1
|
Jewell S, Nguyen TB, Ascher DB, Robertson AA. Insights into the structure of NLR family member X1: Paving the way for innovative drug discovery. Comput Struct Biotechnol J 2024; 23:3506-3513. [PMID: 39435340 PMCID: PMC11493199 DOI: 10.1016/j.csbj.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Nucleotide-binding oligomerization domain, leucine rich repeat containing X1 (NLRX1) is a negative regulator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway, with a significant role in the context of inflammation. Altered expression of NLRX1 is prevalent in inflammatory diseases leading to interest in NLRX1 as a drug target. There is a lack of structural information available for NLRX1 as only the leucine-rich repeat domain of NLRX1 has been crystallised. This lack of structural data limits progress in understanding function and potential druggability of NLRX1. We have modelled full-length NLRX1 by combining experimental, homology modelled and AlphaFold2 structures. The full-length model of NLRX1 was used to explore protein dynamics, mutational tolerance and potential functions. We identified a new RNA binding site in the previously uncharacterized N-terminus, which served as a basis to model protein-RNA complexes. The structure of the adenosine triphosphate (ATP) binding domain revealed a potential catalytic functionality for the protein as a member of the ATPase Associated with Diverse Cellular Activity family of proteins. Finally, we investigated the interactions of NLRX1 with small molecule activators in development, revealing a binding site that has not previously been discussed in literature. The model generated here will help to catalyse efforts towards creating new drug molecules to target NLRX1 and may be used to inform further studies on functionality of NLRX1.
Collapse
Affiliation(s)
- Shannon Jewell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Avril A.B. Robertson
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Wang J, He W, Li C, Ma Y, Liu M, Ye J, Sun L, Su J, Zhou L. Focus on negatively regulated NLRs in inflammation and cancer. Int Immunopharmacol 2024; 136:112347. [PMID: 38820966 DOI: 10.1016/j.intimp.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Nucleotide-binding and oligomerization structural domain (NOD)-like receptors (NLRs) play an important role in innate immunity as cytoplasmic pattern recognition receptors (PRRs). Over the past decade, considerable progress has been made in understanding the mechanisms by which NLR family members regulate immune system function, particularly the formation of inflammasome and downstream inflammatory signals. However, recent studies have shown that some members of the NLRs, including Nlrp12, NLRX1, and NLRC3, are important in the negative regulation of inflammatory signaling and are involved in the development of various diseases, including inflammatory diseases and cancer. Based on this, in this review, we first summarize the interactions between canonical and non-canonical nuclear factor-κB (NF-κB) signaling pathways that are mainly involved in NLRs, then highlight the mechanisms by which the above NLRs negatively regulate inflammatory signaling responses as well as their roles in tumor progression, and finally summarize the synthetic and natural derivatives with therapeutic effects on these NLRs, which are considered as potential therapeutic agents for overcoming inflammatory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China; Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenjing He
- Medical Intensive Care Unit, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Chunhua Li
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Yue Ma
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Mingjun Liu
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Jinxiang Ye
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Lei Sun
- Changchun Tongyuan Hospital, Changchun 130012, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China.
| |
Collapse
|
4
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Verstockt B, Vermeire S, Peyrin-Biroulet L, Mosig R, Feagan BG, Colombel JF, Siegmund B, Rieder F, Schreiber S, Yarur A, Panaccione R, Dubinsky M, Lichtiger S, Cataldi F, Danese S. The Safety, Tolerability, Pharmacokinetics, and Clinical Efficacy of the NLRX1 agonist NX-13 in Active Ulcerative Colitis: Results of a Phase 1b Study. J Crohns Colitis 2024; 18:762-772. [PMID: 37952114 PMCID: PMC11140628 DOI: 10.1093/ecco-jcc/jjad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIMS NX-13 activation of NLRX1 reduces intracellular reactive oxygen species and decreases inflammation in animal models of colitis. A phase 1a trial demonstrated a gut-selective pharmacokinetic profile with good tolerability. This phase Ib study aimed to evaluate the safety, tolerability, and pharmacokinetics of NX-13 in patients with active ulcerative colitis [UC]. METHODS We conducted a multicentre, randomized, double-blind, placebo-controlled trial of NX-13 in patients with active UC. Patients with a Mayo Clinic Score of 4-10 were randomly assigned [3:3:3:1 ratio] to three NX-13 oral dose groups (250 mg immediate release [IR], 500 mg IR, or 500 mg delayed release [DR], or placebo) once daily for 4 weeks. Safety and pharmacokinetics were the primary and secondary objectives, respectively. RESULTS Thirty-eight patients [11 females] were recruited and randomized to placebo [five], NX-13 250 mg IR [11], NX-13 500 mg IR [11], or NX-13 500 mg DR [11] and received at least one dose. There were no serious adverse events or deaths during the trial. One patient [500 mg DR, 1/11] withdrew due to worsening of UC and a second [500 mg IR, 1/11] on the last day of treatment after a panic attack associated with atrial fibrillation. In the efficacy population [36 patients], clinical improvement in rectal bleeding and stool frequency scores relative to placebo were seen as early as week 2 and endoscopic response was seen at week 4. CONCLUSIONS NX-13 was generally safe and well tolerated with early signs of rapid symptom and endoscopic improvement. This novel mechanism of action warrants further investigation. ClinicalTrials.gov: NCT04862741.
Collapse
Affiliation(s)
- Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Severine Vermeire
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- FHU-CURE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier privé Ambroise Paré – Hartmann, Paris IBD Center, 92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Brian G Feagan
- Department of Medicine, Division of Gastroenterology, University of Western Ontario, London, Ontario, Canada
- Alimentiv Inc, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Rieder
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andres Yarur
- Division of Gastroenterology and Hepatology, Center for Inflammatory Bowel Diseases. Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Remo Panaccione
- Division of Gastroenterology & Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marla Dubinsky
- Division of Pediatric Gastroenterology and Nutrition, Mount Sinai Kravis Children’s Hospital, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | | | | | - Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Melepat B, Li T, Vinkler M. Natural selection directing molecular evolution in vertebrate viral sensors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105147. [PMID: 38325501 DOI: 10.1016/j.dci.2024.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/30/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.
Collapse
Affiliation(s)
- Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Tao Li
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic.
| |
Collapse
|
7
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Huang YL, Huang DY, Klochkov V, Chan CM, Chen YS, Lin WW. NLRX1 Inhibits LPS-Induced Microglial Death via Inducing p62-Dependent HO-1 Expression, Inhibiting MLKL and Activating PARP-1. Antioxidants (Basel) 2024; 13:481. [PMID: 38671928 PMCID: PMC11047433 DOI: 10.3390/antiox13040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The activation of microglia and the production of cytokines are key factors contributing to progressive neurodegeneration. Despite the well-recognized neuronal programmed cell death regulated by microglial activation, the death of microglia themselves is less investigated. Nucleotide-binding oligomerization domain, leucine-rich repeat-containing X1 (NLRX1) functions as a scaffolding protein and is involved in various central nervous system diseases. In this study, we used the SM826 microglial cells to understand the role of NLRX1 in lipopolysaccharide (LPS)-induced cell death. We found LPS-induced cell death is blocked by necrostatin-1 and zVAD. Meanwhile, LPS can activate poly (ADP-ribose) polymerase-1 (PARP-1) to reduce DNA damage and induce heme oxygenase (HO)-1 expression to counteract cell death. NLRX1 silencing and PARP-1 inhibition by olaparib enhance LPS-induced SM826 microglial cell death in an additive manner. Less PARylation and higher DNA damage are observed in NLRX1-silencing cells. Moreover, LPS-induced HO-1 gene and protein expression through the p62-Keap1-Nrf2 axis are attenuated by NLRX1 silencing. In addition, the Nrf2-mediated positive feedback regulation of p62 is accordingly reduced by NLRX1 silencing. Of note, NLRX1 silencing does not affect LPS-induced cellular reactive oxygen species (ROS) production but increases mixed lineage kinase domain-like pseudokinase (MLKL) activation and cell necroptosis. In addition, NLRX1 silencing blocks bafilomycin A1-induced PARP-1 activation. Taken together, for the first time, we demonstrate the role of NLRX1 in protecting microglia from LPS-induced cell death. The underlying protective mechanisms of NLRX1 include upregulating LPS-induced HO-1 expression via Nrf2-dependent p62 expression and downstream Keap1-Nrf2 axis, mediating PARP-1 activation for DNA repair via ROS- and autophagy-independent pathway, and reducing MLKL activation.
Collapse
Affiliation(s)
- Yu-Ling Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Vladlen Klochkov
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University, Yunlin Branch, Yunlin 640203, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
9
|
Domínguez-Martínez DA, Pérez-Flores MS, Núñez-Avellaneda D, Torres-Flores JM, León-Avila G, García-Pérez BE, Salazar MI. NOD2 Responds to Dengue Virus Type 2 Infection in Macrophage-like Cells Interacting with MAVS Adaptor and Affecting IFN-α Production and Virus Titers. Pathogens 2024; 13:306. [PMID: 38668261 PMCID: PMC11054756 DOI: 10.3390/pathogens13040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
In pathogen recognition, the nucleotide-binding domain (NBD) and leucine rich repeat receptors (NLRs) have noteworthy functions in the activation of the innate immune response. These receptors respond to several viral infections, among them NOD2, a very dynamic NLR, whose role in dengue virus (DENV) infection remains unclear. This research aimed to determine the role of human NOD2 in THP-1 macrophage-like cells during DENV-2 infection. NOD2 levels in DENV-2 infected THP-1 macrophage-like cells was evaluated by RT-PCR and Western blot, and an increase was observed at both mRNA and protein levels. We observed using confocal microscopy and co-immunoprecipitation assays that NOD2 interacts with the effector protein MAVS (mitochondrial antiviral signaling protein), an adaptor protein promoting antiviral activity, this occurring mainly at 12 h into the infection. After silencing NOD2, we detected increased viral loads of DENV-2 and lower levels of IFN-α in supernatants from THP-1 macrophage-like cells with NOD2 knock-down and further infected with DENV-2, compared with mock-control or cells transfected with Scramble-siRNA. Thus, NOD2 is activated in response to DENV-2 in THP-1 macrophage-like cells and participates in IFN-α production, in addition to limiting virus replication at the examined time points.
Collapse
Affiliation(s)
- Diana Alhelí Domínguez-Martínez
- Laboratorio de Inmunología Celular e Inmunopatogénesis, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico;
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México CP 06720, Mexico
| | - Mayra Silvia Pérez-Flores
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico; (M.S.P.-F.); (J.M.T.-F.)
| | - Daniel Núñez-Avellaneda
- Dirección Adjunta de Desarrollo Tecnológico, Vinculación e Innovación, Consejo Nacional de Humanidades Ciencias y Tecnologías, Ciudad de México CP 03940, Mexico;
| | - Jesús M. Torres-Flores
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico; (M.S.P.-F.); (J.M.T.-F.)
| | - Gloria León-Avila
- Laboratorio de Genética, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico;
| | - Blanca Estela García-Pérez
- Laboratorio de Microbiología General, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico;
| | - Ma Isabel Salazar
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico; (M.S.P.-F.); (J.M.T.-F.)
| |
Collapse
|
10
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
11
|
Kang HR, Han JH, Ng YC, Ryu S, Park JY, Chung WC, Song YJ, Chen ST, Brickey WJ, Ting JPY, Song MJ. Dynamic bidirectional regulation of NLRC3 and gammaherpesviruses during viral latency in B lymphocytes. J Med Virol 2024; 96:e29504. [PMID: 38445794 DOI: 10.1002/jmv.29504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
While most NOD-like receptors (NLRs) are predominately expressed by innate immune cells, NLRC3, an inhibitory NLR of immune signaling, exhibits the highest expression in lymphocytes. The role of NLRC3 or any NLRs in B lymphocytes is completely unknown. Gammaherpesviruses, including human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV-68), establish latent infection in B lymphocytes, which requires elevated NF-κB. This study shows that during latent EBV infection of human B cells, viral-encoded latent membrane protein 1 (LMP1) decreases NLRC3 transcript. LMP1-induced-NF-κB activation suppresses the promoter activity of NLRC3 via p65 binding to the promoter. Conversely, NLRC3 inhibits NF-κB activation by promoting the degradation of LMP1 in a proteasome-dependent manner. In vivo, MHV-68 infection reduces Nlrc3 transcripts in splenocytes, and Nlrc3-deficient mice show greater viral latency than controls. These results reveal a bidirectional regulatory circuit in B lymphocytes, where viral latent protein LMP1 reduces NLRC3 expression, while NLRC3 disrupts gammaherpesvirus latency, which is an important step for tumorigenesis.
Collapse
Affiliation(s)
- Hye-Ri Kang
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Ho Han
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yee Ching Ng
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungbo Ryu
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji-Yeon Park
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, Kyeonggi-Do, Republic of Korea
| | - Szu-Ting Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - W June Brickey
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenny P-Y Ting
- Department of Genetics, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and the Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Zhao X, An LL, Gong XY, Dan C, Qu ZL, Sun HY, Guo WH, Gui JF, Zhang YB. A zebrafish NLRX1 isoform downregulates fish IFN responses by targeting the adaptor STING. J Virol 2024; 98:e0180123. [PMID: 38193691 PMCID: PMC10878056 DOI: 10.1128/jvi.01801-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Yue lu shan Lab, Fisheries College, Hunan Agricultural University, Changsha, China
| | - Li-Li An
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Ying Gong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Dan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Ling Qu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Yu Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hao Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yi-Bing Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
14
|
Bi PY, Killackey SA, Schweizer L, Girardin SE. NLRX1: Versatile functions of a mitochondrial NLR protein that controls mitophagy. Biomed J 2024; 47:100635. [PMID: 37574163 PMCID: PMC10837482 DOI: 10.1016/j.bj.2023.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
NLRX1 is a member of the of the Nod-like receptor (NLR) family, and it represents a unique pattern recognition molecule (PRM) as it localizes to the mitochondrial matrix in resting conditions. Over the past fifteen years, NLRX1 has been proposed to regulate multiple cellular processes, including antiviral immunity, apoptosis, reactive oxygen species (ROS) generation and mitochondrial metabolism. Similarly, in vivo models have shown that NLRX1 was associated with the control of a number of diseases, including multiple sclerosis, colorectal cancer and ischemia-reperfusion injury. This apparent versatility in function hinted that a common and general overarching role for NLRX1 may exist. Recent evidence has suggested that NLRX1 controls mitophagy through the detection of a specific "danger signal", namely the defective import of proteins into mitochondria, or mitochondrial protein import stress (MPIS). In this review article, we propose that mitophagy regulation may represent the overarching process detected by NLRX1, which could in turn impact on a number of diseases if dysfunctional.
Collapse
Affiliation(s)
- Paul Y Bi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Linus Schweizer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
16
|
Nagai-Singer MA, Woolls MK, Leedy K, Hendricks-Wenger A, Brock RM, Coutermarsh-Ott S, Paul T, Morrison HA, Imran KM, Tupik JD, Fletcher EJ, Brown DA, Allen IC. Cellular Context Dictates the Suppression or Augmentation of Triple-Negative Mammary Tumor Metastasis by NLRX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1844-1857. [PMID: 37909827 PMCID: PMC10694032 DOI: 10.4049/jimmunol.2200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Endia J. Fletcher
- Postbaccalaureate Research Education Program, Virginia Tech, Blacksburg, VA
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
17
|
Guo J, Zhang Y, Gao Y, Li S, Xu G, Tian Z, Xu Q, Li X, Li Y, Zhang Y. Systematical analyses of large-scale transcriptome reveal viral infection-related genes and disease comorbidities. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:453-465. [PMID: 37651591 DOI: 10.1080/21691401.2023.2252477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Perturbation of transcriptome in viral infection patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent transcriptome and identification of robust biomarkers is not complete. In this study, we manually collected 23 datasets related to 6,197 blood transcriptomes across 16 types of respiratory virus infections. We applied a comprehensive systems biology approach starting with whole-blood transcriptomes combined with multilevel bioinformatics analyses to characterize the expression, functional pathways, and protein-protein interaction (PPI) networks to identify robust biomarkers and disease comorbidities. Robust gene markers of infection with different viruses were identified, which can accurately classify the normal and infected patients in train and validation cohorts. The biological processes (BP) of different viruses showed great similarity and enriched in infection and immune response pathways. Network-based analyses revealed that a variety of viral infections were associated with nervous system diseases, neoplasms and metabolic diseases, and significantly correlated with brain tissues. In summary, our manually collected transcriptomes and comprehensive analyses reveal key molecular markers and disease comorbidities in the process of viral infection, which could provide a valuable theoretical basis for the prevention of subsequent public health events for respiratory virus infections.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Ya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yueying Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Si Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Gang Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Zhanyu Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Qi Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Xia Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Lu J, Gu B, Lu W, Liu J, Lu J. Lnc-ANRIL modulates the immune response associated with NF-κB pathway in LPS-stimulated bovine mammary epithelial cells. Immun Inflamm Dis 2023; 11:e1125. [PMID: 38156382 PMCID: PMC10740337 DOI: 10.1002/iid3.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND The antisense noncoding RNA in the INK4 locus (ANRIL) has been confirmed related to multiple disease progression, but the role and exact mechanisms of lnc-ANRIL in lipopolysaccharide (LPS)-induced inflammation of bovine mammary epithelial cells (MAC-T) remain unclear. AIMS This manuscript focused on expounding the functional role of lnc-ANRIL through experiments performed in MAC-T. METHODS At the in vitro level, we established a Bovine mammary epithelial cell (BMEC) cell model of mastitis by LPS treatment. Transfection of siRNA was examined by immunofluorescence localization and RT-qPCR. CCK8, clonogenic assay and EdU were used to detect the proliferation ability of the cells. Cell cycle and apoptosis were detected by flow cytometry and Western blot. The levels of inflammatory factors and oxidative stress markers were detected by ELISA kits. RESULTS Cell Counting Kit-8, colony formation, and 5-ethynyl-20-deoxyuridine were adopted and the data illustrated that LPS could significantly suppress the cell proliferation, while knockdown of lnc-ANRIL expression obviously promoted MAC-T cell proliferation compared with LPS or LPS + si-NC group. Flow cytometry analysis demonstrated that lnc-ANRIL could induce MAC-T cell apoptosis. In addition, downregulation of lnc-ANRIL affected LPS-induced immune response by regulating inflammatory factor expressions and modulating the nuclear factor kappa B (NF-κB) axis in MAC-T cells. CONCLUSION Our results suggest that lnc-ANRIL is involved in the regulation of cell proliferation, cell cycle, and cell apoptosis of MAC-T cells, and plays an important role in the inflammatory and immune response of MAC-T cells through the regulation of the NF-κB pathway, proposing new therapeutic strategies for the treatment of innate immune response-related disease such as bovine mastitis.
Collapse
Affiliation(s)
- Jinye Lu
- College of Pet TechnologyJiangsu Agri‐Animal Husbandry Vocational CollegeTaizhouChina
| | - Beibei Gu
- Integrated Technical Service CenterTaizhou CustomsTaizhouChina
| | - Wei Lu
- College of Pet TechnologyJiangsu Agri‐Animal Husbandry Vocational CollegeTaizhouChina
| | - Jing Liu
- College of Pet TechnologyJiangsu Agri‐Animal Husbandry Vocational CollegeTaizhouChina
| | - Jiang Lu
- College of Pet TechnologyJiangsu Agri‐Animal Husbandry Vocational CollegeTaizhouChina
| |
Collapse
|
19
|
Lu LF, Li ZC, Zhang C, Chen DD, Han KJ, Zhou XY, Wang XL, Li XY, Zhou L, Li S. Zebrafish TMEM47 is an effective blocker of IFN production during RNA and DNA virus infection. J Virol 2023; 97:e0143423. [PMID: 37882518 PMCID: PMC10688382 DOI: 10.1128/jvi.01434-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xi-Yin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Pereira EPV, da Silva Felipe SM, de Freitas RM, da Cruz Freire JE, Oliveira AER, Canabrava N, Soares PM, van Tilburg MF, Guedes MIF, Grueter CE, Ceccatto VM. Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways. Pathogens 2023; 12:1373. [PMID: 38003837 PMCID: PMC10674242 DOI: 10.3390/pathogens12111373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The COVID-19 disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in late 2019 and rapidly spread worldwide, becoming a pandemic that infected millions of people and caused significant deaths. COVID-19 continues to be a major threat, and there is a need to deepen our understanding of the virus and its mechanisms of infection. To study the cellular responses to SARS-CoV-2 infection, we performed an RNA sequencing of infected vs. uninfected Calu-3 cells. Total RNA was extracted from infected (0.5 MOI) and control Calu-3 cells and converted to cDNA. Sequencing was performed, and the obtained reads were quality-analyzed and pre-processed. Differential expression was assessed with the EdgeR package, and functional enrichment was performed in EnrichR for Gene Ontology, KEGG pathways, and WikiPathways. A total of 1040 differentially expressed genes were found in infected vs. uninfected Calu-3 cells, of which 695 were up-regulated and 345 were down-regulated. Functional enrichment analyses revealed the predominant up-regulation of genes related to innate immune response, response to virus, inflammation, cell proliferation, and apoptosis. These transcriptional changes following SARS-CoV-2 infection may reflect a cellular response to the infection and help to elucidate COVID-19 pathogenesis, in addition to revealing potential biomarkers and drug targets.
Collapse
Affiliation(s)
- Eric Petterson Viana Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Stela Mirla da Silva Felipe
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Raquel Martins de Freitas
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - José Ednésio da Cruz Freire
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | | | - Natália Canabrava
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Paula Matias Soares
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Mauricio Fraga van Tilburg
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Maria Izabel Florindo Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Chad Eric Grueter
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Vânia Marilande Ceccatto
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| |
Collapse
|
21
|
Gao C, Cai X, Lymbery AJ, Ma L, Li C. The evolution of NLRC3 subfamily genes in Sebastidae teleost fishes. BMC Genomics 2023; 24:683. [PMID: 37964222 PMCID: PMC10648357 DOI: 10.1186/s12864-023-09785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND With more than 36,000 valid fish species, teleost fishes constitute the most species-rich vertebrate clade and exhibit extensive genetic and phenotypic variation, including diverse immune defense strategies. NLRC3 subfamily genes, which are specific to fishes, play vital roles in the immune system of teleosts. The evolution of teleosts has been impacted by several whole-genome duplication (WGD) events, which might be a key reason for the expansions of the NLRC3 subfamily, but detailed knowledge of NLRC3 subfamily evolution in the family Sebastidae is still limited. RESULTS Phylogenetic inference of NLRC3 subfamily protein sequences were conducted to evaluate the orthology of NLRC3 subfamily genes in black rockfish (Sebastes schlegilii), 13 other fish species from the families Sebastidae, Serranidae, Gasterosteidae and Cyclopteridae, and three species of high vertebrates (bird, reptile and amphibian). WGD analyses were used to estimate expansions and contractions of the NLRC3 subfamily, and patterns of expression of NLRC3 subfamily genes in black rockfish following bacterial infections were used to investigate the functional roles of these genes in the traditional and mucosal immune system of the Sebastidae. Different patterns of gene expansions and contractions were observed in 17 fish and other species examined, and one and two whole-genome duplication events were observed in two members of family Sebastidae (black rockfish and honeycomb rockfish, Sebastes umbrosus), respectively. Subsequently, 179 copy numbers of NLRC3 genes were found in black rockfish and 166 in honeycomb rockfish. Phylogenetic analyses corroborated the conservation and evolution of NLRC3 orthologues between Sebastidae and other fish species. Finally, differential expression analyses provided evidence of the immune roles of NLRC3 genes in black rockfish during bacterial infections and gene ontology analysis also indicated other functional roles. CONCLUSIONS We hypothesize that NLRC3 genes have evolved a variety of different functions, in addition to their role in the immune response, as a result of whole genome duplication events during teleost diversification. Importantly, this study had underscored the importance of sampling across taxonomic groups, to better understand the evolutionary patterns of the innate immunity system on which complex immunological novelties arose. Moreover, the results in this study could extend current knowledge of the plasticity of the immune system.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, China
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, China
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Alan J Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, China.
| |
Collapse
|
22
|
Xu A, Zhu X, Song T, Zhang Z, Fei F, Zhu Q, Chang X, Liu H, Chen F, Xu F, Li L, Liu X. Molecular characterization of a novel mitochondrial NOD-like receptor X1 in chicken that negatively regulates IFN-β expression via STING. Poult Sci 2023; 102:103077. [PMID: 37741116 PMCID: PMC10520534 DOI: 10.1016/j.psj.2023.103077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023] Open
Abstract
NOD-like receptor X1 (NLRX1) is known for its unique mitochondrial localization and plays a negative role in innate immunity. The initial characterization and function of chicken NLRX1 remain unclear. Here, chicken mitochondrial-targeted NLRX1 (chNLRX1) protein was identified. It had relatively conserved domains, a unique N-terminal "X" mitochondrial-targeting domain (MT) and 2 highly conserved motifs at positions 510-520 and 412-421. Furthermore, chNLRX1 had a unique 53aa N-terminus-MT consistent with its localization to mitochondria. Additionally, chNLRX1 was observed to reduce the DNA sensing adaptor stimulator of interferon genes (STING)-induced IFN-β by attenuating the STING-TANK-binding kinase 1 (TBK1) interaction, which is a requisite for the STING-TBK1-IFN-β signaling pathway. These results suggested that chNLRX1 negatively regulated type-I interferon production via STING in host innate immunity.
Collapse
Affiliation(s)
- Aiyun Xu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Zhu
- Agricultural Comprehensive Administrative Law Enforcement Brigade, Mingguang 239400, China
| | - Tao Song
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyuan Zhang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Fei Fei
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Qingxiao Zhu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xinyue Chang
- International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Hongmei Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fangfang Chen
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fazhi Xu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Animal-derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
23
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J 2023; 46:100616. [PMID: 37321320 PMCID: PMC10494316 DOI: 10.1016/j.bj.2023.100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023] Open
Abstract
A subset of Nucleotide-binding and leucine-rich repeat-containing receptors (NLRs) function to mitigate overzealous pro-inflammatory signaling produced by NF-κB activation. Under normal pathophysiologic conditions, proper signaling by these NLRs protect against potential autoimmune responses. These NLRs associate with several different proteins within both the canonical and noncanonical NF-κB signaling pathways to either prevent activation of the pathway or inhibit signal transduction. Inhibition of the NF-κB pathways ultimately dampens the production of pro-inflammatory cytokines and activation of other downstream pro-inflammatory signaling mechanisms. Dysregulation of these NLRs, including NLRC3, NLRX1, and NLRP12, have been reported in human inflammatory bowel disease (IBD) and colorectal cancer patients, suggesting the potential of these NLRs as biomarkers for disease detection. Mouse models deficient in these NLRs also have increased susceptibility to colitis and colitis-associated colorectal cancer. While current standard of care for IBD patients and FDA-approved therapeutics function to remedy symptoms associated with IBD and chronic inflammation, these negative regulatory NLRs have yet to be explored as potential drug targets. In this review, we describe a comprehensive overview of recent studies that have evaluated the role of NLRC3, NLRX1, and NLRP12 in IBD and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
25
|
Tripathi A, Bartosh A, Whitehead C, Pillai A. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol Psychiatry 2023; 28:3806-3815. [PMID: 37528226 PMCID: PMC10730412 DOI: 10.1038/s41380-023-02189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Inflammation and social behavior deficits are associated with a number of neuropsychiatric disorders. Chronic stress, a major risk factor for depression and other mental health conditions is known to increase inflammatory responses and social behavior impairments. Disturbances in mitochondria function have been found in chronic stress conditions, however the mechanisms that link mitochondrial dysfunction to stress-induced social behavior deficits are not well understood. In this study, we found that chronic restraint stress (RS) induces significant increases in serum cell-free mitochondrial DNA (cf-mtDNA) levels in mice, and systemic Deoxyribonuclease I (DNase I) treatment attenuated RS-induced social behavioral deficits. Our findings revealed potential roles of mitophagy and Mitochondrial antiviral-signaling protein (MAVS) in mediating chronic stress-induced changes in cf-mtDNA levels and social behavior. Furthermore, we showed that inhibition of Toll-like receptor 9 (TLR9) attenuates mtDNA-induced social behavior deficits. Together, these findings show that cf-mtDNA-TLR9 signaling is critical in mediating stress-induced social behavior deficits.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alona Bartosh
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carl Whitehead
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
26
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
27
|
Li Y, Peng J, Xia Y, Pan C, Li Y, Gu W, Wang J, Wang C, Wang Y, Song J, Zhou X, Ma L, Jiang Y, Liu B, Feng Q, Wang W, Jiao S, An L, Li D, Zhou Z, Zhao Y. Sufu limits sepsis-induced lung inflammation via regulating phase separation of TRAF6. Theranostics 2023; 13:3761-3780. [PMID: 37441604 PMCID: PMC10334838 DOI: 10.7150/thno.83676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Sepsis is a potentially life-threatening condition caused by the body's response to a severe infection. Although the identification of multiple pathways involved in inflammation, tissue damage and aberrant healing during sepsis, there remain unmet needs for the development of new therapeutic strategies essential to prevent the reoccurrence of infection and organ injuries. Methods: Expression of Suppressor of Fused (Sufu) was evaluated by qRT-PCR, western blotting, and immunofluorescence in murine lung and peritoneal macrophages. The significance of Sufu expression in prognosis was assessed by Kaplan-Meier survival analysis. The GFP-TRAF6-expressing stable cell line (GFP-TRAF6 Blue cells) were constructed to evaluate phase separation of TRAF6. Phase separation of TRAF6 and the roles of Sufu in repressing TRAF6 droplet aggregation were analyzed by co-immunoprecipitation, immunofluorescence, Native-PAGE, FRAP and in vitro assays using purified proteins. The effects of Sufu on sepsis-induced lung inflammation were evaluated by cell function assays, LPS-induced septic shock model and polymicrobial sepsis-CLP mice model. Results: We found that Sufu expression is reduced in early response to lipopolysaccharide (LPS)-induced acute inflammation in murine lung and peritoneal macrophages. Deletion of Sufu aggravated LPS-induced and CLP (cecal ligation puncture)-induced lung injury and lethality in mice, and augmented LPS-induced proinflammatory gene expression in cultured macrophages. In addition, we identified the role of Sufu as a negative regulator of the Toll-Like Receptor (TLR)-triggered inflammatory response. We further demonstrated that Sufu directly interacts with TRAF6, thereby preventing oligomerization and autoubiquitination of TRAF6. Importantly, TRAF6 underwent phase separation during LPS-induced inflammation, which is essential for subsequent ubiquitination activation and NF-κB activity. Sufu inhibits the phase-separated TRAF6 droplet formation, preventing NF-κB activation upon LPS stimulation. In a septic shock model, TRAF6 depletion rescued the augmented inflammatory phenotype in mice with myeloid cell-specific deletion of Sufu. Conclusions: These findings implicated Sufu as an important inhibitor of TRAF6 in sepsis and suggest that therapeutics targeting Sufu-TRAF6 may greatly benefit the treatment of sepsis.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yuanxin Xia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenyu Pan
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P. R. China
| | - Yu Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Weijie Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaoxiong Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuang Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiawen Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuan Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liya Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiao Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Biao Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiongni Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, P. R. China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, P. R. China
| | - Liwei An
- Department of Medical Ultrasound, Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai 200072, P. R. China
| | - Dianfan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, P. R. China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
28
|
Nagai-Singer MA, Morrison HA, Woolls MK, Leedy K, Imran KM, Tupik JD, Allen IC. NLRX1 functions as a tumor suppressor in Pan02 pancreatic cancer cells. Front Oncol 2023; 13:1155831. [PMID: 37342194 PMCID: PMC10277690 DOI: 10.3389/fonc.2023.1155831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Pancreatic cancer is a deadly malignancy with limited treatment options. NLRX1 is a unique, understudied member of the Nod-like Receptor (NLR) family of pattern recognition receptors that regulates a variety of biological processes that are highly relevant to pancreatic cancer. The role of NLRX1 in cancer remains highly enigmatic, with some studies defining its roles as a tumor promoter, while others characterize its contributions to tumor suppression. These seemingly contradicting roles appear to be due, at least in part, to cell type and temporal mechanisms. Here, we define roles for NLRX1 in regulating critical hallmarks of pancreatic cancer using both gain-of-function and loss-of-function studies in murine Pan02 cells. Our data reveals that NLRX1 increases susceptibility to cell death, while also suppressing proliferation, migration, and reactive oxygen species production. We also show that NLRX1 protects against upregulated mitochondrial activity and limits energy production in the Pan02 cells. Transcriptomics analysis revealed that the protective phenotypes associated with NLRX1 are correlated with attenuation of NF-κB, MAPK, AKT, and inflammasome signaling. Together, these data demonstrate that NLRX1 diminishes cancer-associated biological functions in pancreatic cancer cells and establishes a role for this unique NLR in tumor suppression.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA,
United States
| |
Collapse
|
29
|
Sameni M, Mirmotalebisohi SA, Dehghan Z, Abooshahab R, Khazaei-Poul Y, Mozafar M, Zali H. Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study. 3 Biotech 2023; 13:117. [PMID: 37070032 PMCID: PMC10090260 DOI: 10.1007/s13205-023-03518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/28/2023] Open
Abstract
The world has recently been plagued by a new coronavirus infection called SARS-CoV-2. This virus may lead to severe acute respiratory syndrome followed by multiple organ failure. SARS-CoV-2 has approximately 80-90% genetic similarity to SARS-CoV. Given the limited omics data available for host response to the viruses (more limited data for SARS-CoV-2), we attempted to unveil the crucial molecular mechanisms underlying the SARS-CoV-2 pathogenesis by comparing its regulatory network motifs with SARS-CoV. We also attempted to identify the non-shared crucial molecules and their functions to predict the specific mechanisms for each infection and the processes responsible for their different manifestations. Deciphering the crucial shared and non-shared mechanisms at the molecular level and signaling pathways underlying both diseases may help shed light on their pathogenesis and pave the way for other new drug repurposing against COVID-19. We constructed the GRNs for host response to SARS-CoV and SARS-CoV-2 pathogens (in vitro) and identified the significant 3-node regulatory motifs by analyzing them topologically and functionally. We attempted to identify the shared and non-shared regulatory elements and signaling pathways between their host responses. Interestingly, our findings indicated that NFKB1, JUN, STAT1, FOS, KLF4, and EGR1 were the critical shared TFs between motif-related subnetworks in both SARS and COVID-1, which are considered genes with specific functions in the immune response. Enrichment analysis revealed that the NOD-like receptor signaling, TNF signaling, and influenza A pathway were among the first significant pathways shared between SARS and COVID-19 up-regulated DEGs networks, and the term "metabolic pathways" (hsa01100) among the down-regulated DEGs networks. WEE1, PMAIP1, and TSC22D2 were identified as the top three hubs specific to SARS. However, MYPN, SPRY4, and APOL6 were the tops specific to COVID-19 in vitro. The term "Complement and coagulation cascades" pathway was identified as the first top non-shared pathway for COVID-19 and the MAPK signaling pathway for SARS. We used the identified crucial DEGs to construct a drug-gene interaction network to propose some drug candidates. Zinc chloride, Fostamatinib, Copper, Tirofiban, Tretinoin, and Levocarnitine were the six drugs with higher scores in our drug-gene network analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03518-x.
Collapse
Affiliation(s)
- Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Yalda Khazaei-Poul
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Zhang Y, Chi Z, Cui Z, Chang S, Wang Y, Zhao P. Inflammatory response triggered by avian hepatitis E virus in vivo and in vitro. Front Immunol 2023; 14:1161665. [PMID: 37063902 PMCID: PMC10098337 DOI: 10.3389/fimmu.2023.1161665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Hepatitis E virus (HEV) is relevant to public health worldwide, and it affects a variety of animals. Big liver and spleen disease (BLS) and hepatitis-splenomegaly syndrome (HSS) associated with avian HEV (aHEV) were first reported in 1988 and in 1991, respectively. Here, cell culture–adapted aHEV genotype 3 strain, YT-aHEV (YT strain), a typical genotype isolated in China, was used for basic and applied research. We evaluated liver injury during the early stages of infection caused by the YT strain in vivo. Both in vivo and in vitro experimental data demonstrated that viral infection induces innate immunity, with mRNA expression levels of two key inflammatory factors, interleukin-1β (IL-1β) and IL-18, significantly upregulated. The YT strain infection was associated with the activation of Toll-like receptors (TLRs), nuclear factor kappa B (NF-κB), caspase-1, and NOD-like receptors (NLRs) in the liver and primary hepatocellular carcinoma epithelial cells (LMH). Moreover, inhibiting c-Jun N-terminal kinase, extracellular signal–regulated kinase (ERK1 or 2), P38, NF-κB, or caspase-1 activity has different effects on NLRs, and there is a mutual regulatory relationship between these signaling pathways. The results show that SB 203580, U0126, and VX-765 inhibited IL-1β and IL-18 induced by the YT strain, whereas Pyrrolidinedithiocarbamate (PDTC) had no significant effect on the activity of IL-1β and IL-18. Pretreatment of cells with SP600125 had an inhibitory effect on IL-18 but not on IL-1β. The analysis of inhibition results suggests that there is a connection between Mitogen-activated protein kinase (MAPK), NF-κB, and the NLRs signaling pathways. This study explains the relationship between signaling pathway activation (TLRs, NF-κB, MAPK, and NLR–caspase-1) and viral-associated inflammation caused by YT strain infection, which will help to dynamic interaction between aHEV and host innate immunity.
Collapse
Affiliation(s)
- Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zengna Chi
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- *Correspondence: Peng Zhao,
| |
Collapse
|
31
|
A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection. Nat Commun 2023; 14:871. [PMID: 36797302 PMCID: PMC9935632 DOI: 10.1038/s41467-023-36629-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Bacteria can inhibit the growth of other bacteria by injecting effectors using a type VI secretion system (T6SS). T6SS effectors can also be injected into eukaryotic cells to facilitate bacterial survival, often by targeting the cytoskeleton. Here, we show that the trans-kingdom antimicrobial T6SS effector VgrG4 from Klebsiella pneumoniae triggers the fragmentation of the mitochondrial network. VgrG4 colocalizes with the endoplasmic reticulum (ER) protein mitofusin 2. VgrG4 induces the transfer of Ca2+ from the ER to the mitochondria, activating Drp1 (a regulator of mitochondrial fission) thus leading to mitochondrial network fragmentation. Ca2+ elevation also induces the activation of the innate immunity receptor NLRX1 to produce reactive oxygen species (ROS). NLRX1-induced ROS limits NF-κB activation by modulating the degradation of the NF-κB inhibitor IκBα. The degradation of IκBα is triggered by the ubiquitin ligase SCFβ-TrCP, which requires the modification of the cullin-1 subunit by NEDD8. VgrG4 abrogates the NEDDylation of cullin-1 by inactivation of Ubc12, the NEDD8-conjugating enzyme. Our work provides an example of T6SS manipulation of eukaryotic cells via alteration of the mitochondria.
Collapse
|
32
|
Cen M, Ouyang W, Lin X, Du X, Hu H, Lu H, Zhang W, Xia J, Qin X, Xu F. FBXO6 regulates the antiviral immune responses via mediating alveolar macrophages survival. J Med Virol 2023; 95:e28203. [PMID: 36217277 PMCID: PMC10092588 DOI: 10.1002/jmv.28203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Inducing early apoptosis in alveolar macrophages is one of the strategies influenza A virus (IAV) evolved to subvert host immunity. Correspondingly, the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 is reported to interact with virus polymerase basic protein 1-frame 2 (PB1-F2) accessory protein to counteract virus-induced apoptosis. Herein, we report that one of the F-box proteins, FBXO6, promotes proteasomal degradation of NLRX1, and thus facilitates IAV-induced alveolar macrophages apoptosis and modulates both macrophage survival and type I interferon (IFN) signaling. We observed that FBXO6-deficient mice infected with IAV exhibited decreased pulmonary viral replication, alleviated inflammatory-associated pulmonary dysfunction, and less mortality. Analysis of the lungs of IAV-infected mice revealed markedly reduced leukocyte recruitment but enhanced production of type I IFN in Fbxo6-/- mice. Furthermore, increased type I IFN production and decreased viral replication were recapitulated in FBXO6 knockdown macrophages and associated with reduced apoptosis. Through gain- and loss-of-function studies, we found lung resident macrophages but not bone marrow-derived macrophages play a key role in the differences FBXO6 signaling pathway brings in the antiviral immune response. In further investigation, we identified that FBXO6 interacted with and promoted the proteasomal degradation of NLRX1. Together, our results demonstrate that FBXO6 negatively regulates immunity against IAV infection by enhancing the degradation of NLRX1 and thus impairs the survival of alveolar macrophages and antiviral immunity of the host.
Collapse
Affiliation(s)
- Mengyuan Cen
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Respiratory MedicineNingbo First HospitalNingboChina
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaohong Du
- Institute of Clinical Medicine ResearchSuzhou Science and Technology Town HospitalSuzhouChina
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huidan Lu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wanying Zhang
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaofeng Qin
- Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Suzhou Institute of Systems MedicineSuzhouChina
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
33
|
Chuphal B, Rai U, Roy B. Teleost NOD-like receptors and their downstream signaling pathways: A brief review. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100056. [DOI: 10.1016/j.fsirep.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
|
34
|
Liu M, Liu K, Cheng D, Zheng B, Li S, Mo Z. The regulatory role of NLRX1 in innate immunity and human disease. Cytokine 2022; 160:156055. [DOI: 10.1016/j.cyto.2022.156055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
|
35
|
Jing H, Chen Y, Qiu C, Guo MY. LncRNAs Transcriptome Analysis Revealed Potential Mechanisms of Selenium to Mastitis in Dairy Cows. Biol Trace Elem Res 2022; 200:4316-4324. [PMID: 35013889 DOI: 10.1007/s12011-021-03042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
The trace element selenium (Se) plays an indispensable role in the growth of humans and animals due to its antioxidant function. Mastitis is one of the most important diseases affecting the dairy industry in the world. In recent years, long non-coding RNAs (lncRNAs) have been implicated in a series of cellular processes and disease development processes. RNA-sequencing technology was used to characterize lncRNA profiles and compared transcriptomic dynamics among the control group, the LPS group, and the Se-treated group to highlight the potential roles and functions of lncRNAs in the mammary epithelial cells of dairy cows. We identified 14 specific lncRNAs related to Se and their predicted target genes. KEGG and GO functional annotation was used to elucidate their biological function and the pathways in which they may be involved. The present study provides novel insights for exploring the molecular markers for the protection of Se against mastitis in dairy cows.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
36
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
37
|
Fei X, Wu X, Dou YN, Sun K, Guo Q, Zhang L, Li S, Wei J, Huan Y, He X, Fei Z. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics 2022; 26:413-428. [PMID: 36159777 PMCID: PMC9465028 DOI: 10.1016/j.omto.2022.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Tripartite motif 22 (TRIM22) is an agonist of nuclear factor κB (NF-κB) that plays an important role in the proliferation and drug sensitivity of glioblastoma (GBM). However, the molecular mechanism underlying the protein network between TRIM22 and nuclear factor κB (NF-κB) in GBM remains unclear. Here, we found that knockout of TRIM22 effectively inhibited tumor proliferation and increased the sensitivity of GBM cells to temozolomide (TMZ) in vivo and in vitro. Moreover, TRIM22 forms a complex with cytosolic purine 5-nucleotidase (NT5C2) in GBM and regulates the ubiquitination of retinoic acid-inducible gene-I (RIG-I). TRIM22 promotes the K63-linked ubiquitination of RIG-I, while NT5C2 is responsible for K48-linked ubiquitination. This regulation directly affects the RIG-I/NF-κB/cell division cycle and apoptosis regulator protein 1 (CCAR1) signaling axis. Ubiquitin modification inhibitor of RIG-I restores the inhibition of tumor growth induced by TRIM22 knockout. The follow-up results showed that compared with patients with high TRIM22 expression, patients with low TRIM22 expression had a longer survival time and were more sensitive to treatment with TMZ. Our results revealed that the TRIM22-NT5C2 complex orchestrates the proliferation of GBM and benefits of TMZ through post-translational modification of RIG-I and the regulation of the RIG-I/NF-κB/CCAR1 pathway and is a promising target for single-pathway multi-target therapy.
Collapse
|
38
|
Zhang F, Ran Y, Tahir M, Li Z, Wang J, Chen X. Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke. Front Cell Neurosci 2022; 16:955222. [PMID: 35990887 PMCID: PMC9386152 DOI: 10.3389/fncel.2022.955222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcription modification, widely occurring in eukaryotic mRNA and non-coding RNA. m6A modification is highly enriched in the mammalian brain and is associated with neurological diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Ischemic stroke (IS) was discovered to alter the cerebral m6A epi-transcriptome, which might have functional implications in post-stroke pathophysiology. Moreover, it is observed that m6A modification could regulate microglia’s pro-inflammatory and anti-inflammatory responses. Given the critical regulatory role of microglia in the inflammatory processes in the central nervous system (CNS), we speculate that m6A modification could modulate the post-stroke microglial inflammatory responses. This review summarizes the vital regulatory roles of m6A modification in microglia-mediated inflammation and IS. Stroke is associated with a high recurrence rate, understanding the relationship between m6A modification and stroke may help stroke rehabilitation and develop novel therapies in the future.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Muhammad Tahir
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Xuechai Chen,
| |
Collapse
|
39
|
Snäkä T, Bekkar A, Desponds C, Prével F, Claudinot S, Isorce N, Teixeira F, Grasset C, Xenarios I, Lopez-Mejia IC, Fajas L, Fasel N. Sex-Biased Control of Inflammation and Metabolism by a Mitochondrial Nod-Like Receptor. Front Immunol 2022; 13:882867. [PMID: 35651602 PMCID: PMC9150262 DOI: 10.3389/fimmu.2022.882867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondria regulate steroid hormone synthesis, and in turn sex hormones regulate mitochondrial function for maintaining cellular homeostasis and controlling inflammation. This crosstalk can explain sex differences observed in several pathologies such as in metabolic or inflammatory disorders. Nod-like receptor X1 (NLRX1) is a mitochondria-associated innate receptor that could modulate metabolic functions and attenuates inflammatory responses. Here, we showed that in an infectious model with the human protozoan parasite, Leishmania guyanensis, NLRX1 attenuated inflammation in females but not in male mice. Analysis of infected female and male bone marrow derived macrophages showed both sex- and genotype-specific differences in both inflammatory and metabolic profiles with increased type I interferon production, mitochondrial respiration, and glycolytic rate in Nlrx1-deficient female BMDMs in comparison to wild-type cells, while no differences were observed between males. Transcriptomics of female and male BMDMs revealed an altered steroid hormone signaling in Nlrx1-deficient cells, and a “masculinization” of Nlrx1-deficient female BMDMs. Thus, our findings suggest that NLRX1 prevents uncontrolled inflammation and metabolism in females and therefore may contribute to the sex differences observed in infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Amel Bekkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prével
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Filipa Teixeira
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Coline Grasset
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ioannis Xenarios
- Agora Center, Center Hospitalier Universitaire (CHUV), Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
40
|
Ting JPY. The All-Encompassing Importance of Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2445-2449. [PMID: 35595304 DOI: 10.4049/jimmunol.2290008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abstract
In their AAI President’s Addresses reproduced in this issue, Jeremy M. Boss, Ph.D. (AAI ’94; AAI President 2019–2020) and Jenny P.-Y. Ting, Ph.D. (AAI ’97; AAI President 2020–2021) welcomed attendees to the AAI annual meeting, Virtual IMMUNOLOGY2021™. Due to the SARS-CoV-2 pandemic and the cancellation of IMMUNOLOGY2020™, Dr. Boss and Dr. Ting each presented their respective President’s Address to open the meeting.
Collapse
|
41
|
Aghapour M, Tulen CBM, Abdi Sarabi M, Weinert S, Müsken M, Relja B, van Schooten FJ, Jeron A, Braun-Dullaeus R, Remels AH, Bruder D. Cigarette Smoke Extract Disturbs Mitochondria-Regulated Airway Epithelial Cell Responses to Pneumococci. Cells 2022; 11:1771. [PMID: 35681466 PMCID: PMC9179351 DOI: 10.3390/cells11111771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial functionality is crucial for the execution of physiologic functions of metabolically active cells in the respiratory tract including airway epithelial cells (AECs). Cigarette smoke is known to impair mitochondrial function in AECs. However, the potential contribution of mitochondrial dysfunction in AECs to airway infection and airway epithelial barrier dysfunction is unknown. In this study, we used an in vitro model based on AECs exposed to cigarette smoke extract (CSE) followed by an infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress as an indicator of mitochondrial stress were quantified upon CSE and Sp treatment. In addition, expression of proteins associated with mitophagy, mitochondrial content, and biogenesis as well as mitochondrial fission and fusion was quantified. Transcriptional AEC profiling was performed to identify the potential changes in innate immune pathways and correlate them with indices of mitochondrial function. We observed that CSE exposure substantially altered mitochondrial function in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses to Sp.
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Sönke Weinert
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, 39120 Magdeburg, Germany;
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Rüdiger Braun-Dullaeus
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Alexander H. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
42
|
Morrison HA, Liu Y, Eden K, Nagai-Singer MA, Wade PA, Allen IC. NLRX1 Deficiency Alters the Gut Microbiome and Is Further Exacerbated by Adherence to a Gluten-Free Diet. Front Immunol 2022; 13:882521. [PMID: 35572547 PMCID: PMC9097893 DOI: 10.3389/fimmu.2022.882521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with gluten sensitivities present with dysbiosis of the gut microbiome that is further exacerbated by a strict adherence to a gluten-free diet (GFD). A subtype of patients genetically susceptible to gluten sensitivities are Celiac Disease (CeD) patients, who are carriers of the HLA DR3/DQ2 or HLA DR4/DQ8 haplotypes. Although 85-95% of all CeD patients carry HLA DQ2, up to 25-50% of the world population carry this haplotype with only a minority developing CeD. This suggests that CeD and other gluten sensitivities are mediated by factors beyond genetics. The contribution of innate immune system signaling has been generally understudied in the context of gluten sensitivities. Thus, here we examined the role of NOD-like receptors (NLRs), a subtype of pattern recognition receptors, in maintaining the composition of the gut microbiome in animals maintained on a GFD. Human transcriptomics data revealed significant increases in the gene expression of multiple NLR family members, across functional groups, in patients with active CeD compared to control specimens. However, NLRX1 was uniquely down-regulated during active disease. NLRX1 is a negative regulatory NLR that functions to suppress inflammatory signaling and has been postulate to prevent inflammation-induced dysbiosis. Using Nlrx1-/- mice maintained on either a normal or gluten-free diet, we show that loss of NLRX1 alters the microbiome composition, and a distinctive shift further ensues following adherence to a GFD, including a reciprocal loss of beneficial microbes and increase in opportunistic bacterial populations. Finally, we evaluated the functional impact of an altered gut microbiome by assessing short- and medium-chain fatty acid production. These studies revealed significant differences in a selection of metabolic markers that when paired with 16S rRNA sequencing data could reflect an overall imbalance and loss of immune system homeostasis in the gastrointestinal system.
Collapse
Affiliation(s)
- Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yang Liu
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
43
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
44
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
45
|
Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT. Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 2022; 41:469-478. [PMID: 35363060 DOI: 10.1089/dna.2022.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), NOD-like receptor X1 (NLRX1) is the only known NLR family member that is targeted to the mitochondria, which contains a C-terminal leucine-rich repeat domain, a central conserved nucleotide-binding domain, and an unconventional N-terminal effector domain. It is unique due to several atypical features, such as mitochondrial localization, noninflammasome forming, and relatively undefined N-terminal domain. NLRX1 has multiple functions, including negative regulation of type-I interferon signaling, attenuation of proinflammatory nuclear factor kappa B (NF-κB) signaling, autophagy induction, modulation of reactive oxygen species production, cell death regulation, and participating in cellular senescence. In addition, due to its diverse functions, NLRX1 has been associated with various human diseases, including respiratory, circulatory, motor, urinary, nervous, and digestive systems, to name but a few. However, the exact regulatory mechanisms of NLRX1 are still unclear in many related diseases since conflicting and controversial topics on NLRX1 in the previous studies remain. In this review, we review recent research advances on the underlying mechanisms and related disorders behind the complex regulatory role of NLRX1, which may provide a promising target to prevent and/or treat the corresponding diseases.
Collapse
Affiliation(s)
- Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
46
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022; 13:812774. [PMID: 35309296 PMCID: PMC8927970 DOI: 10.3389/fimmu.2022.812774] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Chou WC, Rampanelli E, Li X, Ting JPY. Impact of intracellular innate immune receptors on immunometabolism. Cell Mol Immunol 2022; 19:337-351. [PMID: 34697412 PMCID: PMC8891342 DOI: 10.1038/s41423-021-00780-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Immunometabolism, which is the metabolic reprogramming of anaerobic glycolysis, oxidative phosphorylation, and metabolite synthesis upon immune cell activation, has gained importance as a regulator of the homeostasis, activation, proliferation, and differentiation of innate and adaptive immune cell subsets that function as key factors in immunity. Metabolic changes in epithelial and other stromal cells in response to different stimulatory signals are also crucial in infection, inflammation, cancer, autoimmune diseases, and metabolic disorders. The crosstalk between the PI3K-AKT-mTOR and LKB1-AMPK signaling pathways is critical for modulating both immune and nonimmune cell metabolism. The bidirectional interaction between immune cells and metabolism is a topic of intense study. Toll-like receptors (TLRs), cytokine receptors, and T and B cell receptors have been shown to activate multiple downstream metabolic pathways. However, how intracellular innate immune sensors/receptors intersect with metabolic pathways is less well understood. The goal of this review is to examine the link between immunometabolism and the functions of several intracellular innate immune sensors or receptors, such as nucleotide-binding and leucine-rich repeat-containing receptors (NLRs, or NOD-like receptors), absent in melanoma 2 (AIM2)-like receptors (ALRs), and the cyclic dinucleotide receptor stimulator of interferon genes (STING). We will focus on recent advances and describe the impact of these intracellular innate immune receptors on multiple metabolic pathways. Whenever appropriate, this review will provide a brief contextual connection to pathogenic infections, autoimmune diseases, cancers, metabolic disorders, and/or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Elena Rampanelli
- Amsterdam UMC (University Medical Center, location AMC), Department of Experimental Vascular Medicine, AGEM (Amsterdam Gastroenterology Endocrinology Metabolism) Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xin Li
- Comparative Immunology Research Center, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
48
|
Fritsch LE, Ju J, Gudenschwager Basso EK, Soliman E, Paul S, Chen J, Kaloss AM, Kowalski EA, Tuhy TC, Somaiya RD, Wang X, Allen IC, Theus MH, Pickrell AM. Type I Interferon Response Is Mediated by NLRX1-cGAS-STING Signaling in Brain Injury. Front Mol Neurosci 2022; 15:852243. [PMID: 35283725 PMCID: PMC8916033 DOI: 10.3389/fnmol.2022.852243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods Male, 8-week old wildtype, STING knockout (−/−), cGAS−/−, and NLRX1−/− mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS−/− animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Jing Ju
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jiang Chen
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Taylor C. Tuhy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rachana Deven Somaiya
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- *Correspondence: Alicia M. Pickrell Michelle H. Theus
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- *Correspondence: Alicia M. Pickrell Michelle H. Theus
| |
Collapse
|
49
|
Xin Y, Chen S, Tang K, Wu Y, Guo Y. Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion. Int J Mol Sci 2022; 23:ijms23042372. [PMID: 35216485 PMCID: PMC8876279 DOI: 10.3390/ijms23042372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.
Collapse
Affiliation(s)
- Yijing Xin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shubing Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-010-63161716
| |
Collapse
|
50
|
Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol 2022; 43:148-162. [PMID: 35033428 PMCID: PMC8755460 DOI: 10.1016/j.it.2021.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.
Collapse
Affiliation(s)
| | - Jeffrey P Novack
- Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - John C Reed
- Sanofi, Paris, France & University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|