1
|
Fan AE, Sultan H, Kumai T, Fesenkova VI, Wu J, Klement JD, Bernstock JD, Friedman GK, Celis E. STAT5 Activation Enhances Adoptive Therapy Combined with Peptide Vaccination by Preventing PD-1 Inhibition. Mol Cancer Ther 2025; 24:419-430. [PMID: 39582348 DOI: 10.1158/1535-7163.mct-24-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/01/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Adoptive cell therapy (ACT) using retrovirally transduced T cells represents a promising strategy for enhancing antitumor responses. When used with TriVax, a peptide vaccination strategy, this approach synergistically expands antigen-specific cell populations. STAT5 plays a vital role as a transcription factor in regulating T-cell proliferation and their differentiation into effector and memory T cells. We aimed to explore the combination therapy using CD8 T cells engineered to express constitutively active STAT5 (CA-STAT5) with vaccines. CD8 T cells were transduced with a retrovirus (RV) encoding the mouse gp100 T-cell receptor (TCR). In certain treatment groups, cells were also co-transduced with RV encoding CA-STAT5. We assessed transduction efficiency and functional activity through flow cytometry and various functional assays. B16F10 tumor-bearing mice were treated with ACT using RV-transduced CD8 T cells and subsequently vaccinated with TriVax. We demonstrate that TriVax selectively enhanced the expansion of ACT cell populations bearing gp100-specific TCRs. T cells engineered to express CA-STAT5 showed not only increased expansion and polyfunctionality but also reduced PD-1 expression, leading to decreased cellular exhaustion. In a B16F10 melanoma mouse model, our approach yielded a potent antitumor effect, with CA-STAT5 further amplifying this response. We found that CA-STAT5 improved antitumor activities, in part, by attenuating the PD-1/PD-L1 inhibitory pathway. These findings indicate that TCR-transduced CD8 T cells can undergo antigen-dependent expansion when exposed to TriVax. Additionally, the expression of CA-STAT5 enhances T-cell proliferation and persistence, partly by promoting resistance to PD-1/PD-L1-mediated inhibition in antitumor T cells.
Collapse
Affiliation(s)
- Aaron E Fan
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, Texas
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Hussein Sultan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Takumi Kumai
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | | | - Juan Wu
- Georgia Cancer Center, Augusta University, Augusta, Georgia
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - John D Klement
- Georgia Cancer Center, Augusta University, Augusta, Georgia
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gregory K Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, Texas
| | - Esteban Celis
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| |
Collapse
|
2
|
Tulsian K, Thakker D, Vyas VK. Overcoming chimeric antigen receptor-T (CAR-T) resistance with checkpoint inhibitors: Existing methods, challenges, clinical success, and future prospects: A comprehensive review. Int J Biol Macromol 2025:141364. [PMID: 39988153 DOI: 10.1016/j.ijbiomac.2025.141364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Immune checkpoint blockade is, as of today, the most successful form of cancer immunotherapy, with more than 43 % of cancer patients in the US eligible to receive it; however, only up to 12.5 % of patients respond to it. Similarly, adoptive cell therapy using bioengineered chimeric antigen receptorT (CAR-T) cells and T-cell receptor (TCR-T) cells has provided excellent responses against liquid tumours, but both forms of immunotherapy have encountered challenges within a tumour microenvironment that is both lacks of tumour-specific T-cells and strongly immunosuppressive toward externally administered CAR-T and TCR-T cells. This review focuses on understanding approved checkpoint blockade and adoptive cell therapy at both biological and clinical levels before delving into how and why their combination holds significant promise in overcoming their individual shortcomings. The advent of next-generation checkpoint inhibitors has further strengthened the immune checkpoint field, and a special section explores how these inhibitors can address existing hurdles in combining checkpoint blockade with adoptive cell therapy and homing in on our cancer target for long-term immunity.
Collapse
Affiliation(s)
- Kartik Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Dhinal Thakker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
3
|
Yang H, Sun T, Sun Z, Wang H, Liu D, Wu D, Qin T, Zhou M. Unravelling the role of ubiquitin-specific proteases in breast carcinoma: insights into tumour progression and immune microenvironment modulation. World J Surg Oncol 2025; 23:60. [PMID: 39979972 PMCID: PMC11841324 DOI: 10.1186/s12957-025-03667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer is a prevalent malignancy worldwide, and its treatment has increasingly shifted towards precision medicine, with immunotherapy emerging as a key therapeutic strategy. Deubiquitination, an essential epigenetic modification, is regulated by deubiquitinating enzymes (DUBs) and plays a critical role in immune function and tumor progression. Ubiquitin-specific proteases (USPs), a prominent subgroup of DUBs, are involved in regulating immune cell functions, antigen processing, and T cell development in the context of breast cancer. Certain USPs also modulate the differentiation of immune cells, such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), within the breast cancer immune microenvironment. Furthermore, several USPs influence the expression of PD-L1, thus affecting the efficacy of immune checkpoint inhibitors. The overexpression of USPs may promote immune evasion, contributing to the development of treatment resistance. This review elucidates the role of USPs in modulating the immune microenvironment and immune responses in breast cancer. Additionally, it discusses effective strategies for combining USP inhibitors with other therapeutic agents to enhance treatment outcomes. Therefore, targeting USPs presents the potential to enhance the efficacy of immunotherapy and overcome drug resistance, offering a more effective treatment strategy for breast cancer patients.
Collapse
Affiliation(s)
- Huiyuan Yang
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China
| | - Tingting Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Haining Wang
- Department of Oncology, No. 971 Hospital of the People's Liberation Army Navy, Qingdao, 266001, China
| | - Dongjie Liu
- Department of Second Recuperation, Dalian Rehabilitation Recuperation Center of Joint Logistics Support Force of PLA, Dalian, 116013, China
| | - Dapeng Wu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Tao Qin
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Mi Zhou
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| |
Collapse
|
4
|
Li G, Li S, Jiang Y, Chen T, An Z. Unleashing the Power of immune Checkpoints: A new strategy for enhancing Treg cells depletion to boost antitumor immunity. Int Immunopharmacol 2025; 147:113952. [PMID: 39764997 DOI: 10.1016/j.intimp.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025]
Abstract
Regulatory T (Treg) cells, immunosuppressive CD4+ T cells, can impede anti-tumor immunity, complicating cancer treatment. Since their discovery, numerous studies have been dedicated to understand Treg cell biology, with a focus on checkpoint pathways' role in their generation and function. Immune checkpoints, such as PD-1/PD-L1, CTLA-4, TIGIT, TIM-3, and OX40, are pivotal in controlling Treg cell expansion and activity in the tumor microenvironment (TME), affecting their ability to suppress immune responses. This review examines the complex relationship between these checkpoints and Tregs in the TME, and how they influence tumor immunity. We also discuss the therapeutic potential of targeting these checkpoints to enhance anti-tumor immunity, including the use of immune checkpoint blockade (ICB) therapies and novel approaches such as CCR8-targeted therapies. Understanding the interaction between immune checkpoints and Treg cells can lead to more effective immunotherapeutic strategies, such as combining CCR8-targeted therapies with immune checkpoint inhibitors, to improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Guoxin Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siqi Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yilin Jiang
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tao Chen
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Londt R, Semple L, Esmail A, Pooran A, Meldau R, Davids M, Dheda K, Tomasicchio M. Autologous Human Dendritic Cells from XDR-TB Patients Polarize a Th1 Response Which Is Bactericidal to Mycobacterium tuberculosis. Microorganisms 2025; 13:345. [PMID: 40005712 PMCID: PMC11857998 DOI: 10.3390/microorganisms13020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Extensively drug-resistant tuberculosis (XDR-TB) is a public health concern as drug resistance is outpacing the drug development pipeline. Alternative immunotherapeutic approaches are needed. Peripheral blood mononuclear cells (PBMCs) were isolated from pre-XDR/XDR-TB (n = 25) patients and LTBI (n = 18) participants. Thereafter, monocytic-derived dendritic cells (mo-DCs) were co-cultured with M. tb antigens, with/without a maturation cocktail (interferon-γ, interferon-α, CD40L, IL-1β, and TLR3 and TLR7/8 agonists). Two peptide pools were evaluated: (i) an ECAT peptide pool (ESAT6, CFP10, Ag85B, and TB10.4 peptides) and (ii) a PE/PPE peptide pool. Sonicated lysate of the M. tb HN878 strain served as a control. Mo-DCs were assessed for DC maturation markers, Th1 cytokines, and the ability of the DC-primed PBMCs to restrict the growth of M. tb-infected monocyte-derived macrophages. In pre-XDR/XDR-TB, mo-DCs matured with M. tb antigens (ECAT or PE/PPE peptide pool, or HN878 lysate) + cocktail, compared to mo-DCs matured with M. tb antigens only, showed higher upregulation of co-stimulatory molecules and IL-12p70 (p < 0.001 for both comparisons). The matured mo-DCs had enhanced antigen-specific CD8+ T-cell responses to ESAT-6 (p = 0.05) and Ag85B (p = 0.03). Containment was higher with mo-DCs matured with the PE/PPE peptide pool cocktail versus mo-DCs matured with the PE/PPE peptide pool (p = 0.0002). Mo-DCs matured with the PE/PPE peptide pool + cocktail achieved better containment than the ECAT peptide pool + cocktail [50%, (IQR:39-75) versus 46%, (IQR:15-62); p = 0.02]. In patients with pre-XDR/XDR-TB, an effector response primed by mo-DCs matured with an ECAT or PE/PPE peptide pool + cocktail was capable of restricting the growth of M. tb in vitro.
Collapse
Affiliation(s)
- Rolanda Londt
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Lynn Semple
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Richard Meldau
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Malika Davids
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
6
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2025; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
7
|
Wang T, Ma W, Zou Z, Zhong J, Lin X, Liu W, Sun W, Hu T, Xu Y, Chen Y. PD-1 blockade treatment in melanoma: Mechanism of response and tumor-intrinsic resistance. Cancer Sci 2025; 116:329-337. [PMID: 39601129 PMCID: PMC11786313 DOI: 10.1111/cas.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Malignant melanoma is characterized by high immunogenicity, genetic heterogeneity, and diverse pathological manifestations, affecting both skin and mucosa over the body. Pembrolizumab and nivolumab, both anti-PD-1 monoclonal antibodies, were approved by the US FDA for unresectable or metastatic melanoma in 2011 and 2014, respectively, with enduring and transformative outcomes. Despite marked clinical achievements, only a subset of patients manifested a complete response. Approximately 55% of melanoma patients exhibited primary resistance to PD-1 antibodies, with nearly 25% developing secondary resistance within 2 years of treatment. Thus, there is a critical need to comprehensively elucidate the mechanisms underlying the efficacy and resistance to PD-1 blockade. This review discusses the fundamental mechanisms of PD-1 blockade, encompassing insights from T cells and B cells, and presents resistance to anti-PD-1 with a particular focus on tumoral-intrinsic mechanisms in melanoma.
Collapse
Affiliation(s)
- Tong Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wenjie Ma
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Zijian Zou
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Jingqin Zhong
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Xinyi Lin
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wanlin Liu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wei Sun
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Tu Hu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yu Xu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yong Chen
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| |
Collapse
|
8
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
9
|
Xin L, Liu J, Lai JY, Xu HS, Fan LJ, Zou YH, Zhou Q, Yue ZQ, Gan JH. Methionine restriction promotes the polarization of macrophages towards M1 and the immunotherapy effect of PD-L1/PD-1 blockades by inhibiting the secretion of MIF by gastric carcinoma cells. Transl Oncol 2025; 51:102181. [PMID: 39541710 PMCID: PMC11600783 DOI: 10.1016/j.tranon.2024.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The limited curative effect of PD-L1/PD-1 blockades presents challenges to immunotherapy for advanced gastric cancer. We have found that methionine restriction (MR) enhances the drug resistance of gastric carcinoma cells. We aimed to explore whether MR can enhance the efficacy of PD-L1/PD-1 blockades in gastric cancer. METHODS To conduct MR, gastric carcinoma cells were transfected with LV-METase in vitro, and 615 mice were injected with MFC cells with stable METase expression in vivo. Flow cytometry was conducted to measure the proportions of M1/M2 macrophages and CD8+ GZMB+/IFN-γ+ T cells. Additionally, the levels of M1/M2 macrophage markers and MIF were also detected. RESULTS MR increased M1 and down-regulated M2 macrophages. MR suppressed MIF levels in gastric carcinoma cells, while the addition of anti-MIF neutralizing antibody inhibited the effect of MR on macrophage M1/M2 polarization. MR enhanced the increase of the proportion of CD8+ GZMB+ T cells and CD8+ IFN-γ+ T cells induced by PD-L1/PD-1 blockades. In vivo detection verified the efficacy of the combination of MR and PD-L1/PD-1 blockades on gastric cancer. CONCLUSIONS MR inhibits the secretion of MIF by gastric carcinoma cells, promotes macrophage M1 polarization, and enhances the therapeutic effect of PD-L1/PD-1 blockades in gastric cancer.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang 330006, China.
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jun-Yan Lai
- Class 2210, The Second clinical medical college, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - He-Song Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Luo-Jun Fan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yong-Hui Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen-Qi Yue
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jin-Heng Gan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| |
Collapse
|
10
|
Perricone C, Bruno L, Cafaro G, Latini A, Ceccarelli F, Borgiani P, Ciccacci C, Bogdanos D, Novelli G, Gerli R, Bartoloni E. Sjogren's syndrome: Everything you always wanted to know about genetic and epigenetic factors. Autoimmun Rev 2024; 23:103673. [PMID: 39490751 DOI: 10.1016/j.autrev.2024.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease characterized by a wide spectrum of glandular and extra-glandular features. Genetic and epigenetic factors play an important role in the disease susceptibility and phenotype. There are a multitude of genes that have been identified as implicated in the pathogenesis of pSS, both in HLA and extra-HLA regions with a strong contribution given by genes in interferon signalling pathways. Among the HLA alleles, the most consistent associations have been found with DR2 and DR3 alleles at the DRB1 locus. Moreover, several gene variants outside the MHC locus are in genes involved in NF-κB signalling, B- and T-cell function and methylation processes possibly responsible for lymphomagenesis. There is still a lack of knowledge on precise genetic patterns and prediction models of diseases, and data on pharmacogenetics is scarce. A comprehensive summary of the common genetic factors and an extensive analysis of novel epigenetic aspects is provided, together with a view on the relationships between novel therapeutic agents for pSS and genetic targets in signalling pathways, aiming at improving tailored treatment strategies in the view of a more personalized medicine.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy.
| | - Lorenza Bruno
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fulvia Ceccarelli
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| |
Collapse
|
11
|
Cao XC, Mao XL, Lu SS, Zhu W, Huang W, Yi H, Yuan L, Zhou JH, Xiao ZQ. A PD-L1-Targeted Probe Cy5.5-A11 for In Vivo Imaging of Multiple Tumors. ACS OMEGA 2024; 9:43826-43833. [PMID: 39494025 PMCID: PMC11525735 DOI: 10.1021/acsomega.4c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
PD-L1 is an immune checkpoint molecule mediating cancer immune escape, and its expression level in the tumor has been used as a biomarker to predict response to immune checkpoint inhibitor (ICI) therapy. Our previous study reveals that an 11 amino acid-long ANXA1-derived peptide (named A11) binds and degrades the PD-L1 protein in multiple cancers and is a potential peptide for cancer diagnosis and treatment. Near-infrared fluorescence (NIF) optical imaging of tumors offers a noninvasive method for detecting cancer and monitoring therapeutic responses. In this study, an NIF dye Cy5.5 was conjugated with A11 peptide to develop a novel PD-L1-targeted probe for molecular imaging of tumors and monitor the dynamic changes in PD-L1 expression in tumors. In vitro imaging studies showed that intense fluorescence was observed in triple-negative breast cancer MDA-MB-231, nonsmall cell lung cancer H460, and melanoma A375 cells incubated with Cy5.5-A11, and the cellular uptake of Cy5.5-A11 was efficiently inhibited by coincubation with unlabeled A11 or knockdown of cellular PD-L1 by shRNA. In vivo imaging studies showed accumulation of Cy5.5-A11 in the MDA-MB-231, H460, and A375 xenografts with good contrast from 0.5 to 24 h after intravenous injection, indicating that Cy5.5-A11 possesses the strong ability for in vivo tumor imaging. Moreover, the fluorescent signal of A11-Cy5.5 in the xenografts was successfully blocked by coinjection of unlabeled A11 peptide or knockdown of cellular PD-L1 by shRNA, indicating the specificity of Cy5.5-A11 targeting PD-L1 in tumor imaging. Our data demonstrate that Cy5.5-A11 is a novel tool for tumor imaging of PD-L1, which has the potential for detecting cancer and predicting ICI therapeutic responses.
Collapse
Affiliation(s)
- Xiao-Cheng Cao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xue-Li Mao
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shan-Shan Lu
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhu
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Huang
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong Yi
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Yuan
- Department
of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Hua Zhou
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhi-Qiang Xiao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
12
|
Shojo K, Tanaka N, Murakami T, Anno T, Teranishi Y, Takamatsu K, Mikami S, Imamura T, Matsumoto K, Oya M. Multiplexed Spatial Imaging at the Single-Cell Level Reveals Mutually Exclusive Expression of B7 Family Proteins. J Transl Med 2024; 104:102131. [PMID: 39244158 DOI: 10.1016/j.labinv.2024.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Targeting novel inhibitory ligands beyond anti-PD-1 and PD-L1 and CTLA-4 therapies is essential for the next decade of the immunotherapy era. Agents for the B7 family molecules B7-H3, B7-H4, and B7-H5 are emerging in clinical trial phases; therefore, further accumulation of evidence from both clinical and basic aspects is vital. Here, we applied a 7-color multiplexed imaging technique to analyze the profile of B7 family B7-H3/B7-H4/B7-H5 expression, in addition to PD-L1, and the spatial characteristics of immune cell infiltrates in urothelial carcinoma (UC). The results revealed that B7-H3 and B7-H4 were mainly expressed on tumor cells and B7-H5 on immune cells in UC, and most of the B7-H3/B7-H4/B7-H5-positive cells were mutually exclusive with PD-L1-positive cells. Also, the expression of B7-H4 was elevated in patients with advanced pathologic stages, and high B7-H4 expression was a significant factor affecting overall mortality following surgery in UC. Furthermore, spatial analysis revealed that the distance from the B7-H4+ cells to the nearest CD8+ cells was markedly far compared with other B7 family-positive tumor cells. Interestingly, the distance from B7-H4+ cells to the nearest CD8+ cells was significantly farther in patients dying from cancer after surgery or immune checkpoint inhibitors compared with cancer survivors; thus, high B7-H4 expression in tumor cells may inhibit CD8 infiltration into the tumor space and that B7-H4-positive cells form a specific spatial niche. In summary, we performed a comprehensive evaluation of B7 family member expression and found that the spatial distribution of B7-H4 suggests the potentially useful role of combination blockade with both B7-H4 and the current anti-PD-1/PD-L1 axis in the treatment of UC.
Collapse
Affiliation(s)
- Kazunori Shojo
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.
| | - Tetsushi Murakami
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Tadatsugu Anno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Teranishi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | | | - Shuji Mikami
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan; Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Japan
| | | | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Wang Q, Tan W, Zhang Z, Chen Q, Xie Z, Yang L, Tang C, Zhuang H, Wang B, Jiang J, Ma X, Wang W, Hua Y, Shang C, Chen Y. FAT10 induces immune suppression by upregulating PD-L1 expression in hepatocellular carcinoma. Apoptosis 2024; 29:1529-1545. [PMID: 38824477 DOI: 10.1007/s10495-024-01982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.
Collapse
Affiliation(s)
- Qingbin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, China
| | - Ziyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiuju Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, China
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chenwei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bingkun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiahao Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wentao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yonglin Hua
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Liu Q, Chen X, Qi M, Li Y, Chen W, Zhang C, Wang J, Han Z, Zhang C. Combined cryoablation and PD-1 inhibitor synergistically enhance antitumor immune responses in Lewis lung adenocarcinoma mice via the PI3K/AKT/mTOR pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167262. [PMID: 38815768 DOI: 10.1016/j.bbadis.2024.167262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Cryoablation is a therapeutic modality for lung adenocarcinoma that destroys target tumors using lethal levels of cold, resulting in the release of large amounts of specific antigens that activate immune responses. However, tumor immune checkpoint escape mechanisms prevent these released self-antigens from inducing effective anti-tumor immune responses. To overcome this challenge, we propose the use of immune checkpoint inhibitors to relieve T cell inhibition by immune checkpoints and enhance the anti-tumor immune response mediated by cryoablation. We used bilateral tumor-bearing mouse models and a specific cryoablation instrument to study the efficacy of cryoablation combined with PD-1 inhibitors in Lewis lung adenocarcinoma model mice. We found that cryoablation combined with PD-1 inhibitors significantly inhibited the growth of mouse lung adenocarcinoma, prolonged mouse survival, and enhanced the anti-tumor immune response. Moreover, this combined regimen could synergistically promote the activation and proliferation of T cells via the PI3K/AKT/mTOR pathway. The present study provides a strong theoretical basis for the clinical combination of cryoablation and PD-1 inhibitors.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China
| | - Man Qi
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China; Beijing Key Laboratory of OTIR, Beijing 100091, China
| | - Yongqun Li
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China
| | - Wei Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China
| | - Caiyun Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Jiaxin Wang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China; Beijing Key Laboratory of OTIR, Beijing 100091, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China.
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
15
|
Wakamatsu E, Machiyama H, Toyota H, Takeuchi A, Hashimoto R, Kozono H, Yokosuka T. Indirect suppression of CD4 T cell activation through LAG-3-mediated trans-endocytosis of MHC class II. Cell Rep 2024; 43:114655. [PMID: 39191259 DOI: 10.1016/j.celrep.2024.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Blockade of immune checkpoint receptors has shown outstanding efficacy for tumor immunotherapy. Promising treatment with anti-lymphocyte-activation gene-3 (LAG-3) has already been recognized as the next efficacious treatment, but there is still limited understanding of the mechanism of LAG-3-mediated immune suppression. Here, utilizing high-resolution molecular imaging, we find a mechanism of CD4 T cell suppression via LAG-3, in which LAG-3-bound major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs) gather at the central region of an immunological synapse and are trans-endocytosed by T cell receptor-driven internalization motility toward CD4 and CD8 T cells expressing LAG-3. Downregulation of MHC class II molecules on APCs thus results in the attenuation of their antigen-presentation function and impairment of CD4 T cell activation. From these data, anti-LAG-3 treatment is suggested to have potency to directly block the inhibitory signaling via LAG-3 and simultaneously reduce MHC class II expression on APCs by LAG-3-mediated trans-endocytosis for recovery from T cell exhaustion.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ryuji Hashimoto
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Haruo Kozono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
16
|
Do CTP, Prochnau JY, Dominguez A, Wang P, Rao MK. The Road Ahead in Pancreatic Cancer: Emerging Trends and Therapeutic Prospects. Biomedicines 2024; 12:1979. [PMID: 39335494 PMCID: PMC11428787 DOI: 10.3390/biomedicines12091979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the challenges and emerging trends in pancreatic cancer therapy. In particular, we focus on the tumor microenvironment and the potential of immunotherapy for pancreatic cancer. Pancreatic ductal adenocarcinoma, characterized by its dense stromal architecture, presents unique challenges for effective treatment. Recent advancements have emphasized the role of the tumor microenvironment in therapeutic resistance and disease progression. We discuss novel strategies targeting the desmoplastic barrier and immunosuppressive cells to enhance immune cell infiltration and activation. Recent clinical trials, particularly those involving novel immunotherapeutic agents and tumor vaccines, are examined to understand their efficacy and limitations. Our analysis reveals that combining immunotherapy with chemotherapy, radiation therapy, or drugs targeting epigenetic processes shows promise, improving overall survival rates and response to treatment. For instance, trials utilizing checkpoint inhibitors in combination with standard chemotherapies have extended disease-free survival by up to 6 months compared to chemotherapy alone. Importantly, vaccines targeting specific tumor neoantigens have shown the potential to increase patient survival. However, these approaches also face significant challenges, including overcoming the immunosuppressive tumor microenvironment and enhancing the delivery and efficacy of therapeutic agents. By providing an overview of both the promising results and the obstacles encountered, this review aims to highlight ongoing efforts to refine immunotherapy approaches for better patient outcomes.
Collapse
Affiliation(s)
- Chris T P Do
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Y Prochnau
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angel Dominguez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
17
|
PRABOWO FA, PUNAGI AQ, ISLAM AA, HATTA M, PRIHANTONO P, SUARDANA W, AKIL MA, PIETER NA, PATELONGI I, BUKHARI A. Cancer immunoediting, PD-L1 expression, CTLA-4 and CD8+ tumor-infiltrating lymphocyte density, and chemoradiotherapy in nasopharyngeal carcinoma. Chirurgia (Bucur) 2024; 37. [DOI: 10.23736/s0394-9508.24.05682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
18
|
Silva RCMC. mTOR-mediated differentiation and maintenance of suppressive T cells at the center stage of IPEX treatment. Immunol Res 2024; 72:523-525. [PMID: 38462561 DOI: 10.1007/s12026-024-09472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
20
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
21
|
Buendia‐Roldan I, Martínez‐Espinosa K, Aguirre M, Aguilar‐Duran H, Palma‐Lopez A, Palacios Y, Ruiz A, Ramón‐Luing LA, Ocaña‐Guzmán R, Pérez‐Rubio G, Falfán‐Valencia R, Selman M, Chavez‐Galan L. Persistence of lung structural and functional alterations at one year post-COVID-19 is associated with increased serum PD-L2 levels and altered CD4/CD8 ratio. Immun Inflamm Dis 2024; 12:e1305. [PMID: 39031504 PMCID: PMC11259001 DOI: 10.1002/iid3.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Persistent respiratory symptoms and lung abnormalities post-COVID-19 are public health problems. This study evaluated biomarkers to stratify high-risk patients to the development or persistence of post-COVID-19 interstitial lung disease. METHODS One hundred eighteen patients discharged with residual lung abnormalities compatible with interstitial lung disease (COVID-ILD patients) after a severe COVID-19 were followed for 1 year (post-COVID-ILD patients). Physical examination, pulmonary function tests, and chest high-resolution computed tomography (HRCT) were performed. Soluble forms (s) of PD-L1, PD-L2, TIM-3, and GAL-9 were evaluated in serum and cell culture supernatant, as well as T-cells subsets and the transmembrane expression of PD-L1 and PD-L2 on the cell surface. RESULTS Eighty percent of the post-COVID-ILD patients normalized their lung function at 1-year follow-up, 8% presented COVID-independent ILD, and 12% still showed functional and HRCT alterations. PD-L2 levels were heterogeneous during acute COVID-19 (aCOVID); patients who increased (at least 30%) their sPD-L2 levels at 1 year post-COVID-19 and exhibited altered CD4/CD8 ratio showed persistence of chest tomographic and functional alterations. By contrast, patients who decreased sPD-L2 displayed a complete lung recovery. sPD-L1, sTIM-3, and sGAL-9 increased significantly during aCOVID and decreased in all patients after 1-year follow-up. CONCLUSION Increased sPD-L2 and an altered CD4/CD8 ratio after 12 months of aCOVID are associated with the persistence of lung lesions, suggesting that they may contribute to lung damage post-COVID-19.
Collapse
Affiliation(s)
- Ivette Buendia‐Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | - Maria‐Jose Aguirre
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Hiram Aguilar‐Duran
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Alexia Palma‐Lopez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Yadira Palacios
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Andy Ruiz
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Lucero A. Ramón‐Luing
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Ranferi Ocaña‐Guzmán
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Gloria Pérez‐Rubio
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Leslie Chavez‐Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
22
|
Zhang C, Zhai W, Ma Y, Wu M, Cai Q, Huang J, Zhou Z, Duan F. Integrating machine learning algorithms and multiple immunohistochemistry validation to unveil novel diagnostic markers based on costimulatory molecules for predicting immune microenvironment status in triple-negative breast cancer. Front Immunol 2024; 15:1424259. [PMID: 39007147 PMCID: PMC11239375 DOI: 10.3389/fimmu.2024.1424259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified. Methods The gene expression profiles datasets of TNBC patients were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Diagnostic biomarkers for stratifying individualized tumor immune microenvironment (TIME) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with response to immunotherapy via the multiplex immunohistochemistry (mIHC). Results A total of 60 costimulatory molecule genes (CMGs) were obtained, and we determined two different TIME subclasses ("hot" and "cold") through the K-means clustering method. The "hot" tumors presented a higher infiltration of activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1 macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs (CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel diagnostic nomogram was constructed for predicting individualized TIME status and was validated with good predictive accuracy in TCGA, GSE76250 and GSE58812 databases. Further mIHC conformed that TNBC patients with high CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy. Conclusion This study supplemented evidence about the value of CMGs in TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential biomarkers, significantly promoting TNBC patient selection for immunotherapeutic guidance.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenyu Zhai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuyu Ma
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minqing Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiaoting Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhihuan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fangfang Duan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Grigolo S, Filgueira L. Immunotherapy of Clear-Cell Renal-Cell Carcinoma. Cancers (Basel) 2024; 16:2092. [PMID: 38893211 PMCID: PMC11171115 DOI: 10.3390/cancers16112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Clear-cell Renal-Cell Carcinoma (ccRCC) is the most common type of renal-cell carcinoma (RCC). In many cases, RCC patients manifest the first symptoms during the advanced stage of the disease. For this reason, immunotherapy appears to be one of the dominant treatments to achieve a resolution. In this review, we focus on the presentation of the main immune checkpoint proteins that act as negative regulators of immune responses, such as PD-1, CTLA-4, LAG-3, TIGIT, and TIM-3, and their respective inhibitors. Interleukin-2, another potential component of the treatment of ccRCC patients, has also been covered. The synergy between several immunotherapies is one of the main aspects that unites the conclusions of research in recent years. To date, the combination of several immunotherapies enhances the efficacy of a monotherapy, which often manifests important limitations. Immunotherapy aimed at restoring the anti-cancer immune response in ccRCC, involved in the recognition and elimination of cancer cells, may also be a valid solution for many other types of immunogenic tumors that are diagnosed in the final stages.
Collapse
Affiliation(s)
| | - Luis Filgueira
- Anatomy, University of Fribourg, 1700 Fribourg, Switzerland;
| |
Collapse
|
24
|
Dawidowicz M, Kula A, Mielcarska S, Świętochowska E, Waniczek D. Prognostic Value of B7H4 Expression in Patients with Solid Cancers: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5045. [PMID: 38732263 PMCID: PMC11084412 DOI: 10.3390/ijms25095045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
V-set domain-containing T-cell activation inhibitor 1 (aliases VTCN1, B7H4) participates in tumour immune escape by delivering inhibitory signals to T cells. The purpose of this article was to assess the B7H4 prognostic value in solid cancers. Three databases were searched for relevant articles. The main endpoints were overall survival (OS), disease-specific survival (DSS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS). Appropriate hazard ratios (HRs) were pooled. The R studio software (version 4.0.3) was used for data analysis. Thirty-one studies met the inclusion criteria. High expression of B7H4 was associated with worse OS (HR = 1.52, 95% CI: 1.37-1.68) but not with DSS (HR = 1.14, 95% CI: 0.49-2.63), RFS (HR = 1.77, 95% CI: 0.75-4.18), DFS (HR = 1.29, 95% CI: 0.8-2.09), or PFS (HR = 1.71, 95% CI: 0.91-3.2) in patients with solid cancers. High expression of B7H4 is associated with a poorer prognosis in patients with solid cancers. B7H4 is a promising prognostic biomarker and immunotherapeutic target for various solid cancers because of its activity in cancer immunity and tumourigenesis.
Collapse
Affiliation(s)
- Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| |
Collapse
|
25
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
26
|
Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q, Long J. Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett 2024; 588:216758. [PMID: 38401885 DOI: 10.1016/j.canlet.2024.216758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Immune checkpoint molecules play a pivotal role in the initiation, regulation, and termination of immune responses. Tumor cells exploit these checkpoints to dampen immune cell function, facilitating immune evasion. Clinical interventions target this mechanism by obstructing the binding of immune checkpoints to their ligands, thereby restoring the anti-tumor capabilities of immune cells. Notably, therapies centered on immune checkpoint inhibitors, particularly PD-1/PD-L1 and CTLA-4 blocking antibodies, have demonstrated significant clinical promise. However, a considerable portion of patients still encounter suboptimal efficacy and develop resistance. Recent years have witnessed an exponential surge in preclinical and clinical trials investigating novel immune checkpoint molecules such as TIM3, LAG3, TIGIT, NKG2D, and CD47, along with their respective ligands. The processes governing immune checkpoint molecules, from their synthesis to transmembrane deployment, interaction with ligands, and eventual degradation, are intricately tied to post-translational modifications. These modifications encompass glycosylation, phosphorylation, ubiquitination, neddylation, SUMOylation, palmitoylation, and ectodomain shedding. This discussion proceeds to provide a concise overview of the structural characteristics of several novel immune checkpoints and their ligands. Additionally, it outlines the regulatory mechanisms governed by post-translational modifications, offering insights into their potential clinical applications in immune checkpoint blockade.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meifang Xu
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meifeng Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Boshu Zheng
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qi Ke
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Liu W, Liu W, Zou H, Chen L, Huang W, Lv R, Xu Y, Liu H, Shi Y, Wang K, Wang Y, Xiong W, Deng S, Yi S, Sui W, Peng G, Ma Y, Wang H, Lv L, Wang J, Wei J, Qiu L, Zheng W, Zou D. Combinational therapy of CAR T-cell and HDT/ASCT demonstrates impressive clinical efficacy and improved CAR T-cell behavior in relapsed/refractory large B-cell lymphoma. J Immunother Cancer 2024; 12:e008857. [PMID: 38631712 PMCID: PMC11029269 DOI: 10.1136/jitc-2024-008857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Approximately two-thirds of patients with relapsed or refractory large B-cell lymphoma (R/R LBCL) do not respond to or relapse after anti-CD19 chimeric antigen receptor T (CAR T)-cell therapy, leading to poor outcomes. Previous studies have suggested that intensified lymphodepletion and hematological stem cell infusion can promote adoptively transferred T-cell expansion, enhancing antitumor effects. Therefore, we conducted a phase I/II clinical trial in which CNCT19 (an anti-CD19 CAR T-cell) was administered after myeloablative high-dose chemotherapy and autologous stem cell transplantation (HDT/ASCT) in patients with R/R LBCL. METHODS Transplant-eligible patients with LBCL who were refractory to first-line immunochemotherapy or experiencing R/R status after salvage chemotherapy were enrolled. The study aimed to evaluate the safety and efficacy of this combinational therapy. Additionally, frozen peripheral blood mononuclear cell samples from this trial and CNCT19 monotherapy studies for R/R LBCL were used to evaluate the impact of the combination therapy on the in vivo behavior of CNCT19 cells. RESULTS A total of 25 patients with R/R LBCL were enrolled in this study. The overall response and complete response rates were 92.0% and 72.0%, respectively. The 2-year progression-free survival rate was 62.3%, and the overall survival was 68.5% after a median follow-up of 27.0 months. No unexpected toxicities were observed. All cases of cytokine release syndrome were of low grade. Two cases (8%) experienced grade 3 or higher CAR T-cell-related encephalopathy syndrome. The comparison of CNCT19 in vivo behavior showed that patients in the combinational therapy group exhibited enhanced in vivo expansion of CNCT19 cells and reduced long-term exhaustion formation, as opposed to those receiving CNCT19 monotherapy. CONCLUSIONS The combinational therapy of HDT/ASCT and CNCT19 demonstrates impressive efficacy, improved CNCT19 behavior, and a favorable safety profile. TRIAL REGISTRATION NUMBERS ChiCTR1900025419 and NCT04690192.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hesong Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lianting Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rui Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huimin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yin Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenjie Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Guangxin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lulu Lv
- Juventas Cell Therapy Ltd, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| |
Collapse
|
28
|
Trivedi P, Jhala G, De George DJ, Chiu C, Selck C, Ge T, Catterall T, Elkerbout L, Boon L, Joller N, Kay TW, Thomas HE, Krishnamurthy B. TIGIT acts as an immune checkpoint upon inhibition of PD1 signaling in autoimmune diabetes. Front Immunol 2024; 15:1370907. [PMID: 38533515 PMCID: PMC10964479 DOI: 10.3389/fimmu.2024.1370907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction Chronic activation of self-reactive T cells with beta cell antigens results in the upregulation of immune checkpoint molecules that keep self-reactive T cells under control and delay beta cell destruction in autoimmune diabetes. Inhibiting PD1/PD-L1 signaling results in autoimmune diabetes in mice and humans with pre-existing autoimmunity against beta cells. However, it is not known if other immune checkpoint molecules, such as TIGIT, can also negatively regulate self-reactive T cells. TIGIT negatively regulates the CD226 costimulatory pathway, T-cell receptor (TCR) signaling, and hence T-cell function. Methods The phenotype and function of TIGIT expressing islet infiltrating T cells was studied in non-obese diabetic (NOD) mice using flow cytometry and single cell RNA sequencing. To determine if TIGIT restrains self-reactive T cells, we used a TIGIT blocking antibody alone or in combination with anti-PDL1 antibody. Results We show that TIGIT is highly expressed on activated islet infiltrating T cells in NOD mice. We identified a subset of stem-like memory CD8+ T cells expressing multiple immune checkpoints including TIGIT, PD1 and the transcription factor EOMES, which is linked to dysfunctional CD8+ T cells. A known ligand for TIGIT, CD155 was expressed on beta cells and islet infiltrating dendritic cells. However, despite TIGIT and its ligand being expressed, islet infiltrating PD1+TIGIT+CD8+ T cells were functional. Inhibiting TIGIT in NOD mice did not result in exacerbated autoimmune diabetes while inhibiting PD1-PDL1 resulted in rapid autoimmune diabetes, indicating that TIGIT does not restrain islet infiltrating T cells in autoimmune diabetes to the same degree as PD1. Partial inhibition of PD1-PDL1 in combination with TIGIT inhibition resulted in rapid diabetes in NOD mice. Discussion These results suggest that TIGIT and PD1 act in synergy as immune checkpoints when PD1 signaling is partially impaired. Beta cell specific stem-like memory T cells retain their functionality despite expressing multiple immune checkpoints and TIGIT is below PD1 in the hierarchy of immune checkpoints in autoimmune diabetes.
Collapse
Affiliation(s)
- Prerak Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Chris Chiu
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Tara Catterall
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Lorraine Elkerbout
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | | | - Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
29
|
Xi X, Zhao W. Anti-Tumor Potential of Post-Translational Modifications of PD-1. Curr Issues Mol Biol 2024; 46:2119-2132. [PMID: 38534752 DOI: 10.3390/cimb46030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Programmed cell death protein-1 (PD-1) is a vital immune checkpoint molecule. The location, stability, and protein-protein interaction of PD-1 are significantly influenced by post-translational modification (PTM) of proteins. The biological information of PD-1, including its gene and protein structures and the PD-1/PD-L1 signaling pathway, was briefly reviewed in this review. Additionally, recent research on PD-1 post-translational modification, including the study of ubiquitination, glycosylation, phosphorylation, and palmitoylation, was summarized, and research strategies for PD-1 PTM drugs were concluded. At present, only a part of PD-1/PD-L1 treated patients (35-45%) are benefited from immunotherapies, and novel strategies targeting PTM of PD-1/PD-L1 may be important for anti-PD-1/PD-L1 non-responders (poor responders).
Collapse
Affiliation(s)
- Xiaoming Xi
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
30
|
Zhou Y, Qin X, Hu Q, Qin S, Xu R, Gu K, Lu H. Cross-talk between disulfidptosis and immune check point genes defines the tumor microenvironment for the prediction of prognosis and immunotherapies in glioblastoma. Sci Rep 2024; 14:3901. [PMID: 38365809 PMCID: PMC10873294 DOI: 10.1038/s41598-024-52128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/14/2024] [Indexed: 02/18/2024] Open
Abstract
Disulfidptosis is a condition where dysregulated NAPDH levels and abnormal accumulation of cystine and other disulfides occur in cells with high SLC7A11 expression under glucose deficiency. This disrupts normal formation of disulfide bonds among cytoskeletal proteins, leading to histone skeleton collapse and triggering cellular apoptosis. However, the correlation between disulfidptosis and immune responses in relation to glioblastoma survival rates and immunotherapy sensitivity remains understudied. Therefore, we utilized The Cancer Genome Atlas and The Chinese Glioma Genome Atlas to identify disulfidptosis-related immune checkpoint genes and established an overall survival (OS) prediction model comprising six genes: CD276, TNFRSF 14, TNFSF14, TNFSF4, CD40, and TNFRSF18, which could also be used for predicting immunotherapy sensitivity. We identified a cohort of glioblastoma patients classified as high-risk, which exhibited an upregulation of angiogenesis, extracellular matrix remodeling, and epithelial-mesenchymal transition as well as an immunosuppressive tumor microenvironment (TME) enriched with tumor associated macrophages, tumor associated neutrophils, CD8 + T-cell exhaustion. Immunohistochemical staining of CD276 in 144 cases further validated its negative correlation with OS in glioma. Disulfidptosis has the potential to induce chronic inflammation and an immunosuppressive TME in glioblastoma.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Xue Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunchao Hu
- Department of Radiation Oncology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Shaolei Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ran Xu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China.
| |
Collapse
|
31
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Zhang H, Xu W, Zhu H, Chen X, Tsai HI. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: Combining radiotherapy and metabolic targeting therapy. J Cancer 2024; 15:2003-2023. [PMID: 38434964 PMCID: PMC10905401 DOI: 10.7150/jca.92502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy (RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the exhausted T cell function. The current review will help in tailoring combination regimens to enhance the efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, RT, and metabolism targeting therapy in PDAC.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wenjin Xu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuelian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Liu Q, Zhang C, Chen X, Han Z. Modern cancer therapy: cryoablation meets immune checkpoint blockade. Front Oncol 2024; 14:1323070. [PMID: 38384806 PMCID: PMC10881233 DOI: 10.3389/fonc.2024.1323070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cryoablation, as a minimally invasive technology for the treatment of tumors, destroys target tumors with lethal low temperatures. It simultaneously releases a large number of tumor-specific antigens, pro-inflammatory cytokines, and nucleoproteins, known as "danger signals", activating the body's innate and adaptive immune responses. However, tumor cells can promote the inactivation of immune effector cells by reprogramming immune checkpoints, leading to the insufficiency of these antigens to induce an immune response capable of eradicating the tumor. Immune checkpoint blockers rejuvenate exhausted T cells by blocking immune checkpoints that induce programmed death of T cells, and are therefore considered a promising therapeutic strategy to enhance the immune effects of cryoablation. In this review, we provide a detailed explanation of the immunological mechanisms of cryoablation and articulate the theoretical basis and research progress of the treatment of cancer with cryoablation combined with immune checkpoint blockers. Preliminary data indicates that this combined treatment strategy exhibits good synergy and has been proven to be safe and effective.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
34
|
Ciesielska-Figlon K, Lisowska KA. The Role of the CD28 Family Receptors in T-Cell Immunomodulation. Int J Mol Sci 2024; 25:1274. [PMID: 38279272 PMCID: PMC10816057 DOI: 10.3390/ijms25021274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The CD28 family receptors include the CD28, ICOS (inducible co-stimulator), CTLA-4 (cytotoxic T-lymphocyte antigen-4), PD-1 (programmed cell death protein 1), and BTLA (B- and T-lymphocyte attenuator) molecules. They characterize a group of molecules similar to immunoglobulins that control the immune response through modulating T-cell activity. Among the family members, CD28 and ICOS act as enhancers of T-cell activity, while three others-BTLA, CTLA-4, and PD-1-function as suppressors. The receptors of the CD28 family interact with the B7 family of ligands. The cooperation between these molecules is essential for controlling the course of the adaptive response, but it also significantly impacts the development of immune-related diseases. This review introduces the reader to the molecular basis of the functioning of CD28 family receptors and their impact on T-cell activity.
Collapse
|
35
|
Sutton MN, Glazer SE, Muzzioli R, Yang P, Gammon ST, Piwnica-Worms D. Dimerization of the 4Ig isoform of B7-H3 in tumor cells mediates enhanced proliferation and tumorigenic signaling. Commun Biol 2024; 7:21. [PMID: 38182652 PMCID: PMC10770396 DOI: 10.1038/s42003-023-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
B7-H3 (CD276) has two isoforms (2Ig and 4Ig), no confirmed cognate receptor, and physiological functions that remain elusive. While differentially expressed on many solid tumors correlating with poor survival, mechanisms of how B7-H3 signals in cis (tumor cell) versus in trans (immune cell co-regulator) to elicit pro-tumorigenic phenotypes remain poorly defined. Herein, we characterized a tumorigenic and signaling role for tumor cell-expressed 4Ig-B7-H3, the dominant human isoform, in gynecological cancers that could be abrogated upon CRISPR/Cas9 knockout of B7-H3; tumorigenesis was rescued upon re-expression of 4Ig-B7-H3. Size exclusion chromatography revealed dimerization states for the extracellular domains of both human 4Ig- and murine 2Ig-B7-H3. mEGFP lifetimes of expressed 4Ig-B7-H3-mEGFP fusions determined by FRET-FLIM assays confirmed close-proximity interactions of 4Ig-B7-H3 and identified two distinct homo-FRET lifetime populations, consistent with monomeric and homo-dimer interactions. In live cells, bioluminescence imaging of 4Ig-B7-H3-mediated split luciferase complementation showed dimerization of 4Ig-B7-H3. To separate basal from dimer state activities in the absence of a known receptor, C-terminus (cytosolic) chemically-induced dimerization of 4Ig-B7-H3 increased tumor cell proliferation and cell activation signaling pathways (AKT, Jak/STAT, HIF1α, NF-κβ) significantly above basal expression of 4Ig-B7-H3 alone. These results revealed a new, dimerization-dependent intrinsic tumorigenic signaling role for 4Ig-B7-H3, likely acting in cis, and provide a therapeutically-actionable target for intervention of B7-H3-dependent tumorigenesis.
Collapse
Affiliation(s)
- Margie N Sutton
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah E Glazer
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Riccardo Muzzioli
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Wang S, Hu P, Fan J, Zou J, Hong W, Huang X, Pan D, Chen H, Zhu YZ, Ye L. CD80-Fc fusion protein as a potential cancer immunotherapy strategy. Antib Ther 2024; 7:28-36. [PMID: 38235375 PMCID: PMC10791041 DOI: 10.1093/abt/tbad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
The activation of T lymphocytes is a crucial component of the immune response, and the presence of CD80, a membrane antigen, is necessary for T-cell activation. CD80 is usually expressed on antigen-presenting cells (APCs), which can interact with cluster of differentiation 28 (CD28) or programmed cell death ligand 1 (PD-L1) to promote T-cell proliferation, differentiation and function by activating costimulatory signal or blocking inhibitory signal. Simultaneously, CD80 on the APCs also interacts with cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on the surface of T cells to suppress the response of specific effector T cells, particularly in the context of persistent antigenic stimulation. Due to the pivotal role of CD80 in the immune response, the CD80-Fc fusion protein has emerged as a promising approach for cancer immunotherapy. This review primarily focused on the crucial role of CD80 in the cancer immunotherapy. We also reviewed the current advancements in the research of CD80-Fc fusion proteins. Finally, we deliberated on the challenges encountered by CD80-Fc fusion proteins and proposed the potential strategies that could yield the benefits for patients.
Collapse
Affiliation(s)
- Songna Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Minhang Hospital & Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai 201100, China
| | - Pinliang Hu
- Research & Development Department, Beijing Beyond Biotechnology Co., Ltd, Room 308, C Building, NO. 18 Xihuannanlu Street, BDA, Beijing, 100176, China
| | - Jiajun Fan
- Minhang Hospital & Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai 201100, China
| | - Jing Zou
- Research & Development Department, Beijing Beyond Biotechnology Co., Ltd, Room 308, C Building, NO. 18 Xihuannanlu Street, BDA, Beijing, 100176, China
| | - Weidong Hong
- Research & Development Department, Beijing Beyond Biotechnology Co., Ltd, Room 308, C Building, NO. 18 Xihuannanlu Street, BDA, Beijing, 100176, China
| | - Xuan Huang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Minhang Hospital & Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai 201100, China
| | - Danjie Pan
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Minhang Hospital & Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai 201100, China
| | - Huaning Chen
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Minhang Hospital & Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai 201100, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Minhang Hospital & Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai 201100, China
| |
Collapse
|
37
|
Ding H, Shi H, Chen W, Liu Z, Yang Z, Li X, Qiu Z, Zhuo H. Identification of Key Prognostic Alternative Splicing Events of Costimulatory Molecule-Related Genes in Colon Cancer. Comb Chem High Throughput Screen 2024; 27:1900-1912. [PMID: 37957898 DOI: 10.2174/0113862073249972231026060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE This study aimed to explore the key alternative splicing events in costimulatory molecule-related genes in colon cancer and to determine their correlation with prognosis. METHODS Gene expression RNA-sequencing data, clinical data, and SpliceSeq data of colon cancer were obtained from The Cancer Genome Atlas. Differentially expressed alternative splicing events in genes were identified, Followed by correlation analysis of genes corresponding to differentially expressed alternative splicing events with costimulatory molecule-related genes. Survival analysis was conducted using differentially expressed alternative splicing events in these genes and a prognostic model was constructed. Functional enrichment, proteinprotein interaction network, and splicing factor analyses were performed. RESULTS In total, 6504 differentially expressed alternative splicing events in 3949 genes were identified between tumor and normal tissues. Correlation analysis revealed 3499 differentially expressed alternative splicing events in 2168 costimulatory molecule-related genes. Moreover, 328 differentially expressed alternative splicing events in 288 costimulatory molecule-related genes were associated with overall survival. The prognostic models constructed using these showed considerable power in predicting survival. The ubiquitin A-52 residue ribosomal protein fusion product 1 and ribosomal protein S9 were the hub nodes in the protein-protein interaction network. Furthermore, one splicing factor, splicing factor proline and glutamine-rich, was significantly associated with patient prognosis. Four splicing factor-alternative splicing pairs were obtained from four alternative splicing events in three genes: TBC1 domain family member 8 B, complement factor H, and mitochondrial fission 1. CONCLUSION The identified differentially expressed alternative splicing events of costimulatory molecule-related genes may be used to predict patient prognosis and immunotherapy responses in colon cancer.
Collapse
Affiliation(s)
- Hao Ding
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Huiwen Shi
- Department of General Surgery, No. 971 Hospital of PLA Navy, Shandong, China
| | - Weifeng Chen
- Department of Oncology, Huangdao District Hospital of Traditional Chinese Medicine, Shandong, China
| | - Zhisheng Liu
- Department of General Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Shandong, China
| | - Zhi Yang
- The IVD Medical Marketing Department, 3D Medicines Inc., Shadong, China
| | - Xiaochuan Li
- Department of General Surgery, Qingdao Municipal Hospital, Shandong, China
| | - Zhichao Qiu
- Department of Oncology, Shunde Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqing Zhuo
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Shadong, China
| |
Collapse
|
38
|
Tong Q, Wu Z. Curcumin inhibits colon cancer malignant progression and promotes T cell killing by regulating miR-206 expression. Clin Anat 2024; 37:2-11. [PMID: 37191314 DOI: 10.1002/ca.24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Colon cancer is a great threat to human health. Curcumin, as a traditional Chinese medicine extract with anti-tumor and anti-inflammatory effects, can affect the development of diverse human diseases including cancer. The aim of this research was to probe the mechanism by which curcumin regulates colon cancer progression. Colon cancer cells were processed with graded concentrations of curcumin. The proliferation and apoptosis of the treated cells were determined by MTT, colony formation assay and flow cytometry. Expression of signaling pathway-related proteins and programmed death-ligand 1 (PD-L1) was measured by western blotting. The effect of curcumin on tumor cell growth was verified through T cell-mediated killing and ELISA assays. The relationship between target gene expression and the survival rate of colon cancer patients was analyzed by a survival curve. Curcumin treatment restrained proliferation and accelerated apoptosis of colon cancer cells. It elevated miR-206 expression, which in turn affected colon cancer cell function. miR-206 enhanced colon cancer cell apoptosis and inhibited PD-L1 expression; thus, curcumin enhanced the killing effect of T cells on tumor cells by suppressing PD-L1 through inhibiting the JAK/STAT3 pathway. Patients with high expression of miR-206 had better survival rates than those with low expression. Curcumin can regulate miR-206 expression and inhibit the malignant behavior of colon cancer cells and enhance T cell killing through the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Qin Tong
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua City, China
| | - Zhangqiang Wu
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua City, China
| |
Collapse
|
39
|
Zhang S, Zhang X, Yang H, Liang T, Bai X. Hurdle or thruster: Glucose metabolism of T cells in anti-tumour immunity. Biochim Biophys Acta Rev Cancer 2024; 1879:189022. [PMID: 37993001 DOI: 10.1016/j.bbcan.2023.189022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Glucose metabolism is essential for the activation, differentiation and function of T cells and proper glucose metabolism is required to maintain effective T cell immunity. Dysregulation of glucose metabolism is a hallmark of cancer, and the tumour microenvironment (TME2) can create metabolic barriers in T cells that inhibit their anti-tumour immune function. Targeting glucose metabolism is a promising approach to improve the capacity of T cells in the TME. The efficacy of common immunotherapies, such as immune checkpoint inhibitors (ICIs3) and adoptive cell transfer (ACT4), can be limited by T-cell function, and the treatment itself can affect T-cell metabolism. Therefore, understanding the relationship between immunotherapy and T cell glucose metabolism helps to achieve more effective anti-tumour therapy. In this review, we provide an overview of T cell glucose metabolism and how T cell metabolic reprogramming in the TME regulates anti-tumour responses, briefly describe the metabolic patterns of T cells during ICI and ACT therapies, which suggest possible synergistic strategies.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
40
|
Geiger K, Joerger M, Roessler M, Hettwer K, Ritter C, Simon K, Uhlig S, Holdenrieder S. Missing prognostic value of soluble PD-1, PD-L1 and PD-L2 in lung cancer patients undergoing chemotherapy - A CEPAC-TDM biomarker substudy. Tumour Biol 2024; 46:S355-S367. [PMID: 38277316 DOI: 10.3233/tub-230015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Programmed cell death receptors and ligands in cancer tissue samples are established companion diagnostics for immune checkpoint inhibitor (ICI) therapies. OBJECTIVE To investigate the relevance of soluble PD-1, PD-L1 and PD-L2 for estimating therapy response and prognosis in non-small cell lung cancer patients (NSCLC) undergoing platin-based combination chemotherapies. METHODS In a biomarker substudy of a prospective, multicentric clinical trial (CEPAC-TDM) on advanced NSCLC patients, soluble PD-1, PD-L1 and PD-L2 were assessed in serial serum samples by highly sensitive enzyme-linked immunosorbent assays and correlated with radiological response after two cycles of chemotherapy and with overall survival (OS). RESULTS Among 243 NSCLC patients, 185 achieved response (partial remission and stable disease) and 58 non-response (progression). The distribution of PD-1, PD-L1 and PD-L2 at baseline (C1), prior to staging (C3) and the relative changes (C3/C1) greatly overlapped between the patient groups with response and non-response, thus hindering the discrimination between the two groups. None of the PD markers had prognostic value regarding OS. CONCLUSIONS Neither soluble PD-1, PD-L1 nor PD-L2 did provide clinical utility for predicting response to chemotherapy and prognosis. Studies on the relevance of PD markers in ICI therapies are warranted.
Collapse
Affiliation(s)
- Kimberly Geiger
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University of Munich, Munich, Germany
| | - Markus Joerger
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Max Roessler
- Central European Society for Anticancer Drug Research (CESAR), Vienna, Austria
| | | | - Christoph Ritter
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Greifswald, Germany
| | - Kirsten Simon
- QuoData GmbH-Quality & Statistics, Dresden, Germany
- CEBIO GmbH -Center for Evaluation of Biomarkers, Munich, Germany
| | - Steffen Uhlig
- QuoData GmbH-Quality & Statistics, Dresden, Germany
- CEBIO GmbH -Center for Evaluation of Biomarkers, Munich, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University of Munich, Munich, Germany
- CEBIO GmbH -Center for Evaluation of Biomarkers, Munich, Germany
| |
Collapse
|
41
|
Blanc-Durand F, Clemence Wei Xian L, Tan DSP. Targeting the immune microenvironment for ovarian cancer therapy. Front Immunol 2023; 14:1328651. [PMID: 38164130 PMCID: PMC10757966 DOI: 10.3389/fimmu.2023.1328651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex immunosuppressive tumor microenvironment (TME). Immune checkpoint inhibitors have emerged as a breakthrough in cancer therapy by reactivating the antitumor immune response suppressed by tumor cells. However, in the case of OC, these inhibitors have failed to demonstrate significant improvements in patient outcomes, and existing biomarkers have not yet identified promising subgroups. Consequently, there remains a pressing need to understand the interplay between OC tumor cells and their surrounding microenvironment to develop effective immunotherapeutic approaches. This review aims to provide an overview of the OC TME and explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes (TILs) are major actors in OC TME. Evidence has been accumulating regarding the spontaneous TILS response against OC antigens. Activated T-helpers secrete a wide range of inflammatory cytokines with a supportive action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and play a significant antitumor role through opsonization of target antigens and T-cell recruitment. Macrophages also form an important subset of innate immunity (M1-macrophages) while participating in the immune-stimulation context. Finally, OC has shown to engage a significant natural-killer-cells immune response, exerting direct cytotoxicity without prior sensitization. Despite this initial cytotoxicity, OC cells develop various strategies to induce an immune-tolerant state. To this end, multiple immunosuppressive molecules are secreted to impair cytotoxic cells, recruit regulatory cells, alter antigen presentation, and effectively evade immune response. Consequently, OC TME is predominantly infiltrated by immunosuppressive cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and myeloid-derived suppressor cells. Despite this strong immunosuppressive state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/PD-L1, OC expresses multiple other immune checkpoints that contribute to immune evasion, and each representing potential immune targets. Novel immunotherapies are attempting to overcome the immunosuppressive state and induce specific immune responses using antibodies adoptive cell therapy or vaccines. Overall, the OC TME presents both opportunities and obstacles. Immunotherapeutic approaches continue to show promise, and next-generation inhibitors offer exciting opportunities. However, tailoring therapies to individual immune characteristics will be critical for the success of these treatments.
Collapse
Affiliation(s)
- Felix Blanc-Durand
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - Lai Clemence Wei Xian
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - David S. P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Chen Y, Guo DZ, Zhu CL, Ren SC, Sun CY, Wang Y, Wang JF. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front Immunol 2023; 14:1323797. [PMID: 38193090 PMCID: PMC10773890 DOI: 10.3389/fimmu.2023.1323797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Sepsis currently remains a major contributor to mortality in the intensive care unit (ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in 2017, accounting for almost 20% of all-cause mortality worldwide. This highlights the urgent need to improve the understanding and treatment of this condition. Sepsis is now recognized as a dysregulation of the host immune response to infection, characterized by an excessive inflammatory response and immune paralysis. This dysregulation leads to secondary infections, multiple organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-inhibitory molecule expressed in immune cells, has emerged as a critical factor in sepsis. Numerous studies have found a significant association between the expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed on neutrophils recently. This review explores the role of PD-1/PD-L1 in immunostimulatory and anti-inflammatory pathways, illustrates the intricate link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - De-zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shi-chun Ren
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
43
|
Ren L, Li Z, Zhou Y, Zhang J, Zhao Z, Wu Z, Zhao Y, Ju Y, Pang X, Sun X, Wang W, Zhang Y. CBX4 promotes antitumor immunity by suppressing Pdcd1 expression in T cells. Mol Oncol 2023; 17:2694-2708. [PMID: 37691307 DOI: 10.1002/1878-0261.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/13/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
E3 SUMO-protein ligase CBX4 (CBX4), a key component of polycomb-repressive complexes 1 (PRC1), has been reported to regulate a variety of genes implicated in tumor growth, metastasis, and angiogenesis. However, its role in T-cell-mediated antitumor immunity remains elusive. To shed light on this issue, we generated mice with T-cell-specific deletion of Cbx4. Tumor growth was increased in the knockout mice. Additionally, their tumor-infiltrating lymphocytes exhibited impaired tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) production, with an elevated programmed cell death protein 1 (PD-1) level. In fact, dysregulated Pdcd1 expression was observed in all major subsets of peripheral T cells from the knockout mice, which was accompanied by a functional defect in response to T-cell receptor (TCR) stimulation. In support of a direct link between CBX4 and PD-1, Cbx4 overexpression resulted in the downregulation of Pdcd1 expression. Epigenetic analyses indicated that Cbx4 deficiency leads to diminished accumulation of inhibitory histone modifications at conserved region (CR)-C and CR-B sites of the Pdcd1 promoter, namely mono-ubiquitinated histone H2A at lysine 119 (H2AK119ub1) and trimethylated histone H3 at lysine 27 (H3K27me3). Moreover, inhibition of either the E3 ligase activity of polycomb-repressive complexes 1 (PRC1) or the methyltransferase activity of polycomb-repressive complexes 2 (PRC2) restores Pdcd1 expression in Cbx4-transfected cells. Cumulatively, this study reveals a novel function of CBX4 in the regulation of T-cell function and expands our understanding of the epigenetic control of Pdcd1 expression.
Collapse
Affiliation(s)
- Liwei Ren
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ziyin Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yu Zhou
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ziheng Zhao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Zhaofei Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yurong Ju
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Institute of Biological Sciences, Jinzhou Medical University, China
| |
Collapse
|
44
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
45
|
Luke JJ, Patel MR, Blumenschein GR, Hamilton E, Chmielowski B, Ulahannan SV, Connolly RM, Santa-Maria CA, Wang J, Bahadur SW, Weickhardt A, Asch AS, Mallesara G, Clingan P, Dlugosz-Danecka M, Tomaszewska-Kiecana M, Pylypenko H, Hamad N, Kindler HL, Sumrow BJ, Kaminker P, Chen FZ, Zhang X, Shah K, Smith DH, De Costa A, Li J, Li H, Sun J, Moore PA. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial. Nat Med 2023; 29:2814-2824. [PMID: 37857711 PMCID: PMC10667103 DOI: 10.1038/s41591-023-02593-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Tebotelimab, a bispecific PD-1×LAG-3 DART molecule that blocks both PD-1 and LAG-3, was investigated for clinical safety and activity in a phase 1 dose-escalation and cohort-expansion clinical trial in patients with solid tumors or hematologic malignancies and disease progression on previous treatment. Primary endpoints were safety and maximum tolerated dose of tebotelimab when administered as a single agent (n = 269) or in combination with the anti-HER2 antibody margetuximab (n = 84). Secondary endpoints included anti-tumor activity. In patients with advanced cancer treated with tebotelimab monotherapy, 68% (184/269) experienced treatment-related adverse events (TRAEs; 22% were grade ≥3). No maximum tolerated dose was defined; the recommended phase 2 dose (RP2D) was 600 mg once every 2 weeks. There were tumor decreases in 34% (59/172) of response-evaluable patients in the dose-escalation cohorts, with objective responses in multiple solid tumor types, including PD-1-refractory disease, and in LAG-3+ non-Hodgkin lymphomas, including CAR-T refractory disease. To enhance potential anti-tumor responses, we tested margetuximab plus tebotelimab. In patients with HER2+ tumors treated with tebotelimab plus margetuximab, 74% (62/84) had TRAEs (17% were grade ≥3). The RP2D was 600 mg once every 3 weeks. The confirmed objective response rate in these patients was 19% (14/72), including responses in patients typically not responsive to anti-HER2/anti-PD-1 combination therapy. ClinicalTrials.gov identifier: NCT03219268 .
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA.
| | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | - George R Blumenschein
- Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Bartosz Chmielowski
- Division of Hematology & Medical Oncology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Roisin M Connolly
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Research at UCC, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Cesar A Santa-Maria
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Wang
- Duke University Medical Center, Durham, NC, USA
| | | | - Andrew Weickhardt
- Austin Health, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Adam S Asch
- OUHSC Oklahoma City, OK/SCRI, Oklahoma City, OK, USA
| | - Girish Mallesara
- Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia
| | - Philip Clingan
- Southern Medical Day Care Centre, Wollongong, New South Wales, Australia
| | | | | | | | - Nada Hamad
- St. Vincent's Health Network, Kinghorn Cancer Centre, University of New South Wales, School of Clinical Medicine, Faculty of Medicine and Health, University of Notre Dame Australia, School of Medicine, Sydney, New South Wales, Australia
| | - Hedy L Kindler
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Hua Li
- MacroGenics, Clinical, Rockville, MD, USA
| | - Jichao Sun
- MacroGenics, Clinical, Rockville, MD, USA
| | - Paul A Moore
- MacroGenics, Research, Rockville, MD, USA
- Zymeworks, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Hu X, Ren J, Xue Q, Luan R, Ding D, Tan J, Su X, Yang J. Anti‑PD‑1/PD‑L1 and anti‑CTLA‑4 associated checkpoint inhibitor pneumonitis in non‑small cell lung cancer: Occurrence, pathogenesis and risk factors (Review). Int J Oncol 2023; 63:122. [PMID: 37681488 PMCID: PMC10552702 DOI: 10.3892/ijo.2023.5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) play a significant anti‑tumor role in the management of non‑small cell lung cancer. The most broadly used ICIs are anti‑programmed death 1 (PD‑1), anti‑programmed cell death‑ligand 1, and anti‑cytotoxic T lymphocyte‑associated antigen‑4 monoclonal antibody. Compared with traditional chemotherapy, ICIs have the advantages of greater efficiency and more specific targeting. However, the resulting immune‑related adverse events limit the clinical application of ICIs, especially checkpoint inhibitor pneumonitis (CIP). CIP chiefly occurs within 6 months of administration of ICIs. Excessive activation and amplification of cytotoxic T lymphocytes, helper T cells, downregulation of regulatory T cells, and over‑secretion of pro‑inflammatory cytokines are the dominant mechanisms underlying the pathophysiology of CIP. The dysregulation of innate immune cells, such as an increase in inflammatory monocytes, dendritic cells, neutrophils and M1 polarization of macrophages, an increase in IL‑10 and IL‑35, and a decrease in eosinophils, may underlie CIP. Although contested, several factors may accelerate CIP, such as a history of previous respiratory disease, radiotherapy, chemotherapy, administration of epidermal growth factor receptor tyrosine kinase inhibitors, PD‑1 blockers, first‑line application of ICIs, and combined immunotherapy. Interestingly, first‑line ICIs plus chemotherapy may reduce CIP. Steroid hormones remain the primary treatment strategy against grade ≥2 CIP, although cytokine blockers are promising therapeutic agents. Herein, the current research on CIP occurrence, clinical and radiological characteristics, pathogenesis, risk factors, and management is summarized to further expand our understanding, clarify the prognosis, and guide treatment.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Jin Ren
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Qianfei Xue
- Department of Respiratory Medicine, Hospital of Jilin University, Changchun, Jilin 130012,
P.R. China
| | - Rumei Luan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Dongyan Ding
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Jie Tan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| |
Collapse
|
47
|
Li F, Zhou Z, Wang L, Li B, Jin M, Liu J, Chen Y, He Y, Ren B, Shen H, Liu L. A study of programmed death-1/programmed death ligand and iodine-induced autoimmune thyroiditis in NOD.H-2h4 mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2574-2584. [PMID: 37598415 DOI: 10.1002/tox.23893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/22/2023]
Abstract
Excess iodine will trigger the occurrence of autoimmune thyroiditis (AIT), and programmed death-1 (PD-1)/programmed death ligand (PD-L) will also contribute to the development of AIT. The purpose of this study was to explore the role that negative regulatory signals mediated by PD-1/PD-L play in the development of spontaneous autoimmune thyroiditis (SAT) in NOD.H-2h4 mice when they are exposed to iodine. Programmed death ligand 1 (PD-L1) antibody was administered intraperitoneally to NOD.H-2h4 mice. The relevant indicators were determined by flow cytometry, real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry, pathological hematoxylin and eosin staining, and arsenic-cerium catalytic spectrophotometry. Results showed that the level of urinary iodine, the level of thyroid lymphocyte infiltration, the level of thyroglobulin antibodies (TgAb) and interferon (IFN-γ)/tumor necrosis factor (TNF-α)/interleukin (IL-2)/IL-17, and the relative expression of PD-1/PD-L1/programmed death-2 (PD-L2) increased with the intervention of excess iodine. After the intervention of the PD-L1 antibody, the expression of PD-1/PD-L1/PD-L2 in different degrees was inhibited, but the level of thyroid lymphocyte infiltration and serum TgAb/IFN-γ/TNF-α/ IL-2/IL-17 did not decrease. Collectively, although PD-1/PD-L participates in the occurrence of SAT and induces inflammation, administration of the PD-L1 antibody does not effectively improve the pathological process of SAT. More research is needed to determine whether PD-1/PD-L intervention can treat autoimmune thyroid disease.
Collapse
Affiliation(s)
- Fan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
- Control Infection Department, Xi'an First Hospital, Xi'an, People's Republic of China
| | - Zheng Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lingbo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Baoxiang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Meihui Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Jinjin Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yun Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yanhong He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Bingxuan Ren
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
48
|
Boni C, Rossi M, Montali I, Tiezzi C, Vecchi A, Penna A, Doselli S, Reverberi V, Ceccatelli Berti C, Montali A, Schivazappa S, Laccabue D, Missale G, Fisicaro P. What Is the Current Status of Hepatitis B Virus Viro-Immunology? Clin Liver Dis 2023; 27:819-836. [PMID: 37778772 DOI: 10.1016/j.cld.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The natural history of hepatitis B virus (HBV) infection is closely dependent on the dynamic interplay between the host immune response and viral replication. Spontaneous HBV clearance in acute self-limited infection is the result of an adequate and efficient antiviral immune response. Instead, it is widely recognized that in chronic HBV infection, immunologic dysfunction contributes to viral persistence. Long-lasting exposure to high viral antigens, upregulation of multiple co-inhibitory receptors, dysfunctional intracellular signaling pathways and metabolic alterations, and intrahepatic regulatory mechanisms have been described as features ultimately leading to a hierarchical loss of effector functions up to full T-cell exhaustion.
Collapse
Affiliation(s)
- Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sara Doselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Schivazappa
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
49
|
Lu J, Veler A, Simonetti B, Raj T, Chou PH, Cross SJ, Phillips AM, Ruan X, Huynh L, Dowsey AW, Ye D, Murphy RF, Verkade P, Cullen PJ, Wülfing C. Five Inhibitory Receptors Display Distinct Vesicular Distributions in Murine T Cells. Cells 2023; 12:2558. [PMID: 37947636 PMCID: PMC10649679 DOI: 10.3390/cells12212558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.
Collapse
Affiliation(s)
- Jiahe Lu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Alisa Veler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (B.S.); (P.V.); (P.J.C.)
| | - Timsse Raj
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Po Han Chou
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Stephen J. Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TD, UK;
| | - Alexander M. Phillips
- Department of Electrical Engineering & Electronics and Computational Biology Facility, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (X.R.); (R.F.M.)
| | - Lan Huynh
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| | - Andrew W. Dowsey
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
- Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Robert F. Murphy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (X.R.); (R.F.M.)
- Department of Biological Sciences, Biomedical Engineering and Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (B.S.); (P.V.); (P.J.C.)
| | - Peter J. Cullen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (B.S.); (P.V.); (P.J.C.)
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.L.); (A.V.); (T.R.); (P.H.C.); (L.H.)
| |
Collapse
|
50
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|