1
|
Rago F, Melo EM, Miller LM, Duray AM, Batista Felix F, Vago JP, de Faria Gonçalves AP, Angelo ALPM, Cassali GD, de Gaetano M, Brennan E, Owen B, Guiry P, Godson C, Alcorn JF, Teixeira MM. Treatment with lipoxin A 4 improves influenza A infection outcome, induces macrophage reprogramming, anti-inflammatory and pro-resolutive responses. Inflamm Res 2024; 73:1903-1918. [PMID: 39214890 DOI: 10.1007/s00011-024-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Influenza A is a virus from the Orthomixoviridae family responsible for high lethality rates and morbidity, despite clinically proven vaccination strategies and some anti-viral therapies. The eicosanoid Lipoxin A4 (LXA4) promotes the resolution of inflammation by decreasing cell recruitment and pro-inflammatory cytokines release, but also for inducing activation of apoptosis, efferocytosis, and macrophage reprogramming. OBJECTIVE Here, we evaluated whether a synthetic lipoxin mimetic, designated AT-01-KG, would improve the course of influenza A infection in a murine model. METHOD Mice were infected with influenza A/H1N1 and treated with AT-01-KG (1.7 μg/kg/day, i.p.) at day 3 post-infection. RESULTS AT-01-KG attenuated mortality, reducing leukocyte infiltration and lung damage at day 5 and day 7 post-infection. AT-01-KG is a Formyl Peptide Receptor 2 (designated FPR2/3 in mice) agonist, and the protective responses were not observed in fpr2/3 -/- animals. In mice treated with LXA4 (50 μg/kg/day, i.p., days 3-6 post-infection), at day 7, macrophage reprogramming was observed, as seen by a decrease in classically activated macrophages and an increase in alternatively activated macrophages in the lungs. Furthermore, the number of apoptotic cells and cells undergoing efferocytosis was increased in the lavage of treated mice. Treatment also modulated the adaptive immune response, increasing the number of T helper 2 cells (Th2) and regulatory T (Tregs) cells in the lungs of the treated mice. CONCLUSION Therefore, treatment with a lipoxin A4 analog was beneficial in a model of influenza A infection in mice. The drug decreased inflammation and promoted resolution and beneficial immune responses, suggesting it may be useful in patients with severe influenza.
Collapse
Affiliation(s)
- Flavia Rago
- Department of Biochemistry and Immunology Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, CEP 31.270-901, Belo Horizonte, MG, 6627, Brazil.
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| | - Eliza Mathias Melo
- Department of Biochemistry and Immunology Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, CEP 31.270-901, Belo Horizonte, MG, 6627, Brazil
| | - Leigh M Miller
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Franciel Batista Felix
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Priscila Vago
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula de Faria Gonçalves
- Immunology of Viral Diseases, René Rachou Research Center, Oswaldo Cruz Foundation (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | | | - Geovanni D Cassali
- Comparative Pathology Laboratory, Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monica de Gaetano
- School of Medicine/School of Biomolecular and Biomedical Science, UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- School of Medicine/School of Biomolecular and Biomedical Science, UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Benjamin Owen
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Patrick Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- School of Medicine/School of Biomolecular and Biomedical Science, UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 9127 Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, CEP 31.270-901, Belo Horizonte, MG, 6627, Brazil.
| |
Collapse
|
2
|
Xu J, Cao S, Xu Y, Chen H, Nian S, Li L, Liu Q, Xu W, Ye Y, Yuan Q. The role of DC subgroups in the pathogenesis of asthma. Front Immunol 2024; 15:1481989. [PMID: 39530090 PMCID: PMC11550972 DOI: 10.3389/fimmu.2024.1481989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs), specialized antigen-presenting cells of the immune system, act as immunomodulators in diseases of the immune system, including asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Moreover, most strategies for treating asthma with relevant therapeutic agents that target DCs have been initiated from the study of DC function. We discussed the pathogenesis of asthma (including T2-high and T2-low), the roles played by different DC subpopulations in the pathogenesis of asthma, and the therapeutic strategies centered around DCs. This study will provide a scientific theoretical basis for current asthma treatment, provide theoretical guidance and research ideas for developing and studying therapeutic drugs targeting DC, and provide more therapeutic options for the patient population with poorly controlled asthma symptoms.
Collapse
Affiliation(s)
- Jiangang Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuxian Cao
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Han Chen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Siji Nian
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Liu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenfeng Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Cheng X, Li Y, Wang H. Activation of Wnt/β-catenin signal induces DCs to differentiate into immune tolerant regDCs in septic mice. Mol Immunol 2024; 172:38-46. [PMID: 38870636 DOI: 10.1016/j.molimm.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 04/28/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Sepsis is a common complication among patients in intensive care units, and has a high mortality rate, with no effective therapies to date. As immunosuppression has become the research focus of sepsis, the regulatory role of dendritic cells (DCs) in the immune response to sepsis has received attention. OBJECTIVE To investigate the role of the Wnt/β-catenin signaling pathway in inducing the differentiation of splenic DCs in mice with sepsis caused by cecal ligation and puncture (CLP). METHODS C57bl/6 mice were randomly divided into three groups, namely the sham, 24 h post-CLP, and 72 h post-CLP groups. Levels of regulatory T cells (Tregs) among splenic mononuclear cells, suppressor T cells (TSs), and surface markers, such as major histocompatibility complex class II (MHC-II), co-stimulatory molecules (CD80 and CD86), negative co-stimulatory molecule death-ligand 1 (PD-L1), CC chemokine receptor-5 (CCR5), and CC chemokine receptor-7 (CCR7), were analyzed via flow cytometry for each group of mice post-surgery. CD11c+ DCs were purified from the splenic mononuclear cells of each group, and the expression of β-catenin, Wnt5a, and Wnt3a was detected using RT-PCR and western blotting.Each group of DCs was incubated with LPS-containing culture solution, and the supernatant of the culture solution was collected after 24 hours to detect the level of Tumor necrosis factor-α(TNF-α), interleukin (IL)-6, IL-12, and IL-10. RESULTS Compared with that in the sham group, the expression of β-catenin, Wnt5a, and Wnt3a in splenic DCs of the other two groups of mice increased with prolonged CLP exposure (P<0.05). Meanwhile, the proportion of Tregs and TSs increased in the mouse spleens after CLP, and levels of DC surface molecules, such as CCR5, CCR7, CD80, CD86, and MHC-II, decreased to different degrees, whereas those of PD-L1 increased. These results suggested that DCs differentiate towards regulatory DCs (regDCs) after CLP in mice. The results of ELISA showed that the longer the exposure time after CLP, the lower the ability of DCs to secrete TNF-α and IL-12, but the higher the level of IL-10 and IL-6. CONCLUSION The Wnt/β-catenin signaling pathway activates and induces regDCs differentiation in the splenic DCs of mice with sepsis and participates in the regulation of immune tolerance in the organism.
Collapse
Affiliation(s)
- Xia Cheng
- Graduate Training Base of Jinzhou Medical University (Department of Pathology, Fourth Medical Center, General Hospital of Chinese People's Liberation Army), Beijing 100048, China; Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yazhuo Li
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
4
|
Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol 2024; 15:1434688. [PMID: 39040114 PMCID: PMC11260823 DOI: 10.3389/fimmu.2024.1434688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Sepsis is described as a life-threatening organ dysfunction and a heterogeneous syndrome that is a leading cause of morbidity and mortality in intensive care settings. Severe sepsis could incite an uncontrollable surge of inflammatory cytokines, and the host immune system's immunosuppression could respond to counter excessive inflammatory responses, characterized by the accumulated anti-inflammatory cytokines, impaired function of immune cells, over-proliferation of myeloid-derived suppressor cells and regulatory T cells, depletion of immune effector cells by different means of death, etc. In this review, we delve into the underlying pathological mechanisms of sepsis, emphasizing both the hyperinflammatory phase and the associated immunosuppression. We offer an in-depth exploration of the critical mechanisms underlying sepsis, spanning from individual immune cells to a holistic organ perspective, and further down to the epigenetic and metabolic reprogramming. Furthermore, we outline the strengths of artificial intelligence in analyzing extensive datasets pertaining to septic patients, showcasing how classifiers trained on various clinical data sources can identify distinct sepsis phenotypes and thus to guide personalized therapy strategies for the management of sepsis. Additionally, we provide a comprehensive summary of recent, reliable biomarkers for hyperinflammatory and immunosuppressive states, facilitating more precise and expedited diagnosis of sepsis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Rago F, Melo EM, Miller LM, Duray AM, Felix FB, Vago JP, Gonçalves APF, Angelo ALPM, Cassali GD, Gaetano M, Brennan E, Owen B, Guiry P, Godson C, Alcorn JF, Teixeira MM. Treatment with lipoxin A 4 improves influenza A infection outcome through macrophage reprogramming, anti-inflammatory and pro-resolutive responses. RESEARCH SQUARE 2024:rs.3.rs-4491036. [PMID: 38947034 PMCID: PMC11213203 DOI: 10.21203/rs.3.rs-4491036/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective and design Here, we evaluated whether a synthetic lipoxin mimetic, designated AT-01-KG, would improve the course of influenza A infection in a murine model. Treatment Mice were infected with influenza A/H1N1 and treated with AT-01-KG (1.7 mg/kg/day, i.p.) at day 3 post-infection. Methods Mortality rate was assessed up to day 21 and inflammatory parameters were assessed at days 5 and 7. Results AT-01-KG attenuated mortality, reducing leukocyte infiltration and lung damage at day 5 and day 7 post-infection. AT-01-KG is a Formyl Peptide Receptor 2 (designated FPR2/3 in mice) agonist, and the protective responses were not observed in FPR2/3 -/- animals. In mice treated with LXA4 (50mg/kg/day, i.p., days 3-6 post-infection), at day 7, macrophage reprogramming was observed, as seen by a decrease in classically activated macrophages and an increase in alternatively activated macrophages in the lungs. Furthermore, the number of apoptotic cells and cells undergoing efferocytosis was increased in the lavage of treated mice. Treatment also modulated the adaptive immune response, increasing the number of anti-inflammatory T cells (Th2) and regulatory T (Tregs) cells in the lungs of the treated mice. Conclusions Therefore, treatment with a lipoxin A4 analog was beneficial in a model of influenza A infection in mice. The drug decreased inflammation and promoted resolution and beneficial immune responses, suggesting it may be useful in patients with severe influenza.
Collapse
|
6
|
Zheng LY, Duan Y, He PY, Wu MY, Wei ST, Du XH, Yao RQ, Yao YM. Dysregulated dendritic cells in sepsis: functional impairment and regulated cell death. Cell Mol Biol Lett 2024; 29:81. [PMID: 38816685 PMCID: PMC11140885 DOI: 10.1186/s11658-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.
Collapse
Affiliation(s)
- Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shu-Ting Wei
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiao-Hui Du
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
7
|
Broquet A, Gourain V, Goronflot T, Le Mabecque V, Sinha D, Ashayeripanah M, Jacqueline C, Martin P, Davieau M, Boutin L, Poulain C, Martin FP, Fourgeux C, Petrier M, Cannevet M, Leclercq T, Guillonneau M, Chaumette T, Laurent T, Harly C, Scotet E, Legentil L, Ferrières V, Corgnac S, Mami-Chouaib F, Mosnier JF, Mauduit N, McWilliam HEG, Villadangos JA, Gourraud PA, Asehnoune K, Poschmann J, Roquilly A. Sepsis-trained macrophages promote antitumoral tissue-resident T cells. Nat Immunol 2024; 25:802-819. [PMID: 38684922 DOI: 10.1038/s41590-024-01819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.
Collapse
Affiliation(s)
- Alexis Broquet
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Victor Gourain
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Thomas Goronflot
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des Données, INSERM, Nantes Université, CIC 1413, Nantes, France
| | - Virginie Le Mabecque
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Debajyoti Sinha
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Pierre Martin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Lea Boutin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Cecile Poulain
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Florian P Martin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Melanie Petrier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Manon Cannevet
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Thomas Leclercq
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Maeva Guillonneau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- Olgram SAS, Bréhan, France
| | - Tanguy Chaumette
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Thomas Laurent
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | | | | | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes, ISCR - UMR CNRS 6226, Rennes, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes, ISCR - UMR CNRS 6226, Rennes, France
| | - Stephanie Corgnac
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | | | | | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Pierre Antoine Gourraud
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des Données, INSERM, Nantes Université, CIC 1413, Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France.
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France.
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Colón DF, Wanderley CW, Turato WM, Borges VF, Franchin M, Castanheira FVS, Nascimento D, Prado D, Haruo Fernandes de Lima M, Volpon LC, Kavaguti SK, Carlotti AP, Carmona F, Franklin BS, Cunha TM, Alves-Filho JC, Cunha FQ. Paediatric sepsis survivors are resistant to sepsis-induced long-term immune dysfunction. Br J Pharmacol 2024; 181:1308-1323. [PMID: 37990806 DOI: 10.1111/bph.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.
Collapse
Affiliation(s)
- David F Colón
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos W Wanderley
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Walter M Turato
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa F Borges
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Franchin
- School of Dentistry, Alfenas Federal University, Alfenas, Brazil
| | | | - Daniele Nascimento
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Douglas Prado
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Leila C Volpon
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia K Kavaguti
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana P Carlotti
- Physiology & Pharmacology Calgary, University of Calgary, Calgary, Canada
| | - Fabio Carmona
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thiago M Cunha
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose Carlos Alves-Filho
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Foo IJH, Chua BY, Clemens EB, Chang SY, Jia X, McQuilten HA, Yap AHY, Cabug AF, Ashayeripanah M, McWilliam HEG, Villadangos JA, Evrard M, Mackay LK, Wakim LM, Fazakerley JK, Kedzierska K, Kedzierski L. Prior infection with unrelated neurotropic virus exacerbates influenza disease and impairs lung T cell responses. Nat Commun 2024; 15:2619. [PMID: 38521764 PMCID: PMC10960853 DOI: 10.1038/s41467-024-46822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.
Collapse
Affiliation(s)
- Isabelle Jia-Hui Foo
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ashley Huey Yiing Yap
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Pharmacology; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
10
|
Vermeersch V, Léon K, Caillard A, Szczesnowski A, Albacete G, Marec N, Tissier F, Gilbert G, Droguet M, Marcorelles P, Giroux-Metges MA, Huet O. Moderate Exercise Modulates Inflammatory Responses and Improves Survival in a Murine Model of Acute Pneumonia. Crit Care Med 2024; 52:e142-e151. [PMID: 38193770 PMCID: PMC10876171 DOI: 10.1097/ccm.0000000000006166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVES An association between physical inactivity and worse outcome during infectious disease has been reported. The effect of moderate exercise preconditioning on the immune response during an acute pneumonia in a murine model was evaluated. SETTING Laboratory experiments. SUBJECTS C57BL6/j male mice. INTERVENTIONS Six-week-old C57BL/6J mice were divided in two groups: an exercise group and a control group. In the exercise group, a moderate, progressive, and standardized physical exercise was applied for 8 weeks. It consisted in a daily treadmill training lasting 60 minutes and with an intensity of 65% of the maximal theoretical oxygen uptake. Usual housing recommendation were applied in the control group during the same period. After 8 weeks, pneumonia was induced in both groups by intratracheal instillation of a fixed concentration of a Klebsiella pneumoniae (5 × 103 colony-forming unit) solution. MEASUREMENTS AND MAIN RESULTS Mice preconditioned by physical exercise had a less sever onset of pneumonia as shown by a significant decrease of the Mouse Clinical Assessment Severity Score and had a significantly lower mortality compared with the control group (27% vs. 83%; p = 0.019). In the exercise group, we observed a significantly earlier but transient recruitment of inflammatory immune cells with a significant increase of neutrophils, CD4+ cells and interstitial macrophages counts compared with control group. Lung tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-10 were significantly decreased at 48 hours after pneumonia induction in the exercise group compared with the control group. CONCLUSIONS In our model, preconditioning by moderate physical exercise improves outcome by reducing the severity of acute pneumonia with an increased but transient activation of the innate immune response.
Collapse
Affiliation(s)
- Veronique Vermeersch
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Karelle Léon
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Anais Caillard
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
| | | | - Gaëlle Albacete
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Nadege Marec
- LBAI, Inserm UMR1227, Université de Bretagne Occidentale, Brest, France
| | - Florine Tissier
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | | | - Mickael Droguet
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | | | - Marie-Agnes Giroux-Metges
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
- Explorations Fonctionnelles Respiratoires, Brest Teaching Hospital, Brest, France
| | - Olivier Huet
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
- Australian and New Zealand Intensive Care research Center, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Ashayeripanah M, Vega-Ramos J, Fernandez-Ruiz D, Valikhani S, Lun ATL, White JT, Young LJ, Yaftiyan A, Zhan Y, Wakim L, Caminschi I, Lahoud MH, Lew AM, Shortman K, Smyth GK, Heath WR, Mintern JD, Roquilly A, Villadangos JA. Systemic inflammatory response syndrome triggered by blood-borne pathogens induces prolonged dendritic cell paralysis and immunosuppression. Cell Rep 2024; 43:113754. [PMID: 38354086 DOI: 10.1016/j.celrep.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs). Paralysis affects several generations of cDCs and impairs immunity for 3-4 weeks. Paralyzed cDCs display distinct transcriptomic and phenotypic signatures and show impaired capacity to capture and present antigens in vivo. They also display altered cytokine production patterns upon stimulation. The paralysis program is not initiated in the bone marrow but during final cDC differentiation in peripheral tissues under the influence of local secondary signals that persist after resolution of SIRS. Vaccination with monoclonal antibodies that target cDC receptors or blockade of transforming growth factor β partially overcomes paralysis and immunosuppression. This work provides insights into the mechanisms of paralysis and describes strategies to restore immunocompetence post-SIRS.
Collapse
Affiliation(s)
- Mitra Ashayeripanah
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Javier Vega-Ramos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; School of Biomedical Sciences, Faculty of Medicine & Health and the UNSW RNA Institute, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Shirin Valikhani
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Aaron T L Lun
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jason T White
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Louise J Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Atefeh Yaftiyan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Linda Wakim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Irina Caminschi
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mireille H Lahoud
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Justine D Mintern
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000 Nantes, France; CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, 44000 Nantes, France.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Cox RM, Wolf JD, Lieberman NA, Lieber CM, Kang HJ, Sticher ZM, Yoon JJ, Andrews MK, Govindarajan M, Krueger RE, Sobolik EB, Natchus MG, Gewirtz AT, deSwart RL, Kolykhalov AA, Hekmatyar K, Sakamoto K, Greninger AL, Plemper RK. Therapeutic mitigation of measles-like immune amnesia and exacerbated disease after prior respiratory virus infections in ferrets. Nat Commun 2024; 15:1189. [PMID: 38331906 PMCID: PMC10853234 DOI: 10.1038/s41467-024-45418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Nicole A Lieberman
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Meghan K Andrews
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | | | - Rebecca E Krueger
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth B Sobolik
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Rik L deSwart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Khan Hekmatyar
- Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA.
| |
Collapse
|
13
|
Yang J, Zhu X, Feng J. The Changes in the Quantity of Lymphocyte Subpopulations during the Process of Sepsis. Int J Mol Sci 2024; 25:1902. [PMID: 38339179 PMCID: PMC10855580 DOI: 10.3390/ijms25031902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis remains a global challenge, especially in low- and middle-income countries, where there is an urgent need for easily accessible and cost-effective biomarkers to predict the occurrence and prognosis of sepsis. Lymphocyte counts are easy to measure clinically, and a large body of animal and clinical research has shown that lymphocyte counts are closely related to the incidence and prognosis of sepsis. This review extensively collected experimental articles related to lymphocyte counts since the unification of the definition of sepsis. The article categorizes and discusses the relationship between absolute lymphocyte counts, intrinsic lymphocyte subsets, effector T-lymphocytes, B-lymphocytes, dendritic cells, and the incidence and prognosis of sepsis. The results indicate that comparisons of absolute lymphocyte counts alone are meaningless. However, in addition to absolute lymphocyte counts, innate lymphocyte subsets, effector T-cells, B-lymphocytes, and dendritic cells have shown certain research value in related studies.
Collapse
Affiliation(s)
- Jiale Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Guo K, Zhou TT, Luo SH, Liu YC, Liu Y, Li SH. Leucosceptrane Sesterterpenoids as a New Type of Natural Immunosuppressive Agents in Treating Sepsis. J Med Chem 2024; 67:513-528. [PMID: 38150591 DOI: 10.1021/acs.jmedchem.3c01759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Intragastric administration of the total sesterterpenoid extract (TSE) of medicinal plant Leucosceptrum canum at 2.5 g/kg dose protected mice from LPS-induced sepsis. Phytochemical investigation led to the isolation and identification of 47 leucosceptrane sesterterpenoids (1-47) including 30 new compounds (1-30) with complicated oxygenation patterns. Biological screening indicated their immunosuppressive activity via inhibiting IFN-γ secretion and/or proliferation of T cells with different potencies. Mechanism study of compounds 9, 25, and 32 revealed that they inhibited the activations of AKT-mTOR, JNK, p38 MAPK or ERK pathway in T cells and macrophages. In addition, compounds 9 and 25 induced G0/G1 cell arrest of T cells. The major component, leucosceptroid N (32), significantly lowered the levels of IL-6 and TNF-α in peripheral blood serum, and ameliorated the multiorgan damages of LPS-induced sepsis mice at 25 mg/kg dose. These findings suggest that leucosceptrane sesterterpenoids are a new type of potential immunosuppressive agents for sepsis treatment.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Ting-Ting Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
15
|
Wu Y, Zhang Y, Xie B, Zhang X, Wang G, Yuan S. Esketamine mitigates cognitive impairment following exposure to LPS by modulating the intestinal flora/subdiaphragmatic vagus nerve/spleen axis. Int Immunopharmacol 2024; 126:111284. [PMID: 38016344 DOI: 10.1016/j.intimp.2023.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Susceptibility to secondary infection often increases after primary infection. Secondary infections can lead to more severe inflammatory injuries; however, the underlying mechanisms are not yet fully elucidated. OBJECTIVE To investigate whether esketamine treatment immediately after primary lipopolysaccharide (LPS) exposure could alleviate cognitive impairment caused by secondary infection. METHODS Mice were injected intraperitoneally (IP) with LPS (5 mg/kg) 10 days apart. Esketamine (10, 15, or 30 mg/kg) was administered IP immediately after the primary LPS injection. Splenectomy or subdiaphragmatic vagotomy (SDV) was performed 7 days before secondary LPS exposure or broad-spectrum antibiotic administration. RESULTS Splenomegaly was observed after the primary LPS injection on Days 3 and 10. Splenomegaly was attenuated by treatment with 30 mg/kg esketamine. Esketamine treatment prevented increased plasma proinflammatory cytokines levels and cognitive dysfunction induced by secondary LPS exposure. Mice that underwent splenectomy or SDV had lower proinflammatory cytokines levels, higher hippocampal brain-derived neurotrophic factor (BDNF) levels, and improved cognitive function 1 day after secondary infection, which was not further improved by esketamine. Fecal microbiota transplantation (FMT) from endotoxic mice treated with esketamine attenuated hippocampal BDNF downregulation and cognitive dysfunction only in pseudo germ-free (PGF) mice without splenectomy. FMT with fecal suspensions from esketamine-treated endotoxic mice abrogated splenomegaly only in PGF mice without SDV. Blocking BDNF signaling blocked esketamine's ameliorating effects on secondary LPS exposure-induced cognitive dysfunction. CONCLUSION The intestinal flora/subdiaphragmatic vagus nerve/spleen axis-mediated hippocampal BDNF downregulation significantly affected secondary LPS-induced systemic inflammation and cognitive dysfunction. Esketamine preserves cognitive function via this mechanism.
Collapse
Affiliation(s)
- Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Guangzhi Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, PR China.
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
16
|
Jannini-Sá YAP, Creyns B, Hogaboam CM, Parks WC, Hohmann MS. Macrophages in Lung Repair and Fibrosis. Results Probl Cell Differ 2024; 74:257-290. [PMID: 39406909 DOI: 10.1007/978-3-031-65944-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Macrophages are key regulators of tissue repair and fibrosis. Following injury, macrophages undergo marked phenotypic and functional changes to play crucial roles throughout the phases of tissue repair. Idiopathic Pulmonary Fibrosis, which is the most common fibrosing lung disease, has been described as an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible aging individual. The marked destruction of the lung architecture results from the excessive secretion of extracellular matrix by activated fibroblasts and myofibroblasts. Accumulating evidence suggests that macrophages have a pivotal regulatory role in pulmonary fibrosis. The origins and characteristics of macrophages in the lung and their role in regulating lung homeostasis, repair, and fibrosis are reviewed herein. We discuss recent studies that have employed single-cell RNA-sequencing to improve the identification and characterization of macrophage populations in the context of homeostatic and fibrotic conditions. We also discuss the current understanding of the macrophage-mediated mechanisms underlying the initiation and progression of pulmonary fibrosis, with a focus on the phenotypic and functional changes that aging macrophages acquire and how these changes ultimately contribute to age-related chronic lung diseases.
Collapse
Affiliation(s)
- Yago A P Jannini-Sá
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brecht Creyns
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miriam S Hohmann
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol 2023; 14:1277161. [PMID: 38035100 PMCID: PMC10682474 DOI: 10.3389/fimmu.2023.1277161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung injury characterized by the damage of alveolar epithelial cells and pulmonary capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is often accompanied by immune system disturbance, both locally in the lungs and systemically. As a common heterogeneous disease in critical care medicine, researchers are often faced with the failure of clinical trials. Latent class analysis had been used to compensate for poor outcomes and found that targeted treatment after subgrouping contribute to ARDS therapy. The subphenotype of ARDS caused by sepsis has garnered attention due to its refractory nature and detrimental consequences. Sepsis stands as the most predominant extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS cases. Studies indicate that sepsis-induced ARDS tends to be more severe than ARDS caused by other factors, leading to poorer prognosis and higher mortality rate. This comprehensive review delves into the immunological mechanisms of sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted treatments, aiming to providing mechanism understanding and exploring ideas for accurate treatment of ARDS or sepsis-ARDS.
Collapse
Affiliation(s)
- Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiying Sheng
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiwei Luo
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| |
Collapse
|
18
|
Ziogas A, Bruno M, van der Meel R, Mulder WJM, Netea MG. Trained immunity: Target for prophylaxis and therapy. Cell Host Microbe 2023; 31:1776-1791. [PMID: 37944491 DOI: 10.1016/j.chom.2023.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/27/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Tu F, Pan L, Wu W, Cai Y, Li J, Wang X, Lai X, Chen Z, Ye L, Wang S. Recombinant GM-CSF enhances the bactericidal ability of PMNs by increasing intracellular IL-1β and improves the prognosis of secondary Pseudomonas aeruginosa pneumonia in sepsis. J Leukoc Biol 2023; 114:443-458. [PMID: 37490847 DOI: 10.1093/jleuko/qiad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
This study tested the hypothesis that recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances polymorphonuclear neutrophils (PMNs) via interleukin (IL)-1β to improve the prognosis of secondary infection in sepsis. The latter stage of sepsis is prone to induce immunosuppression, resulting in secondary fatal infections. Recombinant GM-CSF has become a way for sepsis-induced immunosuppression due to its immunomodulatory effect. However, the functional impact of GM-CSF on PMNs in sepsis remains obscure. This study aimed to study the role of recombinant GM-CSF on the bactericidal ability of PMNs in septic mice, assessing its effect on the prognosis of secondary pneumonia, and explore the mechanism of recombinant GM-CSF by intervening PMNs in patients with sepsis. The C57BL/6J sepsis mouse model was induced by cecal ligation and puncture. Recombinant murine GM-CSF (rmGM-CSF) was used in vivo when mice developed immunosuppression, which was characterized by abnormal bactericidal function of PMNs in peripheral blood. rmGM-CSF improved the prognosis of secondary pneumonia and reversed the function of PMNs. PMNs isolated by Percoll from septic patients were treated by recombinant human GM-CSF (rhGM-CSF) in vitro. The expression of CD11b, reactive oxygen species, phagocytosis, and neutrophil extracellular trap release in PMNs were enhanced by rhGM-CSF treatments. Whole-transcriptomic sequencing of mouse PMNs indicated that recombinant GM-CSF increased the expression of Il1b gene in PMNs. Blocking and inhibiting IL-1β release effectively counteracted the enhancing effect of GM-CSF on the bactericidal function of PMNs. rmGM-CSF enhances the bactericidal function of PMNs in vivo and improves the prognosis of secondary pneumonia in septic mice, and recombinant GM-CSF increases IL-1β precursor reserves, which, if stimulated, can rapidly enhance the bactericidal capacity of PMNs.
Collapse
Affiliation(s)
- Fuquan Tu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Department of Emergency Intensive Care Unit, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Lili Pan
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Wenwei Wu
- Department of Emergency Intensive Care Unit, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yuanhua Cai
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Jinggang Li
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xuechun Wang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xiaolin Lai
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Zhixiang Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Luya Ye
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Shaoyuan Wang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Department of Emergency Intensive Care Unit, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| |
Collapse
|
20
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
21
|
Wang Y, Fang Y, Yan Z, Xia R, Zeng W, Deng W, Xu J, Feng X, Peng J, Miao Y. Fatal BK polyomavirus-associated pneumonia: report of two cases with literature review. BMC Infect Dis 2023; 23:592. [PMID: 37697264 PMCID: PMC10494412 DOI: 10.1186/s12879-023-08577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND In immunocompromised populations, such as patients with AIDS and recipients of solid organ and hematopoietic stem cell transplants, BK polyomavirus (BKPyV) can reactivate and cause several diseases, which can lead to death in their severe forms. Unlike hemorrhagic cystitis and BKPyV-associated nephropathy, BKPyV-associated pneumonia is rare, with only seven known cases worldwide. However, the disease can rapidly progress with extremely high mortality. CASE PRESENTATION Herein, we report two cases of BKPyV-associated pneumonia following hematopoietic stem cell transplantation. Both patients had consistent infectious pneumonia and graft-versus-host disease after stem cell transplantation. The diagnosis of BKPyV-associated pneumonia was confirmed by metagenomic next-generation sequencing and polymerase chain reaction after the sudden worsening of the pulmonary infection signs and symptoms concomitant with renal dysfunction and systemic immune weakening. Both patients eventually died of systemic multi-organ failure caused by severe pneumonia. CONCLUSIONS Currently, BKPyV reactivation cannot be effectively prevented. Immunocompromised patients must actively manage their primary lung infections, pay close attention to pulmonary signs and imaging changes. Especially during and after steroid pulse therapy or immunosuppressive therapy for graft versus host diseases, BKPyV load in blood/urine needs to be regularly measured, and the immunosuppressive intensity should be adjusted properly after the BKPyV reactivation diagnosis. Clinical trials of new antiviral drugs and therapies for BKPyV are urgently needed.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yiling Fang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Ziyan Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Jie Peng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Guan W, Xu J, Shi Y, Wang X, Gu S, Xie L. VNN1 as a potential biomarker for sepsis diagnosis and its implications in immune infiltration and tumor prognosis. Front Med (Lausanne) 2023; 10:1236484. [PMID: 37608823 PMCID: PMC10440699 DOI: 10.3389/fmed.2023.1236484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Background This study explored novel biomarkers for diagnosing sepsis, a severe disease prevalent in clinical settings, particularly threatening to elderly patients. Methods Using microarray gene expression datasets and fatty acid metabolism signatures, we identified differentially expressed genes between sepsis and healthy control groups. Correlations between candidate genes, immune cells, and immune function were assessed. Logistic regression analysis and single-gene GSEA analysis were performed to identify potential biomarkers. The biomarkers' association with different types of tumors was investigated. Results Twelve genes related to fatty acid metabolism were excluded. CA4, OLAN, and VNN1 were found relevant to immune cells and function. Among these, only VNN1 showed statistical significance (p < 0.05), with a strong area under the ROC curve (0.995). High VNN1 expression indicated activation of certain metabolic pathways, while low expression suggested potential autoimmune responses. VNN1 was up-regulated in eight tumors and down-regulated in eight others. High VNN1 expression was linked to poor prognosis in six types of tumors, and low expression was linked to poor prognosis in four types of tumors. VNN1 expression showed correlations with stromal scores, immune scores, and cancer purity in different types of tumors. Conclusion VNN1 holds promise as a potential biomarker for sepsis diagnosis and is significant in identifying immune infiltration in tumor tissue and predicting tumor prognosis.
Collapse
Affiliation(s)
- Wei Guan
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Jiaruo Xu
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Yinghan Shi
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Xiuli Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Shaoyan Gu
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| |
Collapse
|
23
|
Bourdiol A, Legros V, Vardon-Bounes F, Rimmele T, Abraham P, Hoffmann C, Dahyot-Fizelier C, Jonas M, Bouju P, Cirenei C, Launey Y, Le Gac G, Boubeche S, Lamarche E, Huet O, Bezu L, Darrieussecq J, Szczot M, Delbove A, Schmitt J, Lasocki S, Auchabie J, Petit L, Kuhn-Bougouin E, Asehnoune K, Ingles H, Roquilly A, Cinotti R. Prevalence and risk factors of significant persistent pain symptoms after critical care illness: a prospective multicentric study. Crit Care 2023; 27:199. [PMID: 37226261 DOI: 10.1186/s13054-023-04491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Prevalence, risk factors and medical management of persistent pain symptoms after critical care illness have not been thoroughly investigated. METHODS We performed a prospective multicentric study in patients with an intensive care unit (ICU) length of stay ≥ 48 h. The primary outcome was the prevalence of significant persistent pain, defined as a numeric rating scale (NRS) ≥ 3, 3 months after admission. Secondary outcomes were the prevalence of symptoms compatible with neuropathic pain (ID-pain score > 3) and the risk factors of persistent pain. RESULTS Eight hundred fourteen patients were included over a 10-month period in 26 centers. Patients had a mean age of 57 (± 17) years with a SAPS 2 score of 32 (± 16) (mean ± SD). The median ICU length of stay was 6 [4-12] days (median [interquartile]). At 3 months, the median intensity of pain symptoms was 2 [1-5] in the entire population, and 388 (47.7%) patients had significant pain. In this group, 34 (8.7%) patients had symptoms compatible with neuropathic pain. Female (Odds Ratio 1.5 95% CI [1.1-2.1]), prior use of anti-depressive agents (OR 2.2 95% CI [1.3-4]), prone positioning (OR 3 95% CI [1.4-6.4]) and the presence of pain symptoms on ICU discharge (NRS ≥ 3) (OR 2.4 95% CI [1.7-3.4]) were risk factors of persistent pain. Compared with sepsis, patients admitted for trauma (non neuro) (OR 3.5 95% CI [2.1-6]) were particularly at risk of persistent pain. Only 35 (11.3%) patients had specialist pain management by 3 months. CONCLUSIONS Persistent pain symptoms were frequent in critical illness survivors and specialized management remained infrequent. Innovative approaches must be developed in the ICU to minimize the consequences of pain. TRIAL REGISTRATION NCT04817696. Registered March 26, 2021.
Collapse
Affiliation(s)
- Alexandre Bourdiol
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation chirurgicale, Hôtel Dieu, Nantes Université, CHU Nantes, 44093, Nantes, France
| | - Vincent Legros
- Service d'Anesthésie-Réanimation, Hôpital Maison Blanche, CHU de Reims, 51100, Reims, France
| | - Fanny Vardon-Bounes
- Service d'Anesthésie-Réanimation, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Thomas Rimmele
- Service d'Anesthésie-Réanimation, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- EA7426 Pathophysiology of Injury-Induced Immunosuppression (Pi3), Hospices Civils de Lyon-Biomérieux-Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Abraham
- Service de médecine Intensive Adulte, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Clément Hoffmann
- Burn Center, Percy Military Training Hospital, 101, Avenue Henri Barbusse - BP 406, 92141, Clamart, France
| | - Claire Dahyot-Fizelier
- Intensive Care and Anesthesia Department, University Hospital of Poitiers, University of Poitiers, Poitiers, France
- INSERM U1770, University of Poitiers, Poitiers, France
| | - Maud Jonas
- Service de Réanimation, Hôpital de Saint-Nazaire, Saint-Nazaire, France
| | - Pierre Bouju
- Service de Réanimation Polyvalente, Centre Hospitalier de Bretagne Sud, Lorient, France
| | - Cédric Cirenei
- Hôpital Claude Huriez, Pôle Anesthésie-Réanimation, médecine périopératoire et douleur, CHU Lille, 59000, Lille, France
| | - Yoann Launey
- Department of Anaesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France
| | - Gregoire Le Gac
- Department of Anaesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France
- UMR_S 1242, Chemistry Oncogenesis Stress Signaling, University of Rennes, 35000, Rennes, France
| | - Samia Boubeche
- Service d'Anesthésie-Réanimation, CHU de Rouen, Rouen, France
| | - Edouard Lamarche
- Department of Anaesthesia and Critical Care, University Hospital of Tours, 37000, Tours, France
| | - Olivier Huet
- Department of Anaesthesia and Critical Care, University Hospital of Brest, 29000, Brest, France
| | - Lucillia Bezu
- Service de Réanimation Polyvalente, Gustave Roussy, 94805, Villejuif, France
- Metabolomics and Cell Biology Platforms, Université Paris Saclay, Université de Paris, Sorbonne Université, Inserm UMR1138, Villejuif, France
| | - Julie Darrieussecq
- CH Aubagne, Pôle CARK, Service d'Anesthésie-Réanimation chirurgicale, Edmond Garcin, 179 Av. des soeurs Gastine, 13400, Aubagne, France
| | - Magdalena Szczot
- Service d'Anesthésie-Réanimation, Hôpital Hautepierre, CHU Strasbourg, Strasbourg, France
| | - Agathe Delbove
- Service de Réanimation Polyvalente, CHBA Vannes, Vannes, France
| | - Johan Schmitt
- Hôpital d'Instruction des Armées Clermont Tonnerre, Rue Colonel Fonferrier, 29240, Brest, France
| | - Sigismond Lasocki
- Department of Anaesthesia and Critical Care, University Hospital of Tours, 49100, Angers, France
| | - Johann Auchabie
- Service de Réanimation, centre hospitalier de Cholet, Cholet, France
| | - Ludivine Petit
- CHU Saint-Etienne, Service d'Anesthésie-Réanimation, Saint-Étienne, France
| | - Emmanuelle Kuhn-Bougouin
- Centre d'Etude et de Traitement de la Douleur, Hôtel Dieu, Nantes Université, CHU Nantes, 44093, Nantes, France
| | - Karim Asehnoune
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation chirurgicale, Hôtel Dieu, Nantes Université, CHU Nantes, 44093, Nantes, France
| | - Hugo Ingles
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation chirurgicale, Hôtel Dieu, Nantes Université, CHU Nantes, 44093, Nantes, France
| | - Antoine Roquilly
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation chirurgicale, Hôtel Dieu, Nantes Université, CHU Nantes, 44093, Nantes, France
- UMR 1064, Center for Research in Transplantation and Translational Immunology, INSERM, Nantes Université, 44000, Nantes, France
| | - Raphaël Cinotti
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation chirurgicale, Hôtel Dieu, Nantes Université, CHU Nantes, 44093, Nantes, France.
- MethodS in Patients-Centered Outcomes and HEalth Research, SPHERE, INSERM, Nantes Université, Univ Tours, CHU Nantes, CHU Tours, 44000, Nantes, France.
- Department of Anesthesia and Critical Care, Hôtel-Dieu, University Hospital of Nantes, 1 place Alexis Ricordeau, 44093, Nantes, France.
| |
Collapse
|
24
|
Hu W, Wu Z, Zhang M, Yu S, Zou X. Identification of ferroptosis-related genes in male mice with sepsis-induced acute lung injury based on transcriptome sequencing. BMC Pulm Med 2023; 23:133. [PMID: 37081490 PMCID: PMC10116744 DOI: 10.1186/s12890-023-02361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Sepsis can result in acute lung injury (ALI). Studies have shown that pharmacological inhibition of ferroptosis can treat ALI. However, the regulatory mechanisms of ferroptosis in sepsis-induced ALI remain unclear. METHODS Transcriptome sequencing was performed on lung tissue samples from 10 sepsis-induced mouse models of ALI and 10 control mice. After quality control measures, clean data were used to screen for differentially expressed genes (DEGs) between the groups. The DEGs were then overlapped with ferroptosis-related genes (FRGs) to obtain ferroptosis-related DEGs (FR-DEGs). Subsequently, least absolute shrinkage and selection operator (Lasso) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) were used to obtain key genes. In addition, Ingenuity Pathway Analysis (IPA) was employed to explore the disease, function, and canonical pathways related to the key genes. Gene set enrichment analysis (GSEA) was used to investigate the functions of the key genes, and regulatory miRNAs of key genes were predicted using the NetworkAnalyst and StarBase databases. Finally, the expression of key genes was validated with the GSE165226 and GSE168796 datasets sourced from the Gene Expression Omnibus (GEO) database and using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Thirty-three FR-DEGs were identified between 1843 DEGs and 259 FRGs. Three key genes, Ncf2, Steap3, and Gclc, were identified based on diagnostic models established by the two machine learning methods. They are mainly involved in infection, immunity, and apoptosis, including lymphatic system cell migration and lymphocyte and T cell responses. Additionally, the GSEA suggested that Ncf2 and Steap3 were similarly enriched in mRNA processing, response to peptides, and leukocyte differentiation. Furthermore, a key gene-miRNA network including 2 key genes (Steap3 and Gclc) and 122 miRNAs, and a gene-miRNA network with 1 key gene (Steap3) and 3 miRNAs were constructed using NetworkAnalyst and StarBase, respectively. Both databases predicted that mmu-miR-15a-5p was the target miRNA of Steap3. Finally, Ncf2 expression was validated using both datasets and qRT-PCR, and Steap3 was validated using GSE165226 and qRT-PCR. CONCLUSIONS This study identified two FR-DEGs (Ncf2 and Steap3) associated with sepsis-induced ALI via transcriptome analyses, as well as their functional and metabolic pathways.
Collapse
Affiliation(s)
- Wen Hu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhen Wu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Mei Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Shilin Yu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohua Zou
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
25
|
Roquilly A, Francois B, Huet O, Launey Y, Lasocki S, Weiss E, Petrier M, Hourmant Y, Bouras M, Lakhal K, Le Bel C, Flattres Duchaussoy D, Fernández-Barat L, Ceccato A, Flet L, Jobert A, Poschmann J, Sebille V, Feuillet F, Koulenti D, Torres A. Interferon gamma-1b for the prevention of hospital-acquired pneumonia in critically ill patients: a phase 2, placebo-controlled randomized clinical trial. Intensive Care Med 2023; 49:530-544. [PMID: 37072597 PMCID: PMC10112824 DOI: 10.1007/s00134-023-07065-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE We aimed to determine whether interferon gamma-1b prevents hospital-acquired pneumonia in mechanically ventilated patients. METHODS In a multicenter, placebo-controlled, randomized trial conducted in 11 European hospitals, we randomly assigned critically ill adults, with one or more acute organ failures, under mechanical ventilation to receive interferon gamma-1b (100 µg every 48 h from day 1 to 9) or placebo (following the same regimen). The primary outcome was a composite of hospital-acquired pneumonia or all-cause mortality on day 28. The planned sample size was 200 with interim safety analyses after enrolling 50 and 100 patients. RESULTS The study was discontinued after the second safety analysis for potential harm with interferon gamma-1b, and the follow-up was completed in June 2022. Among 109 randomized patients (median age, 57 (41-66) years; 37 (33.9%) women; all included in France), 108 (99%) completed the trial. Twenty-eight days after inclusion, 26 of 55 participants (47.3%) in the interferon-gamma group and 16 of 53 (30.2%) in the placebo group had hospital-acquired pneumonia or died (adjusted hazard ratio (HR) 1.76, 95% confidence interval (CI) 0.94-3.29; P = 0.08). Serious adverse events were reported in 24 of 55 participants (43.6%) in the interferon-gamma group and 17 of 54 (31.5%) in the placebo group (P = 0.19). In an exploratory analysis, we found that hospital-acquired pneumonia developed in a subgroup of patients with decreased CCL17 response to interferon-gamma treatment. CONCLUSIONS Among mechanically ventilated patients with acute organ failure, treatment with interferon gamma-1b compared with placebo did not significantly reduce the incidence of hospital-acquired pneumonia or death on day 28. Furthermore, the trial was discontinued early due to safety concerns about interferon gamma-1b treatment.
Collapse
Affiliation(s)
- Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France.
| | - Bruno Francois
- ICU Department and Inserm CIC 1435 & UMR 1092, University Hospital of Limoges, Limoges, France
| | - Olivier Huet
- Département d'anesthésie réanimation et medecine peri-operatoire, CHRU de Brest, Université de Bretagne Occidentale, 29000, Brest, France
| | - Yoann Launey
- Department of Anaesthesia, Critical Care and Perioperative Medicine, Univ Rennes, CHU Rennes, 35000, Rennes, France
| | - Sigismond Lasocki
- Department of Anesthesiology and Critical Care Medicine, University Hospital of Angers, 49000, Angers, France
| | - Emmanuel Weiss
- Department of Anesthesiology and Critical Care, Université Paris Cité, INSERM UMR_S1149, and AP-HP Nord, Hôpital Beaujon, Clichy, France
| | - Melanie Petrier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Yannick Hourmant
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | - Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Karim Lakhal
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | - Cecilia Le Bel
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | | | - Laia Fernández-Barat
- CELLEX research laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, Barcelona, Universitat de Barcelona, CIBERES, Icrea, IDIBAPS, Barcelona, Spain
| | - Adrian Ceccato
- Servei de Pneumologia, Hospital Clinic, Barcelona, Universitat de Barcelona, CIBERES, Icrea, IDIBAPS, Barcelona, Spain
| | - Laurent Flet
- Nantes Université, CHU Nantes, Pharmacie, 44000, Nantes, France
| | - Alexandra Jobert
- Nantes Université, CHU Nantes, DRI, Département promotion, cellule vigilances recherche, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Veronique Sebille
- Nantes Université, CHU Nantes, DRI, Plateforme de Méthodologie et de Biostatistique, 44000, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Fanny Feuillet
- Nantes Université, CHU Nantes, DRI, Plateforme de Méthodologie et de Biostatistique, 44000, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Despoina Koulenti
- 2nd Critical Care Department, Attikon University Hospital, Athens, Greece
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Antoni Torres
- CELLEX research laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
26
|
Xu J, Gao C, He Y, Fang X, Sun D, Peng Z, Xiao H, Sun M, Zhang P, Zhou T, Yang X, Yu Y, Li R, Zou X, Shu H, Qiu Y, Zhou X, Yuan S, Yao S, Shang Y. NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF-κB-NFAT5 complex during septic immunosuppression. Mol Ther 2023; 31:154-173. [PMID: 36068919 PMCID: PMC9840117 DOI: 10.1016/j.ymthe.2022.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023] Open
Abstract
Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Deyi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhekang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hairong Xiao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Miaomiao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pei Zhang
- Department of Paediatrics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210016, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanglong Yao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
27
|
Intestinal microbe-derived metabolites instruct macrophages in the lungs. Nat Immunol 2022; 23:1662-1664. [PMID: 36456738 DOI: 10.1038/s41590-022-01358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne) 2022; 9:995044. [PMID: 36530909 PMCID: PMC9751027 DOI: 10.3389/fmed.2022.995044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 07/20/2023] Open
Abstract
Traumatic brain injury (TBI) induces instant activation of innate immunity in brain tissue, followed by a systematization of the inflammatory response. The subsequent response, evolved to limit an overwhelming systemic inflammatory response and to induce healing, involves the autonomic nervous system, hormonal systems, and the regulation of immune cells. This physiological response induces an immunosuppression and tolerance state that promotes to the occurrence of secondary infections. This review describes the immunological consequences of TBI and highlights potential novel therapeutic approaches using immune modulation to restore homeostasis between the nervous system and innate immunity.
Collapse
Affiliation(s)
- Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| |
Collapse
|
29
|
Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, Grondin JA, Kang A, D'Agostino MR, Yao Y, Jain S, Zganiacz A, Kroezen Z, Shanmuganathan M, Singh R, Dvorkin-Gheva A, Britz-McKibbin P, Khan WI, Xing Z. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol 2022; 23:1687-1702. [PMID: 36456739 PMCID: PMC9747617 DOI: 10.1038/s41590-022-01354-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Immunology, Zhejiang University, Zhejiang, China
| | - Shreya Jain
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
30
|
T cell dysregulation in inflammatory diseases in ICU. Intensive Care Med Exp 2022; 10:43. [PMID: 36279072 PMCID: PMC9590394 DOI: 10.1186/s40635-022-00471-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Severe inflammatory diseases, including sepsis, are characterized by an impaired host adaptive and innate immunity which results in immunosuppression, responsible for secondary infections and increased morbidity and mortality in critically ill patients. T cells are major actors of the immune system. During post-aggressive immunosuppression, lymphopenia, reduction of innate T cells, changes in T helper cell polarization and regulatory T cell increase are observed. The main mechanisms involved in T cell dysregulation are T cell apoptosis, autophagy deficiency, T cell anergy, T cell exhaustion and T cell metabolic reprogramming. In this review, we describe the alterations of T cell regulation, their mechanisms, and their association with clinical outcomes in severe inflammatory diseases, foremost of which is the sepsis. This review focuses on the alterations of T cell regulation and their mechanisms in severe inflammatory ICU diseases. Lymphopenia, reduction of innate T cells, changes in T helper cell polarization and regulatory T cell increase contribute to secondary immunosuppression in ICU patients.
Collapse
|
31
|
Teklemariam AD, Hashem AM, Saber SH, Almuhayawi MS, Haque S, Abujamel TS, Harakeh S. Bacterial co-infections and antimicrobial resistance associated with the Coronavirus Disease 2019 infection. Biotechnol Genet Eng Rev 2022:1-22. [PMID: 36123822 DOI: 10.1080/02648725.2022.2122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Bacterial co-infections are typically associated with viral respiratory tract infections and pose a significant public health problem around the world. COVID-19 infection damages tissues lining the respiratory track and regulates immune cells/cytokines leading to microbiome dysbiosis and facilitating the area to be colonized by pathogenic bacterial agents. There have been reports of different types of bacterial co-infection in COVID-19 patients. Some of these reports showed despite geographical differences and differences in hospital settings, bacterial co-infections are a major cause of morbidity and mortality in COVID-19 patients. The inappropriate use of antibiotics for bacterial infections, particularly broad-spectrum antibiotics, can also further complicate the infection process, often leading to multi drug resistance, clinical deterioration, poor prognosis, and eventually death. To this end, researchers must establish a new therapeutic approach to control SARS-CoV-2 and the associated microbial coinfections. Hence, the aim of this review is to highlight the bacterial co-infection that has been recorded in COVID-19 patients and the status of antimicrobial resistance associated with the dual infections.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biology, Faculty of sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saber H Saber
- Molecular Cell Biology Laboratory, Department of Zoology, Faculty of Science, Assiut University, Asyut, Egypt
| | - Mohammed S Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Liotti A, Ferrara AL, Loffredo S, Galdiero MR, Varricchi G, Di Rella F, Maniscalco GT, Belardo M, Vastano R, Prencipe R, Pignata L, Romano R, Spadaro G, de Candia P, Pezone A, De Rosa V. Epigenetics: an Opportunity to Shape Innate and Adaptive Immune Responses. Immunol Suppl 2022; 167:451-470. [PMID: 36043705 DOI: 10.1111/imm.13571] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decision with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as "epigenetic memory", dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as "trained immunity". Here we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Antonietta Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Anne Lise Ferrara
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Stefania Loffredo
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Maria Rosaria Galdiero
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Gilda Varricchi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Francesca Di Rella
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Giorgia Teresa Maniscalco
- Neurological Clinic and Stroke Unit and Multiple Sclerosis Center "A. Cardarelli" Hospital, Naples, Italy
| | - Martina Belardo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Roberta Vastano
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Rosaria Prencipe
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Paola de Candia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Veronica De Rosa
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
33
|
P. Tavares L, Brüggemann TR, M. Rezende R, G. Machado M, Cagnina RE, Shay AE, C. Garcia C, Nijmeh J, M. Teixeira M, Levy BD. Cysteinyl Maresins Reprogram Macrophages to Protect Mice from Streptococcus pneumoniae after Influenza A Virus Infection. mBio 2022; 13:e0126722. [PMID: 35913160 PMCID: PMC9426576 DOI: 10.1128/mbio.01267-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Influenza A virus (IAV) infections are a leading cause of mortality worldwide. Excess mortality during IAV epidemics and pandemics is attributable to secondary bacterial infections, particularly pneumonia caused by Streptococcus pneumoniae. Resident alveolar macrophages (rAMs) are early responders to respiratory infections that coordinate initial host defense responses. Maresin conjugates in tissue regeneration (MCTRs) are recently elucidated cysteinyl maresins that are produced by and act on macrophages. Roles for MCTRs in responses to respiratory infections remain to be determined. Here, IAV infection led to transient decreases in rAM numbers. Repopulated lung macrophages displayed transcriptional alterations 21 days post-IAV with prolonged susceptibility to secondary pneumococcal infection. Administration of a mix of MCTR1 to 3 or MCTR3 alone post-IAV decreased lung inflammation and bacterial load 48 and 72 h after secondary pneumococcal infection. MCTR-exposed rAMs had increased migration and phagocytosis of Streptococcus pneumoniae, reduced secretion of CXCL1, and a reversion toward baseline levels of several IAV-induced pneumonia susceptibility genes. Together, MCTRs counter regulated post-IAV changes in rAMs to promote a rapid return of bacteria host defense. IMPORTANCE Secondary bacterial pneumonia is a serious and common complication of IAV infection, leading to excess morbidity and mortality. New host-directed approaches are needed to complement antibiotics to better address this important global infectious disease. Here, we show that harnessing endogenous resolution mechanisms for inflammation by exogenous administration of a family of specialized proresolving mediators (i.e., cys-MCTRs) increased macrophage resilience mechanisms after IAV to protect against secondary infection from Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Luciana P. Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thayse R. Brüggemann
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina G. Machado
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R. Elaine Cagnina
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashley E. Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cristiana C. Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mauro M. Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Kynurenine Pathway-An Underestimated Factor Modulating Innate Immunity in Sepsis-Induced Acute Kidney Injury? Cells 2022; 11:cells11162604. [PMID: 36010680 PMCID: PMC9406744 DOI: 10.3390/cells11162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it accounts for about half of the cases of acute kidney injury (AKI). Although sepsis is the most frequent cause of AKI in critically ill patients, its pathophysiological mechanisms are not well understood. Sepsis has the ability to modulate the function of cells belonging to the innate immune system. Increased activity of indoleamine 2,3-dioxygenase 1 (IDO1) and production of kynurenines are the major metabolic pathways utilized by innate immunity cells to maintain immunological tolerance. The activation of the kynurenine pathway (KP) plays a dual role in sepsis—in the early stage, the induction of IDO1 elicits strong proinflammatory effects that may lead to tissue damage and septic shock. Afterwards, depletion of tryptophan and production of kynurenines contribute to the development of immunosuppression that may cause the inability to overpower opportunistic infections. The presented review provides available data on the various interdependencies between elements of innate immunity and sepsis-induced AKI (SAKI) with particular emphasis on the immunomodulatory significance of KP in the above processes. We believe that KP activation may be one of the crucial, though underestimated, components of a deregulated host response to infection during SAKI.
Collapse
|
35
|
Blot S, Ruppé E, Harbarth S, Asehnoune K, Poulakou G, Luyt CE, Rello J, Klompas M, Depuydt P, Eckmann C, Martin-Loeches I, Povoa P, Bouadma L, Timsit JF, Zahar JR. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit Care Nurs 2022; 70:103227. [PMID: 35249794 PMCID: PMC8892223 DOI: 10.1016/j.iccn.2022.103227] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients in intensive care units (ICUs) are at high risk for healthcare-acquired infections (HAI) due to the high prevalence of invasive procedures and devices, induced immunosuppression, comorbidity, frailty and increased age. Over the past decade we have seen a successful reduction in the incidence of HAI related to invasive procedures and devices. However, the rate of ICU-acquired infections remains high. Within this context, the ongoing emergence of new pathogens, further complicates treatment and threatens patient outcomes. Additionally, the SARS-CoV-2 (COVID-19) pandemic highlighted the challenge that an emerging pathogen provides in adapting prevention measures regarding both the risk of exposure to caregivers and the need to maintain quality of care. ICU nurses hold a special place in the prevention and management of HAI as they are involved in basic hygienic care, steering and implementing quality improvement initiatives, correct microbiological sampling, and aspects antibiotic stewardship. The emergence of more sensitive microbiological techniques and our increased knowledge about interactions between critically ill patients and their microbiota are leading us to rethink how we define HAIs and best strategies to diagnose, treat and prevent these infections in the ICU. This multidisciplinary expert review, focused on the ICU setting, will summarise the recent epidemiology of ICU-HAI, discuss the place of modern microbiological techniques in their diagnosis, review operational and epidemiological definitions and redefine the place of several controversial preventive measures including antimicrobial-impregnated medical devices, chlorhexidine-impregnated washcloths, catheter dressings and chlorhexidine-based mouthwashes. Finally, general guidance is suggested that may reduce HAI incidence and especially outbreaks in ICUs.
Collapse
Affiliation(s)
- Stijn Blot
- Dept. of Internal Medicine & Pediatrics, Ghent University, Ghent, Belgium.
| | - Etienne Ruppé
- INSERM, IAME UMR 1137, University of Paris, France; Department of Bacteriology, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Stephan Harbarth
- Infection Control Program, Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Karim Asehnoune
- Department of Anesthesiology and Surgical Intensive Care, Hôtel-Dieu, University Hospital of Nantes, Nantes, France
| | - Garyphalia Poulakou
- 3(rd) Department of Medicine, National and Kapodistrian University of Athens, Medical School, Sotiria General Hospital of Athens, Greece
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Jordi Rello
- Vall d'Hebron Institut of Research (VHIR) and Centro de Investigacion Biomedica en Red de Enferemedades Respiratorias (CIBERES), Instituto Salud Carlos III, Barcelona, Spain
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, United States; Department of Medicine, Brigham and Women's Hospital, Boston, United States
| | - Pieter Depuydt
- Intensive Care Department, Ghent University Hospital, Gent, Belgium
| | - Christian Eckmann
- Department of General, Visceral and Thoracic Surgery, Klinikum Peine, Medical University Hannover, Germany
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland; Hospital Clinic, Universidad de Barcelona, CIBERes, Barcelona, Spain
| | - Pedro Povoa
- Polyvalent Intensive Care Unit, São Francisco Xavier Hospital, CHLO, Lisbon, Portugal; NOVA Medical School, Comprehensive Health Research Center, CHRC, New University of Lisbon, Lisbon Portugal; Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Lila Bouadma
- INSERM, IAME UMR 1137, University of Paris, France; Medical and Infectious Diseases ICU, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Jean-Francois Timsit
- INSERM, IAME UMR 1137, University of Paris, France; Medical and Infectious Diseases ICU, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Jean-Ralph Zahar
- INSERM, IAME UMR 1137, University of Paris, France; Microbiology, Infection Control Unit, GH Paris Seine Saint-Denis, APHP, Bobigny, France
| |
Collapse
|
36
|
Yao RQ, Ren C, Zheng LY, Xia ZF, Yao YM. Advances in Immune Monitoring Approaches for Sepsis-Induced Immunosuppression. Front Immunol 2022; 13:891024. [PMID: 35619710 PMCID: PMC9127053 DOI: 10.3389/fimmu.2022.891024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis represents a life-threatening organ dysfunction due to an aberrant host response. Of note is that majority of patients have experienced a severe immune depression during and after sepsis, which is significantly correlated with the occurrence of nosocomial infection and higher risk of in-hospital death. Nevertheless, the clinical sign of sepsis-induced immune paralysis remains highly indetectable and ambiguous. Given that, specific yet robust biomarkers for monitoring the immune functional status of septic patients are of prominent significance in clinical practice. In turn, the stratification of a subgroup of septic patients with an immunosuppressive state will greatly contribute to the implementation of personalized adjuvant immunotherapy. In this review, we comprehensively summarize the mechanism of sepsis-associated immunosuppression at the cellular level and highlight the recent advances in immune monitoring approaches targeting the functional status of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhao-Fan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
37
|
Chaumette T, Cinotti R, Mollé A, Solomon P, Castain L, Fourgeux C, McWilliam HE, Misme-Aucouturier B, Broquet A, Jacqueline C, Vourc'h M, Fradin D, Bossard C, David L, Montassier E, Braudeau C, Josien R, Villadangos JA, Asehnoune K, Bressollette-Bodin C, Poschmann J, Roquilly A. Monocyte Signature Associated with Herpes Simplex Virus Reactivation and Neurological Recovery After Brain Injury. Am J Respir Crit Care Med 2022; 206:295-310. [PMID: 35486851 DOI: 10.1164/rccm.202110-2324oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Brain injury induces systemic immunosuppression increasing the risk of viral reactivations and altering neurological recovery. OBJECTIVES To determine if systemic immune alterations and lung replication of Herpesviridae are associated and can help predict outcomes after brain injury. METHODS We collected peripheral blood mononuclear cells in severely brain-injured patients requiring invasive mechanical ventilation. We systematically searched for respiratory Herpes Simplex Virus (HSV) replications in tracheal aspirates. We also performed CHiP-sequencing, RNA-sequencing and in vitro functional assays of monocytes and CD4 T cells collected on day 1 to characterize immune response to severe acute brain injury. The primary outcome was the Glasgow outcome scale Extended (GOS-E) at 6 months. MEASUREMENTS AND MAIN RESULTS In 344 severe brain-injured patients, lung HSV reactivations were observed in 39% of patients seropositive for HSV, and independently associated with poor neurological recovery at six months (hazard ratio 1.90, 95%CI 1.08-3.57). WGNA analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2, and whose ontogenic analyses revealed decreased interferon--mediated and anti-viral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (AUC 0.786, 95%CI 0.593-0.978). CONCLUSIONS A specific monocyte signature is associated with HSV reactivation and predicts recovery after brain injury. The alterations of the immune control of Herpesviridae replication are understudied and represent a novel therapeutic target.
Collapse
Affiliation(s)
- Tanguy Chaumette
- University of Nantes, 27045, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Raphael Cinotti
- University hospital, Intensive Care Unit, Anesthesia and Critical Care Department, Nantes, France
| | | | | | - Louise Castain
- University Hospital, Departments of Anaesthesiology and Surgical Intensive Care, NANTES, France
| | | | | | - Barbara Misme-Aucouturier
- University of Nantes, 27045, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Alexis Broquet
- University of Nantes, 27045, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Cédric Jacqueline
- University of Nantes, 27045, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Mickael Vourc'h
- University of Nantes, 27045, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Delphine Fradin
- University Hospital, Departments of Anaesthesiology and Surgical Intensive Care, NANTES, France
| | | | | | - Emmanuel Montassier
- Centre Hospitalier Universitaire de Nantes, 26922, Emergency Department, Nantes, France
| | | | | | | | - Karim Asehnoune
- University Hospital, Departments of Anaesthesiology and Surgical Intensive Care, NANTES, France
| | | | - Jeremie Poschmann
- University of Nantes, 27045, Centre de Recherche en Transplantation et Immunologie UMR 1064, Inserm, Nantes, France
| | - Antoine Roquilly
- University Hospital, Departments of Anaesthesiology and Surgical Intensive Care, NANTES, France.,University of Nantes, 27045, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France;
| |
Collapse
|
38
|
Szylar G, Wysoczanski R, Marshall H, Marks DJB, José R, Ehrenstein MR, Brown JS. A novel Streptococcus pneumoniae human challenge model demonstrates Treg lymphocyte recruitment to the infection site. Sci Rep 2022; 12:3990. [PMID: 35256717 PMCID: PMC8901783 DOI: 10.1038/s41598-022-07914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate local tissue responses to infection we have developed a human model of killed Streptococcus pneumoniae challenge by intradermal injection into the forearm. S. pneumoniae intradermal challenge caused an initial local influx of granulocytes and increases in TNF, IL6 and CXCL8. However, by 48 h lymphocytes were the dominant cell population, mainly consisting of CD4 and CD8 T cells. Increases in local levels of IL17 and IL22 and the high proportion of CD4 cells that were CCR6+ suggested a significant Th17 response. Furthermore, at 48 h the CD4 population contained a surprisingly high proportion of likely memory Treg cells (CCR6 positive and CD45RA negative CD4+CD25highCD127low cells) at 39%. These results demonstrate that the intradermal challenge model can provide novel insights into the human response to S. pneumoniae and that Tregs form a substantial contribution of the normal human lymphocyte response to infection with this important pathogen.
Collapse
Affiliation(s)
- Gabriella Szylar
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Riccardo Wysoczanski
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Helina Marshall
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Daniel J B Marks
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Ricardo José
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Michael R Ehrenstein
- Centre for Rheumatology, UCL Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
39
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
40
|
Bourdiol A, Roquilly A. New Insights in the Pathophysiology of Hospital- and Ventilator-Acquired Pneumonia: A Complex Interplay between Dysbiosis and Critical-Illness-Related Immunosuppression. Semin Respir Crit Care Med 2022; 43:271-279. [PMID: 35100649 DOI: 10.1055/s-0041-1740606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Both hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) have long been considered as diseases resulting from the invasion by pathogens of a previously sterile lung environment. Based on this historical understanding of their pathophysiology, our approaches for the prevention and treatment have significantly improved the outcomes of patients, but treatment failures remain frequent. Recent studies have suggested that the all-antimicrobial therapy-based treatment of pneumonia has reached a glass ceiling. The demonstration that the constant interactions between the respiratory microbiome and mucosal immunity are required to tune homeostasis in a state of symbiosis has changed our comprehension of pneumonia. We proposed that HAP and VAP should be considered as a state of dysbiosis, defined as the emergence of a dominant pathogen thriving at the same time from the catastrophic collapse of the fragile ecosystem of the lower respiratory tract and from the development of critical-illness-related immunosuppression. This multidimensional approach to the pathophysiology of HAP and VAP holds the potential to achieve future successes in research and critical care. Microbiome and mucosal immunity can indeed be manipulated and used as adjunctive therapies or targets to prevent or treat pneumonia.
Collapse
Affiliation(s)
- A Bourdiol
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - A Roquilly
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| |
Collapse
|
41
|
Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2022; 35:e0009421. [PMID: 34788127 PMCID: PMC8597983 DOI: 10.1128/cmr.00094-21] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.
Collapse
Affiliation(s)
- Fabián Salazar
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter C. Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
42
|
Chen F, Qasir D, Morris AC. Invasive Pulmonary Aspergillosis in Hospital and Ventilator-Associated Pneumonias. Semin Respir Crit Care Med 2022; 43:234-242. [PMID: 35042260 DOI: 10.1055/s-0041-1739472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pneumonia is the commonest nosocomial infection complicating hospital stay, with both non-ventilated hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) occurring frequently amongst patients in intensive care. Aspergillus is an increasingly recognized pathogen amongst patients with HAP and VAP, and is associated with significantly increased mortality if left untreated.Invasive pulmonary aspergillosis (IPA) was originally identified in patients who had been profoundly immunosuppressed, however, this disease can also occur in patients with relative immunosuppression such as critically ill patients in intensive care unit (ICU). Patients in ICU commonly have several risk factors for IPA, with the inflamed pulmonary environment providing a niche for aspergillus growth.An understanding of the true prevalence of this condition amongst ICU patients, and its specific rate in patients with HAP or VAP is hampered by difficulties in diagnosis. Establishing a definitive diagnosis requires tissue biopsy, which is seldom practical in critically ill patients, so imperfect proxy measures are required. Clinical and radiological findings in ventilated patients are frequently non-specific. The best-established test is galactomannan antigen level in bronchoalveolar lavage fluid, although this must be interpreted in the clinical context as false positive results can occur. Acknowledging these limitations, the best estimates of the prevalence of IPA range from 0.3 to 5% amongst all ICU patients, 12% amongst patients with VAP and 7 to 28% amongst ventilated patients with influenza.Antifungal triazoles including voriconazole are the first-line therapy choice in most cases. Amphotericin has excellent antimold coverage, but a less advantageous side effect profile. Echinocandins are less effective against IPA, but may play a role in rescue therapy, or as an adjuvant to triazole therapy.A high index of suspicion for IPA should be maintained when investigating patients with HAP or VAP, especially when they have specific risk factors or are not responding to appropriate empiric antibacterial therapy.
Collapse
Affiliation(s)
- Fangyue Chen
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Danyal Qasir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Conway Morris
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Medicine, Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Early life exposure to house dust mite allergen prevents experimental allergic asthma requiring mitochondrial H 2O 2. Mucosal Immunol 2022; 15:154-164. [PMID: 34580428 PMCID: PMC8738138 DOI: 10.1038/s41385-021-00458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/04/2023]
Abstract
Immune tolerance to allergens in early-life decreases the risk for asthma in later life. Here we show establishment of stable airway tolerance to the allergen, house dust mite (HDM), by exposing newborn mice repeatedly to a low dose of the allergen. Lung dendritic cells (DCs) from tolerized mice induced a low Th2 response in vitro mirroring impact of tolerance in vivo. In line with our previous finding of increased mitochondrial H2O2 production from lung DCs of mice tolerized to ovalbumin, depletion of mitochondrial H2O2 in MCAT mice abrogated HDM-induced airway tolerance (Tol) with elevated Th2 effector response, airway eosinophilia, and increased airway hyperreactivity. WT-Tol mice displayed a decrease in total, cDC1 and cDC2 subsets in the lung as compared to that in naive mice. In contrast, the lungs of MCAT-Tol mice showed 3-fold higher numbers of cDCs including those of the subsets as compared to that in WT mice. Our study demonstrates an important role of mitochondrial H2O2 in constraining lung DC numbers towards establishment of early-life airway tolerance to allergens.
Collapse
|
44
|
Vázquez AC, Arriaga-Pizano L, Ferat-Osorio E. Cellular Markers of Immunosuppression in Sepsis. Arch Med Res 2021; 52:828-835. [PMID: 34702587 DOI: 10.1016/j.arcmed.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Sepsis is a pathological condition frequently caused by invasion of a pathogen and the subsequent unregulated response that threatens the patient's life through diverse organ failure. The incidence of sepsis is increasing, and there is no specific therapy. Despite technological contributions to treat sepsis or increased knowledge of its molecular pathophysiology, mortality remains high, and sepsis is a global health problem. Knowledge of the role of the cells involved in the host response through the synthesis of inflammatory mediators and their different effects on cells, tissues or systems is key to the development of medical treatments that regulate systems involved in such responses to pathogens. This review addresses new insights into the role of cells, their mediators, and the interaction between them that lead to the development of a state of immunosuppression.
Collapse
Affiliation(s)
- Arturo Cérbulo Vázquez
- Servicio de Medicina Genómica, Hospital General de México, Dr Eduardo Liceaga, Ciudad de México, México
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica de la Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
45
|
Jensen IJ, Li X, McGonagill PW, Shan Q, Fosdick MG, Tremblay MM, Houtman JCD, Xue HH, Griffith TS, Peng W, Badovinac VP. Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells. eLife 2021; 10:e70989. [PMID: 34652273 PMCID: PMC8589447 DOI: 10.7554/elife.70989] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
The global health burden due to sepsis and the associated cytokine storm is substantial. While early intervention has improved survival during the cytokine storm, those that survive can enter a state of chronic immunoparalysis defined by transient lymphopenia and functional deficits of surviving cells. Memory CD8 T cells provide rapid cytolysis and cytokine production following re-encounter with their cognate antigen to promote long-term immunity, and CD8 T cell impairment due to sepsis can pre-dispose individuals to re-infection. While the acute influence of sepsis on memory CD8 T cells has been characterized, if and to what extent pre-existing memory CD8 T cells recover remains unknown. Here, we observed that central memory CD8 T cells (TCM) from septic patients proliferate more than those from healthy individuals. Utilizing LCMV immune mice and a CLP model to induce sepsis, we demonstrated that TCM proliferation is associated with numerical recovery of pathogen-specific memory CD8 T cells following sepsis-induced lymphopenia. This increased proliferation leads to changes in composition of memory CD8 T cell compartment and altered tissue localization. Further, memory CD8 T cells from sepsis survivors have an altered transcriptional profile and chromatin accessibility indicating long-lasting T cell intrinsic changes. The sepsis-induced changes in the composition of the memory CD8 T cell pool and transcriptional landscape culminated in altered T cell function and reduced capacity to control L. monocytogenes infection. Thus, sepsis leads to long-term alterations in memory CD8 T cell phenotype, protective function and localization potentially changing host capacity to respond to re-infection.
Collapse
Affiliation(s)
- Isaac J Jensen
- Department of Pathology, University of IowaIowa CityUnited States
| | - Xiang Li
- Department of Physics, The George Washington UniversityWashingtonUnited States
| | | | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical CenterNutleyUnited States
| | - Micaela G Fosdick
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Mikaela M Tremblay
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Jon CD Houtman
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical CenterNutleyUnited States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, University of MinnesotaMinneapolisUnited States
- Department of Urology, University of MinnesotaMinneapolisUnited States
- Center for Immunology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
- Minneapolis VA Health Care SystemMinneapolisUnited States
| | - Weiqun Peng
- Department of Physics, The George Washington UniversityWashingtonUnited States
| | - Vladimir P Badovinac
- Department of Pathology, University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
46
|
Martin FP, Jacqueline C, Poschmann J, Roquilly A. Alveolar Macrophages: Adaptation to Their Anatomic Niche during and after Inflammation. Cells 2021; 10:cells10102720. [PMID: 34685700 PMCID: PMC8534884 DOI: 10.3390/cells10102720] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
At the early stages of life development, alveoli are colonized by embryonic macrophages, which become resident alveolar macrophages (ResAM) and self-sustain by local division. Genetic and epigenetic signatures and, to some extent, the functions of ResAM are dictated by the lung microenvironment, which uses cytokines, ligand-receptor interactions, and stroma cells to orchestrate lung homeostasis. In resting conditions, the lung microenvironment induces in ResAM a tolerogenic programming that prevents unnecessary and potentially harmful inflammation responses to the foreign bodies, which continuously challenge the airways. Throughout life, any episode of acute inflammation, pneumonia being likely the most frequent cause, depletes the pool of ResAM, leaving space for the recruitment of inflammatory monocytes that locally develop in monocyte-derived alveolar macrophages (InfAM). During lung infection, the local microenvironment induces a temporary inflammatory signature to the recruited InfAM to handle the tissue injury and eliminate the pathogens. After a few days, the recruited InfAM, which locally self-sustain and develop as new ResAM, gain profibrotic functions required for tissue healing. After the complete resolution of the infectious episode, the functional programming of both embryonic and monocyte-derived ResAM remains altered for months and possibly for the entire life. Adult lungs thus contain a wide diversity of ResAM since every infection brings new waves of InfAM which fill the room left open by the inflammatory process. The memory of these innate cells called trained immunity constitutes an immunologic scar left by inflammation, notably pneumonia. This memory of ResAM has advantages and drawbacks. In some cases, lung-trained immunity offers better defense capacities against autoimmune disorders and the long-term risk of infection. At the opposite, it can perpetuate a harmful process and lead to a pathological state, as is the case among critically ill patients who have immune paralysis and are highly susceptible to hospital-acquired pneumonia and acute respiratory distress syndrome. The progress in understanding the kinetics of response of alveolar macrophages (AM) to lung inflammation is paving the way to new treatments of pneumonia and lung inflammatory process.
Collapse
Affiliation(s)
- Florian Pierre Martin
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
| | - Cédric Jacqueline
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, University of Nantes, UMR 1064, ITUN, Inserm, F-44000 Nantes, France;
| | - Antoine Roquilly
- EA3826 Host Pathogen Interactions, Inflammation and Mucosal Immunity, Department of Anesthesiology and Intensive Medicine, Hôtel Dieu, CHU Nantes, University of Nantes, F-44000 Nantes, France; (F.P.M.); (C.J.)
- Correspondence: ; Tel.: +33-253482230
| |
Collapse
|
47
|
Chen L, Li L, Zou S, Liao Q, Lv B. Tong‑fu‑li‑fei decoction attenuates immunosuppression to protect the intestinal‑mucosal barrier in sepsis by inhibiting the PD‑1/PD‑L1 signaling pathway. Mol Med Rep 2021; 24:840. [PMID: 34633052 PMCID: PMC8524432 DOI: 10.3892/mmr.2021.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic effects of Tong-fu-li-fei (TFL) decoction on sepsis-induced injury to the intestinal mucosal barrier and the underlying mechanism. Cecal ligation and puncture (CLP) was used to establish a sepsis model in rats. The post-surgery death of the rats was recorded to calculate the survival rate. A 4-kD fluorescein isothiocyanate (FITC)-dextran assay was used to evaluate the intestinal permeability of the rats. The pathological state of the intestine tissues was detected by hematoxylin and eosin staining and the ultrastructural changes in the endometrium were evaluated by transmission electron microscopy. Enzyme-linked immunosorbent assay was used to determine the concentrations of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the intestinal tissues and cells. The expression levels of SHP-2 and PI3K were detected by reverse transcription-quantitative PCR and western blotting. Sorting by flow cytometry was used to obtain pure dendritic cells (DC), CD8+ T cells and natural killer cells. Western blotting was used to evaluate the expression levels of phosphorylated (p)-AKT and AKT. The results demonstrated that the significantly decreased survival rate caused by CLP surgery was elevated by glutamine (Gln) and TFL treatment. Intestinal permeability was increased by CLP, and greatly suppressed by Gln or TFL treatment. Histopathological changes in the intestinal tissues, such as thinner barrier and atrophied mucosa, and ultrastructure changes such as sharply decreased microvilli and mitochondria dropsy, were observed on sepsis animals; these effects were ameliorated by the introduction of Gln or TFL. The upregulation of SHP-2, PI3K and p-AKT induced by CLP was reversed by TFL. The release of IL-6 and TNF-α was elevated and the expression of SHP-2, PI3K and p-AKT was suppressed in the co-cultural system of DC cells and CD8+ T cells by TFL. Overall, TFL decoction may attenuate immunosuppression to protect intestinal mucosal barrier in sepsis via inhibiting the programmed death1/programmed cell death ligand 1 signal pathway.
Collapse
Affiliation(s)
- Li Chen
- Department of Intensive Care Unit, First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Lan Li
- Department of Intensive Care Unit, First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Suzhao Zou
- Department of Intensive Care Unit, First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Qianhua Liao
- Department of Intensive Care Unit, First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Bo Lv
- Department of Intensive Care Unit, First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
48
|
Yin J, Sun W, Yu X, Xiao X, Li B, Tong Z, Ke L, Mao W, Li W. Lacticaseibacillus rhamnosus TR08 alleviated intestinal injury and modulated microbiota dysbiosis in septic mice. BMC Microbiol 2021; 21:249. [PMID: 34536996 PMCID: PMC8449483 DOI: 10.1186/s12866-021-02317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Probiotics are widely used in intestinal microbiota imbalance caused by sepsis, however, the protective mechanism is still unclear. This study aimed to explore protective effect of Lacticaseibacillus rhamnosus TR08 on intestinal injury in septic mice. Results The levels of serum inflammatory factors were reduced significantly in septic mice treated with L. rhamnosus TR08. The levels of sIgA in terminal ileum were significantly higher in probiotic treatment group than sepsis group. Intestinal pathological damage in septic mice improved and the expression of tight junction proteins increased after probiotic treatment. Sequencing of fecal microbiota showed that the abundance and diversity of probiotic treatment group were significantly better than those of sepsis group, and beneficial bacteria increased while some bacteria decreased in the phylum level. Conclusion L. rhamnosus TR08 could improve the integrity of intestinal barrier, enhance the intestinal mucosal immunity in septic mice, and rebalance the intestinal microecosystem.
Collapse
Affiliation(s)
- Jiangtao Yin
- Department of Critical Care Medicine, Jinling Hospital of Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 225001, China.,Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Critical Care Medicine, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Xianqiang Yu
- Southeast University School of Medicine, Nanjing, China
| | - Xiaojia Xiao
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital of Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 225001, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital of Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 225001, China. .,Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
49
|
Guo L, Shen S, Rowley JW, Tolley ND, Jia W, Manne BK, McComas KN, Bolingbroke B, Kosaka Y, Krauel K, Denorme F, Jacob SP, Eustes AS, Campbell RA, Middleton EA, He X, Brown SM, Morrell CN, Weyrich AS, Rondina MT. Platelet MHC class I mediates CD8+ T-cell suppression during sepsis. Blood 2021; 138:401-416. [PMID: 33895821 PMCID: PMC8343546 DOI: 10.1182/blood.2020008958] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased and have been associated with adverse clinical events, including increased platelet-T-cell interactions. Sepsis is associated with reduced CD8+ T-cell numbers and functional responses, but whether platelets regulate CD8+ T-cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen-specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (eg, interferon-γ and lipopolysaccharide). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage-specific MHC-I-deficient mouse strain (B2Mf/f-Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T-cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo, during sepsis. Loss of platelet MHC-I reduces sepsis-associated mortality in mice in an antigen-specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen-specific CD8+ T cells, and regulate CD8+ T-cell numbers, functional responses, and outcomes during sepsis.
Collapse
Affiliation(s)
- Li Guo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Sikui Shen
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- West China Hospital, Sichuan University, Chengdu, China
| | - Jesse W Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Neal D Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Wenwen Jia
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | | | - Kyra N McComas
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Ben Bolingbroke
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT
| | - Yasuhiro Kosaka
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Krystin Krauel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Frederik Denorme
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Shancy P Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Alicia S Eustes
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Internal Medicine, University of Iowa, Iowa City, IA
| | - Robert A Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine, Department of Medicine, School of Medicine, and
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Samuel M Brown
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
- Center for Humanizing Critical Care, Intermountain Healthcare, Murray, UT
- Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Murray, UT
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY; and
| | - Andrew S Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine, Department of Medicine, School of Medicine, and
- Department of Pathology, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, George E. Wahlen VA Medical Center and Geriatric Research Education Clinical Center (GRECC), Salt Lake City, UT
| |
Collapse
|
50
|
Zou L, Yu Q, Zhang L, Yuan X, Fang F, Xu F. Identification of inflammation related lncRNAs and Gm33647 as a potential regulator in septic acute lung injury. Life Sci 2021; 282:119814. [PMID: 34298039 DOI: 10.1016/j.lfs.2021.119814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Sepsis is commonly complicated by acute lung injury (ALI). We aimed to determine the long non-coding RNAs (lncRNAs) and mRNAs expression profiles. Septic acute lung injury mouse model was established by cecal ligation and puncture. LPS was applied to induce inflammation in mouse alveolar macrophages (MH-s). Besides, LPS/Nigericin sodium salt was used to activate inflammasome in MH-s. LncRNA and mRNA profiles were detected using an Agilent microarray and identified by qPCR. Bioinformatic analyses were employed to analyze the expression profiles and multiple biological functions. Inflammation-related mRNAs were selected according to KEGG pathways and GO terms including inflammation response, immune response and cytokine activity. A network of inflammation related mRNAs and co-expressed lncRNAs was conducted. Finally, Gm33647 was identified as potential regulator in septic acute lung injury. Gm33647 was knock-downed via siRNA to explore functions. The results showed 353 differentially expressed lncRNAs and 3116 differentially expressed mRNAs were identified. Co-expression networks of lncRNA-mRNA showed Gm33647 was a hub gene. Cis- and trans-regulation analyses revealed Gm41442, Gm38850 and Gm36841 could function as a network in septic ALI. LncRNA Gm33647 was reduced by LPS and increased by inflammasome activation in MH-s. Silencing Gm33647 up-regulated IL-6, IL10 and TNF-α in MH-s. When inflammasome was activated by LPS/Nigericin sodium salt, IL-1β, IL-18 and Caspase 1 were increased by silencing Gm33647 in MH-s. These results identified inflammation related lncRNAs and Gm33647 as potential regulators in septic ALI.
Collapse
Affiliation(s)
- Liying Zou
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qing Yu
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Luyun Zhang
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu Yuan
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fang Fang
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Feng Xu
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|