1
|
Kronenberg M, Ascui G. The α glycolipid rules the NKT cell TCR. J Exp Med 2025; 222:e20242099. [PMID: 39714312 DOI: 10.1084/jem.20242099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In this issue of JEM, Hosono et al. (https://doi.org/10.1084/jem.20240728) characterize a putative self- glycolipid that engages the iNKT cell TCR when bound to CD1d. The expression and distribution of this compound helps to explain some of the unusual properties of invariant NKT cells.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- La Jolla Institute for Immunology , La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Ascui
- La Jolla Institute for Immunology , La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Hosono Y, Tomiyasu N, Kasai H, Ishikawa E, Takahashi M, Imamura A, Ishida H, Compostella F, Kida H, Kumanogoh A, Bamba T, Izumi Y, Yamasaki S. Identification of α-galactosylceramide as an endogenous mammalian antigen for iNKT cells. J Exp Med 2025; 222:e20240728. [PMID: 39704712 DOI: 10.1084/jem.20240728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are unconventional T cells recognizing lipid antigens in a CD1d-restricted manner. Among these lipid antigens, α-galactosylceramide (α-GalCer), which was originally identified in marine sponges, is the most potent antigen. Although the presence of α-anomeric hexosylceramide and microbiota-derived branched α-GalCer is reported, antigenic α-GalCer has not been identified in mammals. Here, we developed a high-resolution separation and detection system, supercritical fluid chromatography tandem mass spectrometry (SFC/MS/MS), that can discriminate hexosylceramide diastereomers (α-GalCer, α-GlcCer, β-GalCer, or β-GlcCer). The B16 melanoma tumor cell line does not activate iNKT cells; however, ectopic expression of CD1d was sufficient to activate iNKT cells without adding antigens. B16 melanoma was unlikely to generate iNKT cell antigens; instead, antigen activity was detected in cell culture serum. Activity-based purification and SFC/MS/MS identified dihydrosphingosine-based saturated α-GalCer as an antigenic component in serum, bile, and lymphoid tissues. These results show the first evidence for the presence of potent antigenic α-GalCer in mammals.
Collapse
Affiliation(s)
- Yuki Hosono
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Kasai
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research, Gifu University , Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research, Gifu University , Gifu, Japan
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
- Center for Advanced Modalities and DDS, Osaka University , Suita, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
- Center for Advanced Modalities and DDS, Osaka University , Suita, Japan
| |
Collapse
|
3
|
Rohokale R, Mane R, Malet L, Dessain S, Guo Z. Synthesis of Spin-Labeled α-/β-Galactosylceramides and Glucosylceramides as Electron Paramagnetic Probes. J Org Chem 2025; 90:877-888. [PMID: 39680867 PMCID: PMC11756922 DOI: 10.1021/acs.joc.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
α-/β-Galactosylceramide (GalCer) and glucosylceramide (GlcCer) derivatives having a radical label at the 6-C-position suitable for electron paramagnetic resonance spectroscopic studies were synthesized by a diversity-oriented strategy that is highlighted by the efficient glycosylation of a lipid precursor and late-stage ceramide assembly to enable lipid diversification. The strategy was also utilized to synthesize natural α-/β-GalCers and GlcCers. Furthermore, the involved azido-intermediates are flexible platforms to access various other GalCer and GlcCer derivatives.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rajendra Mane
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lucie Malet
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Selena Dessain
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
5
|
Cheng TY, Praveena T, Govindarajan S, Almeida CF, Pellicci DG, Arkins WC, Van Rhijn I, Venken K, Elewaut D, Godfrey DI, Rossjohn J, Moody DB. Lipidomic scanning of self-lipids identifies headless antigens for natural killer T cells. Proc Natl Acad Sci U S A 2024; 121:e2321686121. [PMID: 39141352 PMCID: PMC11348285 DOI: 10.1073/pnas.2321686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024] Open
Abstract
To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.
Collapse
Affiliation(s)
- Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Srinath Govindarajan
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Catarina F. Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Daniel G. Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Wellington C. Arkins
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Koen Venken
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CardiffCF14 4XN, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| |
Collapse
|
6
|
Lin Q, Kuypers M, Baglaenko Y, Cao E, Hezaveh K, Despot T, de Amat Herbozo C, Cruz Tleugabulova M, Umaña JM, McGaha TL, Philpott DJ, Mallevaey T. The intestinal microbiota modulates the transcriptional landscape of iNKT cells at steady-state and following antigen exposure. Mucosal Immunol 2024; 17:226-237. [PMID: 38331095 DOI: 10.1016/j.mucimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Invariant Natural Killer T (iNKT) cells are unconventional T cells that respond to microbe-derived glycolipid antigens. iNKT cells exert fast innate effector functions that regulate immune responses in a variety of contexts, including during infection, cancer, or inflammation. The roles these unconventional T cells play in intestinal inflammation remain poorly defined and vary based on the disease model and species. Our previous work suggested that the gut microbiota influenced iNKT cell functions during dextran sulfate sodium-induced colitis in mice. This study, shows that iNKT cell homeostasis and response following activation are altered in germ-free mice. Using prenatal fecal transplant in specific pathogen-free mice, we show that the transcriptional signatures of iNKT cells at steady state and following αGC-mediated activation in vivo are modulated by the microbiota. Our data suggest that iNKT cells sense the microbiota at homeostasis independently of their T cell receptors. Finally, iNKT cell transcriptional signatures are different in male and female mice. Collectively, our findings suggest that sex and the intestinal microbiota are important factors that regulate iNKT cell homeostasis and responses. A deeper understanding of microbiota-iNKT cell interactions and the impact of sex could improve the development of iNKT cell-based immunotherapies.
Collapse
Affiliation(s)
- Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Center for Autoimmune Genomics and Etiology, Division of Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Eric Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kebria Hezaveh
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tijana Despot
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Díaz-Basabe A, Lattanzi G, Perillo F, Amoroso C, Baeri A, Farini A, Torrente Y, Penna G, Rescigno M, Ghidini M, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes 2024; 16:2388801. [PMID: 39132842 PMCID: PMC11321422 DOI: 10.1080/19490976.2024.2388801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.
Collapse
Affiliation(s)
- Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
8
|
Mendivelso González DF, Sánchez Villalobos SA, Ramos AE, Montero Ovalle WJ, Serrano López ML. Single Nucleotide Polymorphisms Associated with Prostate Cancer Progression: A Systematic Review. Cancer Invest 2024; 42:75-96. [PMID: 38055319 DOI: 10.1080/07357907.2023.2291776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND New biomarkers of progression in patients with prostate cancer (PCa) are needed to improve their classification and clinical management. This systematic review investigated the relationship between single nucleotide polymorphisms (SNPs) and PCa progression. METHODS A keyword search was performed in Pubmed, EMBASE, Scopus, Web of Science, and Cochrane for publications between 2007 and 2022. We included articles with adjusted and significant associations, a median follow-up greater than or equal to 24 months, patients taken to radical prostatectomy (RP) as a first therapeutic option, and results presented based on biochemical recurrence (BCR). RESULTS In the 27 articles selected, 73 SNPs were identified in 39 genes, organized in seven functional groups. Of these, 50 and 23 SNPs were significantly associated with a higher and lower risk of PCa progression, respectively. Likewise, four haplotypes were found to have a significant association with PCa progression. CONCLUSION This article highlights the importance of SNPs as potential markers of PCa progression and their possible functional relationship with some genes relevant to its development and progression. However, most variants were identified only in cohorts from two countries; no additional studies reproduce these findings.
Collapse
Affiliation(s)
| | | | | | | | - Martha Lucía Serrano López
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
9
|
Abstract
Natural killer T (NKT) cells are a population of innate-like T cells capable of enhancing both innate and adaptive immune responses. Co-delivering an NKT cell agonist and antigen can provide molecular signals to antigen-presenting cells, such as dendritic and B cells, that facilitate strong antigen-specific adaptive immune responses. Accordingly, there has been a significant number of developmental NKT cell-dependent vaccine therapies developed, particularly in the last decade, with many incorporating cancer antigens. In this review, we summarize studies that chemically conjugate the NKT cell agonist and antigen as an effective strategy for agonist-antigen co-delivery to drive antitumor responses.
Collapse
Affiliation(s)
- Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Ganley M, Holz LE, Minnell JJ, de Menezes MN, Burn OK, Poa KCY, Draper SL, English K, Chan STS, Anderson RJ, Compton BJ, Marshall AJ, Cozijnsen A, Chua YC, Ge Z, Farrand KJ, Mamum JC, Xu C, Cockburn IA, Yui K, Bertolino P, Gras S, Le Nours J, Rossjohn J, Fernandez-Ruiz D, McFadden GI, Ackerley DF, Painter GF, Hermans IF, Heath WR. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat Immunol 2023; 24:1487-1498. [PMID: 37474653 DOI: 10.1038/s41590-023-01562-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
Collapse
Affiliation(s)
- Mitch Ganley
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kean Chan Yew Poa
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kieran English
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - John C Mamum
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Calvin Xu
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katsuyuki Yui
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Asressu KH, Zhang Q. Detection and Semi-quantification of Lipids on High-Performance Thin-Layer Chromatography Plate using Ceric Ammonium Molybdate Staining. EUR J LIPID SCI TECH 2023; 125:2200096. [PMID: 36818638 PMCID: PMC9937734 DOI: 10.1002/ejlt.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/05/2022]
Abstract
It is desirable to quickly check the composition of lipids in small size samples, but achieving this is challenging using the existing staining methods. Herein, we developed a highly sensitive and semi-quantitative method for analysis of lipid samples with ceric ammonium molybdate (CAM) staining. The CAM detection method was systematically evaluated with a wide range of lipid classes including phospholipids, sphingolipids, glycerolipids, fatty acids (FA) and sterols, demonstrating high sensitivity, stability, and overall efficiency. Additionally, CAM staining provides a clean yellow background in high performance thin-layer chromatography (HPTLC) which facilitates quantification of lipids using image processing software. Lipids can be stained with CAM reagent regardless of their head group types, position of the carbon-carbon double bonds, geometric isomerism and the variation in the length of FA chain, but staining is mostly affected by the degree of unsaturation of the FA backbone. The mechanism of the CAM staining of lipids was proposed on principles of the reduction-oxidation reaction, in which Mo(VI) oxidizes the unsaturated lipids into carbonyl compounds on the HPTLC plate upon heating, while itself being reduced to Mo(IV). This method was applied for the separation, identification, and quantification of lipid extracts from porcine brain.
Collapse
Affiliation(s)
- Kesatebrhan Haile Asressu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
16
|
Van Kaer L, Postoak JL, Song W, Wu L. Innate and Innate-like Effector Lymphocytes in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:199-207. [PMID: 35821102 PMCID: PMC9285656 DOI: 10.4049/jimmunol.2200074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 04/20/2023]
Abstract
Lymphocytes can be functionally partitioned into subsets belonging to the innate or adaptive arms of the immune system. Subsets of innate and innate-like lymphocytes may or may not express Ag-specific receptors of the adaptive immune system, yet they are poised to respond with innate-like speed to pathogenic insults but lack the capacity to develop classical immunological memory. These lymphocyte subsets display a number of common properties that permit them to integrate danger and stress signals dispatched by innate sensor cells to facilitate the generation of specialized effector immune responses tailored toward specific pathogens or other insults. In this review, we discuss the functions of distinct subsets of innate and innate-like lymphocytes. A better understanding of the mechanisms by which these cells are activated in different contexts, their interactions with other immune cells, and their role in health and disease may inform the development of new or improved immunotherapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - J Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
17
|
Umeshappa CS, Solé P, Yamanouchi J, Mohapatra S, Surewaard BGJ, Garnica J, Singha S, Mondal D, Cortés-Vicente E, D’Mello C, Mason A, Kubes P, Serra P, Yang Y, Santamaria P. Re-programming mouse liver-resident invariant natural killer T cells for suppressing hepatic and diabetogenic autoimmunity. Nat Commun 2022; 13:3279. [PMID: 35672409 PMCID: PMC9174212 DOI: 10.1038/s41467-022-30759-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractInvariant NKT (iNKT) cells comprise a heterogeneous group of non-circulating, tissue-resident T lymphocytes that recognize glycolipids, including alpha-galactosylceramide (αGalCer), in the context of CD1d, but whether peripheral iNKT cell subsets are terminally differentiated remains unclear. Here we show that mouse and human liver-resident αGalCer/CD1d-binding iNKTs largely correspond to a novel Zbtb16+Tbx21+Gata3+MaflowRorc– subset that exhibits profound transcriptional, phenotypic and functional plasticity. Repetitive in vivo encounters of these liver iNKT (LiNKT) cells with intravenously delivered αGalCer/CD1d-coated nanoparticles (NP) trigger their differentiation into immunoregulatory, IL-10+IL-21-producing Zbtb16highMafhighTbx21+Gata3+Rorc– cells, termed LiNKTR1, expressing a T regulatory type 1 (TR1)-like transcriptional signature. This response is LiNKT-specific, since neither lung nor splenic tissue-resident iNKT cells from αGalCer/CD1d-NP-treated mice produce IL-10 or IL-21. Additionally, these LiNKTR1 cells suppress autoantigen presentation, and recognize CD1d expressed on conventional B cells to induce IL-10+IL-35-producing regulatory B (Breg) cells, leading to the suppression of liver and pancreas autoimmunity. Our results thus suggest that LiNKT cells are plastic for further functional diversification, with such plasticity potentially targetable for suppressing tissue-specific inflammatory phenomena.
Collapse
|
18
|
Baranek T, de Amat Herbozo C, Mallevaey T, Paget C. Deconstructing iNKT cell development at single-cell resolution. Trends Immunol 2022; 43:503-512. [PMID: 35654639 DOI: 10.1016/j.it.2022.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells are increasingly regarded as disease biomarkers and immunotherapeutic targets. However, a greater understanding of their biology is necessary to effectively target these cells in the clinic. The discovery of iNKT1/2/17 cell effector subsets was a milestone in our understanding of iNKT cell development and function. Recent transcriptomic studies have uncovered an even greater heterogeneity and challenge our understanding of iNKT cell ontogeny and effector differentiation. We propose a refined model whereby iNKT cells differentiate through a dynamic and continuous instructive process that requires the accumulation and integration of various signals within the thymus or peripheral tissues. Within this framework, we question the existence of true iNKT2 cells and discuss the parallels between mouse and human iNKT cells.
Collapse
Affiliation(s)
- Thomas Baranek
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France
| | - Carolina de Amat Herbozo
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thierry Mallevaey
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France.
| |
Collapse
|
19
|
Ustjanzew A, Sencio V, Trottein F, Faber J, Sandhoff R, Paret C. Interaction between Bacteria and the Immune System for Cancer Immunotherapy: The α-GalCer Alliance. Int J Mol Sci 2022; 23:ijms23115896. [PMID: 35682578 PMCID: PMC9180740 DOI: 10.3390/ijms23115896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022] Open
Abstract
Non-conventional T cells, such as γδ T and invariant natural killer T (iNKT) cells, are emerging players in fighting cancer. Alpha-galactosylceramide (α-GalCer) is used as an exogenous ligand to activate iNKT cells. Human cells don’t have a direct pathway producing α-GalCer, which, however, can be produced by bacteria. We searched the literature for bacteria strains that are able to produce α-GalCer and used available sequencing data to analyze their presence in human tumor tissues and their association with survival. The modulatory effect of antibiotics on the concentration of α-GalCer was analyzed in mice. The human gut bacteria Bacteroides fragilis, Bacteroides vulgatus, and Prevotella copri produce α-GalCer structures that are able to activate iNKT cells. In mice, α-GalCer was depleted upon treatment with vancomycin. The three species were detected in colon adenocarcinoma (COAD) and rectum adenocarcinoma tissues, and Prevotella copri was also detected in bone tumors and glioblastoma tissues. Bacteroides vulgatus in COAD tissues correlated with better survival. In conclusion, α-GalCer-producing bacteria are part of the human gut microbiome and can infiltrate tumor tissues. These results suggest a new mechanism of interaction between bacteria and immune cells: α-GalCer produced by bacteria may activate non-conventional T cells in tumor tissues, where they can exert a direct or indirect anti-tumor activity.
Collapse
Affiliation(s)
- Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France; (V.S.); (F.T.)
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France; (V.S.); (F.T.)
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
- Correspondence:
| |
Collapse
|
20
|
Delfanti G, Dellabona P, Casorati G, Fedeli M. Adoptive Immunotherapy With Engineered iNKT Cells to Target Cancer Cells and the Suppressive Microenvironment. Front Med (Lausanne) 2022; 9:897750. [PMID: 35615083 PMCID: PMC9125179 DOI: 10.3389/fmed.2022.897750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are T lymphocytes expressing a conserved semi-invariant TCR specific for lipid antigens (Ags) restricted for the monomorphic MHC class I-related molecule CD1d. iNKT cells infiltrate mouse and human tumors and play an important role in the immune surveillance against solid and hematological malignancies. Because of unique functional features, they are attractive platforms for adoptive cells immunotherapy of cancer compared to conventional T cells. iNKT cells can directly kill CD1d-expressing cancer cells, but also restrict immunosuppressive myelomonocytic populations in the tumor microenvironment (TME) via CD1d-cognate recognition, promoting anti-tumor responses irrespective of the CD1d expression by cancer cells. Moreover, iNKT cells can be adoptively transferred across MHC barriers without risk of alloreaction because CD1d molecules are identical in all individuals, in addition to their ability to suppress graft vs. host disease (GvHD) without impairing the anti-tumor responses. Within this functional framework, iNKT cells are successfully engineered to acquire a second antigen-specificity by expressing recombinant TCRs or Chimeric Antigen Receptor (CAR) specific for tumor-associated antigens, enabling the direct targeting of antigen-expressing cancer cells, while maintaining their CD1d-dependent functions. These new evidences support the exploitation of iNKT cells for donor unrestricted, and possibly off the shelf, adoptive cell therapies enabling the concurrent targeting of cancer cells and suppressive microenvironment.
Collapse
Affiliation(s)
- Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Gloria Delfanti
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Giulia Casorati
| | - Maya Fedeli
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Maya Fedeli
| |
Collapse
|
21
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
22
|
Lantz O, Teyton L. Identification of T cell antigens in the 21st century, as difficult as ever. Semin Immunol 2022; 60:101659. [PMID: 36183497 PMCID: PMC10332289 DOI: 10.1016/j.smim.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identifying antigens recognized by T cells is still challenging, particularly for innate like T cells that do not recognize peptides but small metabolites or lipids in the context of MHC-like molecules or see non-MHC restricted antigens. The fundamental reason for this situation is the low affinity of T cell receptors for their ligands coupled with a level of degeneracy that makes them bind to similar surfaces on antigen presenting cells. Herein we will describe non-exhaustively some of the methods that were used to identify peptide antigens and briefly mention the high throughput methods more recently proposed for that purpose. We will then present how the molecules recognized by innate like T cells (NKT, MAIT and γδ T cells) were discovered. We will show that serendipity was instrumental in many cases.
Collapse
Affiliation(s)
- Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris 75005, France
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Krovi SH, Loh L, Spengler A, Brunetti T, Gapin L. Current insights in mouse iNKT and MAIT cell development using single cell transcriptomics data. Semin Immunol 2022; 60:101658. [PMID: 36182863 DOI: 10.1016/j.smim.2022.101658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023]
Abstract
Innate T (Tinn) cells are a collection of T cells with important regulatory functions that have a crucial role in immunity towards tumors, bacteria, viruses, and in cell-mediated autoimmunity. In mice, the two main αβ Tinn cell subsets include the invariant NKT (iNKT) cells that recognize glycolipid antigens presented by non-polymorphic CD1d molecules and the mucosal associated invariant T (MAIT) cells that recognize vitamin B metabolites presented by the non-polymorphic MR1 molecules. Due to their ability to promptly secrete large quantities of cytokines either after T cell antigen receptor (TCR) activation or upon exposure to tissue- and antigen-presenting cell-derived cytokines, Tinn cells are thought to act as a bridge between the innate and adaptive immune systems and have the ability to shape the overall immune response. Their swift response reflects the early acquisition of helper effector programs during their development in the thymus, independently of pathogen exposure and prior to taking up residence in peripheral tissues. Several studies recently profiled, in an unbiased manner, the transcriptomes of mouse thymic iNKT and MAIT cells at the single cell level. Based on these data, we re-examine in this review how Tinn cells develop in the mouse thymus and undergo effector differentiation.
Collapse
Affiliation(s)
| | - Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
24
|
Bharadwaj NS, Gumperz JE. Harnessing invariant natural killer T cells to control pathological inflammation. Front Immunol 2022; 13:998378. [PMID: 36189224 PMCID: PMC9519390 DOI: 10.3389/fimmu.2022.998378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate T cells that are recognized for their potent immune modulatory functions. Over the last three decades, research in murine models and human observational studies have revealed that iNKT cells can act to limit inflammatory pathology in a variety of settings. Since iNKT cells are multi-functional and can promote inflammation in some contexts, understanding the mechanistic basis for their anti-inflammatory effects is critical for effectively harnessing them for clinical use. Two contrasting mechanisms have emerged to explain the anti-inflammatory activity of iNKT cells: that they drive suppressive pathways mediated by other regulatory cells, and that they may cytolytically eliminate antigen presenting cells that promote excessive inflammatory responses. How these activities are controlled and separated from their pro-inflammatory functions remains a central question. Murine iNKT cells can be divided into four functional lineages that have either pro-inflammatory (NKT1, NKT17) or anti-inflammatory (NKT2, NKT10) cytokine profiles. However, in humans these subsets are not clearly evident, and instead most iNKT cells that are CD4+ appear oriented towards polyfunctional (TH0) cytokine production, while CD4- iNKT cells appear more predisposed towards cytolytic activity. Additionally, structurally distinct antigens have been shown to induce TH1- or TH2-biased responses by iNKT cells in murine models, but human iNKT cells may respond to differing levels of TCR stimulation in a way that does not neatly separate TH1 and TH2 cytokine production. We discuss the implications of these differences for translational efforts focused on the anti-inflammatory activity of iNKT cells.
Collapse
Affiliation(s)
- Nikhila S Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
25
|
Development of αβ T Cells with Innate Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:149-160. [DOI: 10.1007/978-981-16-8387-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Abstract
Glycosphingolipids (GSLs) are a subclass of glycolipids made of a glycan and a ceramide that, in turn, is composed of a sphingoid base moiety and a fatty acyl group. GSLs represent the vast majority of glycolipids in eukaryotes, and as an essential component of the cell membrane, they play an important role in many biological and pathological processes. Therefore, they are useful targets for the development of novel diagnostic and therapeutic methods for human diseases. Since sphingosine was first described by J. L. Thudichum in 1884, several hundred GSL species, not including their diverse lipid forms that can further amplify the number of individual GSLs by many folds, have been isolated from natural sources and structurally characterized. This review tries to provide a comprehensive survey of the major GSL species, especially those with distinct glycan structures and modification patterns, and the ceramides with unique modifications of the lipid chains, that have been discovered to date. In particular, this review is focused on GSLs from eukaryotic species. This review has listed 251 GSL glycans with different linkages, 127 glycans with unique modifications, 46 sphingoids, and 43 fatty acyl groups. It should be helpful for scientists who are interested in GSLs, from isolation and structural analyses to chemical and enzymatic syntheses, as well as their biological studies and applications.
Collapse
|
27
|
Miko E, Barakonyi A, Meggyes M, Szereday L. The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity. Biomedicines 2021; 9:1901. [PMID: 34944717 PMCID: PMC8698984 DOI: 10.3390/biomedicines9121901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
NKT cells represent a small but significant immune cell population as being a part of and bridging innate and adaptive immunity. Their ability to exert strong immune responses via cytotoxicity and cytokine secretion makes them significant immune effectors. Since pregnancy requires unconventional maternal immunity with a tolerogenic phenotype, investigation of the possible role of NKT cells in materno-fetal immune tolerance mechanisms is of particular importance. This review aims to summarize and organize the findings of previous studies in this field. Data and information about NKT cells from mice and humans will be presented, focusing on NKT cells characteristics during normal pregnancy in the periphery and at the materno-fetal interface and their possible involvement in female reproductive failure and pregnancy complications with an immunological background.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| |
Collapse
|
28
|
Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021; 11:722999. [PMID: 34881173 PMCID: PMC8645998 DOI: 10.3389/fonc.2021.722999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens or genotoxic agents continuously affect the human body. Acute inflammatory reaction induced by a non-sterile or sterile environment is triggered for the efficient elimination of insults that caused the damage. According to the insult, pathogen-associated molecular patterns, damage-associated molecular patterns, and homeostasis-altering molecular processes are released to facilitate the arrival of tissue resident and circulating cells to the injured zone to promote harmful agent elimination and tissue regeneration. However, when inflammation is maintained, a chronic phenomenon is induced, in which phagocytic cells release toxic molecules damaging the harmful agent and the surrounding healthy tissues, thereby inducing DNA lesions. In this regard, chronic inflammation has been recognized as a risk factor of cancer development by increasing the genomic instability of transformed cells and by creating an environment containing proliferation signals. Based on the cancer immunoediting concept, a rigorous and regulated inflammation process triggers participation of innate and adaptive immune responses for efficient elimination of transformed cells. When immune response does not eliminate all transformed cells, an equilibrium phase is induced. Therefore, excessive inflammation amplifies local damage caused by the continuous arrival of inflammatory/immune cells. To regulate the overstimulation of inflammatory/immune cells, a network of mechanisms that inhibit or block the cell overactivity must be activated. Transformed cells may take advantage of this process to proliferate and gradually grow until they become preponderant over the immune cells, preserving, increasing, or creating a microenvironment to evade the host immune response. In this microenvironment, tumor cells resist the attack of the effector immune cells or instruct them to sustain tumor growth and development until its clinical consequences. With tumor development, evolving, complex, and overlapping microenvironments are arising. Therefore, a deeper knowledge of cytokine, immune, and tumor cell interactions and their role in the intricated process will impact the combination of current or forthcoming therapies.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Manuel Meneses-Flores
- Departamento de Patología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Lorenzo Islas-Vazquez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
29
|
Vogt S, Mattner J. NKT Cells Contribute to the Control of Microbial Infections. Front Cell Infect Microbiol 2021; 11:718350. [PMID: 34595131 PMCID: PMC8477047 DOI: 10.3389/fcimb.2021.718350] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Innate (-like) T lymphocytes such as natural killer T (NKT) cells play a pivotal role in the recognition of microbial infections and their subsequent elimination. They frequently localize to potential sites of pathogen entry at which they survey extracellular and intracellular tissue spaces for microbial antigens. Engagement of their T cell receptors (TCRs) induces an explosive release of different cytokines and chemokines, which often pre-exist as constitutively expressed gene transcripts in NKT cells and underlie their poised effector state. Thus, NKT cells regulate immune cell migration and activation and subsequently, bridge innate and adaptive immune responses. In contrast to conventional T cells, which react to peptide antigens, NKT cells recognize lipids presented by the MHC class I like CD1d molecule on antigen presenting cells (APCs). Furthermore, each NKT cell TCR can recognize various antigen specificities, whereas a conventional T lymphocyte TCR reacts mostly only to one single antigen. These lipid antigens are either intermediates of the intracellular APC`s-own metabolism or originate from the cell wall of different bacteria, fungi or protozoan parasites. The best-characterized subset, the type 1 NKT cell subset expresses a semi-invariant TCR. In contrast, the TCR repertoire of type 2 NKT cells is diverse. Furthermore, NKT cells express a panoply of inhibitory and activating NK cell receptors (NKRs) that contribute to their primarily TCR-mediated rapid, innate like immune activation and even allow an adaption of their immune response in an adoptive like manner. Dueto their primary localization at host-environment interfaces, NKT cells are one of the first immune cells that interact with signals from different microbial pathogens. Vice versa, the mutual exchange with local commensal microbiota shapes also the biology of NKT cells, predominantly in the gastrointestinal tract. Following infection, two main signals drive the activation of NKT cells: first, cognate activation upon TCR ligation by microbial or endogenous lipid antigens; and second, bystander activation due to cytokines. Here we will discuss the role of NKT cells in the control of different microbial infections comparing pathogens expressing lipid ligands in their cell walls to infectious agents inducing endogenous lipid antigen presentation by APCs.
Collapse
Affiliation(s)
- Stefan Vogt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
31
|
Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy. Nat Commun 2021; 12:1201. [PMID: 33619275 PMCID: PMC7900115 DOI: 10.1038/s41467-021-21480-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Glycolipids are complex glycoconjugates composed of a glycan headgroup and a lipid moiety. Their modular biosynthesis creates a vast amount of diverse and often isomeric structures, which fulfill highly specific biological functions. To date, no gold-standard analytical technique can provide a comprehensive structural elucidation of complex glycolipids, and insufficient tools for isomer distinction can lead to wrong assignments. Herein we use cryogenic gas-phase infrared spectroscopy to systematically investigate different kinds of isomerism in immunologically relevant glycolipids. We show that all structural features, including isomeric glycan headgroups, anomeric configurations and different lipid moieties, can be unambiguously resolved by diagnostic spectroscopic fingerprints in a narrow spectral range. The results allow for the characterization of isomeric glycolipid mixtures and biological applications. Glycolipids are glycoconjugates with important biological functions, but techniques for their analysis are deficient. Here, the authors report the use of cryogenic gas-phase infrared spectroscopy to investigate isomerism in a set of immunologically relevant glycolipids, and show that their structural features can be accurately resolved based on a narrow spectral fingerprint region.
Collapse
|
32
|
Joyce S, Okoye GD, Van Kaer L. Natural Killer T Lymphocytes Integrate Innate Sensory Information and Relay Context to Effector Immune Responses. Crit Rev Immunol 2021; 41:55-88. [PMID: 35381143 PMCID: PMC11078124 DOI: 10.1615/critrevimmunol.2021040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is now appreciated that a group of lymphoid lineage cells, collectively called innate-like effector lymphocytes, have evolved to integrate information relayed by the innate sensory immune system about the state of the local tissue environment and to pass on this context to downstream effector innate and adaptive immune responses. Thereby, innate functions engrained into such innate-like lymphoid lineage cells during development can control the quality and magnitude of an immune response to a tissue-altering pathogen and facilitate the formation of memory engrams within the immune system. These goals are accomplished by the innate lymphoid cells that lack antigen-specific receptors, γδ T cell receptor (TCR)-expressing T cells, and several αβ TCR-expressing T cell subsets-such as natural killer T cells, mucosal-associated invariant T cells, et cetera. Whilst we briefly consider the commonalities in the origins and functions of these diverse lymphoid subsets to provide context, the primary topic of this review is to discuss how the semi-invariant natural killer T cells got this way in evolution through lineage commitment and onward ontogeny. What emerges from this discourse is the question: Has a "limbic immune system" emerged (screaming quietly in plain sight!) out of what has been dubbed "in-betweeners"?
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
33
|
Anderson CK, Reilly SP, Brossay L. The Invariant NKT Cell Response Has Differential Signaling Requirements during Antigen-Dependent and Antigen-Independent Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:132-140. [PMID: 33229442 DOI: 10.4049/jimmunol.2000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Invariant NKT (iNKT) cells are an innate-like population characterized by their recognition of glycolipid Ags and rapid cytokine production upon activation. Unlike conventional T cells, which require TCR ligation, iNKT cells can also be stimulated independently of their TCR. This feature allows iNKT cells to respond even in the absence of glycolipid Ags, for example, during viral infections. Although the TCR-dependent and -independent activation of iNKT cells have been relatively well established, the exact contributions of IL-12, IL-18, and TLRs remain unclear for these two activation pathways. To definitively investigate how these components affect the direct and indirect stimulation of iNKT cells, we used mice deficient for either MyD88 or the IL-12Rβ2 in the T cell lineage. Using these tools, we demonstrate that IL-12, IL-18, and TLRs are completely dispensable for the TCR activation pathway when a strong agonist is used. In contrast, during murine CMV infection, when the TCR is not engaged, IL-12 signaling is essential, and TLR signaling is expendable. Importantly, to our knowledge, we discovered an intrinsic requirement for IL-18 signaling by splenic iNKT cells but not liver iNKT cells, suggesting that there might be diversity, even within the NKT1 population.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| |
Collapse
|
34
|
Perez C, Gruber I, Arber C. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Front Immunol 2020; 11:583716. [PMID: 33262761 PMCID: PMC7685996 DOI: 10.3389/fimmu.2020.583716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineered T cell therapies individually prepared for each patient with autologous T cells have recently changed clinical practice in the management of B cell malignancies. Even though CARs used to redirect polyclonal T cells to the tumor are not HLA restricted, CAR T cells are also characterized by their endogenous T cell receptor (TCR) repertoire. Tumor-antigen targeted TCR-based T cell therapies in clinical trials are thus far using “conventional” αβ-TCRs that recognize antigens presented as peptides in the context of the major histocompatibility complex. Thus, both CAR- and TCR-based adoptive T cell therapies (ACTs) are dictated by compatibility of the highly polymorphic HLA molecules between donors and recipients in order to avoid graft-versus-host disease and rejection. The development of third-party healthy donor derived well-characterized off-the-shelf cell therapy products that are readily available and broadly applicable is an intensive area of research. While genome engineering provides the tools to generate “universal” donor cells that can be redirected to cancers, we will focus our attention on third-party off-the-shelf strategies with T cells that are characterized by unique natural features and do not require genome editing for safe administration. Specifically, we will discuss the use of virus-specific T cells, lipid-restricted (CD1) T cells, MR1-restricted T cells, and γδ-TCR T cells. CD1- and MR1-restricted T cells are not HLA-restricted and have the potential to serve as a unique source of universal TCR sequences to be broadly applicable in TCR-based ACT as their targets are presented by the monomorphic CD1 or MR1 molecules on a wide variety of tumor types. For each cell type, we will summarize the stage of preclinical and clinical development and discuss opportunities and challenges to deliver off-the-shelf targeted cellular therapies against cancer.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Gruber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Front Cell Dev Biol 2020; 8:589799. [PMID: 33195253 PMCID: PMC7658261 DOI: 10.3389/fcell.2020.589799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane microdomains, also called lipid rafts, are areas on membrane enriched in glycolipids, sphingolipids, and cholesterol. Although membrane microdomains are thought to play key roles in many cellular functions, their structures, properties, and biological functions remain obscure. Cellular membranes contain several types of glycoproteins, glycolipids, and other lipids, including cholesterol, glycerophospholipids, and sphingomyelin. Depending on their physicochemical properties, especially the characteristics of their glycolipids, various microdomains form on these cell membranes, providing structural or functional contextures thought to be essential for biological activities. For example, the plasma membranes of human neutrophils are enriched in lactosylceramide (LacCer) and phosphatidylglucoside (PtdGlc), each of which forms different membrane microdomains with different surrounding molecules and is involved in different functions of neutrophils. Specifically, LacCer forms Lyn-coupled lipid microdomains, which mediate neutrophil chemotaxis, phagocytosis, and superoxide generation, whereas PtdGlc-enriched microdomains mediate neutrophil differentiation and spontaneous apoptosis. However, the mechanisms by which these glycolipids form different nano/meso microdomains and mediate their specialized functions remain incompletely understood. This review describes current understanding of the roles of glycolipids and sphingolipids in their enriched contextures on cellular membranes, including their mechanisms of facilitation and regulation of intracellular signaling. This review also introduces new concepts about the roles of glycolipid and sphingolipid-dependent contextures in immunological functions.
Collapse
Affiliation(s)
- Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| |
Collapse
|
36
|
Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson's disease. Mol Neurodegener 2020; 15:59. [PMID: 33069254 PMCID: PMC7568394 DOI: 10.1186/s13024-020-00408-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons of the nigrostriatal pathway and the formation of neuronal inclusions known as Lewy bodies. Chronic neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. Glycosphingolipids are a well-defined subclass of lipids that regulate crucial aspects of the brain function and recently emerged as potent regulators of the inflammatory process. Deregulation in glycosphingolipid metabolism has been reported in Parkinson's disease. However, the interrelationship between glycosphingolipids and neuroinflammation in Parkinson's disease is not well known. This review provides a thorough overview of the links between glycosphingolipid metabolism and immune-mediated mechanisms involved in neuroinflammation in Parkinson's disease. After a brief presentation of the metabolism and function of glycosphingolipids in the brain, it summarizes the evidences supporting that glycosphingolipids (i.e. glucosylceramides or specific gangliosides) are deregulated in Parkinson's disease. Then, the implications of these deregulations for neuroinflammation, based on data from human inherited lysosomal glycosphingolipid storage disorders and gene-engineered animal studies are outlined. Finally, the key molecular mechanisms by which glycosphingolipids could control neuroinflammation in Parkinson's disease are highlighted. These include inflammasome activation and secretion of pro-inflammatory cytokines, altered calcium homeostasis, changes in the blood-brain barrier permeability, recruitment of peripheral immune cells or production of autoantibodies.
Collapse
Affiliation(s)
- Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Elodie Cuvelier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Marie-Amandine Bonte
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
| | - Mazarine Desplanque
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | | |
Collapse
|
37
|
Lehmann N, Paret C, El Malki K, Russo A, Neu MA, Wingerter A, Seidmann L, Foersch S, Ziegler N, Roth L, Backes N, Sandhoff R, Faber J. Tumor Lipids of Pediatric Papillary Renal Cell Carcinoma Stimulate Unconventional T Cells. Front Immunol 2020; 11:1819. [PMID: 32973759 PMCID: PMC7468390 DOI: 10.3389/fimmu.2020.01819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/07/2020] [Indexed: 01/25/2023] Open
Abstract
Papillary renal cell carcinoma (PRCC) is a rare entity in children with no established therapy protocols for advanced diseases. Immunotherapy is emerging as an important therapeutic tool for childhood cancer. Tumor cells can be recognized and killed by conventional and unconventional T cells. Unconventional T cells are able to recognize lipid antigens presented via CD1 molecules independently from major histocompatibility complex, which offers new alternatives for cancer immunotherapies. The nature of those lipids is largely unknown and α-galactosylceramide is currently used as a synthetic model antigen. In this work, we analyzed infiltrating lymphocytes of two pediatric PRCCs using flow cytometry, immunohistochemistry and qRT-PCR. Moreover, we analyzed the CD1d expression within both tumors. Tumor lipids of PRCC samples and three normal kidney samples were fractionated and the recognition of tumor own lipid fractions by unconventional T cells was analyzed in an in vitro assay. We identified infiltrating lymphocytes including γδ T cells and iNKT cells, as well as CD1d expression in both samples. One lipid fraction, containing ceramides and monoacylglycerides amongst others, was able to induce the proliferation of iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) of healthy donors and of one matched PRCC patient. Furthermore, CD1d tetramer stainings revealed that a subset of iNKT cells is able to bind lipids being present in fraction 2 via CD1d. We conclude that PRCCs are infiltrated by conventional and unconventional T cells and express CD1d. Moreover, certain lipids, present in pediatric PRCC, are able to stimulate unconventional T cells. Manipulating these lipids and T cells may open new strategies for therapy of pediatric PRCCs.
Collapse
Affiliation(s)
- Nadine Lehmann
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marie Astrid Neu
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Larissa Seidmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nicole Ziegler
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lea Roth
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nora Backes
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, Heidelberg, Germany
| | - Joerg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020; 20:756-770. [DOI: 10.1038/s41577-020-0345-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
39
|
Perroteau J, Navet B, Devilder MC, Hesnard L, Scotet E, Gapin L, Saulquin X, Gautreau-Rolland L. Contribution of the SYK Tyrosine kinase expression to human iNKT self-reactivity. Eur J Immunol 2020; 50:1454-1467. [PMID: 32460359 DOI: 10.1002/eji.201948416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/15/2020] [Accepted: 05/25/2020] [Indexed: 11/09/2022]
Abstract
Invariant Natural Killer T (iNKT) cells are particular T lymphocytes at the frontier between innate and adaptative immunities. They participate in the elimination of pathogens or tumor cells, but also in the development of allergic reactions and autoimmune diseases. From their first descriptions, the phenomenon of self-reactivity has been described. Indeed, they are able to recognize exogenous and endogenous lipids. However, the mechanisms underlying the self-reactivity are still largely unknown, particularly in humans. Using a CD1d tetramer-based sensitive immunomagnetic approach, we generated self-reactive iNKT cell lines from blood circulating iNKT cells of healthy donors. Analysis of their functional characteristics in vitro showed that these cells recognized endogenous lipids presented by CD1d molecules through their TCR that do not correspond to α-glycosylceramides. TCR sequencing and transcriptomic analysis of T cell clones revealed that a particular TCR signature and an expression of the SYK protein kinase were two mechanisms supporting human iNKT self-reactivity. The SYK expression, strong in the most self-reactive iNKT clones and variable in ex vivo isolated iNKT cells, seems to decrease the activation threshold of iNKT cells and increase their overall antigenic sensitivity. This study indicates that a modulation of the TCR intracellular signal contributes to iNKT self-reactivity.
Collapse
Affiliation(s)
| | - Benjamin Navet
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | | | - Leslie Hesnard
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
40
|
Govindarajan S, Verheugen E, Venken K, Gaublomme D, Maelegheer M, Cloots E, Gysens F, De Geest BG, Cheng TY, Moody DB, Janssens S, Drennan M, Elewaut D. ER stress in antigen-presenting cells promotes NKT cell activation through endogenous neutral lipids. EMBO Rep 2020; 21:e48927. [PMID: 32363653 PMCID: PMC7271650 DOI: 10.15252/embr.201948927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
CD1d‐restricted invariant natural killer T (iNKT) cells constitute a common glycolipid‐reactive innate‐like T‐cell subset with a broad impact on innate and adaptive immunity. While several microbial glycolipids are known to activate iNKT cells, the cellular mechanisms leading to endogenous CD1d‐dependent glycolipid responses remain largely unclear. Here, we show that endoplasmic reticulum (ER) stress in APCs is a potent inducer of CD1d‐dependent iNKT cell autoreactivity. This pathway relies on the presence of two transducers of the unfolded protein response: inositol‐requiring enzyme‐1a (IRE1α) and protein kinase R‐like ER kinase (PERK). Surprisingly, the neutral but not the polar lipids generated within APCs undergoing ER stress are capable of activating iNKT cells. These data reveal that ER stress is an important mechanism to elicit endogenous CD1d‐restricted iNKT cell responses through induction of distinct classes of neutral lipids.
Collapse
Affiliation(s)
- Srinath Govindarajan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eveline Verheugen
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Koen Venken
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Djoere Gaublomme
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Margaux Maelegheer
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eva Cloots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory for ER Stress and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,VIB-Center for Medical Biotechnology, Ghent, Belgium
| | - Fien Gysens
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Biopharmaceutical Technology Unit, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Bruno G De Geest
- Biopharmaceutical Technology Unit, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tan-Yun Cheng
- Brigham and Women's Hospital Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Brigham and Women's Hospital Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, MA, USA
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory for ER Stress and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium
| | - Michael Drennan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Abstract
Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.
Collapse
|
42
|
Lee CH, Chen LC, Yu CC, Lin WH, Lin VC, Huang CY, Lu TL, Huang SP, Bao BY. Prognostic Value of CD1B in Localised Prostate Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234723. [PMID: 31783478 PMCID: PMC6926967 DOI: 10.3390/ijerph16234723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022]
Abstract
Cluster of differentiation (CD) antigens are cell surface markers used to differentiate haematopoietic cell types. These antigens are present in various malignancies and are reportedly linked to patient prognosis; however, they have not been implemented as prostate cancer progression markers. Here, we aimed to assess the impact of genetic variation in haematopoietic cell CD markers on clinical outcomes in patients with prostate cancer. An association study of 458 patients with prostate cancer was conducted to identify single-nucleotide polymorphisms in 11 candidate CD marker genes associated with biochemical recurrence (BCR) after radical prostatectomy. Identified predictors were further evaluated in an additional cohort of 185 patients. Joint population analyses showed that CD1B rs3181082 is associated with BCR (adjusted hazard ratio 1.42, 95% confidence interval 1.09-1.85, p = 0.010). In addition, rs3181082 overlapped with predicted transcriptional regulatory elements and affected CD1B expression. Furthermore, low CD1B expression correlated with poorer BCR-free survival. Our results indicated that CD1B rs3181082 confers prostate cancer progression and may help improve clinical prognostic stratification.
Collapse
Affiliation(s)
- Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Wen-Hsin Lin
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan; (W.-H.L.); (T.-L.L.)
| | - Victor C. Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan;
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan; (W.-H.L.); (T.-L.L.)
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan; (W.-H.L.); (T.-L.L.)
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan
- Department of Nursing, Asia University, Taichung 413, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| |
Collapse
|
43
|
Bedard M, Shrestha D, Priestman DA, Wang Y, Schneider F, Matute JD, Iyer SS, Gileadi U, Prota G, Kandasamy M, Veerapen N, Besra G, Fritzsche M, Zeissig S, Shevchenko A, Christianson JC, Platt FM, Eggeling C, Blumberg RS, Salio M, Cerundolo V. Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proc Natl Acad Sci U S A 2019; 116:23671-23681. [PMID: 31690657 PMCID: PMC6876220 DOI: 10.1073/pnas.1910097116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.
Collapse
Affiliation(s)
- Melissa Bedard
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - David A Priestman
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Yuting Wang
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Shankar S Iyer
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Gennaro Prota
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Medicine I, University Medical Center Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, OX3 7LD Oxford, United Kingdom
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics and Biophysics, 07743 Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technologies e.V., 07745 Jena, Germany
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom;
| |
Collapse
|
44
|
Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla. Proc Natl Acad Sci U S A 2019; 116:22262-22268. [PMID: 31611396 DOI: 10.1073/pnas.1910412116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin-4 (IL-4) is produced by a unique subset of invariant natural killer T (iNKT) cells (NKT2) in the thymus in the steady state, where it conditions CD8+ T cells to become "memory-like" among other effects. However, the signals that cause NKT2 cells to constitutively produce IL-4 remain poorly defined. Using histocytometry, we observed IL-4-producing NKT2 cells localized to the thymic medulla, suggesting that medullary signals might instruct NKT2 cells to produce IL-4. Moreover, NKT2 cells receive and require T cell receptor (TCR) stimulation for continuous IL-4 production in the steady state, since NKT2 cells lost IL-4 production when intrathymically transferred into CD1d-deficient recipients. In bone marrow chimeric recipients, only hematopoietic, not stromal, antigen-presenting cells (APCs), provided such stimulation. Furthermore, using different Cre-recombinase transgenic mouse strains to specifically target CD1d deficiency to various APCs, together with the use of diphtheria toxin receptor (DTR) transgenic mouse strains to deplete various APCs, we found that macrophages were the predominant cell to stimulate NKT2 IL-4 production. Thus, NKT2 cells appear to encounter and require different activating ligands for selection in the cortex and activation in the medulla.
Collapse
|
45
|
Clark K, Yau J, Bloom A, Wang J, Venzon DJ, Suzuki M, Pasquet L, Compton BJ, Cardell SL, Porcelli SA, Painter GF, Zajonc DM, Berzofsky JA, Terabe M. Structure-Function Implications of the Ability of Monoclonal Antibodies Against α-Galactosylceramide-CD1d Complex to Recognize β-Mannosylceramide Presentation by CD1d. Front Immunol 2019; 10:2355. [PMID: 31649670 PMCID: PMC6794452 DOI: 10.3389/fimmu.2019.02355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 11/17/2022] Open
Abstract
iNKT cells are CD1d-restricted T cells recognizing lipid antigens. The prototypic iNKT cell-agonist α-galactosylceramide (α-GalCer) alongside compounds with similar structures induces robust proliferation and cytokine production of iNKT cells and protects against cancer in vivo. Monoclonal antibodies (mAbs) that detect CD1d-α-GalCer complexes have provided critical information for understanding of antigen presentation of iNKT cell agonists. Although most iNKT cell agonists with antitumor properties are α-linked glycosphingolipids that can be detected by anti-CD1d-α-GalCer mAbs, β-ManCer, a glycolipid with a β-linkage, induces strong antitumor immunity via mechanisms distinct from those of α-GalCer. In this study, we unexpectedly discovered that anti-CD1d-α-GalCer mAbs directly recognized β-ManCer-CD1d complexes and could inhibit β-ManCer stimulation of iNKT cells. The binding of anti-CD1d-α-GalCer mAb with β-ManCer-CD1d complexes was also confirmed by plasmon resonance and could not be explained by α-anomer contamination. The binding of anti-CD1d-α-GalCer mAb was also observed with CD1d loaded with another β-linked glycosylceramide, β-GalCer (C26:0). Detection with anti-CD1d-α-GalCer mAbs indicates that the interface of the β-ManCer-CD1d complex exposed to the iNKT cell TCR can assume a structure like that of CD1d-α-GalCer, despite its disparate carbohydrate structure. These results suggest that certain β-linked monoglycosylceramides can assume a structural display similar to that of CD1d-α-GalCer and that the data based on anti-CD1d-α-GalCer binding should be interpreted with caution.
Collapse
Affiliation(s)
- Katharine Clark
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Jessica Yau
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Anja Bloom
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Jing Wang
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Motoshi Suzuki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, United States
| | - Lise Pasquet
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Steven A Porcelli
- Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
46
|
SLAM-SAP-Fyn: Old Players with New Roles in iNKT Cell Development and Function. Int J Mol Sci 2019; 20:ijms20194797. [PMID: 31569599 PMCID: PMC6801923 DOI: 10.3390/ijms20194797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell lineage that develop in the thymus and emerge with a memory-like phenotype. Accordingly, following antigenic stimulation, they can rapidly produce copious amounts of Th1 and Th2 cytokines and mediate activation of several immune cells. Thus, it is not surprising that iNKT cells play diverse roles in a broad range of diseases. Given their pivotal roles in host immunity, it is crucial that we understand the mechanisms that govern iNKT cell development and effector functions. Over the last two decades, several studies have contributed to the current knowledge of iNKT cell biology and activity. Collectively, these studies reveal that the thymic development of iNKT cells, their lineage expansion, and functional properties are tightly regulated by a complex network of transcription factors and signaling molecules. While prior studies have clearly established the importance of the SLAM-SAP-Fyn signaling axis in iNKT cell ontogenesis, recent studies provide exciting mechanistic insights into the role of this signaling cascade in iNKT cell development, lineage fate decisions, and functions. Here we summarize the previous literature and discuss the more recent studies that guide our understanding of iNKT cell development and functional responses.
Collapse
|
47
|
Wang J, Guillaume J, Janssens J, Remesh SG, Ying G, Bitra A, Van Calenbergh S, Zajonc DM. A molecular switch in mouse CD1d modulates natural killer T cell activation by α-galactosylsphingamides. J Biol Chem 2019; 294:14345-14356. [PMID: 31391251 DOI: 10.1074/jbc.ra119.009963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022] Open
Abstract
Type I natural killer T (NKT) cells are a population of innate like T lymphocytes that rapidly respond to α-GalCer presented by CD1d via the production of both pro- and anti-inflammatory cytokines. While developing novel α-GalCer analogs that were meant to be utilized as potential adjuvants because of their production of pro-inflammatory cytokines (Th1 skewers), we generated α-galactosylsphingamides (αGSA). Surprisingly, αGSAs are not potent antigens in vivo despite their strong T-cell receptor (TCR)-binding affinities. Here, using surface plasmon resonance (SPR), antigen presentation assays, and X-ray crystallography (yielding crystal structures of 19 different binary (CD1d-glycolipid) or ternary (CD1d-glycolipid-TCR) complexes at resolutions between 1.67 and 2.85 Å), we characterized the biochemical and structural details of αGSA recognition by murine NKT cells. We identified a molecular switch within murine (m)CD1d that modulates NKT cell activation by αGSAs. We found that the molecular switch involves a hydrogen bond interaction between Tyr-73 of mCD1d and the amide group oxygen of αGSAs. We further established that the length of the acyl chain controls the positioning of the amide group with respect to the molecular switch and works synergistically with Tyr-73 to control NKT cell activity. In conclusion, our findings reveal important mechanistic insights into the presentation and recognition of glycolipids with polar moieties in an otherwise apolar milieu. These observations may inform the development αGSAs as specific NKT cell antagonists to modulate immune responses.
Collapse
Affiliation(s)
- Jing Wang
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jonas Janssens
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Soumya G Remesh
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Ge Ying
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Aruna Bitra
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037 .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
48
|
Cortesi F, Delfanti G, Grilli A, Calcinotto A, Gorini F, Pucci F, Lucianò R, Grioni M, Recchia A, Benigni F, Briganti A, Salonia A, De Palma M, Bicciato S, Doglioni C, Bellone M, Casorati G, Dellabona P. Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression. Cell Rep 2019. [PMID: 29539427 DOI: 10.1016/j.celrep.2018.02.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
| | - Andrea Grilli
- Center for Genome Research Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; PhD Program of Molecular and Translational Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate, Italy
| | - Arianna Calcinotto
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
| | - Francesca Gorini
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
| | | | - Roberta Lucianò
- Division of Pathology, San Raffaele Scientific Institute, Milan 20123, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Benigni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan 20123, Italy
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan 20123, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan 20123, Italy; San Raffaele Vita-Salute University, Milan 20123, Italy
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Silvio Bicciato
- Center for Genome Research Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Doglioni
- Division of Pathology, San Raffaele Scientific Institute, Milan 20123, Italy; San Raffaele Vita-Salute University, Milan 20123, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy.
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy.
| |
Collapse
|
49
|
von Gerichten J, Lamprecht D, Opálka L, Soulard D, Marsching C, Pilz R, Sencio V, Herzer S, Galy B, Nordström V, Hopf C, Gröne HJ, Trottein F, Sandhoff R. Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. J Lipid Res 2019; 60:1892-1904. [PMID: 31484693 DOI: 10.1194/jlr.ra119000236] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The glycosphingolipid, α-galactosylceramide (αGalCer), when presented by CD1d on antigen-presenting cells, efficiently activates invariant natural killer T (iNKT) cells. Thereby, it modulates immune responses against tumors, microbial and viral infections, and autoimmune diseases. Recently, the production of αGalCer by Bacteroidetes from the human gut microbiome was elucidated. Using hydrophilic interaction chromatography coupled to MS2, we screened murine intestinal tracts to identify and quantify αGalCers, and we investigated the αGalCer response to different dietary and physiologic conditions. In both the cecum and the colon of mice, we found 1-15 pmol of αGalCer per milligram of protein; in contrast, mice lacking microbiota (germ-free mice) and fed identical diet did not harbor αGalCer. The identified αGalCer contained a β(R)-hydroxylated hexadecanoyl chain N-linked to C18-sphinganine, which differed from what has been reported with Bacteroides fragilis Unlike β-anomeric structures, but similar to αGalCers from B. fragilis, the synthetic form of the murine αGalCer induced iNKT cell activation in vitro. Last, we observed a decrease in αGalCer production in mice exposed to conditions that alter the composition of the gut microbiota, including Western type diet, colitis, and influenza A virus infection. Collectively, this study suggests that αGalCer is produced by commensals in the mouse intestine and reveals that stressful conditions causing dysbiosis alter its synthesis. The consequences of this altered production on iNKT cell-mediated local and systemic immune responses are worthy of future studies.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Marsching
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Robert Pilz
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Valentin Sencio
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
50
|
Choi J, Rudak PT, Lesage S, Haeryfar SMM. Glycolipid Stimulation of Invariant NKT Cells Expands a Unique Tissue-Resident Population of Precursors to Mature NK Cells Endowed with Oncolytic and Antimetastatic Properties. THE JOURNAL OF IMMUNOLOGY 2019; 203:1808-1819. [PMID: 31462506 DOI: 10.4049/jimmunol.1900487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/24/2019] [Indexed: 01/30/2023]
Abstract
Invariant NKT (iNKT) cells are innate-like T lymphocytes that recognize and respond to glycolipid Ags such as α-galactosylceramide (α-GalCer). This unique property has been exploited in clinical trials for multiple malignancies. While investigating mouse iNKT cell responses to α-GalCer in vivo, we found a dramatically enlarged tissue-resident population surprisingly coexpressing select dendritic cell, NK cell, and B cell markers. Further phenotypic and functional analyses revealed the identity of this B220+CD11c+MHC class II+NK1.1+ population as precursors to mature NK (pre-mNK) cells, which also expressed high levels of proliferation and tissue retention markers but diminished sphingosine-1-phosphate receptor 1, a receptor that facilitates tissue trafficking. Accordingly, FTY720, a sphingosine-1-phosphate receptor 1 antagonist, failed to prevent pre-mNK cells' intrahepatic accumulation. We found iNKT cell-driven expansion of pre-mNK cells to be dependent on IL-12 and IL-18. Although α-GalCer-transactivated pre-mNK cells lost their capacity to process a model tumor Ag, they selectively expressed granzyme A and directly lysed YAC-1 thymoma cells through granule exocytosis. They also contributed to β2 microglobulin-deficient target cell destruction in vivo. Therefore, α-GalCer treatment skewed pre-mNK cell responses away from an APC-like phenotype and toward killer cell-like functions. Finally, the ability of α-GalCer to reduce the pulmonary metastatic burden of B16-F10 mouse melanoma was partially reversed by in vivo depletion of pre-mNK cells. To our knowledge, our findings shed new light on iNKT cells' mechanism of action and glycolipid-based immunotherapies. Therefore, we introduce pre-mNK cells as a novel downstream effector cell type whose anticancer properties may have been overlooked in previous investigations.
Collapse
Affiliation(s)
- Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada; .,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Ontario N6A 5A5, Canada; and.,Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|