1
|
Joachim A, Aussel R, Gélard L, Zhang F, Mori D, Grégoire C, Villazala Merino S, Gaya M, Liang Y, Malissen M, Malissen B. Defective LAT signalosome pathology in mice mimics human IgG4-related disease at single-cell level. J Exp Med 2023; 220:e20231028. [PMID: 37624388 PMCID: PMC10457416 DOI: 10.1084/jem.20231028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Mice with a loss-of-function mutation in the LAT adaptor (LatY136F) develop an autoimmune and type 2 inflammatory disorder called defective LAT signalosome pathology (DLSP). We analyzed via single-cell omics the trajectory leading to LatY136F DLSP and the underlying CD4+ T cell diversification. T follicular helper cells, CD4+ cytotoxic T cells, activated B cells, and plasma cells were found in LatY136F spleen and lung. Such cell constellation entailed all the cell types causative of human IgG4-related disease (IgG4-RD), an autoimmune and inflammatory condition with LatY136F DLSP-like histopathological manifestations. Most previously described T cell-mediated autoimmune manifestations require persistent TCR input. In contrast, following their first engagement by self-antigens, the autoreactive TCR expressed by LatY136F CD4+ T cells hand over their central role in T cell activation to CD28 costimulatory molecules. As a result, all subsequent LatY136F DLSP manifestations, including the production of autoantibodies, solely rely on CD28 engagement. Our findings elucidate the etiology of the LatY136F DLSP and qualify it as a model of IgG4-RD.
Collapse
Affiliation(s)
- Anais Joachim
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Rudy Aussel
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Léna Gélard
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Fanghui Zhang
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Daiki Mori
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Claude Grégoire
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Sergio Villazala Merino
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mauro Gaya
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Yinming Liang
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Marie Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Fernández-Aguilar LM, Vico-Barranco I, Arbulo-Echevarria MM, Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. BIOLOGY 2023; 12:1163. [PMID: 37759563 PMCID: PMC10525366 DOI: 10.3390/biology12091163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.
Collapse
Grants
- PY20_01297 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
- PID2020-113943RB-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PR2022-037 University of Cádiz
- PAIDI2020/DOC_01433 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- Luis M. Fernández-Aguilar
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Inmaculada Vico-Barranco
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Mikel M. Arbulo-Echevarria
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Enrique Aguado
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
3
|
Lo WL, Kuhlmann M, Rizzuto G, Ekiz HA, Kolawole EM, Revelo MP, Andargachew R, Li Z, Tsai YL, Marson A, Evavold BD, Zehn D, Weiss A. A single-amino acid substitution in the adaptor LAT accelerates TCR proofreading kinetics and alters T-cell selection, maintenance and function. Nat Immunol 2023; 24:676-689. [PMID: 36914891 PMCID: PMC10063449 DOI: 10.1038/s41590-023-01444-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/25/2023] [Indexed: 03/14/2023]
Abstract
Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gabrielle Rizzuto
- Human Oncology and Pathogenesis Program, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Turkey
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rakieb Andargachew
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zhongmei Li
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan-Li Tsai
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Expression of Non-T Cell Activation Linker (NTAL) in Jurkat Cells Negatively Regulates TCR Signaling: Potential Role in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24054574. [PMID: 36902005 PMCID: PMC10003381 DOI: 10.3390/ijms24054574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
T lymphocytes are key players in adaptive immune responses through the recognition of peptide antigens through the T Cell Receptor (TCR). After TCR engagement, a signaling cascade is activated, leading to T cell activation, proliferation, and differentiation into effector cells. Delicate control of activation signals coupled to the TCR is needed to avoid uncontrolled immune responses involving T cells. It has been previously shown that mice deficient in the expression of the adaptor NTAL (Non-T cell activation linker), a molecule structurally and evolutionarily related to the transmembrane adaptor LAT (Linker for the Activation of T cells), develop an autoimmune syndrome characterized by the presence of autoantibodies and enlarged spleens. In the present work we intended to deepen investigation into the negative regulatory functions of the NTAL adaptor in T cells and its potential relationship with autoimmune disorders. For this purpose, in this work we used Jurkat cells as a T cell model, and we lentivirally transfected them to express the NTAL adaptor in order to analyze the effect on intracellular signals associated with the TCR. In addition, we analyzed the expression of NTAL in primary CD4+ T cells from healthy donors and Rheumatoid Arthritis (RA) patients. Our results showed that NTAL expression in Jurkat cells decreased calcium fluxes and PLC-γ1 activation upon stimulation through the TCR complex. Moreover, we showed that NTAL was also expressed in activated human CD4+ T cells, and that the increase of its expression was reduced in CD4+ T cells from RA patients. Our results, together with previous reports, suggest a relevant role for the NTAL adaptor as a negative regulator of early intracellular TCR signaling, with a potential implication in RA.
Collapse
|
5
|
Arbulo-Echevarria MM, Vico-Barranco I, Zhang F, Fernandez-Aguilar LM, Chotomska M, Narbona-Sánchez I, Zhang L, Malissen B, Liang Y, Aguado E. Mutation of the glycine residue preceding the sixth tyrosine of the LAT adaptor severely alters T cell development and activation. Front Immunol 2022; 13:1054920. [PMID: 36569841 PMCID: PMC9768323 DOI: 10.3389/fimmu.2022.1054920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The LAT transmembrane adaptor is essential to transduce intracellular signals triggered by the TCR. Phosphorylation of its four C-terminal tyrosine residues (136, 175, 195, and 235 in mouse LAT) recruits several proteins resulting in the assembly of the LAT signalosome. Among those tyrosine residues, the one found at position 136 of mouse LAT plays a critical role for T cell development and activation. The kinetics of phosphorylation of this residue is delayed as compared to the three other C-terminal tyrosines due to a conserved glycine residue found at position 135. Mutation of this glycine into an aspartate residue (denoted LATG135D) increased TCR signaling and altered antigen recognition in human Jurkat T cells and ex vivo mouse T cells. Here, using a strain of LATG135D knockin mice, we showed that the LATG135D mutation modifies thymic development, causing an increase in the percentage of CD4+CD8+ double-positive cells, and a reduction in the percentage of CD4+ and CD8+ single-positive cells. Interestingly, the LATG135D mutation alters thymic development even in a heterozygous state. In the periphery, the LATG135D mutation reduces the percentage of CD8+ T cells and results in a small increment of γδ T cells. Remarkably, the LATG135D mutation dramatically increases the percentage of central memory CD8+ T cells. Finally, analysis of the proliferation and activation of T lymphocytes shows increased responses of T cells from mutant mice. Altogether, our results reinforce the view that the residue preceding Tyr136 of LAT constitutes a crucial checkpoint in T cell development and activation.
Collapse
Affiliation(s)
- Mikel M. Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Fanghui Zhang
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France,Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Luis M. Fernandez-Aguilar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Martyna Chotomska
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Lichen Zhang
- Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain,*Correspondence: Enrique Aguado,
| |
Collapse
|
6
|
Wu B, Wang Q, Shi X, Jiang M. Targeting Endocytosis and Cell Communications in the Tumor Immune Microenvironment. Cell Commun Signal 2022; 20:161. [PMID: 36258231 PMCID: PMC9578241 DOI: 10.1186/s12964-022-00968-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
The existence of multiple endocytic pathways is well known, and their exact biological effects in tumors have been intensively investigated. Endocytosis can affect the connection between tumor cells and determine the fate of tumor cells. Many relationships between endocytosis and tumor cells have been elucidated, but the mechanism of endocytosis between different types of cells in tumors needs to be explored in greater depth. Endocytic receptors sense the environment and are induced by specific ligands to trigger communication between tumor and immune cells. Crosstalk in the tumor microenvironment can occur through direct contact between cell adhesion molecules or indirectly through exosomes. So a better understanding of the endocytic pathways that control cell adhesion molecules and function is expected to lead to new candidates for cancer treatment. In additional, tumor-derived exosomes may changes immune cell function, which may be a key role for tumors to evade immune detection and response. The overall understanding of exosomes through endocytosis is also expected to bring new candidates for therapeutic regulation of tumor immune microenvironment. In this case, endocytic pathways coordinate cell adhesion molecules and exosomes and can be used as targets in the tumor immune microenvironment for cancer treatment. Video Abstract
Collapse
|
7
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Nelson RW, Geha RS, McDonald DR. Inborn Errors of the Immune System Associated With Atopy. Front Immunol 2022; 13:860821. [PMID: 35572516 PMCID: PMC9094424 DOI: 10.3389/fimmu.2022.860821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic disorders, including atopic dermatitis, food and environmental allergies, and asthma, are increasingly prevalent diseases. Atopic disorders are often associated with eosinophilia, driven by T helper type 2 (Th2) immune responses, and triggered by disrupted barrier function leading to abnormal immune priming in a susceptible host. Immune deficiencies, in contrast, occur with a significantly lower incidence, but are associated with greater morbidity and mortality. A subset of atopic disorders with eosinophilia and elevated IgE are associated with monogenic inborn errors of immunity (IEI). In this review, we discuss current knowledge of IEI that are associated with atopy and the lessons these immunologic disorders provide regarding the fundamental mechanisms that regulate type 2 immunity in humans. We also discuss further mechanistic insights provided by animal models.
Collapse
Affiliation(s)
- Ryan W Nelson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas R McDonald
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Scaramuzzino S, Potier D, Ordioni R, Grenot P, Payet-Bornet D, Luche H, Malissen B. Single-cell transcriptomics uncovers an instructive T-cell receptor role in adult γδ T-cell lineage commitment. EMBO J 2022; 41:e110023. [PMID: 35128689 PMCID: PMC8886544 DOI: 10.15252/embj.2021110023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
After entering the adult thymus, bipotent T‐cell progenitors give rise to αβ or γδ T cells. To determine whether the γδ T‐cell receptor (TCR) has an instructive role in γδ T‐cell lineage commitment or only “confirms” a pre‐established γδ Τ‐cell lineage state, we exploited mice lacking expression of LAT, an adaptor required for γδ TCR signaling. Although these mice showed a T‐cell development block at the CD4−CD8− double‐negative third (DN3) stage, 0.3% of their DN3 cells expressed intermediate levels of γδ TCR (further referred to as γδint) at their surface. Single‐cell transcriptomics of LAT‐deficient DN3 γδint cells demonstrated no sign of commitment to the γδ T‐cell lineage, apart from γδ TCR expression. Although the lack of LAT is thought to tightly block DN3 cell development, we unexpectedly found that 25% of LAT‐deficient DN3 γδint cells were actively proliferating and progressed up to the DN4 stage. However, even those cells failed to turn on the transcriptional program associated with the γδ T‐cell lineage. Therefore, the γδ TCR‐LAT signaling axis builds upon a γδ T‐cell uncommitted lineage state to fully instruct adult γδ T‐cell lineage specification.
Collapse
Affiliation(s)
- Sara Scaramuzzino
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Delphine Potier
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Robin Ordioni
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Pierre Grenot
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Dominique Payet-Bornet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| |
Collapse
|
10
|
Ashouri JF, Lo W, Nguyen TTT, Shen L, Weiss A. ZAP70, too little, too much can lead to autoimmunity*. Immunol Rev 2021; 307:145-160. [PMID: 34923645 PMCID: PMC8986586 DOI: 10.1111/imr.13058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
Abstract
Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self‐ from agonist‐peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self‐reactive TCRs a greater chance to escape negative selection. Such ‘forbidden clones’ may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self‐ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.
Collapse
Affiliation(s)
- Judith F. Ashouri
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Wan‐Lin Lo
- Division of Microbiology and Immunology Department of Pathology University of Utah Salt Lake City Utah USA
| | - Trang T. T. Nguyen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Lin Shen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Arthur Weiss
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
- Howard Hughes Medical Institute University of California, San Francisco San Francisco California USA
| |
Collapse
|
11
|
Mori D, Grégoire C, Voisinne G, Celis-Gutierrez J, Aussel R, Girard L, Camus M, Marcellin M, Argenty J, Burlet-Schiltz O, Fiore F, Gonzalez de Peredo A, Malissen M, Roncagalli R, Malissen B. The T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell activation. J Exp Med 2021; 218:211516. [PMID: 33125054 PMCID: PMC7608068 DOI: 10.1084/jem.20201011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
To determine the respective contribution of the LAT transmembrane adaptor and CD5 and CD6 transmembrane receptors to early TCR signal propagation, diversification, and termination, we describe a CRISPR/Cas9-based platform that uses primary mouse T cells and permits establishment of the composition of their LAT, CD5, and CD6 signalosomes in only 4 mo using quantitative mass spectrometry. We confirmed that positive and negative functions can be solely assigned to the LAT and CD5 signalosomes, respectively. In contrast, the TCR-inducible CD6 signalosome comprised both positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-2) regulators of T cell activation. Moreover, CD6 associated independently of TCR engagement to proteins that support its implication in inflammatory pathologies necessitating T cell transendothelial migration. The multifaceted role of CD6 unveiled here accounts for past difficulties in classifying it as a coinhibitor or costimulator. Congruent with our identification of UBASH3A within the CD6 signalosome and the view that CD6 constitutes a promising target for autoimmune disease treatment, single-nucleotide polymorphisms associated with human autoimmune diseases have been found in the Cd6 and Ubash3a genes.
Collapse
Affiliation(s)
- Daiki Mori
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Rudy Aussel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
12
|
Dinur-Schejter Y, Zaidman I, Mor-Shaked H, Stepensky P. The Clinical Aspect of Adaptor Molecules in T Cell Signaling: Lessons Learnt From Inborn Errors of Immunity. Front Immunol 2021; 12:701704. [PMID: 34456914 PMCID: PMC8397411 DOI: 10.3389/fimmu.2021.701704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Adaptor molecules lack enzymatic and transcriptional activities. Instead, they exert their function by linking multiple proteins into intricate complexes, allowing for transmitting and fine-tuning of signals. Many adaptor molecules play a crucial role in T-cell signaling, following engagement of the T-cell receptor (TCR). In this review, we focus on Linker of Activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 KDa (SLP-76). Monogenic defects in these adaptor proteins, with known roles in T-cell signaling, have been described as the cause of human inborn errors of immunity (IEI). We describe the current knowledge based on defects in cell lines, murine models and human patients. Germline mutations in Adhesion and degranulation adaptor protein (ADAP), have not resulted in a T-cell defect.
Collapse
Affiliation(s)
- Yael Dinur-Schejter
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel.,Allergy and Clinical Immunology Unit, Hadassah Ein-Kerem Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Monique and Jacques Roboh Department of Genetic Research, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Chao T, Lu L, Zhang L, Huang R, Liu Z, Zhou B, Kong E, Zhang Z, Lawrence T, Liang Y. An inducible model for specific neutrophil depletion by diphtheria toxin in mice. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1227-1235. [PMID: 33420927 DOI: 10.1007/s11427-020-1839-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Neutrophils are crucial for immunity and play important roles in inflammatory diseases; however, mouse models selectively deficient in neutrophils are limited, and neutrophil-specific diphtheria toxin (DT)-based depletion system has not yet been established. In this study, we generated a novel knock-in mouse model expressing diphtheria toxin receptor (DTR) under control of the endogenous Ly6G promoter. We showed that DTR expression was restricted to Ly6G+ neutrophils and complete depletion of neutrophils could be achieved by DT treatment at 24-48 h intervals. We characterized the effects of specific neutrophil depletion in mice at steady-state, with acute inflammation and during tumor growth. Our study presents a valuable new tool to study the roles of neutrophils in the immune system and during tumor progression.
Collapse
Affiliation(s)
- Tianzhu Chao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liaoxun Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lichen Zhang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Rong Huang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhuangzhuang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Binhui Zhou
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Toby Lawrence
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 1UL, UK.
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
14
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
15
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Waseda Y, Yamada K, Mizuguchi K, Ito K, Watanabe S, Zuka M, Ishizuka T, Malissen M, Malissen B, Kawano M, Matsui S. The pronounced lung lesions developing in LATY136F knock-in mice mimic human IgG4-related lung disease. PLoS One 2021; 16:e0247173. [PMID: 33661938 PMCID: PMC7932159 DOI: 10.1371/journal.pone.0247173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/02/2021] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Immunoglobulin (Ig) G4-related disease (IgG4-RD) is a novel clinical disease entity characterized by an elevated serum IgG4 concentration and tumefaction or tissue infiltration by IgG4-positive plasma cells. Pathological changes are most frequently seen in the pancreas, lacrimal glands, and salivary glands, but pathological changes in the lung also exist. Linker for activation of T cell (LAT)Y136F knock-in mice show Th2-dominant immunoreactions with elevated serum IgG1 levels, corresponding to human IgG4. We have reported that LATY136F knock-in mice display several characteristic features of IgG4-RD and concluded that they constitute an appropriate model of human IgG4-RD in salivary glands, pancreas, and kidney lesions. OBJECTIVES The aim of this study is to evaluate whether lung lesions in LATY136F knock-in mice can be a model of IgG4-related lung disease. METHODS Lung tissue samples from LATY136F knock-in mice (LAT) and wild-type mice (WT) were immunostained for IgG1 and obtained for pathological evaluation, and cell fractions and cytokine levels in broncho-alveolar lavage fluid (BALF) were analyzed. RESULTS In the LAT group, IgG1-positive inflammatory cells increased starting at 4 weeks of age and peaked at 10 weeks of age. The total cell count and percentage of lymphocytes increased significantly in BALF in the LAT group compared to the WT group. In BALF, Th2-dominant cytokines and transforming growth factor-β were also increased. In the LAT group, marked inflammation around broncho-vascular bundles peaked at 10 weeks of age. After 10 weeks, fibrosis around broncho-vascular bundles and bronchiectasis were observed in LATY136F knock-in mice but not WT mice. CONCLUSIONS LATY136F knock-in mice constitute an appropriate model of lung lesions in IgG4-RD.
Collapse
Affiliation(s)
- Yuko Waseda
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Kazunori Yamada
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Keishi Mizuguchi
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kiyoaki Ito
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Satoshi Watanabe
- Department oh Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Masahiko Zuka
- Department of Forensic Medicine and Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Marie Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Universite´, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Universite´, INSERM, CNRS, Marseille, France
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shoko Matsui
- Health Administration Center, University of Toyama, Toyama, Japan
| |
Collapse
|
17
|
Saez JJ, Dogniaux S, Shafaq-Zadah M, Johannes L, Hivroz C, Zucchetti AE. Retrograde and Anterograde Transport of Lat-Vesicles during the Immunological Synapse Formation: Defining the Finely-Tuned Mechanism. Cells 2021; 10:cells10020359. [PMID: 33572370 PMCID: PMC7916135 DOI: 10.3390/cells10020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
LAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of four proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute to both pathways, are in our cellular context, specifically and respectively, involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point to the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.
Collapse
Affiliation(s)
- Juan José Saez
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Stephanie Dogniaux
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Massiullah Shafaq-Zadah
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Claire Hivroz
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| | - Andrés Ernesto Zucchetti
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| |
Collapse
|
18
|
A Novel, LAT/Lck Double Deficient T Cell Subline J.CaM1.7 for Combined Analysis of Early TCR Signaling. Cells 2021; 10:cells10020343. [PMID: 33562083 PMCID: PMC7915312 DOI: 10.3390/cells10020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Intracellular signaling through the T cell receptor (TCR) is essential for T cell development and function. Proper TCR signaling requires the sequential activities of Lck and ZAP-70 kinases, which result in the phosphorylation of tyrosine residues located in the CD3 ITAMs and the LAT adaptor, respectively. LAT, linker for the activation of T cells, is a transmembrane adaptor protein that acts as a scaffold coupling the early signals coming from the TCR with downstream signaling pathways leading to cellular responses. The leukemic T cell line Jurkat and its derivative mutants J.CaM1.6 (Lck deficient) and J.CaM2 (LAT deficient) have been widely used to study the first signaling events upon TCR triggering. In this work, we describe the loss of LAT adaptor expression found in a subline of J.CaM1.6 cells and analyze cis-elements responsible for the LAT expression defect. This new cell subline, which we have called J.CaM1.7, can re-express LAT adaptor after Protein Kinase C (PKC) activation, which suggests that activation-induced LAT expression is not affected in this new cell subline. Contrary to J.CaM1.6 cells, re-expression of Lck in J.CaM1.7 cells was not sufficient to recover TCR-associated signals, and both LAT and Lck had to be introduced to recover activatory intracellular signals triggered after CD3 crosslinking. Overall, our work shows that the new LAT negative J.CaM1.7 cell subline could represent a new model to study the functions of the tyrosine kinase Lck and the LAT adaptor in TCR signaling, and their mutual interaction, which seems to constitute an essential early signaling event associated with the TCR/CD3 complex.
Collapse
|
19
|
Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, Marches R, Chambers ES, Gomes DCO, Riddell NE, Maini MK, Teixeira VH, Janes SM, Gilroy DW, Larbi A, Mabbott NA, Ucar D, Kuchel GA, Henson SM, Strid J, Lee JH, Banchereau J, Akbar AN. Sestrins induce natural killer function in senescent-like CD8 + T cells. Nat Immunol 2020; 21:684-694. [PMID: 32231301 PMCID: PMC10249464 DOI: 10.1038/s41590-020-0643-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London, London, UK
| | - Roel P H De Maeyer
- Division of Infection and Immunity, University College London, London, UK
| | - Luciana P Covre
- Division of Infection and Immunity, University College London, London, UK
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Alessio Lanna
- Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Ward
- Department of Medicine, Imperial College London, London, UK
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emma S Chambers
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel C O Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Natalie E Riddell
- Division of Infection and Immunity, University College London, London, UK
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Samuel M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Neil A Mabbott
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - George A Kuchel
- University of Connecticut Center on Aging, University of Connecticut, Farmington, CT, USA
| | - Sian M Henson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jessica Strid
- Department of Medicine, Imperial College London, London, UK
| | - Jun H Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
20
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
21
|
Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev 2020; 291:134-153. [PMID: 31402496 DOI: 10.1111/imr.12796] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022]
Abstract
T cells play important roles in autoimmune diseases and cancer. Following the cloning of the T cell receptor (TCR), the race was on to map signaling proteins that contributed to T cell activation downstream of the TCR as well as co-stimulatory molecules such as CD28. We term this "canonical TCR signaling" here. More recently, it has been appreciated that T cells need to accommodate increased metabolic needs that stem from T cell activation in order to function properly. A central role herein has emerged for mechanistic/mammalian target of rapamycin (mTOR). In this review we briefly cover canonical TCR signaling to set the stage for discussion on mTOR signaling, mRNA translation, and metabolic adaptation in T cells. We also discuss the role of mTOR in follicular helper T cells, regulatory T cells, and other T cell subsets. Our lab recently uncovered that "tonic signals", which pass through proximal TCR signaling components, are robustly and selectively transduced to mTOR to promote baseline translation of various mRNA targets. We discuss insights on (tonic) mTOR signaling in the context of T cell function in autoimmune diseases such as lupus as well as in cancer immunotherapy through CAR-T cell or checkpoint blockade approaches.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Wheeler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Reporters of TCR signaling identify arthritogenic T cells in murine and human autoimmune arthritis. Proc Natl Acad Sci U S A 2019; 116:18517-18527. [PMID: 31455730 PMCID: PMC6744919 DOI: 10.1073/pnas.1904271116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
How arthritis-causing T cells trigger rheumatoid arthritis (RA) is not understood since it is difficult to differentiate T cells activated by inflammation in arthritic joints from those activated through their T cell antigen receptor (TCR) by self-antigens. We developed a model to identify and study antigen-specific T cell responses in arthritis. Nur77—a specific marker of TCR signaling—was used to identify antigen-activated T cells in the SKG arthritis model and in patients with RA. Nur77 could distinguish highly arthritogenic and autoreactive T cells in SKG mice. The enhanced autoreactivity was associated with increased interleukin-6 (IL-6) receptor signaling, likely contributing to their arthritogenicity. These data highlight a functional correlate between Nur77 expression, arthritogenic T cell populations, and heightened IL-6 sensitivity in SKG mice with translatable implications for human RA. How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77—a marker of T cell antigen receptor (TCR) signaling—to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)–producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)—a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA.
Collapse
|
23
|
Saveanu L, Zucchetti AE, Evnouchidou I, Ardouin L, Hivroz C. Is there a place and role for endocyticTCRsignaling? Immunol Rev 2019; 291:57-74. [DOI: 10.1111/imr.12764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Loredana Saveanu
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
| | - Andres E. Zucchetti
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Irini Evnouchidou
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
- Inovarion Paris France
| | - Laurence Ardouin
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Claire Hivroz
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| |
Collapse
|
24
|
Zucchetti AE, Bataille L, Carpier JM, Dogniaux S, San Roman-Jouve M, Maurin M, Stuck MW, Rios RM, Baldari CT, Pazour GJ, Hivroz C. Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nat Commun 2019; 10:2864. [PMID: 31253807 PMCID: PMC6599081 DOI: 10.1038/s41467-019-10891-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.
Collapse
Affiliation(s)
- Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Jean-Marie Carpier
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Immunobiology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mabel San Roman-Jouve
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosa M Rios
- Cell Dynamics and Signaling Department, CABIMER-CSIC/US/UPO, 41092, Seville, Spain
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| |
Collapse
|
25
|
Singh T, Colberg JK, Sarmiento L, Chaves P, Hansen L, Bsharat S, Cataldo LR, Dudenhöffer-Pfeifer M, Fex M, Bryder D, Holmberg D, Sitnicka E, Cilio C, Prasad RB, Artner I. Loss of MafA and MafB expression promotes islet inflammation. Sci Rep 2019; 9:9074. [PMID: 31235823 PMCID: PMC6591483 DOI: 10.1038/s41598-019-45528-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA−/−MafB+/−, but not MafA−/− islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.
Collapse
Affiliation(s)
- Tania Singh
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Jesper K Colberg
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Luis Sarmiento
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Patricia Chaves
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Lisbeth Hansen
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Sara Bsharat
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Luis R Cataldo
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | | | - Malin Fex
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - David Bryder
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Dan Holmberg
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Ewa Sitnicka
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Corrado Cilio
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Rashmi B Prasad
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Isabella Artner
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden. .,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden.
| |
Collapse
|
26
|
Oh-Hora M, Lu X, Shiokawa M, Takayanagi H, Yamasaki S. Stromal Interaction Molecule Deficiency in T Cells Promotes Spontaneous Follicular Helper T Cell Development and Causes Type 2 Immune Disorders. THE JOURNAL OF IMMUNOLOGY 2019; 202:2616-2627. [PMID: 30910863 DOI: 10.4049/jimmunol.1700610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 03/03/2019] [Indexed: 12/24/2022]
Abstract
Appropriate T cell responses are controlled by strict balance between activatory and inhibitory pathways downstream of TCR. Although mice or humans with impaired TCR signaling develop autoimmunity, the precise molecular mechanisms linking reduced TCR signaling to autoimmunity are not fully understood. Engagement of TCR activates Ca2+ signaling mainly through store-operated Ca2+ entry activated by stromal interaction molecule (Stim) 1 and Stim2. Despite defective T cell activation, mice deficient in both Stim1 and Stim2 in T cells (conditional double knockout [cDKO]) developed lymphoproliferative disorders and skin inflammation with a concomitant increase in serum IgG1 and IgE levels. In cDKO mice, follicular helper T (Tfh) cells were dramatically increased in number, and they produced IL-4 spontaneously. These inflammatory symptoms were abolished by the deletion of IL-4 in cDKO mice. Tfh development and inflammatory symptoms in cDKO mice were abrogated by further deletion of NFAT2 in T cells. These findings suggest that Tfh cells spontaneously developed in the absence of Ca2+ signaling and caused unregulated type 2 responses.
Collapse
Affiliation(s)
- Masatsugu Oh-Hora
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; .,Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Xiuyuan Lu
- Division of Molecular and Cellular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Moe Shiokawa
- Division of Molecular and Cellular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; and
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan; .,Division of Molecular and Cellular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
27
|
Abstract
Functional interpretation of noncoding genetic variants identified by genome-wide association studies is a major challenge in human genetics and gene regulation. We generated epigenomics data using primary cells from type 1 diabetes patients. Using these data, we identified and validated multiple novel risk variants for this disease. In addition, our ranked list of candidate risk SNPs represents the most comprehensive annotation based on T1D-specific T-cell data. Because many autoimmune diseases share some genetic underpinnings, our dataset may be used to understand causal noncoding mutations in related autoimmune diseases. Genome-wide association studies (GWASs) have revealed 59 genomic loci associated with type 1 diabetes (T1D). Functional interpretation of the SNPs located in the noncoding region of these loci remains challenging. We perform epigenomic profiling of two enhancer marks, H3K4me1 and H3K27ac, using primary TH1 and TREG cells isolated from healthy and T1D subjects. We uncover a large number of deregulated enhancers and altered transcriptional circuitries in both cell types of T1D patients. We identify four SNPs (rs10772119, rs10772120, rs3176792, rs883868) in linkage disequilibrium (LD) with T1D-associated GWAS lead SNPs that alter enhancer activity and expression of immune genes. Among them, rs10772119 and rs883868 disrupt the binding of retinoic acid receptor α (RARA) and Yin and Yang 1 (YY1), respectively. Loss of binding by YY1 also results in the loss of long-range enhancer–promoter interaction. These findings provide insights into how noncoding variants affect the transcriptomes of two T-cell subtypes that play critical roles in T1D pathogenesis.
Collapse
|
28
|
Milam AAV, Bartleson JM, Donermeyer DL, Horvath S, Durai V, Raju S, Yu H, Redmann V, Zinselmeyer B, White JM, Murphy KM, Allen PM. Tuning T Cell Signaling Sensitivity Alters the Behavior of CD4 + T Cells during an Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3429-3437. [PMID: 29618523 PMCID: PMC5940509 DOI: 10.4049/jimmunol.1701422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Intricate processes in the thymus and periphery help curb the development and activation of autoreactive T cells. The subtle signals that govern these processes are an area of great interest, but tuning TCR sensitivity for the purpose of affecting T cell behavior remains technically challenging. Previously, our laboratory described the derivation of two TCR-transgenic CD4 T cell mouse lines, LLO56 and LLO118, which recognize the same cognate Listeria epitope with the same affinity. Despite the similarity of the two TCRs, LLO56 cells respond poorly in a primary infection whereas LLO118 cells respond robustly. Phenotypic examination of both lines revealed a substantial difference in their surface of expression of CD5, which serves as a dependable readout of the self-reactivity of a cell. We hypothesized that the increased interaction with self by the CD5-high LLO56 was mediated through TCR signaling, and was involved in the characteristic weak primary response of LLO56 to infection. To explore this issue, we generated an inducible knock-in mouse expressing the self-sensitizing voltage-gated sodium channel Scn5a. Overexpression of Scn5a in peripheral T cells via the CD4-Cre promoter resulted in increased TCR-proximal signaling. Further, Scn5a-expressing LLO118 cells, after transfer into BL6 recipient mice, displayed an impaired response during infection relative to wild-type LLO118 cells. In this way, we were able to demonstrate that tuning of TCR sensitivity to self can be used to alter in vivo immune responses. Overall, these studies highlight the critical relationship between TCR-self-pMHC interaction and an immune response to infection.
Collapse
Affiliation(s)
- Ashley A Viehmann Milam
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Juliet M Bartleson
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - David L Donermeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen Horvath
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vivek Durai
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Saravanan Raju
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Haiyang Yu
- Ludwig Institute for Cancer Research, La Jolla, CA 92093; and
| | - Veronika Redmann
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bernd Zinselmeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - J Michael White
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kenneth M Murphy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul M Allen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
29
|
Milner JD. TCR Signaling Abnormalities in Human Th2-Associated Atopic Disease. Front Immunol 2018; 9:719. [PMID: 29713322 PMCID: PMC5911486 DOI: 10.3389/fimmu.2018.00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
Stimulation of naïve CD4 T cells with weak T cell receptor agonists even in the absence of T helper-skewing cytokines can result in IL-4 production which can drive a Th2 response. Evidence for the in vivo consequences of such a phenomenon can be found in a number of mouse models and, importantly, a series of monogenic human diseases associated with significant atopy which are caused by mutations in the T cell receptor signaling cascade. Such diseases can help understand how Th2 responses evolve in humans, and potentially provide insight into therapeutic interventions.
Collapse
Affiliation(s)
- Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
30
|
Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med 2018; 215:1009-1022. [PMID: 29549114 PMCID: PMC5881472 DOI: 10.1084/jem.20172306] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Important insights from monogenic disorders into the immunopathogenesis of allergic diseases and reactions are discussed. Monogenic disorders have provided fundamental insights into human immunity and the pathogenesis of allergic diseases. The pathways identified as critical in the development of atopy range from focal defects in immune cells and epithelial barrier function to global changes in metabolism. A major goal of studying heritable single-gene disorders that lead to severe clinical allergic diseases is to identify fundamental pathways leading to hypersensitivity that can be targeted to provide novel therapeutic strategies for patients with allergic diseases, syndromic and nonsyndromic alike. Here, we review known single-gene disorders leading to severe allergic phenotypes in humans, discuss how the revealed pathways fit within our current understanding of the atopic diathesis, and propose how some pathways might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Mutzbauer G, Maurus K, Buszello C, Pischimarov J, Roth S, Rosenwald A, Chott A, Geissinger E. SYK expression in monomorphic epitheliotropic intestinal T-cell lymphoma. Mod Pathol 2018; 31:505-516. [PMID: 29052597 DOI: 10.1038/modpathol.2017.145] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/02/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), formerly known as type II enteropathy associated T-cell lymphoma (type II EATL), is a rare, aggressive primary intestinal T-cell lymphoma with a poor prognosis and an incompletely understood pathogenesis. We collected 40 cases of MEITL and 27 cases of EATL, formerly known as type I EATL, and comparatively investigated the T-cell receptor (TCR) itself and associated signaling molecules using immunohistochemistry, amplicon deep sequencing and bisulfite pyrosequencing. The TCR showed both an αβ-T-cell origin (30%) and a γδ-T-cell derivation (55%) resulting in a predominant positive TCR phenotype in MEITL compared with the mainly silent TCR phenotype in EATL (65%). The immunohistochemical expression of the spleen tyrosine kinase (SYK) turned out to be a distinctive feature of MEITL (95%) compared with EATL (0%). Aberrant SYK overexpression in MEITL is likely caused by hypomethylation of the SYK promoter, while no common mutations in the SYK gene or in its promoter could be detected. Using amplicon deep sequencing, mutations in DNMT3A, IDH2, and TET2 were infrequent events in MEITL and EATL. Immunohistochemical expression of linker for activation of T-cells (LAT) subdivided MEITL into a LAT expressing subset (33%) and a LAT silent subset (67%) with a potentially earlier disease onset in LAT-positive MEITL.
Collapse
Affiliation(s)
- Grit Mutzbauer
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Katja Maurus
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Clara Buszello
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sabine Roth
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University and University Hospital, Wuerzburg, Germany
| | - Andreas Chott
- Institute of Pathology and Microbiology, Wilhelminenspital, Vienna, Austria
| | - Eva Geissinger
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University and University Hospital, Wuerzburg, Germany
| |
Collapse
|
32
|
Arbulo-Echevarria MM, Narbona-Sánchez I, Fernandez-Ponce CM, Vico-Barranco I, Rueda-Ygueravide MD, Dustin ML, Miazek A, Duran-Ruiz MC, García-Cózar F, Aguado E. A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling. Front Immunol 2018; 9:115. [PMID: 29456532 PMCID: PMC5801411 DOI: 10.3389/fimmu.2018.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.
Collapse
Affiliation(s)
- Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Cecilia M Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | | | - Michael L Dustin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, The University of Oxford, Headington, United Kingdom
| | - Arkadiusz Miazek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mª Carmen Duran-Ruiz
- Department of Biomedicine, Biotechnology and Public Health (Biochemistry), University of Cádiz, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
33
|
Álvarez-Salamero C, Castillo-González R, Navarro MN. Lighting Up T Lymphocyte Signaling with Quantitative Phosphoproteomics. Front Immunol 2017; 8:938. [PMID: 28848546 PMCID: PMC5552657 DOI: 10.3389/fimmu.2017.00938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation is the most abundant post-translational modification, regulating several aspects of protein and cell function. Quantitative phosphoproteomics approaches have expanded the scope of phosphorylation analysis enabling the quantification of changes in thousands of phosphorylation sites simultaneously in two or more conditions. These approaches offer a global view of the impact of cellular perturbations such as extracellular stimuli or gene ablation in intracellular signaling networks. Such great potential also brings on a new challenge: to identify, among the thousands of phosphorylations found in global phosphoproteomics studies, the small subset of site-specific phosphorylations expected to be functionally relevant. This review focus on updating and integrating findings on T lymphocyte signaling generated using global phosphoproteomics approaches, drawing attention on the biological relevance of the obtained data.
Collapse
Affiliation(s)
- Candelas Álvarez-Salamero
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | | | - María N Navarro
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
34
|
Myers DR, Zikherman J, Roose JP. Tonic Signals: Why Do Lymphocytes Bother? Trends Immunol 2017; 38:844-857. [PMID: 28754596 DOI: 10.1016/j.it.2017.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
Since the 1990s it has been known that B and T lymphocytes exhibit low-level, constitutive signaling in the basal state (tonic signaling). These lymphocytes display a range of affinity for self, which in turn generates a range of tonic signaling. Surprisingly, what signaling pathways are active in the basal state and the functional relevance of the observed tonic signaling heterogeneity remain open questions today. Here we summarize what is known about the mechanistic and functional details of tonic signaling. We highlight recent advances that have increased our understanding of how the amount of tonic signal impacts immune function, describing novel tools that have moved the field forward and toward a molecular understanding of tonic signaling.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Jeroen P Roose
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Gustafson CE, Qi Q, Hutter-Saunders J, Gupta S, Jadhav R, Newell E, Maecker H, Weyand CM, Goronzy JJ. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging. Front Immunol 2017; 8:692. [PMID: 28659925 PMCID: PMC5469909 DOI: 10.3389/fimmu.2017.00692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs) CD8 T cells, which increase with age, in cytomegalovirus (CMV) infection and in males. CD85j+ CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j+ and CD85j− compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57) but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of “senescent,” but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Qian Qi
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Jessica Hutter-Saunders
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Sheena Gupta
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Rohit Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Evan Newell
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.,Agency for Science, Technology and Research (ASTAR), Singapore Immunology Network (SIgN), Singapore, Singapore
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States.,Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| |
Collapse
|
36
|
Myers DR, Lau T, Markegard E, Lim HW, Kasler H, Zhu M, Barczak A, Huizar JP, Zikherman J, Erle DJ, Zhang W, Verdin E, Roose JP. Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells. Cell Rep 2017; 19:1558-1571. [PMID: 28538176 PMCID: PMC5587137 DOI: 10.1016/j.celrep.2017.04.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/05/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4+ T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (TH2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4+ T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4+ T cell proliferation and uncover a suppressive role for Irf4 in TH2 polarization; halving Irf4 gene-dosage leads to increases in GATA3+ and IL-4+ cells. Our studies reveal that naive CD4+ T cells are dynamically tuned by tonic LAT-HDAC7 signals.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tannia Lau
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan Markegard
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hyung W Lim
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Herbert Kasler
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrea Barczak
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John P Huizar
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Molecular mechanisms underlying the evolution of the slp76 signalosome. Sci Rep 2017; 7:1509. [PMID: 28473706 PMCID: PMC5431462 DOI: 10.1038/s41598-017-01660-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The well-defined mammalian slp76-signalosome is crucial for T-cell immune response, yet whether slp76-signalosome exists in invertebrates and how it evolved remain unknown. Here we investigated slp76-signalosome from an evolutionary perspective in amphioxus Branchiostoma belcheri (bb). We proved slp76-signalosome components bbslp76, bbGADS and bbItk are present in amphioxus and bbslp76 interacts with bbGADS and bbItk, but differences exist between the interaction manners within slp76-signalosome components of amphioxus and human (h). Specifically, bbslp76 has a unique WW-domain that blocked its association with hItk and decreased TCR-induced tyrosine-phosphorylation and NFAT-activation. Deletion of WW-domain shifted the constitutive association between bbslp76 and hPLCγ1 to a TCR-enhanced association. Among slp76-signalosome, the interaction between slp76 and PLCγ1 is the most conserved and the binding between Itk and slp76 evolved from constitutive to stimulation-regulated. Sequence alignment and 3D structural analysis of slp76-signalosome molecules from keystone species indicated slp76 evolved into a more unfolded and flexible adaptor due to lack of WW-domain and several low-complexity-regions (LCRs) while GADS turned into a larger protein by a LCR gain, thus preparing more space for nucleating the coevolving slp76-signalosome. Altogether, through deletion of WW-domain and manipulation of LCRs, slp76-signalosome evolves from a rigid and stimulation-insensitive to a more flexible and stimulation-responding complex.
Collapse
|
38
|
Pereira BI, Akbar AN. Convergence of Innate and Adaptive Immunity during Human Aging. Front Immunol 2016; 7:445. [PMID: 27867379 PMCID: PMC5095488 DOI: 10.3389/fimmu.2016.00445] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 01/06/2023] Open
Abstract
Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review, we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased T cell receptor signaling, suggesting a functional shift away from antigen-specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance, and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London , London , UK
| | - Arne N Akbar
- Division of Infection and Immunity, University College London , London , UK
| |
Collapse
|
39
|
Roncagalli R, Cucchetti M, Jarmuzynski N, Grégoire C, Bergot E, Audebert S, Baudelet E, Menoita MG, Joachim A, Durand S, Suchanek M, Fiore F, Zhang L, Liang Y, Camoin L, Malissen M, Malissen B. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 2016; 213:2437-2457. [PMID: 27647348 PMCID: PMC5068240 DOI: 10.1084/jem.20160579] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022] Open
Abstract
In two complementary papers, Casanova, Malissen, and collaborators report the discovery of human RLTPR deficiency, the first primary immunodeficiency of the human CD28 pathway in T cells. Together, the two studies elucidate the largely (but not completely) overlapping roles of RLTPR in CD28 signaling in T and B cells of humans and mice. The RLTPR cytosolic protein, also known as CARMIL2, is essential for CD28 co-stimulation in mice, but its importance in human T cells and mode of action remain elusive. Here, using affinity purification followed by mass spectrometry analysis, we showed that RLTPR acts as a scaffold, bridging CD28 to the CARD11/CARMA1 cytosolic adaptor and to the NF-κB signaling pathway, and identified proteins not found before within the CD28 signaling pathway. We further demonstrated that RLTPR is essential for CD28 co-stimulation in human T cells and that its noncanonical pleckstrin-homology domain, leucine-rich repeat domain, and proline-rich region were mandatory for that task. Although RLTPR is thought to function as an actin-uncapping protein, this property was dispensable for CD28 co-stimulation in both mouse and human. Our findings suggest that the scaffolding role of RLTPR predominates during CD28 co-stimulation and underpins the similar function of RLTPR in human and mouse T cells. Along that line, the lack of functional RLTPR molecules impeded the differentiation toward Th1 and Th17 fates of both human and mouse CD4+ T cells. RLTPR was also expressed in both human and mouse B cells. In the mouse, RLTPR did not play, however, any detectable role in BCR-mediated signaling and T cell-independent B cell responses.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Margot Cucchetti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Nicolas Jarmuzynski
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Elise Bergot
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Audebert
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Emilie Baudelet
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marisa Goncalves Menoita
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Anais Joachim
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Durand
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | | | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Lichen Zhang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Luc Camoin
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| |
Collapse
|
40
|
A Natural Variant of the T Cell Receptor-Signaling Molecule Vav1 Reduces Both Effector T Cell Functions and Susceptibility to Neuroinflammation. PLoS Genet 2016; 12:e1006185. [PMID: 27438086 PMCID: PMC4954684 DOI: 10.1371/journal.pgen.1006185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation. The understanding of the physiological role of Vav1, a key regulator of T cell receptor signaling, was primarily inferred from studies using Vav1-deficient mice. Such models, however, provide little insight on how polymorphisms leading to quantitative changes in Vav1 activity could affect immune system functions. In the present study, we focused on a recently identified Vav1R63W natural variant that has been supposed to play a central role in the susceptibility to neuroinflammation. Using a Vav1R63W knock-in mouse model, we show that Vav1R63W leads to defects in adaptor functions and reduces the susceptibility to experimental autoimmune encephalomyelitis, together with an intrinsic defect in the production of Th1/Th17 cytokines by autoreactive effector CD4 T cells. Thus, our study highlights the importance of Vav1 adaptor functions in CD4 T cells differentiation and suggests that genetic or acquired alterations of this Vav1 function could play a major role in susceptibility to Th1/Th17 mediated diseases.
Collapse
|
41
|
Phorbol ester-mediated re-expression of endogenous LAT adapter in J.CaM2 cells: a model for dissecting drivers and blockers of LAT transcription. Genes Immun 2016; 17:313-20. [PMID: 27278128 PMCID: PMC4972999 DOI: 10.1038/gene.2016.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/05/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
Abstract
Linker for activation of T cells (LAT) is a raft-associated, transmembrane adapter protein critical for T-cell development and function. LAT expression is transiently upregulated upon T-cell receptor (TCR) engagement, but molecular mechanisms conveying TCR signaling to enhanced LAT transcription are not fully understood. Here we found that a Jurkat subline J.CaM2, initially characterized as LAT deficient, conditionally re-expressed LAT upon the treatment with a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA). We took advantage of the above observation for studying cis-elements and trans-acting factors contributing to the activation-induced expression of LAT. We identified a LAT gene region spanning nucleotide position −14 to +357 relative to the ATG start codon as containing novel cis-regulatory elements that were able to promote PMA-induced reporter transcription in the absence of the core LAT promoter. Interestingly, a point mutation in LAT intron 1, identified in J.CaM2 cells, downmodulated LAT promoter activity by 50%. Mithramycin A, a selective Sp1 DNA-binding inhibitor, abolished LAT expression upon PMA treatment as did calcium ionophore ionomycin (Iono) and valproic acid (VPA), widely used as an anti-epileptic drug. Our data introduce J.CaM2 cells as a model for dissecting drivers and blockers of activation induced expression of LAT.
Collapse
|
42
|
Arbulo-Echevarria MM, Muñoz-Miranda JP, Caballero-García A, Poveda-Díaz JL, Fernández-Ponce C, Durán-Ruiz MC, Miazek A, García-Cózar F, Aguado E. Non-T cell activation linker (NTAL) proteolytic cleavage as a terminator of activatory intracellular signals. J Leukoc Biol 2016; 100:351-60. [PMID: 26830332 DOI: 10.1189/jlb.2a0715-318r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors.
Collapse
Affiliation(s)
- Mikel M Arbulo-Echevarria
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Juan Pedro Muñoz-Miranda
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Andrés Caballero-García
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - José L Poveda-Díaz
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Cecilia Fernández-Ponce
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - M Carmen Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health (Biochemistry), University of Cádiz, Cádiz, Spain
| | - Arkadiusz Miazek
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Francisco García-Cózar
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Enrique Aguado
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain,
| |
Collapse
|
43
|
Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J Biol Chem 2015; 290:26422-9. [PMID: 26354432 DOI: 10.1074/jbc.r115.665869] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the cloning of the critical adapter, LAT (linker for activation of T cells), more than 15 years ago, a combination of multiple scientific approaches and techniques continues to provide valuable insights into the formation, composition, regulation, dynamics, and function of LAT-based signaling complexes. In this review, we will summarize current views on the assembly of signaling complexes nucleated by LAT. LAT forms numerous interactions with other signaling molecules, leading to cooperativity in the system. Furthermore, oligomerization of LAT by adapter complexes enhances intracellular signaling and is physiologically relevant. These results will be related to data from super-resolution microscopy studies that have revealed the smallest LAT-based signaling units and nanostructure.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Robert L Kortum
- the Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Nathan P Coussens
- the Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Valarie A Barr
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Lawrence E Samelson
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256,
| |
Collapse
|
44
|
Siggs OM, Miosge LA, Daley SR, Asquith K, Foster PS, Liston A, Goodnow CC. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2587-95. [PMID: 25662996 PMCID: PMC4355390 DOI: 10.4049/jimmunol.1400326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - Lisa A Miosge
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephen R Daley
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kelly Asquith
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Adrian Liston
- Department of Microbiology and Immunology, Flanders Institute for Biotechnology and University of Leuven, Leuven 3000, Belgium
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia;
| |
Collapse
|
45
|
Kumari S, Depoil D, Martinelli R, Judokusumo E, Carmona G, Gertler FB, Kam LC, Carman CV, Burkhardt JK, Irvine DJ, Dustin ML. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 2015; 4. [PMID: 25758716 PMCID: PMC4355629 DOI: 10.7554/elife.04953] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
Wiscott Aldrich Syndrome protein (WASP) deficiency results in defects in calcium ion signaling, cytoskeletal regulation, gene transcription and overall T cell activation. The activation of WASP constitutes a key pathway for actin filament nucleation. Yet, when WASP function is eliminated there is negligible effect on actin polymerization at the immunological synapse, leading to gaps in our understanding of the events connecting WASP and calcium ion signaling. Here, we identify a fraction of total synaptic F-actin selectively generated by WASP in the form of distinct F-actin ‘foci’. These foci are polymerized de novo as a result of the T cell receptor (TCR) proximal tyrosine kinase cascade, and facilitate distal signaling events including PLCγ1 activation and subsequent cytoplasmic calcium ion elevation. We conclude that WASP generates a dynamic F-actin architecture in the context of the immunological synapse, which then amplifies the downstream signals required for an optimal immune response. DOI:http://dx.doi.org/10.7554/eLife.04953.001 The immune system is made up of several types of cells that protect the body against infection and disease. Immune cells such as T cells survey the body and when receptors on their surface encounter infected cells, the receptors activate the T cell by triggering a signaling pathway. The early stages of T cell receptor signaling lead to the formation of a cell–cell contact zone called the immunological synapse. Filaments of a protein called F-actin—which are continuously assembled and taken apart—make versatile networks and help the immunological synapse to form. F-actin filaments have crucial roles in the later stages of T cell receptor signaling as well, but how they contribute to this is not clear. Whether it is the same F-actin network that participates both in synapse formation and the late stages of T cell receptor signaling, and if so, then by what mechanism, remains unknown. The answers came from examining the function of a protein named Wiscott-Aldrich Syndrome Protein (WASP), which forms an F-actin network at the synapse. Loss of WASP is known to result in the X-linked Wiscott-Aldrich Syndrome immunodeficiency and bleeding disorder in humans. Although T cells missing WASP can construct immunological synapses, and these synapses do have normal levels of F-actin and early T cell receptor signaling, they still fail to respond to infected cells properly. Kumari et al. analyzed the detailed structure and dynamics of actin filament networks at immunological synapses of normal and WASP-deficient T cells. Normally, cells had visible foci of newly polymerized F-actin directly above T cell receptor clusters in the immunological synapses, but these foci were not seen in the cells lacking WASP. Kumari et al. found that the F-actin foci facilitate the later stages of the signaling that activates the T cells; this signaling was lacking in WASP-deficient cells. Altogether, Kumari et al. show that WASP-generated F-actin foci at immunological synapses bridge the early and later stages of T cell receptor signaling, effectively generating an optimal immune response against infected cells. Further work will now be needed to understand whether there are other F-actin substructures that play specialized roles in T cell signaling, and if foci play a related role in other cell types known to be affected in Wiscott-Aldrich Syndrome immunodeficiency. DOI:http://dx.doi.org/10.7554/eLife.04953.002
Collapse
Affiliation(s)
- Sudha Kumari
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - David Depoil
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Roberta Martinelli
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Edward Judokusumo
- Department of Biological Engineering, Columbia University, New York, United States
| | - Guillaume Carmona
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Lance C Kam
- Department of Biological Engineering, Columbia University, New York, United States
| | - Christopher V Carman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, United States
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| |
Collapse
|
46
|
Paster W, Bruger AM, Katsch K, Grégoire C, Roncagalli R, Fu G, Gascoigne NRJ, Nika K, Cohnen A, Feller SM, Simister PC, Molder KC, Cordoba SP, Dushek O, Malissen B, Acuto O. A THEMIS:SHP1 complex promotes T-cell survival. EMBO J 2014; 34:393-409. [PMID: 25535246 PMCID: PMC4339124 DOI: 10.15252/embj.201387725] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation.
Collapse
Affiliation(s)
- Wolfgang Paster
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Annika M Bruger
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kristin Katsch
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andre Cohnen
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Stephan M Feller
- Biological Systems Architecture Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK Tumor Biology Unit, Institute of Molecular Medicine, ZAMED, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Philip C Simister
- Biological Systems Architecture Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kelly C Molder
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shaun-Paul Cordoba
- Molecular Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Omer Dushek
- Molecular Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Malissen B, Grégoire C, Malissen M, Roncagalli R. Integrative biology of T cell activation. Nat Immunol 2014; 15:790-7. [PMID: 25137453 DOI: 10.1038/ni.2959] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022]
Abstract
The activation of T cells mediated by the T cell antigen receptor (TCR) requires the interaction of dozens of proteins, and its malfunction has pathological consequences. Our major focus is on new developments in the systems-level understanding of the TCR signal-transduction network. To make sense of the formidable complexity of this network, we argue that 'fine-grained' methods are needed to assess the relationships among a few components that interact on a nanometric scale, and those should be integrated with high-throughput '-omic' approaches that simultaneously capture large numbers of parameters. We illustrate the utility of this integrative approach with the transmembrane signaling protein Lat, which is a key signaling hub of the TCR signal-transduction network, as a connecting thread.
Collapse
Affiliation(s)
- Bernard Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Claude Grégoire
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| | - Marie Malissen
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France. [4] Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France. [5] INSERM US012, Marseille, France. [6] CNRS UMS3367, Marseille, France
| | - Romain Roncagalli
- 1] Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France. [2] INSERM U1104, Marseille, France. [3] CNRS UMR7280, Marseille, France
| |
Collapse
|
48
|
Gustafsson K, Willebrand E, Welsh M. Absence of the adaptor protein Shb potentiates the T helper type 2 response in a mouse model of atopic dermatitis. Immunology 2014; 143:33-41. [PMID: 24645804 DOI: 10.1111/imm.12286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Aberrant regulation of T helper (Th) cell maturation is associated with a number of autoimmune conditions, including allergic disorders and rheumatoid arthritis. The Src homology domain protein B (Shb) adaptor protein was recently implicated as a regulator of Th cell differentiation. Shb is an integral component of the T-cell receptor (TCR) signalling complex and in the absence of Shb the TCR is less responsive to stimulation, resulting in the preferential development of Th2 responses under conditions of in vitro stimulation. In the present study, we extend those observations to an in vivo situation using a murine model of atopic dermatitis. Shb knockout mice develop more pronounced symptoms of atopic dermatitis with increased localized oedema, epidermal hyperplasia and IgE production. Dermal infiltration of mast cells, eosinophils, CD4(+) Th cells and F4/80(+) macrophages was also significantly increased in Shb-deficient mice. This correlated with elevated transcription of the hallmark Th2 cytokines interleukin-4 and interleukin-5. The loss of Shb therefore alters TCR signalling ability, thereby favouring the development of Th2-driven inflammation and exacerbating symptoms of allergy.
Collapse
Affiliation(s)
- Karin Gustafsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
49
|
Kłossowicz M, Marek-Bukowiec K, Arbulo-Echevarria MM, Ścirka B, Majkowski M, Sikorski AF, Aguado E, Miazek A. Identification of functional, short-lived isoform of linker for activation of T cells (LAT). Genes Immun 2014; 15:449-56. [PMID: 25008862 DOI: 10.1038/gene.2014.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/04/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Linker for activation of T cells (LAT) is a transmembrane adaptor protein playing a key role in the development, activation and maintenance of peripheral homeostasis of T cells. In this study we identified a functional isoform of LAT. It originates from an intron 6 retention event generating an in-frame splice variant of LAT mRNA denoted as LATi6. Comparison of LATi6 expression in peripheral blood leukocytes of human and several other mammalian species revealed that it varied from being virtually absent in the mouse to being predominant in the cow. Analysis of LAT isoform frequency expressed from minigene splicing reporters carrying loss- or gain-of-function point mutations within intronic polyguanine sequences showed that these elements are critical for controlling the intron 6 removal. The protein product of LATi6 isoform (LATi6) ectopically expressed in LAT-deficient JCam 2.5 cell line localized correctly to subcellular compartments and supported T-cell receptor signaling but differed from the canonical LAT protein by displaying a shorter half-life and mediating an increased interleukin-2 secretion upon prolonged CD3/CD28 crosslinking. Altogether, our data suggest that the appearance of LATi6 isoform is an evolutionary innovation that may contribute to a more efficient proofreading control of effector T-cell response.
Collapse
Affiliation(s)
- M Kłossowicz
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - K Marek-Bukowiec
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cadiz, Spain
| | - B Ścirka
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Majkowski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wroclaw, Poland
| | - A F Sikorski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wroclaw, Poland
| | - E Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cadiz, Spain
| | - A Miazek
- 1] Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland [2] Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
50
|
van Panhuys N, Klauschen F, Germain RN. T-cell-receptor-dependent signal intensity dominantly controls CD4(+) T cell polarization In Vivo. Immunity 2014; 41:63-74. [PMID: 24981853 DOI: 10.1016/j.immuni.2014.06.003] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
Abstract
Polarization of effector CD4(+) T cells can be influenced by both antigen-specific signals and by pathogen- or adjuvant-induced cytokines, with current models attributing a dominant role to the latter. Here we have examined the relationship between these factors in shaping cell-mediated immunity by using intravital imaging of CD4(+) T cell interactions with dendritic cells (DCs) exposed to polarizing adjuvants. These studies revealed a close correspondence between strength of T cell receptor (TCR)-dependent signaling and T helper 1 (Th1) versus Th2 cell fate, with antigen concentration dominating over adjuvant in controlling T cell polarity. Consistent with this finding, at a fixed antigen concentration, adjuvants inducing Th1 cells operated by affecting DC costimulation that amplified TCR signaling. TCR signal strength controlled downstream cytokine receptor expression, linking the two components in a hierarchical fashion. These data reveal how quantitative integration of antigen display and costimulation regulates downstream checkpoints responsible for cytokine-mediated control of effector differentiation.
Collapse
Affiliation(s)
- Nicholas van Panhuys
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD 20892, USA.
| | | | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|