1
|
Kang S, Brulois K, Choi YJ, Zhang S, Jung JU. Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference. J Med Virol 2025; 97:e70179. [PMID: 39831393 PMCID: PMC11744495 DOI: 10.1002/jmv.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection. Upon co-expression of viral MARCH proteins with LTβR ligands, we showed that K3 and K5 selectively targeted LTβ, but not LIGHT, for the downregulation of surface expression. Specifically, K3 and K5 E3 ligases interacted with the transmembrane domain of LTβ. Intriguingly, K3 interacted with an immature form of LTβ, whereas K5 targeted the fully mature form. Subsequent biochemical analyses revealed that K3 disrupted the initial steps of N-glycosylation maturation of LTβ. This interference resulted in the sequestration of LTβ within the endoplasmic reticulum, impeding its trafficking to the plasma membrane. Consequently, the K3-mediated downregulation of LTβ surface expression suppressed the LTβR downstream signaling pathway. These findings uncover a novel mechanism by which KSHV K3 E3 ligase inhibits the membrane trafficking pathway of the LTβ inflammatory ligand through glycosylation interference, potentially evading LTβR-mediated antiviral immunity.
Collapse
Grants
- U01 CA294881 NCI NIH HHS
- This study was supported by grants from the US National Institutes of Health (NIH) CA251275, CA294881, AI152190, AI17120, AI181758, DE023926, DE028521, and U01 CA294881 (Jae U. Jung) and a gift from Sheikha Fatima bint Mubarak.
- R01 AI181758 NIAID NIH HHS
- R01 DE023926 NIDCR NIH HHS
- R01 CA251275 NCI NIH HHS
- R01 AI152190 NIAID NIH HHS
- R01 DE028521 NIDCR NIH HHS
- This study was supported by grants from the US National Institutes of Health (NIH) CA251275, CA294881, AI152190, AI17120, AI181758, DE023926, DE028521, and U01 CA294881 (Jae U. Jung) and a gift from Sheikha Fatima bint Mubarak.
Collapse
Affiliation(s)
- Soowon Kang
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Youn Jung Choi
- Department of Medicine, Division of Rheumatology, Kao Autoimmunity InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shaoyan Zhang
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jae U. Jung
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
2
|
Su Y, Liu S, Long C, Zhou Z, Zhou Y, Tang J. The cross-talk between B cells and macrophages. Int Immunopharmacol 2024; 143:113463. [PMID: 39467344 DOI: 10.1016/j.intimp.2024.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
B cells and macrophages are significant immune cells that maintain the immune balance of the body. B cells are involved in humoral immunity, producing immune effects mainly by secreting antibodies. Macrophages participate in non-specific and specific immune responses. To gain a further understanding of macrophages and B cells, researchers have not only paid attention to the unidirectional influence between B cells and macrophages, but also have focused on the cross-talk between them, and the effect of this cross talk on diseases. Therefore, this review summarizes the influence of macrophages on B cells, the ways and mechanisms by which B cells affect macrophages, and their cross-talk, leading to a more comprehensive understanding of the mechanism of the interaction between macrophages and B cells.
Collapse
Affiliation(s)
- Yahui Su
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zihua Zhou
- Department of Oncology, Loudi Central Hospital, Loudi 417000, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Kastner AL, Marx AF, Dimitrova M, Abreu-Mota T, Ertuna YI, Bonilla WV, Stauffer K, Künzli M, Wagner I, Kreutzfeldt M, Merkler D, Pinschewer DD. Durable lymphocyte subset elimination upon a single dose of AAV-delivered depletion antibody dissects immune control of chronic viral infection. Immunity 2024:S1074-7613(24)00536-3. [PMID: 39719711 DOI: 10.1016/j.immuni.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
To interrogate the role of specific immune cells in infection, cancer, and autoimmunity, immunologists commonly use monoclonal depletion antibodies (depletion-mAbs) or genetically engineered mouse models (GEMMs). To generate a tool that combines specific advantages and avoids select drawbacks of the two methods, we engineered adeno-associated viral vectors expressing depletion mAbs (depletion-AAVs). Single-dose depletion-AAV administration durably eliminated lymphocyte subsets in mice and avoided accessory deficiencies of GEMMs, such as marginal zone defects in B cell-deficient animals. Depletion-AAVs can be used in animals of different genetic backgrounds, and multiple depletion-AAVs can readily be combined. Exploiting depletion-AAV technology, we showed that B cells were required for unimpaired CD4+ and CD8+ T cell responses to chronic lymphocytic choriomeningitis virus (LCMV) infection. Upon B cell depletion, CD8+ T cells failed to suppress viremia, and they only helped resolve chronic infection when antibodies dampened viral loads. Our study positions depletion-AAVs as a versatile tool for immunological research.
Collapse
Affiliation(s)
- Anna Lena Kastner
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | | | - Mirela Dimitrova
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Tiago Abreu-Mota
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Yusuf I Ertuna
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Weldy V Bonilla
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Karsten Stauffer
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Marco Künzli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1206 Geneva, Switzerland
| | | |
Collapse
|
4
|
Fumagalli V, Ravà M, Marotta D, Di Lucia P, Bono EB, Giustini L, De Leo F, Casalgrandi M, Monteleone E, Mouro V, Malpighi C, Perucchini C, Grillo M, De Palma S, Donnici L, Marchese S, Conti M, Muramatsu H, Perlman S, Pardi N, Kuka M, De Francesco R, Bianchi ME, Guidotti LG, Iannacone M. Antibody-independent protection against heterologous SARS-CoV-2 challenge conferred by prior infection or vaccination. Nat Immunol 2024; 25:633-643. [PMID: 38486021 PMCID: PMC11003867 DOI: 10.1038/s41590-024-01787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica De Leo
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Violette Mouro
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Malpighi
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sara De Palma
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Charles River Laboratories, Calco, Italy
| | - Lorena Donnici
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Conti
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mirela Kuka
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Kubara K, Yamazaki K, Miyazaki T, Kondo K, Kurotaki D, Tamura T, Suzuki Y. Lymph node macrophages drive innate immune responses to enhance the anti-tumor efficacy of mRNA vaccines. Mol Ther 2024; 32:704-721. [PMID: 38243602 PMCID: PMC10928146 DOI: 10.1016/j.ymthe.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
mRNA vaccines are promising for cancer treatment. Efficient delivery of mRNAs encoding tumor antigens to antigen-presenting cells (APCs) is critical to elicit anti-tumor immunity. Herein, we identified a novel lipid nanoparticle (LNP) formulation, L17-F05, for mRNA vaccines by screening 34 ionizable lipids and 28 LNP formulations using human primary APCs. Subcutaneous delivery of L17-F05 mRNA vaccine encoding Gp100 and Trp2 inhibited tumor growth and prolonged the survival of mice bearing B16F10 melanoma. L17-F05 efficiently delivered mRNAs to conventional dendritic cells (cDCs) and macrophages in draining lymph nodes (dLNs). cDCs functioned as the main APCs by presenting antigens along with enhanced expression of co-stimulatory molecules. Macrophages triggered innate immune responses centered on type-I interferon (IFN-I) in dLNs. Lymph node (LN) macrophage depletion attenuated APC maturation and anti-tumor activity of L17-F05 mRNA vaccines. Loss-of-function studies revealed that L17-F05 works as a self-adjuvant by activating the stimulator of interferon genes (STING) pathway in macrophages. Collectively, the self-adjuvanticity of L17-F05 triggered innate immune responses in LN macrophages via the STING-IFN-I pathway, contributing to APC maturation and potent anti-tumor activity of L17-F05 mRNA vaccines. Our findings provide strategies for further optimization of mRNA vaccines based on the innate immune response driven by LN macrophages.
Collapse
Affiliation(s)
- Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
6
|
Uderhardt S, Neag G, Germain RN. Dynamic Multiplex Tissue Imaging in Inflammation Research. ANNUAL REVIEW OF PATHOLOGY 2024; 19:43-67. [PMID: 37722698 DOI: 10.1146/annurev-pathmechdis-070323-124158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgiana Neag
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Advanced Tissue Imaging (CAT-I), National Institute of Allergy and Infectious Diseases and National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
7
|
Su F, Zhang Y, Maimaiti S, Chen S, Shen Y, Feng M, Guo Z, Tan L, He J. Mechanisms and characteristics of subcapsular sinus macrophages in tumor immunity: a narrative review. Transl Cancer Res 2023; 12:3779-3791. [PMID: 38192994 PMCID: PMC10774050 DOI: 10.21037/tcr-23-2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Background and Objective Lymph nodes constitute an integral component of the secondary lymphoid organs, housing a diverse population of macrophages. Macrophages exhibit heterogeneity in terms of localization, phenotype and ontogeny. Recent evidence has established that subcapsular sinus macrophages (SCSMs) are the initial cells exposed to antigens from afferent lymph vessels, playing a crucial role in the host immune response against invading pathogens and tumor cells. In order to summarize the role and mechanisms of SCSM in tumor immunity, this study systematically reviews research on SCSMs in tumor immunity. Methods A systematic search was conducted in PubMed and Web of Science to identify articles investigating clinical significance and mechanisms of SCSMs. Study eligibility was independently evaluated by two authors based on the assessment of titles, abstracts and full-texts. Key Content and Findings The narrative review included a total of 17 studies. Previous research consistently showed that a high level of SCSM in patients with various carcinomas is associated with a favorable long-term prognosis. SCSM acts as the front-line defender in antitumor activity, engaging in intricate communication with other immune cells. Moreover, SCSM could directly and indirectly modulate tumor immunity, and the integrity of SCSM layer is interrupted in disease status. Several studies explored the feasibility of targeting SCSM to activate immunity against tumors. However, the direct molecular interactions and alternation in signal pathway in the tumor immunity of SCSM are less well established in previous researches. Conclusions This narrative review underscores the critical role of SCSM in tumor immunity. Future studies should focus on the deeper mechanism underlying SCSMs and explore their clinical applications.
Collapse
Affiliation(s)
- Feng Su
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | | | - Shanglin Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaxing Shen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Velazquez-Salinas L, Medina GN, Valdez F, Zarate S, Collinson S, Zhu JJ, Rodriguez LL. Exploring the Molecular Basis of Vesicular Stomatitis Virus Pathogenesis in Swine: Insights from Expression Profiling of Primary Macrophages Infected with M51R Mutant Virus. Pathogens 2023; 12:896. [PMID: 37513744 PMCID: PMC10384765 DOI: 10.3390/pathogens12070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an emergent virus affecting livestock in the US. Previously, using a recombinant VSV carrying the M51R mutation in the matrix protein (rNJ0612NME6-M51R), we evaluated the pathogenesis of this virus in pigs. Our results indicated that rNJ0612NME6-M51R represented an attenuated phenotype in in-vivo and in ex-vivo in pig macrophages, resembling certain clinical features observed in field VSV isolates. In order to gain more insight into the molecular basis leading to the attenuation of rNJ0612NME6-M51R in pigs, we conducted a microarray analysis to assess the gene expression profiles of primary porcine macrophages infected with rNJ0612NME6-M51R compared to its parental virus (rNJ0612NME6). Our results showed an overall higher gene expression in macrophages infected with rNJ0612NME6-M51R. Specifically, we observed that the pathways related with immune cytokine signaling and interferon (IFN)-related responses (including activation, signaling, induction, and antiviral mechanisms) were the ones comprising most of the relevant genes identified during this study. Collectively, the results presented herein highlight the relevance of type I interferon during the pathogenesis of VSV in pigs. The information generated from this study may represent a framework for future studies intended to understand the molecular bases of the pathogenesis of field strains in livestock.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Federico Valdez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - Selene Zarate
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico 04510, Mexico
| | - Shannon Collinson
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - James J Zhu
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Luis L Rodriguez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| |
Collapse
|
9
|
Bjarnarson SP, Brynjolfsson SF. The role of antigen availability during B cell induction and its effect on sustained memory and antibody production after infection and vaccination-lessons learned from the SARS-CoV-2 pandemic. Clin Exp Immunol 2022; 210:273-282. [PMID: 36480298 PMCID: PMC9985164 DOI: 10.1093/cei/uxac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The importance of antibodies, particularly neutralizing antibodies, has been known for decades. When examining the immune responses against a pathogen after a vaccination or infection it is easier to measure the levels of antigen-specific antibodies than the T-cell response, but it does not give the whole picture. The levels of neutralizing antibodies are harder to determine but give a better indication of the quality of the antibody response. The induction of long-lived antibody-secreting plasma cells is crucial for a persistent humoral immune response, which has been shown for example after vaccination with the vaccinia vaccine, where antibody levels have been shown to persist for decades. With the SARS-CoV-2 pandemic ravaging the world for the past years and the monumental effort in designing and releasing novel vaccines against the virus, much effort has been put into analysing the quantity, quality, and persistence of antibody responses.
Collapse
Affiliation(s)
- Stefania P Bjarnarson
- Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Siggeir F Brynjolfsson
- Correspondence: Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland.
| |
Collapse
|
10
|
Wellford SA, Moseman AP, Dao K, Wright KE, Chen A, Plevin JE, Liao TC, Mehta N, Moseman EA. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 2022; 55:2118-2134.e6. [PMID: 36137543 PMCID: PMC9649878 DOI: 10.1016/j.immuni.2022.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.
Collapse
Affiliation(s)
| | - Annie Park Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kianna Dao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Katherine E Wright
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Allison Chen
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Jona E Plevin
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Naren Mehta
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Fisher ES, Amarante MA, Lowry N, Lotz S, Farjood F, Temple S, Hill CE, Kiehl TR. Single cell profiling of CD45+ spinal cord cells reveals microglial and B cell heterogeneity and crosstalk following spinal cord injury. J Neuroinflammation 2022; 19:266. [PMID: 36333772 PMCID: PMC9635187 DOI: 10.1186/s12974-022-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Immune cells play crucial roles after spinal cord injury (SCI). However, incomplete knowledge of immune contributions to injury and repair hinders development of SCI therapies. We leveraged single-cell observations to describe key populations of immune cells present in the spinal cord and changes in their transcriptional profiles from uninjured to subacute and chronic stages of SCI.
Methods
Deep-read single-cell sequencing was performed on CD45+ cells from spinal cords of uninjured and injured Swiss-webster mice. After T9 thoracic contusion, cells were collected 3-, 7-, and 60-day post-injury (dpi). Subpopulations of CD45+ immune cells were identified informatically, and their transcriptional responses characterized with time. We compared gene expression in spinal cord microglia and B cell subpopulations with those in published models of disease and injury. Microglia were compared with Disease Associated Microglia (DAM) and Injury Responsive Microglia (IRM). B cells were compared to developmental lineage states and to an Amyotrophic Lateral Sclerosis (ALS) model.
Results
In uninjured and 7 dpi spinal cord, most CD45+ cells isolated were microglia while chronically B cells predominated. B cells accumulating in the spinal cord following injury included immature B to mature stages and were predominantly found in the injury zone. We defined diverse subtypes of microglia and B cells with altered gene expression with time after SCI. Spinal cord microglia gene expression indicates differences from brain microglia at rest and in inflammatory states. Expression analysis of signaling ligand–receptor partners identified microglia–B cell interactions at acute and chronic stages that may be involved in B cell recruitment, retention, and formation of ectopic lymphoid follicles.
Conclusions
Immune cell responses to SCI have region-specific aspects and evolve with time. Developmentally diverse populations of B cells accumulate in the spinal cord following injury. Microglia at subacute stages express B cell recruitment factors, while chronically, they express factors predicted to reduce B cell inflammatory state. In the injured spinal cord, B cells create ectopic lymphoid structures, and express secreted factors potentially acting on microglia. Our study predicts previously unidentified crosstalk between microglia and B cells post-injury at acute and chronic stages, revealing new potential targets of inflammatory responses for SCI repair warranting future functional analyses.
Collapse
|
12
|
Chen X, Zheng Y, Liu S, Yu W, Liu Z. CD169 + subcapsular sinus macrophage-derived microvesicles are associated with light zone follicular dendritic cells. Eur J Immunol 2022; 52:1581-1594. [PMID: 35907260 PMCID: PMC9804338 DOI: 10.1002/eji.202249879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023]
Abstract
Follicular dendritic cells (FDCs) are a specialized type of stromal cells that exclusively reside in B-cell follicles. When inflammation occurs, the FDC network is reorganized to support germinal center (GC) polarization into the light zone (LZ) and dark zone (DZ). Despite the indispensable role of FDCs in supporting humoral responses, the FDC regulatory requirements remain incompletely defined. In this study, we unexpectedly observed an accumulation of CD169+ subcapsular sinus macrophage (SSM)-derived microvesicles (MVs) in the B-cell zone, which were tightly associated with the FDC network. Interestingly, a selective deposition of CD169+ MVs was detected in both GC LZ FDCs in secondary follicles and on predetermined LZ FDCs in primary follicles. The ablation of CD169+ MVs, resulting from SSM depletion, resulted in significantly decreased expression of LZ-related genes in FDCs. In addition, we found that CD169+ MVs could colocalize with fluorescently tagged antigen-containing immune complexes (ICs), supporting a possible role of CD169+ MVs in transporting antigens to the FDC network. Thus, our data reveal intimate crosstalk between FDCs and SSMs located outside B-cell follicles via SSM-released MVs, providing a novel perspective on the mechanisms underlying the regulation of FDC maturation and polarization.
Collapse
Affiliation(s)
- Xin Chen
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhan Zheng
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Siming Liu
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjing Yu
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiduo Liu
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Park YJ, Kang BH, Kim HJ, Oh JE, Lee HK. A Microbiota-Dependent Subset of Skin Macrophages Protects Against Cutaneous Bacterial Infection. Front Immunol 2022; 13:799598. [PMID: 35757750 PMCID: PMC9218056 DOI: 10.3389/fimmu.2022.799598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Microbiota is essential to the development and functional maturation of the immune system. The effects of the gut microbiota on myeloid cells remote from the gut, especially the skin remain unclear. Transcriptomic analysis revealed that type I interferon (IFN) signaling was down-regulated in the skin of germ-free mice compared to that in specific pathogen-free mice. The decrease in type I IFN signaling was closely related to the presence of microbiota and macrophage-specific marker CD169. The absence of CD169+ macrophages resulted in increased bacterial burden and impaired immune responses against Staphylococcus aureus skin infection. CD169+ macrophages mediated the recruitment of γδ T cells as well as the activation of γδ T cells via interleukin (IL)-23. Our findings demonstrate the role of the microbiota in establishment of a specific myeloid cell subset expressing CD169 in the skin and provide evidence of a specific mechanism by which this subset protects against bacterial skin infection.
Collapse
Affiliation(s)
- Young Joon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - Byeong Hoon Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
14
|
Ozawa M, Nakajima S, Kobayashi D, Tomii K, Li NJ, Watarai T, Suzuki R, Watanabe S, Kanda Y, Takeuchi A, Katakai T. Micro- and Macro-Anatomical Frameworks of Lymph Nodes Indispensable for the Lymphatic System Filtering Function. Front Cell Dev Biol 2022; 10:902601. [PMID: 35794860 PMCID: PMC9251010 DOI: 10.3389/fcell.2022.902601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
In the lymphatic vascular system, lymph nodes (LNs) play a pivotal role in filtering and removing lymph-borne substances. The filtering function of LNs involves resident macrophages tightly associated with unique lymphatic sinus structures. Moreover, an intermittently arranged LN in the lymphatic pathway is considered to cooperatively prevent lymph-borne substances from entering blood circulation. However, the functional significance of tissue microarchitecture, cellular composition, and individual LNs in the “LN chain” system is not fully understood. To explore the mechanistic and histo-anatomical significance of LNs as lymph fluid filters, we subcutaneously injected fluorescent tracers into mice and examined the details of lymphatic transport to the LNs qualitatively and quantitatively. Lymph-borne tracers were selectively accumulated in the MARCO+ subcapsular-medullary sinus border (SMB) region of the LN, in which reticular lymphatic endothelial cells and CD169+F4/80+ medullary sinus macrophages construct a dense meshwork of the physical barrier, forming the main body to capture the tracers. We also demonstrated stepwise filtration via the LN chain in the lymphatic basin, which prevented tracer leakage into the blood. Furthermore, inflammatory responses that induce the remodeling of LN tissue as well as the lymphatic pathway reinforce the overall filtering capacity of the lymphatic basin. Taken together, specialized tissue infrastructure in the LNs and their systematic orchestration constitute an integrated filtering system for lymphatic recirculation.
Collapse
Affiliation(s)
- Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shihori Nakajima
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tomii
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nan-Jun Li
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoya Watarai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Suzuki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Tomoya Katakai,
| |
Collapse
|
15
|
Zhang Y, Garcia-Ibanez L, Ulbricht C, Lok LSC, Pike JA, Mueller-Winkler J, Dennison TW, Ferdinand JR, Burnett CJM, Yam-Puc JC, Zhang L, Alfaro RM, Takahama Y, Ohigashi I, Brown G, Kurosaki T, Tybulewicz VLJ, Rot A, Hauser AE, Clatworthy MR, Toellner KM. Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nat Commun 2022; 13:2460. [PMID: 35513371 PMCID: PMC9072412 DOI: 10.1038/s41467-022-29978-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura Garcia-Ibanez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Laurence S C Lok
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Thomas W Dennison
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Ferdinand
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Cameron J M Burnett
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan C Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lingling Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- The Francis Crick Institute, London, UK
| | - Raul Maqueda Alfaro
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan
| | - Geoffrey Brown
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | | | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ, London, UK
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336, Munich, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Menna R Clatworthy
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
16
|
Churchill MJ, du Bois H, Heim TA, Mudianto T, Steele MM, Nolz JC, Lund AW. Infection-induced lymphatic zippering restricts fluid transport and viral dissemination from skin. J Exp Med 2022; 219:e20211830. [PMID: 35353138 PMCID: PMC8972184 DOI: 10.1084/jem.20211830] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 01/13/2023] Open
Abstract
Lymphatic vessels are often considered passive conduits that flush antigenic material, pathogens, and cells to draining lymph nodes. Recent evidence, however, suggests that lymphatic vessels actively regulate diverse processes from antigen transport to leukocyte trafficking and dietary lipid absorption. Here we tested the hypothesis that infection-induced changes in lymphatic transport actively contribute to innate host defense. We demonstrate that cutaneous vaccinia virus infection by scarification activates dermal lymphatic capillary junction tightening (zippering) and lymph node lymphangiogenesis, which are associated with reduced fluid transport and cutaneous viral sequestration. Lymphatic-specific deletion of VEGFR2 prevented infection-induced lymphatic capillary zippering, increased fluid flux out of tissue, and allowed lymphatic dissemination of virus. Further, a reduction in dendritic cell migration to lymph nodes in the absence of lymphatic VEGFR2 associated with reduced antiviral CD8+ T cell expansion. These data indicate that VEGFR2-driven lymphatic remodeling is a context-dependent, active mechanism of innate host defense that limits viral dissemination and facilitates protective, antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Haley du Bois
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Maria M. Steele
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Amanda W. Lund
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
17
|
Louie DAP, Oo D, Leung G, Lin Y, Stephens M, Alrashed O, Tso M, Liao S. Tumor-Draining Lymph Node Reconstruction Promotes B Cell Activation During E0771 Mouse Breast Cancer Growth. Front Pharmacol 2022; 13:825287. [PMID: 35418862 PMCID: PMC8995528 DOI: 10.3389/fphar.2022.825287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Lymph node metastasis is associated with tumor aggressiveness and poor prognosis in patients. Despite its significance in cancer progression, how immune cells in the tumor-draining lymph node (TDLN) participate in cancer immune regulation remains poorly understood. It has been reported that both anti-tumor and exhausted tumor-specific T cells can be induced in the TDLNs; however, B cell activation and maturation in the TDLN has received far less attention. In our studies using C57BL/6 mouse syngeneic E0771 breast cancer or B16F10 melanoma cell lines, tumor-associated antigens were found colocalized with the follicular dendritic cells (FDCs) in the germinal centers (GCs), where antigen-specific B cell maturation occurs. LN conduits and the subcapsular sinus (SCS) macrophages are two major routes of antigen trafficking to FDCs. Tumor growth induced LN conduit expansion in the B cell zone and disrupted the SCS macrophage layer, facilitating both the entry of tumor-associated antigens into the B cell zone and access to FDCs located in the GCs. Regional delivery of clodronate liposome specifically depleted SCS macrophages in the TDLN, increasing GC formation, and promoting tumor growth. Our study suggests that TDLN reconstruction creates a niche that favors B cell activation and maturation during tumor growth.
Collapse
Affiliation(s)
- Dante Alexander Patrick Louie
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Darellynn Oo
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Glory Leung
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yujia Lin
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Matthew Stephens
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Omar Alrashed
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcus Tso
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, the Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Burassakarn A, Phusingha P, Yugawa T, Noguchi K, Ekalaksananan T, Vatanasapt P, Kiyono T, Pientong C. Human Papillomavirus 16 E6 Suppresses Transporter Associated with Antigen-Processing Complex in Human Tongue Keratinocyte Cells by Activating Lymphotoxin Pathway. Cancers (Basel) 2022; 14:cancers14081944. [PMID: 35454851 PMCID: PMC9028769 DOI: 10.3390/cancers14081944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary There is still limited knowledge of the critical pathogenic processes by which HPV16 induces oral carcinogenesis. Therefore, we aimed to illuminate the oncogenic role of HPV16 in the context of oral squamous cell carcinomas (OSCCs). Using human tongue keratinocyte cells, we demonstrated that HPV16 E6 promotes LTα1β2 and LTβR expression, thus promoting the lymphotoxin signaling pathway and leading to suppression of the transporter associated with the antigen-processing complex (TAPs; TAP1 and TAP2). Additionally, in vitro, we also demonstrated regulation of the antigenic peptide-loaded machinery in HPV-infected OSCC tissues through analysis of the transcriptomic profiles of the head and neck squamous cell carcinoma (HNSCC) cohort from the TCGA database, which was validated using fresh biopsied specimens. Thus, our study enhances the proposed functional role of HPV16 E6-associated immune-evasive properties in oral epithelial cells, revealing a possible mechanism underlying the development of HPV-mediated OSCCs. Abstract Infection by high-risk human papillomaviruses (hrHPVs), including HPV type 16 (HPV16), is a major risk factor for oral squamous cell carcinomas (OSCCs). However, the pathogenic mechanism by which hrHPVs promote oral carcinogenesis remains to be elucidated. Here, we demonstrated that the suppression of a transporter associated with the antigen-processing complex (TAPs; TAP1 and TAP2), which is a key molecule in the transportation of viral antigenic peptides into MHC class-I cells, is affected by the E6 protein of HPV16. Mechanistically, HPV-mediated immune evasion is principally mediated via the signal-transduction network of a lymphotoxin (LT) pathway, in particular LTα1β2 and LTβR. Our analysis of transcriptomic data from an HNSCC cohort from the Cancer Genome Atlas (TCGA) indicated that expression of TAP genes, particularly TAP2, was downregulated in HPV-infected cases. We further demonstrated that LTα1β2 and LTβR were upregulated, which was negatively correlated with TAP1 and TAP2 expression in HPV-positive clinical OSCC samples. Taken together, our findings imply that HPV16 E6 regulates the machinery of the antigenic peptide-loading system and helps to clarify the role of oncogenic viruses in the context of oral carcinoma.
Collapse
Affiliation(s)
- Ati Burassakarn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.B.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pensiri Phusingha
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Takashi Yugawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya 663-8501, Japan;
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.B.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Patravoot Vatanasapt
- HPV & EBV and Carcinogenesis Research Group, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
- Correspondence: (T.K.); (C.P.); Tel./Fax: +66-4334-8385 (C.P.)
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.B.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence: (T.K.); (C.P.); Tel./Fax: +66-4334-8385 (C.P.)
| |
Collapse
|
19
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
20
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
21
|
CD169 + macrophages in lymph node and spleen critically depend on dual RANK and LTbetaR signaling. Proc Natl Acad Sci U S A 2022; 119:2108540119. [PMID: 35031565 PMCID: PMC8784161 DOI: 10.1073/pnas.2108540119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
The CD169+ macrophages that play an important role in the fight against infections and cancer are receptive to environmental signals for their differentiation. We show that lymph node and splenic CD169+ macrophages require both LTβR and RANK signaling since the conditional deficiency of either receptor results in their disappearance. Using a reporter mouse, we observe RANKL expression by a splenic mesenchymal cell subset and show that it participates in CD169+ macrophage differentiation. Their absence leads to a reduced viral capture and a greatly attenuated virus-specific CD8+ T cell expansion. Thus, tight control mechanisms operate for the precise positioning of these macrophages at sites where numerous immune-stimulatory forces converge. CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTβ) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTβR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTβR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTβR and RANK with implications for the immune response.
Collapse
|
22
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
23
|
Abstract
It is well known that B lymphocytes differentiate into plasma cells that produce antibodies. B cells also perform a number of less well-known roles including antigen presentation, regulation of T cells and innate immune cells, cytokine production, and maintenance of subcapsular sinus macrophages. Given that there is clear evidence of inflammation in Parkinson's disease (PD) both in the central nervous system and in the periphery, it is almost certain that B lymphocytes are involved. This involvement is likely to be complicated given the variety of roles B cells play via a number of distinct subsets. They have received less attention to date than their counterparts, T cells, and monocytes. B lymphocytes are decreased in PD overall with some limited evidence that this may be driven by a decrease in regulatory subsets. There is also evidence that regulatory B cells are protective in PD. There is evidence for a role played by antibodies to alpha-synuclein in PD with a possible increase in early disease. There are many exciting potential future avenues for further exploration of the role of B lymphocytes including improving our understanding of the role of meningeal and calvarial (skull bone marrow) based B cells in health and disease, the use of larger, well phenotyped clinical cohorts to understand changes in peripheral and cerebrospinal fluid B cells over time and the potential application of B cell targeted therapies in PD.
Collapse
Affiliation(s)
- Kirsten M. Scott
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
HomA and HomB, outer membrane proteins of Helicobacter pylori down-regulate activation-induced cytidine deaminase (AID) and Ig switch germline transcription and thereby affect class switch recombination (CSR) of Ig genes in human B-cells. Mol Immunol 2021; 142:37-49. [PMID: 34959071 DOI: 10.1016/j.molimm.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 12/26/2022]
Abstract
H. pylori is one of the major causes of chronic gastritis, peptic ulcer disease (PUD), gastric mucosa-associated lymphoid tissue lymphoma (MALT) and gastric carcinoma. H. pylori toxin VacA is responsible for host cell apoptosis, whereas CagA is known to aberrantly induce expression of activation-induced cytidine deaminase (AID) in gastric epithelial cells that causes mutations in oncogenes and tumour suppressor genes, leading to the transformation of normal cells into cancerous cells. Although, a significant amount of research has been conducted to understand the role of bacterial factors modulating deregulated host cell pathways, the interaction between H. pylori and immune cells of the marginal zone and its consequences are still not well understood. HomB and HomA, outer membrane proteins (OMPs) from H. pylori, which assist in the adhesion of bacteria to host cells, are found to be associated with H. pylori virulent strains and promote inflammation. Interestingly, we observed that the interaction of HomB/HomA OMPs with B-cells transiently downregulates AID expression and Ig switch germline transcription. Downregulation of AID leads to impairment of class switch recombination (CSR), resulting in significantly reduced switching to IgG and IgA antibodies. Besides, we examined the immune-suppressive response of B-cells and observed that the cells stimulated with HomA/B show upregulation in the levels of IL10, IL35, as well as PDL1, a T-cell inhibition marker. Our study suggests the potential role of OMPs in immune response modulation strategies used by the pathogen to evade the immune response. These results provide a better understanding of H. pylori pathogenesis and assist in identifying novel targets for therapy.
Collapse
|
25
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
26
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
D'Addio M, Frey J, Tacconi C, Commerford CD, Halin C, Detmar M, Cummings RD, Otto VI. Sialoglycans on lymphatic endothelial cells augment interactions with Siglec-1 (CD169) of lymph node macrophages. FASEB J 2021; 35:e22017. [PMID: 34699642 DOI: 10.1096/fj.202100300r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Cellular interactions between endothelial cells and macrophages regulate macrophage localization and phenotype, but the mechanisms underlying these interactions are poorly understood. Here we explored the role of sialoglycans on lymphatic endothelial cells (LEC) in interactions with macrophage-expressed Siglec-1 (CD169). Lectin-binding assays and mass spectrometric analyses revealed that LEC from human skin express more sialylated glycans than the corresponding blood endothelial cells. Higher amounts of sialylated and/or sulfated glycans on LEC than BEC were consistently observed in murine skin, lung and lymph nodes. The floor LEC of the subcapsular sinus (SCS) in murine lymph nodes (LN) displayed sialylated glycans at particularly high densities. The sialoglycans of LN LEC were strongly bound by Siglec-1. Such binding plays an important role in the localization of Siglec-1+ LN-SCS macrophages, as their numbers are strongly reduced in mice expressing a Siglec-1 mutant that is defective in sialoglycan binding. The residual Siglec-1+ macrophages are less proliferative and have a more anti-inflammatory phenotype. We propose that the densely clustered, sialylated glycans on the SCS floor LEC are a key component of the macrophage niche, providing anchorage for the Siglec-1+ LN-SCS macrophages.
Collapse
Affiliation(s)
- Marco D'Addio
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jasmin Frey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivianne I Otto
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
"M1 macrophage polarization prevails in EBV infected children in an immuneregulatory environment". J Virol 2021; 96:e0143421. [PMID: 34643432 DOI: 10.1128/jvi.01434-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages can be polarized toward a proinflammatory phenotype (M1) (CD68+) or to an anti-inflammatory one (M2) (CD163+). Polarization can be triggered by cytokines such as IFN-γ for M1, or IL-10 and TGF-β, for M2. In the context of pediatric EBV infection, little is known about macrophage polarization in EBV primary or persistent infection. When studying tonsils of patients undergoing primary infection (PI), healthy carrier (HC), reactivation (R) and not infected (NI), M1 profile prevailed in all infection status. However, an increase in M2 cells was observed in those patients with broader expression of latency antigens, in particular EBNA2. Tonsils from primary infected patients showed an increased IL-10 expression, whereas, unexpectedly, TGF-β expression correlated with M1 marker. Furthermore, an inverse correlation was demonstrated between CD68 and IFN-γ. Therefore, in the context of asymptomatic infection in children, M1 macrophage polarization prevails, even in the presence of IL-10 and TGF-ꞵ immunomodulatory cytokines, and it might be independent from lymphomagenesis process. Our finding indicates that macrophages may have a significant plasticity in response to different types of extrinsic stimuli, and further studies are required to investigate M1 polarization under anti-inflammatory stimuli. Importance Most studies on EBV primary infection have been performed in adolescents and young adult populations with Infectious Mononucleosis (IM) in developed countries. Furthermore, studies related to macrophage polarization were assessed in EBV-associated lymphomas, but little is known about macrophage polarization in the context of primary infection at the site of viral entry and replication, the tonsils. Therefore, the aim of this study was to characterize macrophage response in children undergoing EBV primary or persistent infection, in order to enlighten the role of macrophages in viral pathogenesis, in a population with a high incidence of EBV-associated lymphomas in children younger than 10 years old. This study may contribute to explain, at least in part, the asymptomatic viral infection in children from an underdeveloped region, since M1 polarization pattern prevails, but in a regulatory environment.
Collapse
|
29
|
Shou Y, Koroleva E, Spencer CM, Shein SA, Korchagina AA, Yusoof KA, Parthasarathy R, Leadbetter EA, Akopian AN, Muñoz AR, Tumanov AV. Redefining the Role of Lymphotoxin Beta Receptor in the Maintenance of Lymphoid Organs and Immune Cell Homeostasis in Adulthood. Front Immunol 2021; 12:712632. [PMID: 34335629 PMCID: PMC8320848 DOI: 10.3389/fimmu.2021.712632] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023] Open
Abstract
Lymphotoxin beta receptor (LTβR) is a promising therapeutic target in autoimmune and infectious diseases as well as cancer. Mice with genetic inactivation of LTβR display multiple defects in development and organization of lymphoid organs, mucosal immune responses, IgA production and an autoimmune phenotype. As these defects are imprinted in embryogenesis and neonate stages, the impact of LTβR signaling in adulthood remains unclear. Here, to overcome developmental defects, we generated mice with inducible ubiquitous genetic inactivation of LTβR in adult mice (iLTβRΔ/Δ mice) and redefined the role of LTβR signaling in organization of lymphoid organs, immune response to mucosal bacterial pathogen, IgA production and autoimmunity. In spleen, postnatal LTβR signaling is required for development of B cell follicles, follicular dendritic cells (FDCs), recruitment of neutrophils and maintenance of the marginal zone. Lymph nodes of iLTβRΔ/Δ mice were reduced in size, lacked FDCs, and had disorganized subcapsular sinus macrophages. Peyer`s patches were smaller in size and numbers, and displayed reduced FDCs. The number of isolated lymphoid follicles in small intestine and colon were also reduced. In contrast to LTβR-/- mice, iLTβRΔ/Δ mice displayed normal thymus structure and did not develop signs of systemic inflammation and autoimmunity. Further, our results suggest that LTβR signaling in adulthood is required for homeostasis of neutrophils, NK, and iNKT cells, but is dispensable for the maintenance of polyclonal IgA production. However, iLTβRΔ/Δ mice exhibited an increased sensitivity to C. rodentium infection and failed to develop pathogen-specific IgA responses. Collectively, our study uncovers new insights of LTβR signaling in adulthood for the maintenance of lymphoid organs, neutrophils, NK and iNKT cells, and IgA production in response to mucosal bacterial pathogen.
Collapse
Affiliation(s)
- Yajun Shou
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ekaterina Koroleva
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | | - Sergey A. Shein
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Anna A. Korchagina
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kizil A. Yusoof
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Amanda R. Muñoz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,*Correspondence: Alexei V. Tumanov,
| |
Collapse
|
30
|
Haugh KA, Ladinsky MS, Ullah I, Stone HM, Pi R, Gilardet A, Grunst MW, Kumar P, Bjorkman PJ, Mothes W, Uchil PD. In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. eLife 2021; 10:64179. [PMID: 34223819 PMCID: PMC8298093 DOI: 10.7554/elife.64179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous, and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer’s patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood-, and milk-borne retroviruses spanning three routes was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue-resident sentinel macrophages for establishing infection.
Collapse
Affiliation(s)
- Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Helen M Stone
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Alexandre Gilardet
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
31
|
Abstract
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Izabela Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- * E-mail:
| |
Collapse
|
32
|
Pellin D, Claudio N, Guo Z, Ziglari T, Pucci F. Gene Expression Profiling of Lymph Node Sub-Capsular Sinus Macrophages in Cancer. Front Immunol 2021; 12:672123. [PMID: 34168645 PMCID: PMC8218730 DOI: 10.3389/fimmu.2021.672123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022] Open
Abstract
Lymph nodes are key lymphoid organs collecting lymph fluid and migratory cells from the tissue area they survey. When cancerous cells arise within a tissue, the sentinel lymph node is the first immunological organ to mount an immune response. Sub-capsular sinus macrophages (SSMs) are specialized macrophages residing in the lymph nodes that play important roles as gatekeepers against particulate antigenic material. In the context of cancer, SSMs capture tumor-derived extracellular vesicles (tEVs), a form of particulate antigen released in high amounts by tumor cells. We and others have recently demonstrated that SSMs possess anti-tumor activity because in their absence tumors progress faster. A comprehensive profiling of SSMs represents an important first step to identify the cellular and molecular mechanisms responsible for SSM anti-tumor activity. Unfortunately, the isolation of SSMs for molecular analyses is very challenging. Here, we combined an optimized dissociation protocol, careful marker selection and stringent gating strategies to highly purify SSMs. We provide evidence of decreased T and B cell contamination, which allowed us to reveal the gene expression profile of this elusive macrophage subset. Squamous cell carcinomas induced an increase in the expression of Fc receptors, lysosomal and proteasomal enzymes in SSMs. Imaging of mouse and patient lymph nodes confirmed the presence of the top differentially expressed genes. These results suggest that SSMs respond to tumor formation by upregulating the machinery necessary for presentation of tumor particulate antigens to B cells.
Collapse
Affiliation(s)
- Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Natalie Claudio
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Zihan Guo
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States.,Program in Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Tahereh Ziglari
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Ferdinando Pucci
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
33
|
Vanderkerken M, Baptista AP, De Giovanni M, Fukuyama S, Browaeys R, Scott CL, Norris PS, Eberl G, Di Santo JP, Vivier E, Saeys Y, Hammad H, Cyster JG, Ware CF, Tumanov AV, De Trez C, Lambrecht BN. ILC3s control splenic cDC homeostasis via lymphotoxin signaling. J Exp Med 2021; 218:e20190835. [PMID: 33724364 PMCID: PMC7970251 DOI: 10.1084/jem.20190835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα1β2-expressing Rorgt+ ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα+CD4+Esam+ cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα+CD4+Esam+ cDC2s required continuous lymphotoxin input. This latter property made Sirpα+CD4+Esam+ cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα1β2-expressing Rorgt+ ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Immunity, Innate
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/immunology
- Lymphotoxin beta Receptor/metabolism
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/immunology
- Lymphotoxin-alpha/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Mice
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Antonio P. Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paula S. Norris
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Gerard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1224, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Innate Immunity Unit, Department of Immunology, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service d’Immunologie, Marseille-Immunopôle, Marseille, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrij Universiteit Brussel, Brussels, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Moseman EA, Blanchard AC, Nayak D, McGavern DB. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci Immunol 2020; 5:eabb1817. [PMID: 32503876 PMCID: PMC7416530 DOI: 10.1126/sciimmunol.abb1817] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The neuroepithelium is a nasal barrier surface populated by olfactory sensory neurons that detect odorants in the airway and convey this information directly to the brain via axon fibers. This barrier surface is especially vulnerable to infection, yet respiratory infections rarely cause fatal encephalitis, suggesting a highly evolved immunological defense. Here, using a mouse model, we sought to understand the mechanism by which innate and adaptive immune cells thwart neuroinvasion by vesicular stomatitis virus (VSV), a potentially lethal virus that uses olfactory sensory neurons to enter the brain after nasal infection. Fate-mapping studies demonstrated that infected central nervous system (CNS) neurons were cleared noncytolytically, yet specific deletion of major histocompatibility complex class I (MHC I) from these neurons unexpectedly had no effect on viral control. Intravital imaging studies of calcium signaling in virus-specific CD8+ T cells revealed instead that brain-resident microglia were the relevant source of viral peptide-MHC I complexes. Microglia were not infected by the virus but were found to cross-present antigen after acquisition from adjacent neurons. Microglia depletion interfered with T cell calcium signaling and antiviral control in the brain after nasal infection. Collectively, these data demonstrate that microglia provide a front-line defense against a neuroinvasive nasal infection by cross-presenting antigen to antiviral T cells that noncytolytically cleanse neurons. Disruptions in this innate defense likely render the brain susceptible to neurotropic viruses like VSV that attempt to enter the CNS via the nose.
Collapse
Affiliation(s)
- E Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Alexa C Blanchard
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Usp18 Expression in CD169 + Macrophages is Important for Strong Immune Response after Vaccination with VSV-EBOV. Vaccines (Basel) 2020; 8:vaccines8010142. [PMID: 32210083 PMCID: PMC7157200 DOI: 10.3390/vaccines8010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Ebola virus epidemics can be effectively limited by the VSV-EBOV vaccine (Ervebo) due to its rapid protection abilities; however, side effects prevent the broad use of VSV-EBOV as vaccine. Mechanisms explaining the efficient immune activation after single injection with the VSV-EBOV vaccine remain mainly unknown. Here, using the clinically available VSV-EBOV vaccine (Ervebo), we show that the cell-intrinsic expression of the interferon-inhibitor Usp18 in CD169+ macrophages is one important factor modulating the anti-Ebola virus immune response. The absence of Usp18 in CD169+ macrophages led to the reduced local replication of VSV-EBOV followed by a diminished innate as well as adaptive immune response. In line, CD169-Cre+/ki x Usp18fl/fl mice showed reduced innate and adaptive immune responses against the VSV wildtype strain and died quickly after infection, suggesting that a lack of Usp18 makes mice more susceptible to the side effects of the VSV vector. In conclusion, our study shows that Usp18 expression in CD169+ macrophages is one important surrogate marker for effective vaccination against VSV-EBOV, and probably other VSV-based vaccines also.
Collapse
|
36
|
Morgado FN, da Silva AVA, Porrozzi R. Infectious Diseases and the Lymphoid Extracellular Matrix Remodeling: A Focus on Conduit System. Cells 2020; 9:cells9030725. [PMID: 32187985 PMCID: PMC7140664 DOI: 10.3390/cells9030725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
The conduit system was described in lymphoid organs as a tubular and reticular set of structures compounded by collagen, laminin, perlecan, and heparin sulfate proteoglycan wrapped by reticular fibroblasts. This tubular system is capable of rapidly transport small molecules such as viruses, antigens, chemokines, cytokines, and immunoglobulins through lymphoid organs. This structure plays an important role in guiding the cells to their particular niches, therefore participating in cell cooperation, antigen presentation, and cellular activation. The remodeling of conduits has been described in chronic inflammation and infectious diseases to improve the transport of antigens to specific T and B cells in lymphoid tissue. However, malnutrition and infectious agents may induce extracellular matrix remodeling directly or indirectly, leading to the microarchitecture disorganization of secondary lymphoid organs and their conduit system. In this process, the fibers and cells that compound the conduit system may also be altered, which affects the development of a specific immune response. This review aims to discuss the extracellular matrix remodeling during infectious diseases with an emphasis on the alterations of molecules from the conduit system, which damages the cellular and molecular transit in secondary lymphoid organs compromising the immune response.
Collapse
Affiliation(s)
- Fernanda N. Morgado
- Correspondence: (F.N.M.); (R.P.); Tel.: +55-2138658226 (F.N.M.); +55-2138658203 (R.P.)
| | | | - Renato Porrozzi
- Correspondence: (F.N.M.); (R.P.); Tel.: +55-2138658226 (F.N.M.); +55-2138658203 (R.P.)
| |
Collapse
|
37
|
Pizzagalli DU, Latino I, Pulfer A, Palomino-Segura M, Virgilio T, Farsakoglu Y, Krause R, Gonzalez SF. Characterization of the Dynamic Behavior of Neutrophils Following Influenza Vaccination. Front Immunol 2019; 10:2621. [PMID: 31824481 PMCID: PMC6881817 DOI: 10.3389/fimmu.2019.02621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are amongst the first cells to respond to inflammation and infection. Although they play a key role in limiting the dissemination of pathogens, the study of their dynamic behavior in immune organs remains elusive. In this work, we characterized in vivo the dynamic behavior of neutrophils in the mouse popliteal lymph node (PLN) after influenza vaccination with UV-inactivated virus. To achieve this, we used an image-based systems biology approach to detect the motility patterns of neutrophils and to associate them to distinct actions. We described a prominent and rapid recruitment of neutrophils to the PLN following vaccination, which was dependent on the secretion of the chemokine CXCL1 and the alarmin molecule IL-1α. In addition, we observed that the initial recruitment occurred mainly via high endothelial venules located in the paracortical and interfollicular regions of the PLN. The analysis of the spatial-temporal patterns of neutrophil migration demonstrated that, in the initial stage, the majority of neutrophils displayed a patrolling behavior, followed by the formation of swarms in the subcapsular sinus of the PLN, which were associated with macrophages in this compartment. Finally, we observed using multiple imaging techniques, that neutrophils phagocytize and transport influenza virus particles. These processes might have important implications in the capacity of these cells to present viral antigens.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Irene Latino
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alain Pulfer
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Miguel Palomino-Segura
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Rolf Krause
- Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Santiago F. Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
38
|
Friedrich SK, Lang PA, Friebus-Kardash J, Duhan V, Bezgovsek J, Lang KS. Mechanisms of lymphatic system-specific viral replication and its potential role in autoimmune disease. Clin Exp Immunol 2019; 195:64-73. [PMID: 30444956 DOI: 10.1111/cei.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
Viral infections can be fatal because of the direct cytopathic effects of the virus or the induction of a strong, uncontrolled inflammatory response. Virus and host intrinsic characteristics strongly modulate the outcome of viral infections. Recently we determined the circumstances under which enhanced replication of virus within the lymphoid tissue is beneficial for the outcome of a disease. This enforced viral replication promotes anti-viral immune activation and, counterintuitively, accelerates virus control. In this review we summarize the mechanisms that contribute to enforced viral replication. Antigen-presenting cells and CD169+ macrophages exhibit enforced viral replication after infection with the model viruses lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus (VSV). Ubiquitin-specific peptidase 18 (Usp18), an endogenous type I interferon blocker in CD169+ macrophages, has been identified as a proviral gene, as are B cell activating factor (BAFF) and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Lymphotoxins (LT) strongly enhance viral replication in the spleen and lymph nodes. All these factors modulate splenic architecture and thereby promote the development of CD169+ macrophages. Tumor necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cell signaling (NF-κB) have been found to promote the survival of infected CD169+ macrophages, thereby similarly promoting enforced viral replication. Association of autoimmune disease with infections is evident from (1) autoimmune phenomena described during a chronic virus infection; (2) onset of autoimmune disease simultaneous to viral infections; and (3) experimental evidence. Involvement of virus infection during onset of type I diabetes is strongly evident. Epstein-Bar virus (EBV) infection was discussed to be involved in the pathogenesis of systemic lupus erythematosus. In conclusion, several mechanisms promote viral replication in secondary lymphatic organs. Identifying such factors in humans is a challenge for future studies.
Collapse
Affiliation(s)
- S-K Friedrich
- University of Duisburg-Essen, Institute of Immunology, Medical Faculty, Essen, Germany
| | - P A Lang
- Heinrich-Heine-University, Insitute of Molecular Medicine II, Düsseldorf, Germany
| | - J Friebus-Kardash
- University of Duisburg-Essen, Institute of Immunology, Medical Faculty, Essen, Germany
| | - V Duhan
- University of Duisburg-Essen, Institute of Immunology, Medical Faculty, Essen, Germany
| | - J Bezgovsek
- University of Duisburg-Essen, Institute of Immunology, Medical Faculty, Essen, Germany
| | - K S Lang
- University of Duisburg-Essen, Institute of Immunology, Medical Faculty, Essen, Germany
| |
Collapse
|
39
|
Parekh NJ, Krouse TE, Reider IE, Hobbs RP, Ward BM, Norbury CC. Type I interferon-dependent CCL4 is induced by a cGAS/STING pathway that bypasses viral inhibition and protects infected tissue, independent of viral burden. PLoS Pathog 2019; 15:e1007778. [PMID: 31603920 PMCID: PMC6808495 DOI: 10.1371/journal.ppat.1007778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/23/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (T1-IFN) are critical in the innate immune response, acting upon infected and uninfected cells to initiate an antiviral state by expressing genes that inhibit multiple stages of the lifecycle of many viruses. T1-IFN triggers the production of Interferon-Stimulated Genes (ISGs), activating an antiviral program that reduces virus replication. The importance of the T1-IFN response is highlighted by the evolution of viral evasion strategies to inhibit the production or action of T1-IFN in virus-infected cells. T1-IFN is produced via activation of pathogen sensors within infected cells, a process that is targeted by virus-encoded immunomodulatory molecules. This is probably best exemplified by the prototypic poxvirus, Vaccinia virus (VACV), which uses at least 6 different mechanisms to completely block the production of T1-IFN within infected cells in vitro. Yet, mice lacking aspects of T1-IFN signaling are often more susceptible to infection with many viruses, including VACV, than wild-type mice. How can these opposing findings be rationalized? The cytosolic DNA sensor cGAS has been implicated in immunity to VACV, but has yet to be linked to the production of T1-IFN in response to VACV infection. Indeed, there are two VACV-encoded proteins that effectively prevent cGAS-mediated activation of T1-IFN. We find that the majority of VACV-infected cells in vivo do not produce T1-IFN, but that a small subset of VACV-infected cells in vivo utilize cGAS to sense VACV and produce T1-IFN to protect infected mice. The protective effect of T1-IFN is not mediated via ISG-mediated control of virus replication. Rather, T1-IFN drives increased expression of CCL4, which recruits inflammatory monocytes that constrain the VACV lesion in a virus replication-independent manner by limiting spread within the tissue. Our findings have broad implications in our understanding of pathogen detection and viral evasion in vivo, and highlight a novel immune strategy to protect infected tissue.
Collapse
Affiliation(s)
- Nikhil J. Parekh
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Tracy E. Krouse
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Irene E. Reider
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ryan P. Hobbs
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
40
|
Abstract
Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| |
Collapse
|
41
|
Retamal-Díaz A, Covián C, Pacheco GA, Castiglione-Matamala AT, Bueno SM, González PA, Kalergis AM. Contribution of Resident Memory CD8 + T Cells to Protective Immunity Against Respiratory Syncytial Virus and Their Impact on Vaccine Design. Pathogens 2019; 8:pathogens8030147. [PMID: 31514485 PMCID: PMC6789444 DOI: 10.3390/pathogens8030147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
Worldwide, human respiratory syncytial virus (RSV) is the most common etiological agent for acute lower respiratory tract infections (ALRI). RSV-ALRI is the major cause of hospital admissions in young children, and it can cause in-hospital deaths in children younger than six months old. Therefore, RSV remains one of the pathogens deemed most important for the generation of a vaccine. On the other hand, the effectiveness of a vaccine depends on the development of immunological memory against the pathogenic agent of interest. This memory is achieved by long-lived memory T cells, based on the establishment of an effective immune response to viral infections when subsequent exposures to the pathogen take place. Memory T cells can be classified into three subsets according to their expression of lymphoid homing receptors: central memory cells (TCM), effector memory cells (TEM) and resident memory T cells (TRM). The latter subset consists of cells that are permanently found in non-lymphoid tissues and are capable of recognizing antigens and mounting an effective immune response at those sites. TRM cells activate both innate and adaptive immune responses, thus establishing a robust and rapid response characterized by the production of large amounts of effector molecules. TRM cells can also recognize antigenically unrelated pathogens and trigger an innate-like alarm with the recruitment of other immune cells. It is noteworthy that this rapid and effective immune response induced by TRM cells make these cells an interesting aim in the design of vaccination strategies in order to establish TRM cell populations to prevent respiratory infectious diseases. Here, we discuss the biogenesis of TRM cells, their contribution to the resolution of respiratory viral infections and the induction of TRM cells, which should be considered for the rational design of new vaccines against RSV.
Collapse
Affiliation(s)
- Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Angelo T Castiglione-Matamala
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
42
|
Camara A, Cordeiro OG, Alloush F, Sponsel J, Chypre M, Onder L, Asano K, Tanaka M, Yagita H, Ludewig B, Flacher V, Mueller CG. Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche. Immunity 2019; 50:1467-1481.e6. [DOI: 10.1016/j.immuni.2019.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
|
43
|
Mondor I, Baratin M, Lagueyrie M, Saro L, Henri S, Gentek R, Suerinck D, Kastenmuller W, Jiang JX, Bajénoff M. Lymphatic Endothelial Cells Are Essential Components of the Subcapsular Sinus Macrophage Niche. Immunity 2019; 50:1453-1466.e4. [PMID: 31053503 DOI: 10.1016/j.immuni.2019.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/10/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
In lymph nodes, subcapsular sinus macrophages (SSMs) form an immunological barrier that monitors lymph drained from peripheral tissues. Upon infection, SSMs activate B and natural killer T (NKT) cells while secreting inflammatory mediators. Here, we investigated the mechanisms regulating development and homeostasis of SSMs. Embryonic SSMs originated from yolk sac hematopoiesis and were replaced by a postnatal wave of bone marrow (BM)-derived monocytes that proliferated to establish the adult SSM network. The SSM network self-maintained by proliferation with minimal BM contribution. Upon pathogen-induced transient deletion, BM-derived cells contributed to restoring the SSM network. Lymphatic endothelial cells (LECs) were the main source of CSF-1 within the lymph node and conditional deletion of Csf1 in adult LECs decreased the network of SSMs and medullary sinus macrophages (MSMs). Thus, SSMs have a dual hematopoietic origin, and LECs are essential to the niche supporting these macrophages.
Collapse
Affiliation(s)
| | - Myriam Baratin
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Lisa Saro
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Sandrine Henri
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Rebecca Gentek
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
44
|
Solmaz G, Puttur F, Francozo M, Lindenberg M, Guderian M, Swallow M, Duhan V, Khairnar V, Kalinke U, Ludewig B, Clausen BE, Wagner H, Lang KS, Sparwasser TD. TLR7 Controls VSV Replication in CD169 + SCS Macrophages and Associated Viral Neuroinvasion. Front Immunol 2019; 10:466. [PMID: 30930901 PMCID: PMC6428728 DOI: 10.3389/fimmu.2019.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/21/2019] [Indexed: 01/21/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7−/− mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects of TLR7 in impeding VSV replication in the dLN, TLR7−/− mice present elevated viral load in the brain and spinal cord highlighting their susceptibility to VSV neuroinvasion. By generating novel TLR7 floxed mice, we interrogate the impact of cell-specific TLR7 function in anti-viral immunity after VSV skin infection. Our data suggests that TLR7 signaling in SCS macrophages supports VSV replication in these cells, increasing LN infection and may account for the delayed onset of VSV-induced neurovirulence observed in TLR7−/− mice. Overall, we identify TLR7 as a novel and essential host factor that critically controls anti-viral immunity to VSV. Furthermore, the novel mouse model generated in our study will be of valuable importance to shed light on cell-intrinsic TLR7 biology in future studies.
Collapse
Affiliation(s)
- Gülhas Solmaz
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Franz Puttur
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marcela Francozo
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marc Lindenberg
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Vikas Duhan
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Kalinke
- Institute of Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hermann Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Karl S Lang
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
45
|
Louie DAP, Liao S. Lymph Node Subcapsular Sinus Macrophages as the Frontline of Lymphatic Immune Defense. Front Immunol 2019; 10:347. [PMID: 30891035 PMCID: PMC6413714 DOI: 10.3389/fimmu.2019.00347] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Lymphatic vessels collect and transport lymph and pathogens to the draining lymph node (LN) to generate proper immune protection. A layer of macrophages that strategically line the LN subcapsular sinus (SCS) is directly exposed to the afferent lymph and are denoted as SCS macrophages. These macrophages are the frontline of immune defense that interact with lymph-borne antigens. The importance of these macrophages in limiting the spread of pathogens has been demonstrated in both viral and bacterial infection. In anti-microbial responses, these macrophages can directly or indirectly activate other LN innate immune cells to fight against pathogens, as well as activate T cells or B cells for adaptive immunity. As the first layer of immune cells embracing the tumor-derived antigens, SCS macrophages also actively participate in cancer immune regulation. Recent studies have shown that the LNs' SCS macrophage layer is interrupted in disease models. Despite their importance in fighting the spread of pathogens and in activating anti-tumor immunity, the mechanism and the immunological functional consequences for their disruption are not well-understood. Understanding the mechanism of these macrophages will enhance their capability for therapeutic targeting.
Collapse
Affiliation(s)
- Dante Alexander Patrick Louie
- Department of Microbiology, Immunology and Infectious Diseases, The Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, The Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
46
|
Behnke K, Zhuang Y, Xu HC, Sundaram B, Reich M, Shinde PV, Huang J, Modares NF, Tumanov AV, Polz R, Scheller J, Ware CF, Pfeffer K, Keitel V, Häussinger D, Pandyra AA, Lang KS, Lang PA. B Cell-Mediated Maintenance of Cluster of Differentiation 169-Positive Cells Is Critical for Liver Regeneration. Hepatology 2018; 68:2348-2361. [PMID: 29742809 PMCID: PMC6587814 DOI: 10.1002/hep.30088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
The liver has an extraordinary capacity to regenerate through activation of key molecular pathways. However, central regulators controlling liver regeneration remain insufficiently studied. Here, we show that B cell-deficient animals failed to induce sufficient liver regeneration after partial hepatectomy (PHx). Consistently, adoptive transfer of B cells could rescue defective liver regeneration. B cell-mediated lymphotoxin beta production promoted recovery from PHx. Absence of B cells coincided with loss of splenic cluster of differentiation 169-positive (CD169+ ) macrophages. Moreover, depletion of CD169+ cells resulted in defective liver regeneration and decreased survival, which was associated with reduced hepatocyte proliferation. Mechanistically, CD169+ cells contributed to liver regeneration by inducing hepatic interleukin-6 (IL-6) production and signal transducer and activator of transcription 3 activation. Accordingly, treatment of CD169+ cell-depleted animals with IL-6/IL-6 receptor rescued liver regeneration and severe pathology following PHx. Conclusion: We identified CD169+ cells to be a central trigger for liver regeneration, by inducing key signaling pathways important for liver regeneration.
Collapse
Affiliation(s)
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty
| | - Haifeng C. Xu
- Department of Molecular Medicine II, Medical Faculty
| | | | - Maria Reich
- Department of Gastroenterology, Hepatology, and Infectious Diseases and
| | | | - Jun Huang
- Department of Molecular Medicine II, Medical Faculty
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology & Molecular GeneticsUniversity of Texas Health Science CenterSan AntonioTX
| | - Robin Polz
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Research CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCA
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital HygieneUniversity Hospital, Heinrich Heine UniversityDüsseldorfGermany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases and
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases and
| | | | - Karl S. Lang
- Institute of Immunology, Medical FacultyUniversity of Duisburg‐EssenEssenGermany
| | | |
Collapse
|
47
|
Moran I, Grootveld AK, Nguyen A, Phan TG. Subcapsular Sinus Macrophages: The Seat of Innate and Adaptive Memory in Murine Lymph Nodes. Trends Immunol 2018; 40:35-48. [PMID: 30502023 DOI: 10.1016/j.it.2018.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023]
Abstract
Subcapsular sinus (SCS) macrophages are strategically positioned at the lymph-tissue interface in the lymph node to trap and present antigen to B cells. Recent murine data has shown that SCS macrophages also prevent the systemic spread of lymph-borne pathogens and are capable of activating a diverse range of innate effector and adaptive memory cells, including follicular memory T cells and memory B cells (Bmems), that are either pre-positioned or rapidly recruited to the subcapsular niche following infection and inflammation. Furthermore, Bmems are rapidly reactivated to differentiate into plasma cells in subcapsular proliferative foci (SPF). Thus, understanding how SCS macrophages coordinate both innate and adaptive memory responses in the subcapsular niche can provide new opportunities to bolster immunity against pathogens and cancer.
Collapse
Affiliation(s)
- Imogen Moran
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Abigail K Grootveld
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; Department of Biology and Biochemistry, Faculty of Science, University of Bath, Bath, UK
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
48
|
Thierry GR, Kuka M, De Giovanni M, Mondor I, Brouilly N, Iannacone M, Bajénoff M. The conduit system exports locally secreted IgM from lymph nodes. J Exp Med 2018; 215:2972-2983. [PMID: 30429248 PMCID: PMC6279403 DOI: 10.1084/jem.20180344] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023] Open
Abstract
IgM provides early protection against pathogens. How IgM is exported out of lymph nodes remains unknown. Thierry et al. report that B cells utilize a system of paracortical conduits to rapidly export their IgM to the periphery. Immunoglobulin M (IgM) is the first type of antibody produced during acute infections and thus provides an early line of specific defense against pathogens. Being produced in secondary lymphoid organs, IgM must rapidly be exported to the blood circulation. However, it is currently unknown how such large pentameric molecules are released from lymph nodes (LNs). Here, we show that upon immunization, IgM transiently gains access to the luminal side of the conduit system, a reticular infrastructure enabling fast delivery of tissue-derived soluble substances to the LN parenchyma. Using microinjections of purified IgM, we demonstrate that conduit-associated IgM is delivered by neither the afferent lymph nor the blood, but is locally conveyed by conduits. Exploiting in vivo models, we further demonstrate that conduit-associated IgM is locally and transiently produced by activated, antigen-specific B cells migrating in the T cell zone. Thus, our study reveals that the conduit system is coopted by B cells to rapidly export secreted IgM out of LNs.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Isabelle Mondor
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Nicolas Brouilly
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Marc Bajénoff
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
49
|
Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol 2018; 9:2472. [PMID: 30416504 PMCID: PMC6212557 DOI: 10.3389/fimmu.2018.02472] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973, there has been an ongoing debate to what extent macrophages and DCs are related and perform different functions. The current view is that macrophages and DCs originate from different lineages and that only DCs have the capacity to initiate adaptive immunity. Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+ macrophages have been shown to act in concert with DCs to promote or suppress adaptive immune responses for pathogens and self-antigens, respectively. Accordingly, we propose a functional alliance between CD169+ macrophages and DCs in which a division of tasks is established. CD169+ macrophages are responsible for the capture of pathogens and are frequently the first cell type infected and thereby provide a confined source of antigen. Subsequently, cross-presenting DCs interact with these antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The cross-priming of T cells by DCs is enhanced by the localized production of type I interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs) that induces DC maturation. The interaction between CD169+ macrophages and DCs appears not only to be essential for immune responses against pathogens, but also plays a role in the induction of self-tolerance and immune responses against cancer. In this review we will discuss the studies that demonstrate the collaboration between CD169+ macrophages and DCs in adaptive immunity.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Lopez-Venegas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
A Single Locus Controls Interferon Gamma-Independent Antiretroviral Neutralizing Antibody Responses. J Virol 2018; 92:JVI.00725-18. [PMID: 29875252 DOI: 10.1128/jvi.00725-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 11/20/2022] Open
Abstract
An essential step in the development of effective antiviral humoral responses is cytokine-triggered class switch recombination resulting in the production of antibodies of a specific isotype. Most viral and parasitic infections in mice induce predominantly IgG2a-specific antibody responses that are stimulated by interferon gamma (IFN-γ). However, in some mice deficient in IFN-γ, class switching to IgG2a antibodies is relatively unaffected, indicating that another signal(s) can be generated upon viral or parasitic infections that trigger this response. Here, we found that a single recessive locus, provisionally called IFN-γ-independent IgG2a (Igii), confers the ability to produce IFN-γ-independent production of IgG2a antibodies upon retroviral infection. The Igii locus was mapped to chromosome 9 and was found to function in the radiation-resistant compartment. Thus, our data implicate nonhematopoietic cells in activation of antiviral antibody responses in the absence of IFN-γ.IMPORTANCE Understanding the signals that stimulate antibody production and class switch recombination to specific antibody isotypes is crucial for the development of novel vaccines and adjuvants. While an interferon gamma-mediated switch to the IgG2a isotype upon viral infection in mice has been well established, this investigation reveals a noncanonical, interferon gamma-independent pathway for antiretroviral antibody production and IgG2a class switch recombination that is controlled by a single recessive locus. Furthermore, this study indicates that the radiation-resistant compartment can direct antiviral antibody responses, suggesting that detection of infection by nonhematopoietic cells is involved is stimulating adaptive immunity.
Collapse
|