study, we used single cell datasets to determine the anoikis activity of cells and analyzed the DEGs of cells based on the score to identify the genes involved in anoikis and extracted DEGs related to the disease from the transcriptome dataset. After dimensionality reduction selection, 7 marker genes were obtained, including TIMP1, VEGFA, MYC, MSLN, EPHA2, ABHD2, and CD24. The prognostic risk model scoring system built by these 7 genes, along with patient clinical data (age, tumor stage, grade), were incorporated to create a nomogram, which predicted the 1-, 3-, and 5-years survival of CRC with accuracy of 0.818, 0.821, and 0.824. By using the scoring system, the CRC samples were divided into high/low anoikis-related prognosis risk groups, there are significant differences in immune infiltration, distribution of immune checkpoints, sensitivity to chemotherapy drugs, and efficacy of immunotherapy between these two risk groups. Anoikis genes participate in the differentiation of colorectal cancer tumor cells, promote tumor development, and could predict the prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Taohui Ding
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Zhao Shang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hu Zhao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Renfeng Song
- Department of Digestive Oncology, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Jianyong Xiong
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Chuan He
- Department of Digestive Oncology, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Dan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Bo Yi
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China.
| |
Collapse
|
38
|
Vafaeian A, Mahmoudi H, Daneshpazhooh M. What is novel in the clinical management of pemphigus vulgaris? Expert Rev Clin Pharmacol 2024; 17:489-503. [PMID: 38712540 DOI: 10.1080/17512433.2024.2350943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Pemphigus, an uncommon autoimmune blistering disorder affecting the skin and mucous membranes, currently with mortality primarily attributed to adverse reactions resulting from treatment protocols. Additionally, the existing treatments exhibit a notable recurrence rate. The high incidence of relapse and the considerable adverse effects associated with treatment underscore the imperative to explore safer and more effective therapeutic approaches. Numerous potential therapeutic targets have demonstrated promising outcomes in trials or preliminary research stages. These encompass anti-CD-20 agents, anti-CD-25 agents, TNF-α inhibition, FAS Ligand Inhibition, FcRn inhibition, BAFF inhibition, Bruton's tyrosine kinase (BTK) inhibition, CAAR T Cells, JAK inhibition, mTOR inhibition, abatacept, IL-4 inhibition, IL-17 inhibition, IL-6 inhibition, polyclonal Regulatory T Cells, and autologous hematopoietic stem cell transplantation. AREAS COVERED The most significant studies regarding the impact and efficacy of the mentioned treatments on pemphigus were meticulously curated through a comprehensive search conducted on the PubMed database. Moreover, the investigations of interest cited in these studies were also integrated. EXPERT OPINION The efficacy and safety profiles of the other treatments under discussion do not exhibit the same level of robustness as anti-CD20 therapy, which is anticipated to endure as a critical element in pemphigus treatment well into the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Verma Y, Perera Molligoda Arachchige AS. Advances in Tumor Management: Harnessing the Potential of Histotripsy. Radiol Imaging Cancer 2024; 6:e230159. [PMID: 38639585 PMCID: PMC11148838 DOI: 10.1148/rycan.230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
Tissue ablation techniques have long been used in clinical settings to treat various oncologic diseases. However, many of these techniques are invasive and can cause substantial adverse effects. Histotripsy is a noninvasive, nonionizing, nonthermal tissue ablation technique that has the potential to replace surgical interventions in various clinical settings. Histotripsy works by delivering high-intensity focused ultrasound waves to target tissue. These waves create cavitation bubbles within tissues that rapidly expand and collapse, thereby mechanically fractionating the tissue into acellular debris that is subsequently absorbed by the body's immune system. Preclinical and clinical studies have demonstrated the efficacy of histotripsy in treating a range of diseases, including liver, pancreatic, renal, and prostate tumors. Safety outcomes of histotripsy have been generally favorable, with minimal adverse effects reported. However, further studies are needed to optimize the technique and understand its long-term effects. This review aims to discuss the importance of histotripsy as a noninvasive tissue ablation technique, the preclinical and clinical literature on histotripsy and its safety, and the potential applications of histotripsy in clinical practice. Keywords: Tumor Microenvironment, Ultrasound-High-Intensity Focused (HIFU), Ablation Techniques, Abdomen/GI, Genital/Reproductive, Nonthermal Tissue Ablation, Histotripsy, Clinical Trials, Preclinical Applications, Focused Ultrasound © RSNA, 2024.
Collapse
|
40
|
Toadere TM, Ţichindeleanu A, Bondor DA, Topor I, Trella ŞE, Nenu I. Bridging the divide: unveiling mutual immunological pathways of cancer and pregnancy. Inflamm Res 2024; 73:793-807. [PMID: 38492049 DOI: 10.1007/s00011-024-01866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
The juxtaposition of two seemingly disparate physiological phenomena within the human body-namely, cancer and pregnancy-may offer profound insights into the intricate interplay between malignancies and the immune system. Recent investigations have unveiled striking similarities between the pivotal processes underpinning fetal implantation and successful gestation and those governing tumor initiation and progression. Notably, a confluence of features has emerged, underscoring parallels between the microenvironment of tumors and the maternal-fetal interface. These shared attributes encompass establishing vascular networks, cellular mobilization, recruitment of auxiliary tissue components to facilitate continued growth, and, most significantly, the orchestration of immune-suppressive mechanisms.Our particular focus herein centers on the phenomenon of immune suppression and its protective utility in both of these contexts. In the context of pregnancy, immune suppression assumes a paramount role in shielding the semi-allogeneic fetus from the potentially hostile immune responses of the maternal host. In stark contrast, in the milieu of cancer, this very same immunological suppression fosters the transformation of the tumor microenvironment into a sanctuary personalized for the neoplastic cells.Thus, the striking parallels between the immunosuppressive strategies deployed during pregnancy and those co-opted by malignancies offer a tantalizing reservoir of insights. These insights promise to inform novel avenues in the realm of cancer immunotherapy. By harnessing our understanding of the immunological events that detrimentally impact fetal development, a knowledge grounded in the context of conditions such as preeclampsia or miscarriage, we may uncover innovative immunotherapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Teodora Maria Toadere
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania.
| | - Andra Ţichindeleanu
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania.
| | - Daniela Andreea Bondor
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Ioan Topor
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Şerban Ellias Trella
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
42
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
43
|
Dittmar DJ, Pielmeier F, Strieder N, Fischer A, Herbst M, Stanewsky H, Wenzl N, Röseler E, Eder R, Gebhard C, Schwarzfischer-Pfeilschifter L, Albrecht C, Herr W, Edinger M, Hoffmann P, Rehli M. Donor regulatory T cells rapidly adapt to recipient tissues to control murine acute graft-versus-host disease. Nat Commun 2024; 15:3224. [PMID: 38622133 PMCID: PMC11018811 DOI: 10.1038/s41467-024-47575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
The adoptive transfer of regulatory T cells is a promising strategy to prevent graft-versus-host disease after allogeneic bone marrow transplantation. Here, we use a major histocompatibility complex-mismatched mouse model to follow the fate of in vitro expanded donor regulatory T cells upon migration to target organs. Employing comprehensive gene expression and repertoire profiling, we show that they retain their suppressive function and plasticity after transfer. Upon entering non-lymphoid tissues, donor regulatory T cells acquire organ-specific gene expression profiles resembling tissue-resident cells and activate hallmark suppressive and cytotoxic pathways, most evidently in the colon, when co-transplanted with graft-versus-host disease-inducing conventional T cells. Dominant T cell receptor clonotypes overlap between organs and across recipients and their relative abundance correlates with protection efficacy. Thus, this study reveals donor regulatory T cell selection and adaptation mechanisms in target organs and highlights protective features of Treg to guide the development of improved graft-versus-host disease prevention strategies.
Collapse
Affiliation(s)
- David J Dittmar
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
- BioNTech SE, 82061, Neuried, Germany
| | - Franziska Pielmeier
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | | | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Michael Herbst
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
- Institute of Experimental Immunology, Research Unit Tumorimmunology, University of Zurich, Zurich, Switzerland
| | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Niklas Wenzl
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | - Eveline Röseler
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | | | - Christin Albrecht
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| |
Collapse
|
44
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
45
|
Cochrane RW, Robino RA, Granger B, Allen E, Vaena S, Romeo MJ, de Cubas AA, Berto S, Ferreira LM. High affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587467. [PMID: 38617240 PMCID: PMC11014479 DOI: 10.1101/2024.03.31.587467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T-cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28 activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFNγ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Russell W. Cochrane
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A. de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M.R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Kundura L, Cezar R, Ballongue E, André S, Michel M, Mettling C, Lozano C, Vincent T, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. Low Percentage of Perforin-Expressing NK Cells during Severe SARS-CoV-2 Infection: Consumption Rather than Primary Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1105-1112. [PMID: 38345346 DOI: 10.4049/jimmunol.2300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/05/2023] [Indexed: 03/20/2024]
Abstract
Genetic defects in the ability to deliver effective perforin have been reported in patients with hemophagocytic lymphohistiocytosis. We tested the hypothesis that a primary perforin deficiency might also be causal in severe SARS-CoV-2 infection. We recruited 54 volunteers confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to intensive care units or non-intensive care units and age- and sex-matched healthy controls. Compared with healthy controls, the percentage of perforin-expressing CD3-CD56+ NK cells quantified by flow cytometry was low in COVID-19 patients (69.9 ± 17.7 versus 78.6 ± 14.6%, p = 0.026). There was no correlation between the proportions of perforin-positive NK cells and T8 lymphocytes. Moreover, the frequency of NK cells producing perforin was neither linked to disease severity nor predictive of death. Although IL-6 is known to downregulate perforin production in NK cells, we did not find any link between perforin expression and IL-6 plasma level. However, we unveiled a negative correlation between the degranulation marker CD107a and perforin expression in NK cells (r = -0.488, p = 10-4). PRF1 gene expression and the frequency of NK cells harboring perforin were normal in patients 1 y after acute SARS-CoV-2 infection. A primary perforin defect does not seem to be a driver of COVID-19 because NK perforin expression is 1) linked neither to T8 perforin expression nor to disease severity, 2) inversely correlated with NK degranulation, and 3) normalized at distance from acute infection. Thus, the cause of low frequency of perforin-positive NK cells appears, rather, to be consumption.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Emma Ballongue
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Sonia André
- INSERM U1124, Université de Paris, Paris, France
| | - Moïse Michel
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Clément Mettling
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Thierry Vincent
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital, Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital, Nîmes, France
| | - Paul Loubet
- *Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Albert Sotto
- *Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Tu-Anh Tran
- Pediatrics Department, Nîmes University Hospital, Nîmes, France
| | - Jérôme Estaquier
- INSERM U1124, Université de Paris, Paris, France
- Laval University Research Center; Quebec City, Quebec, Canada
| | - Pierre Corbeau
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
- Immunology Department, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
47
|
Zhang YS, Chen YQ. Dysfunctional regulatory T cell: May be an obstacle to immunotherapy in cardiovascular diseases. Biomed Pharmacother 2024; 173:116359. [PMID: 38430633 DOI: 10.1016/j.biopha.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Inflammatory responses are linked to cardiovascular diseases (CVDs) in various forms. Tregs, members of CD4+ T cells, play important roles in regulating immune system and suppressing inflammatory response, thus contributing to maintaining immune homeostasis. However, Tregs exert their powerful suppressive function relying on the stable phenotype and function. The stability of Tregs primarily depends on the FOXP3 (Forkhead box P3) expression and epigenetic regulation. Although Tregs are quite stable under physiological conditions, prolonged exposure to inflammatory cues, Tregs may lose suppressive function and require proinflammatory phenotype, namely plastic Tregs or ex-Tregs. There are extensive researches have established the beneficial role of Tregs in CVDs. Nevertheless, the potential risks of dysfunctional Tregs lack deep research. Anti-inflammatory and immunological modulation have been hotspots in the treatment of CVDs. Tregs are appealing because of their crucial role in resolving inflammation and promoting tissue repair. If alleviating inflammatory response through modulating Tregs could be a new therapeutic strategy for CVDs, the next step to consider is how to prevent the formation of dysfunctional Tregs or reverse detrimental Tregs to normal phenotype.
Collapse
Affiliation(s)
- Yu-Sha Zhang
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Ya-Qin Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
48
|
Verma Y, Perera Molligoda Arachchige AS. Revolutionizing brain interventions: the multifaceted potential of histotripsy. Neurosurg Rev 2024; 47:124. [PMID: 38509320 DOI: 10.1007/s10143-024-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Histotripsy, a non-thermal ultrasound technique, holds significant promise in various applications within the realm of brain interventions. While its use for treating brain tumors is somewhat limited, focused ultrasound technology has been extensively investigated for a wide range of purposes within the brain, including disrupting the blood-brain barrier, supporting immunotherapy, addressing conditions like essential tremor, Parkinson's disease, Alzheimer's disease, epilepsy, and neuropathic pain. Research findings indicate that histotripsy can reduce tumor cells with fewer pulses, minimizing the risk of bleeding and cellular injury. The use of MRI sequences such as T2 and T2* enhances the evaluation of the effects of histotripsy treatment, facilitating non-invasive assessment of treated areas. Furthermore, histotripsy displays promise in creating precise brain lesions with minimal edema and inflammation, particularly in porcine models, suggesting considerable progress in the treatment of brain lesions. Moreover, studies confirm its feasibility, safety, and effectiveness in treating intracerebral hemorrhage by safely liquefying clots without causing significant harm to surrounding brain tissue., opening exciting possibilities for clinical applications. The development of transcranial MR-guided focused ultrasound systems based on histotripsy represents a significant breakthrough in overcoming the limitations associated with thermal ablation techniques. Histotripsy's ability to efficiently liquefy clots, minimize skull heating, and target shallow lesions near the skull establishes it as a promising alternative for various brain treatments. In conclusion, histotripsy offers diverse potential in the field of brain interventions, encompassing applications ranging from tumor treatment to the management of intracerebral hemorrhage. While challenges such as accurate monitoring and differentiation of treatment effects persist, ongoing research efforts and technological advancements continue to expand the role of histotripsy in both neurology and neurosurgery.
Collapse
Affiliation(s)
- Yash Verma
- Norfolk and Norwich University Hospital, Norwich, UK
| | | |
Collapse
|
49
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
50
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|