1
|
Martinez MM, Walsh JR, Kamocka MM, Lee H, Dunn KW. Longitudinal intravital microscopy of the mouse kidney: inflammatory responses to abdominal imaging windows. Am J Physiol Renal Physiol 2024; 327:F845-F868. [PMID: 39323386 DOI: 10.1152/ajprenal.00071.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Intravital microscopy enables direct observation of cell biology and physiology at subcellular resolution in real time in living animals. Implanted windows extend the scope of intravital microscopy to processes extending for weeks or even months, such as disease progression or tumor development. However, a question that must be addressed in such studies is whether the imaging window, like any foreign body, triggers an inflammatory response, and whether that response alters the biological process under investigation. To directly evaluate this question, we conducted large-scale intravital microscopy of the kidney of LysM-EGFP mice over time after implantation of abdominal imaging windows. These studies demonstrate that windows stimulated a variety of changes consistent with a foreign body response. Within a few days of implantation, leukocytes were recruited to the window and the region between the window and kidney where, over the next 16 days, they increased in number in an expanding volume that developed a new vascular network. These changes were accompanied by a dramatic increase in glomerular albumin permeability within 2-5 days of implantation. Similar results were obtained from mice implanted with windows coated with poly(l-lysine)-graft-polyethylene glycol (PLL-g-PEG), but not from immune-deficient mice. These studies demonstrate the importance of evaluating whether implanted windows induce an inflammatory response, and whether that response impacts the processes under evaluation in longitudinal intravital microscopy studies.NEW & NOTEWORTHY Intravital microscopy studies of LysM-EGFP mice demonstrate that abdominal imaging windows placed over the kidney stimulated a variety of changes consistent with a foreign body response. Within a day of implantation, leukocytes were recruited to the window where, over the next 16 days, they increased in number in an expanding volume that developed a new vascular network. These changes were accompanied by a dramatic increase in glomerular permeability to albumin.
Collapse
Affiliation(s)
- Michelle M Martinez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Julia R Walsh
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, Indiana, United States
| | - Malgorzata M Kamocka
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, Indiana, United States
| | - Kenneth W Dunn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
2
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Ji W, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. Dev Cell 2024; 59:2659-2671.e4. [PMID: 38971157 PMCID: PMC11461132 DOI: 10.1016/j.devcel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Neutrophils collectively migrate to sites of injury and infection. How these swarms are coordinated to ensure the proper level of recruitment is unknown. Using an ex vivo model of infection, we show that human neutrophil swarming is organized by multiple pulsatile chemoattractant waves. These waves propagate through active relay in which stimulated neutrophils trigger their neighbors to release additional swarming cues. Unlike canonical active relays, we find these waves to be self-terminating, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-terminating behavior. We observe near-constant levels of neutrophil recruitment over a wide range of starting conditions, revealing surprising robustness in the swarming process. This homeostatic control is achieved by larger and more numerous swarming waves at lower cell densities. We link defective wave termination to a broken recruitment homeostat in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alex Hopke
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Wencheng Ji
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Zheng X, Yang L, Shen X, Pan J, Chen Y, Chen J, Wang H, Meng J, Chen Z, Xie S, Li Y, Zhu B, Zhu W, Qin L, Lu L. Targeting Gsk3a reverses immune evasion to enhance immunotherapy in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e009642. [PMID: 39174053 PMCID: PMC11340705 DOI: 10.1136/jitc-2024-009642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Immune escape is an important feature of hepatocellular carcinoma (HCC). The overall response rate of immune checkpoint inhibitors (ICIs) in HCC is still limited. Revealing the immune regulation mechanisms and finding new immune targets are expected to further improve the efficacy of immunotherapy. Our study aims to use CRISPR screening mice models to identify potential targets that play a critical role in HCC immune evasion and further explore their value in improving immunotherapy. METHODS We performed CRISPR screening in two mice models with different immune backgrounds (C57BL/6 and NPG mice) and identified the immunosuppressive gene Gsk3a as a candidate for further investigation. Flow cytometry was used to analyze the impact of Gsk3a on immune cell infiltration and T-cell function. RNA sequencing was used to identify the changes in neutrophil gene expression induced by Gsk3a and alterations in downstream molecules. The therapeutic value of the combination of Gsk3a inhibitors and anti-programmed cell death protein-1 (PD-1) antibody was also explored. RESULTS Gsk3a, as an immune inhibitory target, significantly promoted tumor growth in immunocompetent mice rather than immune-deficient mice. Gsk3a inhibited cytotoxic T lymphocytes (CTLs) function by inducing neutrophil chemotaxis. Gsk3a promoted self-chemotaxis of neutrophil expression profiles and neutrophil extracellular traps (NETs) formation to block T-cell activity through leucine-rich α-2-glycoprotein 1 (LRG1). A significant synergistic effect was observed when Gsk3a inhibitor was in combination with anti-PD-1 antibody. CONCLUSIONS We identified a potential HCC immune evasion target, Gsk3a, through CRISPR screening. Gsk3a induces neutrophil recruitment and NETs formation through the intermediate molecule LRG1, leading to the inhibition of CTLs function. Targeting Gsk3a can enhance CTLs function and improve the efficacy of ICIs.
Collapse
Affiliation(s)
- Xin Zheng
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Luyu Yang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaotian Shen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Junjie Pan
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yiran Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jixuan Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jiaqi Meng
- Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sunzhe Xie
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yitong Li
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bolun Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wenwei Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Kamsom C, Edwards SW, Thaosing J, Papalee S, Pientong C, Kurosu T, Phanthanawiboon S. Altered neutrophil responses to dengue virus serotype three: delayed apoptosis is regulated by stabilisation of Mcl-1. Sci Rep 2024; 14:18414. [PMID: 39117747 PMCID: PMC11310306 DOI: 10.1038/s41598-024-68642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Dengue is a global health concern, and the host-viral interactions that regulate disease severity are largely unknown. Detrimental effects of neutrophils in this disease have been reported, but the precise mechanisms and functional properties of dengue-activated neutrophils are not fully characterised. Here, we measured the effects of dengue virus serotype 3 (DV3) on neutrophil lifespan and functions. We show that DV3 extends neutrophil survival with a significant proportion of cells surviving for 72 h post-incubation. These effects on neutrophil survival were greater than those observed by adding GM-CSF and TNF-α alone, but these cytokines enhanced survival induced by the virus. Enhanced reactive oxygen species (ROS) generation was observed following incubation with DV3 activation and this ROS production was enhanced by co-incubation with priming agents. In addition, DV triggered the enhanced IL-8 expression by the majority of neutrophils and a low percentage of cells were activated to express MCP-1 (CCL2). A low number of neutrophils showed increased co-expression of the migratory markers, CCR7 and CXCR4 which could promote their migration towards lymph nodes. DV3 significantly upregulated the BCL-XL gene at 3, 12, and 24 h, and the Mcl-1 gene at 12 h, following treatment. We also show that DV3 induces the Mcl-1 protein stabilization similar to GM-CSF. This report sheds new light on the mechanisms by which neutrophils may contribute to the pathology of dengue disease via delayed apoptosis and generation of pro-inflammatory molecules, and raises the possibility that dengue-activated neutrophils may play a role in activating cells of adaptive immunity.
Collapse
Affiliation(s)
- Chatcharin Kamsom
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Steven W Edwards
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiraphon Thaosing
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Saitharn Papalee
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
6
|
Ni Q, Li G, Chen Y, Bao C, Wang T, Li Y, Ruan X, Wang H, Sun W. LECs regulate neutrophil clearance through IL-17RC/CMTM4/NF-κB axis at sites of inflammation or infection. Mucosal Immunol 2024; 17:723-738. [PMID: 38754839 DOI: 10.1016/j.mucimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The lymphatic system plays a vital role in the regulation of tissue fluid balance and the immune response to inflammation or infection. The effects of lymphatic endothelial cells (LECs) on the regulation of neutrophil migration have not been well-studied. In three murine models: imiquimod-induced skin inflammation, Staphylococcus aureus-induced skin infection, and ligature-induced periodontitis, we show that numerous neutrophils migrate from inflamed or infected tissues to the draining lymph nodes via lymphatic vessels. Moreover, inflamed or infected tissues express a high level of interleukin (IL)-17A and tumor necrosis factor (TNF)-α, simultaneously with a significant increase in the release of neutrophil attractors, including CXCL1, CXCL2, CXCL3, and CXCL5. Importantly, in vitro stimulation of LECs with IL-17A plus TNF-α synergistically promoted these chemokine secretions. Mechanistically, tetra-transmembrane protein CMTM4 directly binds to IL-17RC in LECs. IL-17A plus TNF-α stimulates CXC chemokine secretion by promoting nuclear factor-kappa B signaling. In contrast, knockdown of CMTM4 abrogates IL-17A plus TNF-α activated nuclear factor-kappa B signaling pathways. Lastly, the local administration of adeno-associated virus for CMTM4 in Prox1-CreERT2 mice, mediating LEC-specific overexpression of CMTM4, promotes the drainage of neutrophils by LECs and alleviates immune pathological responses. Thus, our findings reveal the vital role of LECs-mediated neutrophil attraction and clearance at sites of inflammation or infection.
Collapse
Affiliation(s)
- Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Gen Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyi Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
7
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Kirby A, Suchý M, Duan D, Bazett M, Kalyan S, Shuhendler AJ. Tracking the fate of bacteria-derived site-specific immunomodulators by positron emission tomography. Nucl Med Biol 2024; 132-133:108908. [PMID: 38599145 DOI: 10.1016/j.nucmedbio.2024.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION Site-specific immunomodulators (SSIs) are a novel class of therapeutics made from inactivated bacterial species designed to regulate the innate immune system in targeted organs. QBECO is a gut-targeted SSI that is being advanced clinically to treat and/or prevent inflammatory bowel disease, cancer, and serious infections of the gastrointestinal (GI) tract and proximal organs, and QBKPN is a lung-targeted SSI that is in clinical development for the treatment and/or prevention of chronic inflammatory lung disease, lung cancers and respiratory tract infections. While these SSIs have demonstrated both safety and proof-of-concept in preclinical and clinical studies, detailed understanding of their trafficking and biodistribution is yet to be fully characterized. METHODS QBECO and QBKPN were radiolabeled with [89Zr] and injected subcutaneously into healthy mice. The mice underwent Positron Emission Tomography (PET) imaging every day for eight days to track biodistribution of the SSIs. Tissue from the site of injection was collected and immunohistologically probed for immune cell infiltration. RESULTS Differential biodistribution of the two SSIs was seen, adhering to their site-specific targeting. QBKPN appeared to migrate from the site of injection (abdomen) to the cervical lymph nodes which are nearer to the respiratory tract and lungs. QBECO remained in the abdominal region, with lymphatic trafficking to the inguinal lymph nodes, which are nearer to GI-proximal tissues/organs. Immune infiltration at the site of injection comprised of neutrophils for both SSIs, and macrophages for only QBKPN. CONCLUSION Radiolabeling of SSIs allows for longitudinal in vivo imaging of biodistribution and trafficking. PET imaging revealed differential biodistribution of the SSIs based on the organotropism of the bacteria from which the SSI is derived. Trafficking from the site of injection to the targeted site is in part mediated via the lymphatics and involves macrophages and neutrophils.
Collapse
Affiliation(s)
- Alexia Kirby
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Mojmír Suchý
- University of Ottawa Heart Institute, Ottawa, ON, Canada; Department of Chemistry and Biomolecular Sciences, Ottawa, ON, Canada
| | - Daniel Duan
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, Canada; Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, BC, Canada
| | - Adam J Shuhendler
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada; Department of Chemistry and Biomolecular Sciences, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Haist KC, Gibbings SL, Jacobelli J, Mould KJ, Henson PM, Bratton DL. A LTB 4/CD11b self-amplifying loop drives pyogranuloma formation in chronic granulomatous disease. iScience 2024; 27:109589. [PMID: 38623335 PMCID: PMC11016758 DOI: 10.1016/j.isci.2024.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sterile pyogranulomas and heightened cytokine production are hyperinflammatory hallmarks of Chronic Granulomatous Disease (CGD). Using peritoneal cells of zymosan-treated CGD (gp91phox-/-) versus wild-type (WT) mice, an ex vivo system of pyogranuloma formation was developed to determine factors involved in and consequences of recruitment of neutrophils and monocyte-derived macrophages (MoMacs). Whereas WT cells failed to aggregate, CGD cells formed aggregates containing neutrophils initially, and MoMacs recruited secondarily. LTB4 was key, as antagonizing BLT1 blocked neutrophil aggregation, but acted only indirectly on MoMac recruitment. LTB4 upregulated CD11b expression on CGD neutrophils, and the absence/blockade of CD11b inhibited LTB4 production and cell aggregation. Neutrophil-dependent MoMac recruitment was independent of MoMac Nox2 status, BLT1, CCR1, CCR2, CCR5, CXCR2, and CXCR6. As proof of concept, CD11b-deficient CGD mice developed disrupted pyogranulomas with poorly organized neutrophils and diminished recruitment of MoMacs. Importantly, the disruption of cell aggregation and pyogranuloma formation markedly reduced proinflammatory cytokine production.
Collapse
Affiliation(s)
- Kelsey C. Haist
- National Jewish Health, Department of Pediatrics, Denver, CO 80206, USA
| | | | - Jordan Jacobelli
- University of Colorado, Anschutz Medical Campus, Department of Immunology and Microbiology, Barbara Davis Research Center, Aurora, CO 80045, USA
| | - Kara J. Mould
- National Jewish Health, Department of Medicine, Denver, CO 80206, USA
- University of Colorado, Anschutz Medical Campus, Department of Pulmonary and Critical Care Medicine, Aurora, CO 80045, USA
| | - Peter M. Henson
- National Jewish Health, Department of Pediatrics, Denver, CO 80206, USA
- University of Colorado, Anschutz Medical Campus, Department of Immunology and Microbiology, Barbara Davis Research Center, Aurora, CO 80045, USA
- National Jewish Health, Department of Medicine, Denver, CO 80206, USA
- University of Colorado, Anschutz Medical Campus, Department of Pulmonary and Critical Care Medicine, Aurora, CO 80045, USA
| | - Donna L. Bratton
- National Jewish Health, Department of Pediatrics, Denver, CO 80206, USA
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Aung A, Irvine DJ. Modulating Antigen Availability in Lymphoid Organs to Shape the Humoral Immune Response to Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:171-178. [PMID: 38166252 PMCID: PMC10768795 DOI: 10.4049/jimmunol.2300500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 01/04/2024]
Abstract
Primary immune responses following vaccination are initiated in draining lymph nodes, where naive T and B cells encounter Ag and undergo coordinated steps of activation. For humoral immunity, the amount of Ag present over time, its localization to follicles and follicular dendritic cells, and the Ag's structural state all play important roles in determining the subsequent immune response. Recent studies have shown that multiple elements of vaccine design can impact Ag availability in lymphoid tissues, including the choice of adjuvant, physical form of the immunogen, and dosing kinetics. These vaccine design elements affect the transport of Ag to lymph nodes, Ag's localization in the tissue, the duration of Ag availability, and the structural integrity of the Ag. In this review, we discuss these findings and their implications for engineering more effective vaccines, particularly for difficult to neutralize pathogens.
Collapse
Affiliation(s)
- Aereas Aung
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Maus D, Curtis B, Warschkau D, Betancourt ED, Seeber F, Blume M. Generation of Mature Toxoplasma gondii Bradyzoites in Human Immortalized Myogenic KD3 Cells. Bio Protoc 2024; 14:e4916. [PMID: 38213326 PMCID: PMC10777055 DOI: 10.21769/bioprotoc.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite and one of the most successful foodborne pathogens. Upon infection and dissemination, the parasites convert into the persisting, chronic form called bradyzoites, which reside within cysts in muscle and brain tissue. Despite their importance, bradyzoites remain difficult to investigate directly, owing to limited in vitro models. In addition, the need for new drugs targeting the chronic stage, which is underlined by the lack of eradicating treatment options, remains difficult to address since in vitro access to drug-tolerant bradyzoites remains limited. We recently published the use of a human myotube-based bradyzoite cell culture system and demonstrated its applicability to investigate the biology of T. gondii bradyzoites. Encysted parasites can be functionally matured during long-term cultivation in these immortalized cells and possess many in vivo-like features, including pepsin resistance, oral infectivity, and antifolate resistance. In addition, the system is scalable, enabling experimental approaches that rely on large numbers, such as metabolomics. In short, we detail the cultivation of terminally differentiated human myotubes and their subsequent infection with tachyzoites, which then mature to encysted bradyzoites within four weeks at ambient CO2 levels. We also discuss critical aspects of the procedure and suggest improvements. Key features • This protocol describes a scalable human myotube-based in vitro system capable of generating encysted bradyzoites featuring in vivo hallmarks. • Bradyzoite differentiation is facilitated through CO2 depletion but without additional artificial stress factors like alkaline pH. • Functional maturation occurs over four weeks.
Collapse
Affiliation(s)
- Deborah Maus
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
| | - Blake Curtis
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
- Research School of Chemistry, The Australian National University, Canberra, Australia
| | - David Warschkau
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Estefanía Delgado Betancourt
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Seeber
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Martin Blume
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
13
|
Elati HAA, Goerner AL, Martorelli Di Genova B, Sheiner L, de Koning HP. Pyrimidine salvage in Toxoplasma gondii as a target for new treatment. Front Cell Infect Microbiol 2023; 13:1320160. [PMID: 38162577 PMCID: PMC10755004 DOI: 10.3389/fcimb.2023.1320160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Toxoplasmosis is a common protozoan infection that can have severe outcomes in the immunocompromised and during pregnancy, but treatment options are limited. Recently, nucleotide metabolism has received much attention as a target for new antiprotozoal agents and here we focus on pyrimidine salvage by Toxoplasma gondii as a drug target. Whereas uptake of [3H]-cytidine and particularly [3H]-thymidine was at most marginal, [3H]-uracil and [3H]-uridine were readily taken up. Kinetic analysis of uridine uptake was consistent with a single transporter with a Km of 3.3 ± 0.8 µM, which was inhibited by uracil with high affinity (Ki = 1.15 ± 0.07 µM) but not by thymidine or 5-methyluridine, showing that the 5-Me group is incompatible with uptake by T. gondii. Conversely, [3H]-uracil transport displayed a Km of 2.05 ± 0.40 µM, not significantly different from the uracil Ki on uridine transport, and was inhibited by uridine with a Ki of 2.44 ± 0.59 µM, also not significantly different from the experimental uridine Km. The reciprocal, complete inhibition, displaying Hill slopes of approximately -1, strongly suggest that uridine and uracil share a single transporter with similarly high affinity for both, and we designate it uridine/uracil transporter 1 (TgUUT1). While TgUUT1 excludes 5-methyl substitutions, the smaller 5F substitution was tolerated, as 5F-uracil inhibited uptake of [3H]-uracil with a Ki of 6.80 ± 2.12 µM (P > 0.05 compared to uracil Km). Indeed, we found that 5F-Uridine, 5F-uracil and 5F,2'-deoxyuridine were all potent antimetabolites against T. gondii with EC50 values well below that of the current first line treatment, sulfadiazine. In vivo evaluation also showed that 5F-uracil and 5F,2'-deoxyuridine were similarly effective as sulfadiazine against acute toxoplasmosis. Our preliminary conclusion is that TgUUT1 mediates potential new anti-toxoplasmosis drugs with activity superior to the current treatment.
Collapse
Affiliation(s)
- Hamza A. A. Elati
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Pharmacology and Toxicology, Pharmacy College, University of Elmergib, Al Khums, Libya
| | - Amber L. Goerner
- Larner College of Medicine at The University of Vermont, Department of Microbiology and Molecular Genetics, Burlington, VT, United States
| | - Bruno Martorelli Di Genova
- Larner College of Medicine at The University of Vermont, Department of Microbiology and Molecular Genetics, Burlington, VT, United States
| | - Lilach Sheiner
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Harry P. de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Song Z, Bhattacharya S, Clemens RA, Dinauer MC. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience 2023; 26:108034. [PMID: 37854699 PMCID: PMC10579437 DOI: 10.1016/j.isci.2023.108034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.
Collapse
Affiliation(s)
- Zhimin Song
- Guangzhou National Laboratory, Guangzhou 510320, Guangdong Province, China
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Regina A. Clemens
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Edgerton M, Rojas I, Kumar R, Li R, Salvatori O, Abrams S, Irimia D. Neutrophil swarms containing myeloid-derived suppressor cells are crucial for limiting oral mucosal infection by C. albicans. RESEARCH SQUARE 2023:rs.3.rs-3346012. [PMID: 37886517 PMCID: PMC10602121 DOI: 10.21203/rs.3.rs-3346012/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Oral mucosal colonization by C. albicans (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone-induced immunosuppression is a well-known risk factor for OPC, however the mechanism by which it permits infection is poorly understood. Neutrophils are the primary early sentinels preventing invasive fungal growth, and here we identify that in vivo neutrophil functional complexes known as swarms are crucial for preventing Ca invasion which are disrupted by cortisone. Neutrophil swarm function required leukotriene B4 receptor 1 (BLT1) expression, and swarms were further characterized by peripheral association of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) showing that OPC recruits PMN-MDSCs to this site of infection. Furthermore, PMN-MDSCs associated with Ca hyphae had no direct antifungal effect but showed prolonged survival times and increased autophagy. Thus in vivo neutrophil swarms are complex structures with spatially associated PMN-MDSCs that likely contribute immunoregulatory functions to resolve OPC. These swarm structures have an important function in preventing deep invasion by Ca within the oral mucosa and represent a mechanism for increased disease severity under immune deficient clinical settings.
Collapse
|
16
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
17
|
Abstract
The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin. However, the architecture and function of the skin differ significantly from vital organs where highly specialized microenvironments carry out critical functions. Therefore, the detrimental extent this perturbation may have on organ function remains unclear. In this review, we examine organ-specific swarming within the skin, liver, and lungs, with a detailed focus on swarming within microvascular environments. In addition, we examine potential "swarmulants" that initiate both transient and persistent swarms that have been implicated in disease.
Collapse
Affiliation(s)
- Luke Brown
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Rombouts S, Mas A, Le Gall A, Fiche JB, Mignot T, Nollmann M. Multi-scale dynamic imaging reveals that cooperative motility behaviors promote efficient predation in bacteria. Nat Commun 2023; 14:5588. [PMID: 37696789 PMCID: PMC10495355 DOI: 10.1038/s41467-023-41193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Many species, such as fish schools or bird flocks, rely on collective motion to forage, prey, or escape predators. Likewise, Myxococcus xanthus forages and moves collectively to prey and feed on other bacterial species. These activities require two distinct motility machines enabling adventurous (A) and social (S) gliding, however when and how these mechanisms are used has remained elusive. Here, we address this long-standing question by applying multiscale semantic cell tracking during predation. We show that: (1) foragers and swarms can comprise A- and S-motile cells, with single cells exchanging frequently between these groups; (2) A-motility is critical to ensure the directional movement of both foragers and swarms; (3) the combined action of A- and S-motile cells within swarms leads to increased predation efficiencies. These results challenge the notion that A- and S-motilities are exclusive to foragers and swarms, and show that these machines act synergistically to enhance predation efficiency.
Collapse
Affiliation(s)
- Sara Rombouts
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Anna Mas
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Antoine Le Gall
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Marseille, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
| |
Collapse
|
19
|
Kopach O, Sylantyev S, Bard L, Michaluk P, Heller JP, Gutierrez del Arroyo A, Ackland GL, Gourine AV, Rusakov DA. Human neutrophils communicate remotely via calcium-dependent glutamate-induced glutamate release. iScience 2023; 26:107236. [PMID: 37496680 PMCID: PMC10366500 DOI: 10.1016/j.isci.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Neutrophils are white blood cells that are critical to acute inflammatory and adaptive immune responses. Their swarming-pattern behavior is controlled by multiple cellular cascades involving calcium-dependent release of various signaling molecules. Previous studies have reported that neutrophils express glutamate receptors and can release glutamate but evidence of direct neutrophil-neutrophil communication has been elusive. Here, we hold semi-suspended cultured human neutrophils in patch-clamp whole-cell mode to find that calcium mobilization induced by stimulating one neutrophil can trigger an N-methyl-D-aspartate (NMDA) receptor-driven membrane current and calcium signal in neighboring neutrophils. We employ an enzymatic-based imaging assay to image, in real time, glutamate release from neutrophils induced by glutamate released from their neighbors. These observations provide direct evidence for a positive-feedback inter-neutrophil communication that could contribute to mechanisms regulating communal neutrophil behavior.
Collapse
Affiliation(s)
- Olga Kopach
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Lucie Bard
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Piotr Michaluk
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Janosch P. Heller
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Ana Gutierrez del Arroyo
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gareth L. Ackland
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Alexander V. Gourine
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Dmitri A. Rusakov
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
20
|
Hayward JA, Makota FV, Cihalova D, Leonard RA, Rajendran E, Zwahlen SM, Shuttleworth L, Wiedemann U, Spry C, Saliba KJ, Maier AG, van Dooren GG. A screen of drug-like molecules identifies chemically diverse electron transport chain inhibitors in apicomplexan parasites. PLoS Pathog 2023; 19:e1011517. [PMID: 37471441 PMCID: PMC10403144 DOI: 10.1371/journal.ppat.1011517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.
Collapse
Affiliation(s)
- Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - F. Victor Makota
- Research School of Biology, Australian National University, Canberra, Australia
| | - Daniela Cihalova
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australia
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australia
| | - Soraya M. Zwahlen
- Research School of Biology, Australian National University, Canberra, Australia
| | - Laura Shuttleworth
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ursula Wiedemann
- Research School of Biology, Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
21
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546744. [PMID: 37425711 PMCID: PMC10327146 DOI: 10.1101/2023.06.27.546744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, UCSF, San Francisco, CA, USA
| | - Alex Hopke
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Complex Systems, Faculty of Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Jakovija A, Chtanova T. Skin immunity in wound healing and cancer. Front Immunol 2023; 14:1060258. [PMID: 37398649 PMCID: PMC10312005 DOI: 10.3389/fimmu.2023.1060258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The skin is the body's largest organ. It serves as a barrier to pathogen entry and the first site of immune defense. In the event of a skin injury, a cascade of events including inflammation, new tissue formation and tissue remodeling contributes to wound repair. Skin-resident and recruited immune cells work together with non-immune cells to clear invading pathogens and debris, and guide the regeneration of damaged host tissues. Disruption to the wound repair process can lead to chronic inflammation and non-healing wounds. This, in turn, can promote skin tumorigenesis. Tumors appropriate the wound healing response as a way of enhancing their survival and growth. Here we review the role of resident and skin-infiltrating immune cells in wound repair and discuss their functions in regulating both inflammation and development of skin cancers.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tatyana Chtanova
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
23
|
Bert S, Nadkarni S, Perretti M. Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunol Rev 2023; 314:36-49. [PMID: 36326214 PMCID: PMC10952212 DOI: 10.1111/imr.13162] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While fundamental in their innate role in combating infection and responding to injury, neutrophils are emerging as key modulators of adaptive immune responses. Such functions are attained via both soluble and nonsoluble effectors that enable at least two major downstream outcomes: first, to mediate and control acute inflammatory responses and second, to regulate adaptive immunity and ultimately promoting the development and maintenance of immune tolerance either by releasing immuno-modulatory factors, including cytokines, or by directly interacting with cells of the adaptive immune system. Herein, we review these novel properties of neutrophils and redefine the pathophysiological functions of these fascinating multi-tasking cells, exploring the different mechanisms through which neutrophils are able to either enhance and orchestrate T cell pro-inflammatory responses or inhibit T cell activity to maintain immune tolerance.
Collapse
Affiliation(s)
- Serena Bert
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Suchita Nadkarni
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Mauro Perretti
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
24
|
Murillo-León M, Bastidas-Quintero AM, Endres NS, Schnepf D, Delgado-Betancourt E, Ohnemus A, Taylor GA, Schwemmle M, Staeheli P, Steinfeldt T. IFN-λ is protective against lethal oral Toxoplasma gondii infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529861. [PMID: 36865100 PMCID: PMC9980175 DOI: 10.1101/2023.02.24.529861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Interferons are essential for innate and adaptive immune responses against a wide variety of pathogens. Interferon lambda (IFN-λ) protects mucosal barriers during pathogen exposure. The intestinal epithelium is the first contact site for Toxoplasma gondii (T. gondii) with its hosts and the first defense line that limits parasite infection. Knowledge of very early T. gondii infection events in the gut tissue is limited and a possible contribution of IFN-λ has not been investigated so far. Here, we demonstrate with systemic interferon lambda receptor (IFNLR1) and conditional (Villin-Cre) knockout mouse models and bone marrow chimeras of oral T. gondii infection and mouse intestinal organoids a significant impact of IFN-λ signaling in intestinal epithelial cells and neutrophils to T. gondii control in the gastrointestinal tract. Our results expand the repertoire of interferons that contribute to the control of T. gondii and may lead to novel therapeutic approaches against this world-wide zoonotic pathogen.
Collapse
Affiliation(s)
- Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Niklas S. Endres
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Current address:Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Current address: Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, NC 27710 Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, NC 27705 Durham, North Carolina, United States of America
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Sánchez-García L, Pérez-Torres A, Gudiño-Zayas ME, Zamora-Chimal J, Meneses C, Kamhawi S, Valenzuela JG, Becker I. Leishmania major-Infected Phlebotomus duboscqi Sand Fly Bites Enhance Mast Cell Degranulation. Pathogens 2023; 12:207. [PMID: 36839479 PMCID: PMC9960273 DOI: 10.3390/pathogens12020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Leishmania parasites infect mammalian hosts through the bites of sand fly vectors. The response by mast cells (MC) to the parasite and vector-derived factors, delivered by sand fly bites, has not been characterized. We analyzed MC numbers and their mediators in BALB/c mice naturally infected in the ear with Leishmania major through the bite of the sand fly vector Phlebotomus duboscqi and compared them to non-infected sand fly bites. MC were found at the bite sites of infective and non-infected sand flies throughout 48 h, showing the release of granules with intense TNF-α, histamine, and tryptase staining. At 30 min and 48 h, the MC numbers were significantly higher (p < 0.001) in infected as compared to non-infected bites or controls. Neutrophil recruitment was intense during the first 6 h in the skin of infected and non-infected sand fly bites and decreased thereafter. An influx of neutrophils also occurred in lymph nodes, where a strong TNF-α stain was observed in mononuclear cells. Our data show that MC orchestrate an early inflammatory response after infected and non-infected sand fly bites, leading to neutrophilic recruitment, which potentially provides a safe passage for the parasite within the mammalian host.
Collapse
Affiliation(s)
- Laura Sánchez-García
- División Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, Chetumal C.P. 77039, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Laboratorio de Inmunología Comparada de Piel y Mucosas, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Marco E. Gudiño-Zayas
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
26
|
Duran F, Boretto JM, Becker LA, Ibargüengoytía NR. Effects of an immune challenge on the thermal preferences of adult and newborn Liolaemus lizards from Patagonia, Argentina. AN ACAD BRAS CIENC 2023; 95:e20201923. [PMID: 37018837 DOI: 10.1590/0001-3765202320201923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/04/2021] [Indexed: 04/07/2023] Open
Abstract
Body temperature has relevant effects on the immune response. Here, we characterized the thermal biology and health condition of the viviparous lizard Liolaemus kingii from Patagonia (Argentina), by studying field body temperatures, presence of injuries or ectoparasites, body condition (BC), and individual immune response capacity with the phytohemagglutinin (PHA) skin-swelling assay. In addition, we analyzed the effects of injections of a bacterial endotoxin (lipopolysaccharide; LPS) on the preferred temperature (Tp) and BC of adult males and newborns. The PHA treatment caused detectable thickening at 2 and 20 hours post-assay in males, indicating a significant immune response related to an increase in cellular activity. LPS-challenged lizards thermoregulated accurately and at stable body temperatures within the 50% interquartile of Tp (Tset) over the 72-hour period while the control group showed a more variable and lower Tp. Exposure to LPS negatively affected the BC of newborns, whereas it did not affect the BC of adult males. LPS challenges, used as a proxy of pathogen exposures to study lizard behavioral thermoregulation, constitute a practical approach to assess the immunological constraints lizards from high-latitude regions may face due to global warming and anthropogenic disturbances.
Collapse
Affiliation(s)
- Fernando Duran
- Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Rio Negro, Argentina
| | - Jorgelina M Boretto
- Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Rio Negro, Argentina
| | - Leandro A Becker
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), 9120, Puerto Madryn, Chubut, Argentina
| | - Nora R Ibargüengoytía
- Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Rio Negro, Argentina
| |
Collapse
|
27
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
28
|
Azcutia V, Kelm M, Kim S, Luissint AC, Flemming S, Abernathy-Close L, Young VB, Nusrat A, Miller MJ, Parkos CA. Distinct stimulus-dependent neutrophil dynamics revealed by real-time imaging of intestinal mucosa after acute injury. PNAS NEXUS 2022; 1:pgac249. [PMID: 36712325 PMCID: PMC9802210 DOI: 10.1093/pnasnexus/pgac249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Clinical symptoms in many inflammatory diseases of the intestine are directly related to neutrophil (PMN) migration across colonic mucosa and into the intestinal lumen, yet in-vivo studies detailing this process are lacking. Using real-time intravital microscopy and a new distal colon loop model, we report distinct PMN migratory dynamics in response to several models of acute colonic injury. PMNs exhibited rapid swarming responses after mechanically induced intestinal wounds. Similar numbers of PMNs infiltrated colonic mucosa after wounding in germ-free mice, suggesting microbiota-independent mechanisms. By contrast, acute mucosal injury secondary to either a treatment of mice with dextran sodium sulfate or an IL-10 receptor blockade model of colitis resulted in lamina propria infiltration with PMNs that were largely immotile. Biopsy wounding of colonic mucosa in DSS-treated mice did not result in enhanced PMN swarming however, intraluminal application of the neutrophil chemoattractant LTB4 under such conditions resulted in enhanced transepithelial migration of PMNs. Analyses of PMNs that had migrated into the colonic lumen revealed that the majority of PMNs were directly recruited from the circulation and not from the immotile pool in the mucosa. Decreased PMN motility parallels upregulation of the receptor CXCR4 and apoptosis. Similarly, increased expression of CXCR4 on human PMNs was observed in colonic biopsies from people with active ulcerative colitis. This new approach adds an important tool to investigate mechanisms regulating PMN migration across mucosa within the distal intestine and will provide new insights for developing future anti-inflammatory and pro-repair therapies.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Matthias Kelm
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Seonyoung Kim
- Department of Internal Medicine, Washington University School of Medicine; Saint Louis, MO 63110, USA
| | | | - Sven Flemming
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Lisa Abernathy-Close
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan; Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan; Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Mark J Miller
- Department of Internal Medicine, Washington University School of Medicine; Saint Louis, MO 63110, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
A Role for Basigin in Toxoplasma gondii Infection. Infect Immun 2022; 90:e0020522. [PMID: 35913173 PMCID: PMC9387297 DOI: 10.1128/iai.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.
Collapse
|
30
|
Lymph-derived chemokines direct early neutrophil infiltration in the lymph nodes upon Staphylococcus aureus skin infection. Proc Natl Acad Sci U S A 2022; 119:e2111726119. [PMID: 35914162 PMCID: PMC9371737 DOI: 10.1073/pnas.2111726119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A large number of neutrophils infiltrate the lymph node (LN) within 4 h after Staphylococcus aureus skin infection (4 h postinfection [hpi]) and prevent systemic S. aureus dissemination. It is not clear how infection in the skin can remotely and effectively recruit neutrophils to the LN. Here, we found that lymphatic vessel occlusion substantially reduced neutrophil recruitment to the LN. Lymphatic vessels effectively transported bacteria and proinflammatory chemokines (i.e., Chemokine [C-X-C motif] motif 1 [CXCL1] and CXCL2) to the LN. However, in the absence of lymph flow, S. aureus alone in the LN was insufficient to recruit neutrophils to the LN at 4 hpi. Instead, lymph flow facilitated the earliest neutrophil recruitment to the LN by delivering chemokines (i.e., CXCL1, CXCL2) from the site of infection. Lymphatic dysfunction is often found during inflammation. During oxazolone (OX)-induced skin inflammation, CXCL1/2 in the LN was reduced after infection. The interrupted LN conduits further disrupted the flow of lymph and impeded its communication with high endothelial venules (HEVs), resulting in impaired neutrophil migration. The impaired neutrophil interaction with bacteria contributed to persistent infection in the LN. Our studies showed that both the flow of lymph from lymphatic vessels to the LN and the distribution of lymph in the LN are critical to ensure optimal neutrophil migration and timely innate immune protection in S. aureus infection.
Collapse
|
31
|
Abstract
Neutrophils form cellular clusters or swarms in response to injury or pathogen intrusion. Yet, intracellular signaling events favoring this coordinated response remain to be fully characterized. Here, we show that calcium signals play a critical role during mouse neutrophil clustering around particles of zymosan, a structural fungal component. Pioneer neutrophils recognizing zymosan or live Candida albicans displayed elevated calcium levels. Subsequently, a transient wave of calcium signals in neighboring cells was observed followed by the attraction of neutrophils that exhibited more persistent calcium signals as they reached zymosan particles. Calcium signals promoted LTB4 production while the blocking of extracellular calcium entry or LTB4 signaling abrogated cluster formation. Finally, using optogenetics to manipulate calcium influx in primary neutrophils, we show that calcium signals could initiate recruitment of neighboring neutrophils in an LTB4-dependent manner. Thus, sustained calcium responses at the center of the cluster are necessary and sufficient for the generation of chemoattractive gradients that attract neutrophils in a self-reinforcing process.
Collapse
|
32
|
Behrens LM, van den Berg TK, van Egmond M. Targeting the CD47-SIRPα Innate Immune Checkpoint to Potentiate Antibody Therapy in Cancer by Neutrophils. Cancers (Basel) 2022; 14:cancers14143366. [PMID: 35884427 PMCID: PMC9319280 DOI: 10.3390/cancers14143366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immunotherapy aims to engage various immune cells in the elimination of cancer cells. Neutrophils are the most abundant leukocytes in the circulation and have unique mechanisms by which they can kill cancer cells opsonized by antibodies. However, neutrophil effector functions are limited by the inhibitory receptor SIRPα, when it interacts with CD47. The CD47 protein is expressed on all cells in the body and acts as a ‘don’t eat me’ signal to prevent tissue damage. Cancer cells can express high levels of CD47 to circumvent tumor elimination. Thus, blocking the interaction between CD47 and SIRPα may enhance anti-tumor effects by neutrophils in the presence of tumor-targeting monoclonal antibodies. In this review, we discuss CD47-SIRPα as an innate immune checkpoint on neutrophils and explore the preliminary results of clinical trials using CD47-SIRPα blocking agents. Abstract In the past 25 years, a considerable number of therapeutic monoclonal antibodies (mAb) against a variety of tumor-associated antigens (TAA) have become available for the targeted treatment of hematologic and solid cancers. Such antibodies opsonize cancer cells and can trigger cytotoxic responses mediated by Fc-receptor expressing immune cells in the tumor microenvironment (TME). Although frequently ignored, neutrophils, which are abundantly present in the circulation and many cancers, have demonstrated to constitute bona fide effector cells for antibody-mediated tumor elimination in vivo. It has now also been established that neutrophils exert a unique mechanism of cytotoxicity towards antibody-opsonized tumor cells, known as trogoptosis, which involves Fc-receptor (FcR)-mediated trogocytosis of cancer cell plasma membrane leading to a lytic/necrotic type of cell death. However, neutrophils prominently express the myeloid inhibitory receptor SIRPα, which upon interaction with the ‘don’t eat me’ signal CD47 on cancer cells, limits cytotoxicity, forming a mechanism of resistance towards anti-cancer antibody therapeutics. In fact, tumor cells often overexpress CD47, thereby even more strongly restricting neutrophil-mediated tumor killing. Blocking the CD47-SIRPα interaction may therefore potentiate neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) towards cancer cells, and various inhibitors of the CD47-SIRPα axis are now in clinical studies. Here, we review the role of neutrophils in antibody therapy in cancer and their regulation by the CD47-SIRPα innate immune checkpoint. Moreover, initial results of CD47-SIRPα blockade in clinical trials are discussed.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology Program, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Timo K. van den Berg
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Byondis B.V., 6545 CM Nijmegen, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology Program, 1081 HV Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
33
|
Kausar S, Abbas MN, Gul I, Liu Y, Tang BP, Maqsood I, Liu QN, Dai LS. Integrins in the Immunity of Insects: A Review. Front Immunol 2022; 13:906294. [PMID: 35757717 PMCID: PMC9218073 DOI: 10.3389/fimmu.2022.906294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022] Open
Abstract
Integrins are a large group of cell-surface proteins that are classified as transmembrane proteins. Integrins are classified into different types based on sequence variations, leading to structural and functional diversity. They are broadly distributed in animals and have a wide range of biological functions such as cell-to-cell communication, intracellular cytoskeleton organization, cellular signaling, immune responses, etc. Integrins are among the most abundant cell surface proteins in insects, exhibiting their indispensability in insect physiology. Because of their critical biological involvement in physiological processes, they appear to be a novel target for designing effective pest control strategies. In the current literature review, we first discuss the discovery and expression responses of integrins against various types of pathogens. Secondly, we examine the specific biological roles of integrins in controlling microbial pathogens, such as phagocytosis, encapsulation, nodulation, immune signaling, and so on. Finally, we describe the possible uses of integrins to control agricultural insect pests.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Woman University, Peshawar, Pakistan
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Prat-Luri B, Neal C, Passelli K, Ganga E, Amore J, Firmino-Cruz L, Petrova TV, Müller AJ, Tacchini-Cottier F. The C5a-C5aR1 complement axis is essential for neutrophil recruitment to draining lymph nodes via high endothelial venules in cutaneous leishmaniasis. Cell Rep 2022; 39:110777. [PMID: 35508133 DOI: 10.1016/j.celrep.2022.110777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are specialized innate immune cells known for their ability to fight pathogens. However, the mechanisms of neutrophil trafficking to lymph nodes are not fully clear. Using a murine model of dermal infection with Leishmania parasites, we observe a transient neutrophil influx in draining lymph nodes despite sustained recruitment to the infection site. Cell-tracking experiments, together with intravital two-photon microscopy, indicate that neutrophil recruitment to draining lymph nodes occurs minimally through lymphatics from the infected dermis, but mostly through blood vessels via high endothelial venules. Mechanistically, neutrophils do not respond to IL-1β or macrophage-derived molecules. Instead, they are guided by the C5a-C5aR1 axis, using L-selectin and integrins, to extravasate into the draining lymph node parenchyma. We also report that C5, the C5a precursor, is locally produced in the draining lymph node by lymphatic endothelial cells. Our data establish and detail organ-specific mechanisms of neutrophil trafficking.
Collapse
Affiliation(s)
- Borja Prat-Luri
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland.
| | - Christopher Neal
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Katiuska Passelli
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Emma Ganga
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Jonas Amore
- Otto-von-Guericke-University Magdeburg and Helmholtz Centre for Infection Research Braunschweig, Magdeburg, Germany
| | - Luan Firmino-Cruz
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, Epalinges, Switzerland; Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Andreas J Müller
- Otto-von-Guericke-University Magdeburg and Helmholtz Centre for Infection Research Braunschweig, Magdeburg, Germany
| | - Fabienne Tacchini-Cottier
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
35
|
Mihlan M, Glaser KM, Epple MW, Lämmermann T. Neutrophils: Amoeboid Migration and Swarming Dynamics in Tissues. Front Cell Dev Biol 2022; 10:871789. [PMID: 35478973 PMCID: PMC9038224 DOI: 10.3389/fcell.2022.871789] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment. Once in the tissue, neutrophils undergo rapid shape changes and migrate at speeds higher than most other immune cells. They move in a substrate-independent manner in interstitial spaces and do not follow predetermined tissue paths. Instead, neutrophil navigation is largely shaped by the chemokine and chemoattractant milieu around them. This highlights the decisive role of attractant-sensing G-protein coupled receptors (GPCRs) and downstream molecular pathways for controlling amoeboid neutrophil movement in tissues. A diverse repertoire of cell-surface expressed GPCRs makes neutrophils the perfect sentinel cell type to sense and detect danger-associated signals released from wounds, inflamed interstitium, dying cells, complement factors or directly from tissue-invading microbes. Moreover, neutrophils release attractants themselves, which allows communication and coordination between individual cells of a neutrophil population. GPCR-mediated positive feedback mechanisms were shown to underlie neutrophil swarming, a population response that amplifies the recruitment of amoeboid migrating neutrophils to sites of tissue injury and infection. Here we discuss recent findings and current concepts that counteract excessive neutrophil accumulation and swarm formation. In particular, we will focus on negative feedback control mechanisms that terminate neutrophil swarming to maintain the delicate balance between tissue surveillance, host protection and tissue destruction.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W. Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
36
|
Filep JG. Targeting Neutrophils for Promoting the Resolution of Inflammation. Front Immunol 2022; 13:866747. [PMID: 35371088 PMCID: PMC8966391 DOI: 10.3389/fimmu.2022.866747] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a localized and self-limited innate host-defense mechanism against invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in humans, play pivotal roles in host defense by eradicating invading pathogens and debris. Ideally, elimination of the offending insult prompts repair and return to homeostasis. However, the neutrophils` powerful weaponry to combat microbes can also cause tissue damage and neutrophil-driven inflammation is a unifying mechanism for many diseases. For timely resolution of inflammation, in addition to stopping neutrophil recruitment, emigrated neutrophils need to be disarmed and removed from the affected site. Accumulating evidence documents the phenotypic and functional versatility of neutrophils far beyond their antimicrobial functions. Hence, understanding the receptors that integrate opposing cues and checkpoints that determine the fate of neutrophils in inflamed tissues provides insight into the mechanisms that distinguish protective and dysregulated, excessive inflammation and govern resolution. This review aims to provide a brief overview and update with key points from recent advances on neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and emerging therapeutic approaches that target neutrophils to enhance the resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
37
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
38
|
Christiansen C, Maus D, Hoppenz E, Murillo-León M, Hoffmann T, Scholz J, Melerowicz F, Steinfeldt T, Seeber F, Blume M. In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nat Commun 2022; 13:1168. [PMID: 35246532 PMCID: PMC8897399 DOI: 10.1038/s41467-022-28730-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. However, current in vitro models do not allow long-term culture of these cysts to maturity. Here, we developed a human myotube-based in vitro culture model of functionally mature tissue cysts that are orally infectious to mice and tolerate exposure to a range of antibiotics and temperature stresses. Metabolomic characterization of purified cysts reveals global changes that comprise increased levels of amino acids and decreased abundance of nucleobase- and tricarboxylic acid cycle-associated metabolites. In contrast to fast replicating tachyzoite forms of T. gondii these tissue cysts tolerate exposure to the aconitase inhibitor sodium fluoroacetate. Direct access to persistent stages of T. gondii under defined cell culture conditions will be essential for the dissection of functionally important host-parasite interactions and drug evasion mechanisms. It will also facilitate the identification of new strategies for therapeutic intervention. Bradyzoites are a quiescent form of Toxoplasma gondii enclosed in cysts during chronic infections. Here, Christiansen et al. develop a human myotube-based in vitro culture model of cysts that are infectious to mice and characterize their metabolism in comparison to fast replicating tachyzoites.
Collapse
Affiliation(s)
- Céline Christiansen
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Deborah Maus
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Ellen Hoppenz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tobias Hoffmann
- ZBS 4: Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4, Robert Koch-Institute, 13353, Berlin, Germany
| | - Jana Scholz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Florian Melerowicz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, 13353, Berlin, Germany
| | - Martin Blume
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany.
| |
Collapse
|
39
|
Özcan A, Collado-Diaz V, Egholm C, Tomura M, Gunzer M, Halin C, Kolios AGA, Boyman O. CCR7-guided neutrophil redirection to skin-draining lymph nodes regulates cutaneous inflammation and infection. Sci Immunol 2022; 7:eabi9126. [PMID: 35119939 DOI: 10.1126/sciimmunol.abi9126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils are the first nonresident effector immune cells that migrate to a site of infection or inflammation; however, improper control of neutrophil responses can cause considerable tissue damage. Here, we found that neutrophil responses in inflamed or infected skin were regulated by CCR7-dependent migration and phagocytosis of neutrophils in draining lymph nodes (dLNs). In mouse models of Toll-like receptor-induced skin inflammation and cutaneous Staphylococcus aureus infection, neutrophils migrated from the skin to the dLNs via lymphatic vessels in a CCR7-mediated manner. In the dLNs, these neutrophils were phagocytosed by lymph node-resident type 1 and type 2 conventional dendritic cells. CCR7 up-regulation on neutrophils was a conserved mechanism across different tissues and was induced by a broad range of microbial stimuli. In the context of cutaneous immune responses, disruption of CCR7 interactions by selective CCR7 deficiency of neutrophils resulted in increased antistaphylococcal immunity and aggravated skin inflammation. Thus, neutrophil homing to and clearance in skin-dLNs affects cutaneous immunity versus pathology.
Collapse
Affiliation(s)
- A Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - V Collado-Diaz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - C Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - M Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - M Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - C Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - A G A Kolios
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - O Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Bhattacharya P, Ismail N, Saxena A, Gannavaram S, Dey R, Oljuskin T, Akue A, Takeda K, Yu J, Karmakar S, Dagur PK, McCoy JP, Nakhasi HL. Neutrophil-dendritic cell interaction plays an important role in live attenuated Leishmania vaccine induced immunity. PLoS Negl Trop Dis 2022; 16:e0010224. [PMID: 35192633 PMCID: PMC8896671 DOI: 10.1371/journal.pntd.0010224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/04/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background Neutrophils are involved in the initial host responses to pathogens. Neutrophils can activate T cell responses either independently or through indirect involvement of Dendritic cells (DCs). Recently we have demonstrated direct neutrophil-T cell interactions that initiate adaptive immune responses following immunization with live attenuated Leishmania donovani centrin deleted parasite vaccine (LdCen-/-). However, neutrophil-DC interactions in T cell priming in vaccine immunity in general are not known. In this study we evaluated the interaction between neutrophils and DCs during LdCen-/- infection and compared with wild type parasite (LdWT) both in vitro and in vivo. Methodology/findings LdCen-/- parasite induced increased expression of CCL3 in neutrophils caused higher recruitment of DCs capable of inducing a strong proinflammatory response and elevated co-stimulatory molecule expression compared to LdWT infection. To further illustrate neutrophil-DCs interactions in vivo, we infected LYS-eGFP mice with red fluorescent LdWT/LdCen-/- parasites and sort selected DCs that engulfed the neutrophil containing parasites or DCs that acquired the parasites directly in the ear draining lymph nodes (dLN) 5d post infection. The DCs predominantly acquired the parasites by phagocytosing infected neutrophils. Specifically, DCs containing LdCen-/- parasitized neutrophils exhibited a proinflammatory phenotype, increased expression of costimulatory molecules and initiated higher CD4+T cell priming ex-vivo. Notably, potent DC activation occurred when LdCen-/- parasites were acquired indirectly via engulfment of parasitized neutrophils compared to direct engulfment of LdCen-/- parasites by DCs. Neutrophil depletion in LdCen-/- infected mice significantly abrogated expression of CCL3 resulting in decreased DC recruitment in ear dLN. This event led to poor CD4+Th1 cell priming ex vivo that correlated with attenuated Tbet expression in ear dLN derived CD4+ T cells in vivo. Conclusions Collectively, LdCen-/- containing neutrophils phagocytized by DC markedly influence the phenotype and antigen presenting capacity of DCs early on and thus play an immune-regulatory role in shaping vaccine induced host protective response. Visceral Leishmaniasis (VL), caused by the protozoan parasites of the genus Leishmania is a neglected tropical disease. Leishmania donovani is the principal causative agent of VL in East Africa and the Indian subcontinent whereas in Europe, North Africa, and Latin America VL is mainly caused by Leishmania infantum. No licensed vaccine exists against VL. We have reported previously that live attenuated centrin gene-deleted L. donovani (LdCen-/-) parasite vaccine induced strong innate immunity which leads to a protective Th1 response in animal models. We recently demonstrated that neutrophils play an indispensable role following immunization with LdCen-/- parasites in inducing protective Th1 immune response. However, neutrophils also secrete chemokines that attract other innate cells such as dendritic cells and regulate their activities. In the current study we analyzed the interplay between neutrophils and DCs, and its effects on T cell activation during LdCen-/- infection and compared with wild type parasite (LdWT) infection. We observed that higher recruitment of DCs occurred in LdCen-/- infected mice ear draining lymph nodes compared to LdWT. This recruitment is facilitated by increased secretion of the chemokine CCL3 by neutrophils. A markedly decreased DC recruitment was observed in LdCen-/- infected mice following CCL3 neutralization indicating the key role of neutrophils in DC recruitment. Further, we demonstrated that DCs that ingest LdCen-/- infected neutrophils are better activated than those that acquire the parasites independent of neutrophils. Notably neutrophil depletion in LdCen-/- infected mice also attenuated activation of DCs in the ear dLN that resulted in poor CD4+T cell priming. Our results reveal that interaction between neutrophils and DCs play an important role in shaping proinflammatory immune response induced by a live attenuated Leishmania vaccine.
Collapse
Affiliation(s)
- Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (PB); (HLN)
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Timur Oljuskin
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Adovi Akue
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Division of Blood Components and Devices, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - James Yu
- Division of Blood Components and Devices, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (PB); (HLN)
| |
Collapse
|
41
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
42
|
Bangs DJ, Tsitsiklis A, Steier Z, Chan SW, Kaminski J, Streets A, Yosef N, Robey EA. CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Rep 2022; 38:110266. [PMID: 35045305 PMCID: PMC8896093 DOI: 10.1016/j.celrep.2021.110266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Production of effector CD8+ T cells during persistent infection requires a stable pool of stem-like cells that can give rise to effector cells via a proliferative intermediate population. In infection models marked by T cell exhaustion, this process can be transiently induced by checkpoint blockade but occurs spontaneously in mice chronically infected with the protozoan intracellular parasite Toxoplasma gondii. We observe distinct locations for parasite-specific T cell subsets, implying a link between differentiation and anatomical niches in the spleen. Loss of the chemokine receptor CXCR3 on T cells does not prevent white pulp-to-red pulp migration but reduces interactions with CXCR3 ligand-producing dendritic cells (DCs) and impairs memory-to-intermediate transition, leading to a buildup of memory T cells in the red pulp. Thus, CXCR3 increases T cell exposure to differentiation-inducing signals during red pulp migration, providing a dynamic mechanism for modulating effector differentiation in response to environmental signals. Bangs et al. report that distinct subsets of CD8+ T cells found during chronic infection occupy distinct regions of the spleen. CXCR3 regulates differentiation of T cells but not their migration. Instead, CXCR3 promotes the interaction of T cells with ligand-producing DCs in bridging channels, resulting in effector differentiation.
Collapse
Affiliation(s)
- Derek J Bangs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zoë Steier
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - James Kaminski
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
43
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
44
|
Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021; 57:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Celine A N Sewnath
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
45
|
Silva M, Kato Y, Melo MB, Phung I, Freeman BL, Li Z, Roh K, Van Wijnbergen JW, Watkins H, Enemuo CA, Hartwell BL, Chang JYH, Xiao S, Rodrigues KA, Cirelli KM, Li N, Haupt S, Aung A, Cossette B, Abraham W, Kataria S, Bastidas R, Bhiman J, Linde C, Bloom NI, Groschel B, Georgeson E, Phelps N, Thomas A, Bals J, Carnathan DG, Lingwood D, Burton DR, Alter G, Padera TP, Belcher AM, Schief WR, Silvestri G, Ruprecht RM, Crotty S, Irvine DJ. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci Immunol 2021; 6:eabf1152. [PMID: 34860581 DOI: 10.1126/sciimmunol.abf1152] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Kato
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Ivy Phung
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Brian L Freeman
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhongming Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan W Van Wijnbergen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannah Watkins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chiamaka A Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brittany L Hartwell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuhao Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kimberly M Cirelli
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Cossette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Swati Kataria
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raiza Bastidas
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinal Bhiman
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Caitlyn Linde
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nathaniel I Bloom
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole Phelps
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Diane G Carnathan
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angela M Belcher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
46
|
Tan Y, Tey HL, Chong SZ, Ng LG. Skin-ny deeping: Uncovering immune cell behavior and function through imaging techniques. Immunol Rev 2021; 306:271-292. [PMID: 34859448 DOI: 10.1111/imr.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
As the largest organ of the body, the skin is a key barrier tissue with specialized structures where ongoing immune surveillance is critical for protecting the body from external insults. The innate immune system acts as first-responders in a coordinated manner to react to injury or infections, and recent developments in intravital imaging techniques have made it possible to delineate dynamic immune cell responses in a spatiotemporal manner. We review here key studies involved in understanding neutrophil, dendritic cell and macrophage behavior in skin and further discuss how this knowledge collectively highlights the importance of interactions and cellular functions in a systems biology manner. Furthermore, we will review emerging imaging technologies such as high-content proteomic screening, spatial transcriptomics and three-dimensional volumetric imaging and how these techniques can be integrated to provide a systems overview of the immune system that will further our current knowledge and lead to potential exciting discoveries in the upcoming decades.
Collapse
Affiliation(s)
- Yingrou Tan
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Lai Guan Ng
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
47
|
|
48
|
Neupane AS, Kubes P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol Rev 2021; 306:244-257. [PMID: 34816440 DOI: 10.1111/imr.13040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Highly dynamic immune responses are generated toward pathogens or injuries, in vivo. Multiple immune cell types participate in various facets of the response which leads to a concerted effort in the removal and clearance of pathogens or injured tissue and a return to homeostasis. Intravital microscopy (IVM) has been extensively utilized to unravel the dynamics of immune responses, visualizing immune cell behavior in intact living tissues, within a living organism. For instance, the phenomenon of leukocyte recruitment cascade. Importantly, IVM has led to a deep appreciation that immune cell behavior and responses in individual organs are distinct, but also can influence one another. In this review, we discuss how IVM as a tool has been used to study the innate immune responses in various tissues during homeostasis, injury, and infection.
Collapse
Affiliation(s)
- Arpan Sharma Neupane
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
49
|
Cakala-Jakimowicz M, Kolodziej-Wojnar P, Puzianowska-Kuznicka M. Aging-Related Cellular, Structural and Functional Changes in the Lymph Nodes: A Significant Component of Immunosenescence? An Overview. Cells 2021; 10:cells10113148. [PMID: 34831371 PMCID: PMC8621398 DOI: 10.3390/cells10113148] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aging affects all tissues and organs. Aging of the immune system results in the severe disruption of its functions, leading to an increased susceptibility to infections, an increase in autoimmune disorders and cancer incidence, and a decreased response to vaccines. Lymph nodes are precisely organized structures of the peripheral lymphoid organs and are the key sites coordinating innate and long-term adaptive immune responses to external antigens and vaccines. They are also involved in immune tolerance. The aging of lymph nodes results in decreased cell transport to and within the nodes, a disturbance in the structure and organization of nodal zones, incorrect location of individual immune cell types and impaired intercellular interactions, as well as changes in the production of adequate amounts of chemokines and cytokines necessary for immune cell proliferation, survival and function, impaired naïve T- and B-cell homeostasis, and a diminished long-term humoral response. Understanding the causes of these stromal and lymphoid microenvironment changes in the lymph nodes that cause the aging-related dysfunction of the immune system can help to improve long-term immune responses and the effectiveness of vaccines in the elderly.
Collapse
Affiliation(s)
- Marta Cakala-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (M.C.-J.); (M.P.-K.)
| | - Paulina Kolodziej-Wojnar
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Correspondence: (M.C.-J.); (M.P.-K.)
| |
Collapse
|
50
|
Lin CH, Chen MC, Lin LL, Christian DA, Min B, Hunter CA, Lu LF. Gut epithelial IL-27 confers intestinal immunity through the induction of intraepithelial lymphocytes. J Exp Med 2021; 218:212659. [PMID: 34554189 PMCID: PMC8480671 DOI: 10.1084/jem.20210021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 11/04/2022] Open
Abstract
IL-27 controls a diverse range of immune responses in many disease settings. Here, we identify intestinal epithelial cells (IECs) as one of the major IL-27 cellular sources in the gut-associated tissue. Unlike IL-27 secreted by innate immune cells, gut epithelial IL-27 is dispensable for T-bet+ regulatory T cell (T reg cell) differentiation or IL-10 induction. Rather, IEC-derived IL-27 specifically promotes a distinct CD8αα+CD4+ intraepithelial lymphocyte (IEL) population that acquires their functional differentiation at the intestinal epithelium. Loss of IL-27 in IECs leads to a selective defect in CD8αα+CD4+ IELs over time. Consequently, mice with IEC-specific IL-27 ablation exhibited elevated pathogen burden during parasitic infection, and this could be rescued by transfer of exogenous CD8αα+CD4+ IELs. Collectively, our data reveal that in addition to its known regulatory properties in preventing immune hyperactivity, gut epithelial IL-27 confers barrier immunity by inducing a specific IEL subset and further suggest that IL-27 produced by different cell types plays distinct roles in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Ling-Li Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Booki Min
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| |
Collapse
|