1
|
Qian Y, Ding J, Zhao R, Song Y, Yoo J, Moon H, Koo S, Kim JS, Shen J. Intrinsic immunomodulatory hydrogels for chronic inflammation. Chem Soc Rev 2025; 54:33-61. [PMID: 39499495 DOI: 10.1039/d4cs00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The immune system plays a pivotal role in maintaining physiological homeostasis and influencing disease processes. Dysregulated immune responses drive chronic inflammation, which in turn results in a range of diseases that are among the leading causes of death globally. Traditional immune interventions, which aim to regulate either insufficient or excessive inflammation, frequently entail lifelong comorbidities and the risk of severe side effects. In this context, intrinsic immunomodulatory hydrogels, designed to precisely control the local immune microenvironment, have recently attracted increasing attention. In particular, these advanced hydrogels not only function as delivery mechanisms but also actively engage in immune modulation, optimizing interactions with the immune system for enhanced tissue repair, thereby providing a sophisticated strategy for managing chronic inflammation. In this tutorial review, we outline key elements of chronic inflammation and subsequently explore the strategic design principles of intrinsic immunomodulatory hydrogels based on these elements. Finally, we examine the challenges and prospects of such immunomodulatory hydrogels, which are expected to inspire further preclinical research and clinical translation in addressing chronic inflammation.
Collapse
Affiliation(s)
- Yuna Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Jiayi Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Institute of Imaging Diagnosis and Minimally Invasive Intervention, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rui Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yang Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Jiyoung Yoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seyoung Koo
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jong Seung Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
2
|
Huo S, Lyu Z, Wang X, Liu S, Chen X, Yang M, Liu Z, Yin X. Engineering mesoporous polydopamine-based potentiate STING pathway activation for advanced anti-biofilm therapy. Biomaterials 2025; 312:122739. [PMID: 39096840 DOI: 10.1016/j.biomaterials.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyuan Wang
- Physical Examination Center, Xi'an International Medical Center Hospital, Xi'an, China
| | - Shichang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuxu Chen
- Department of Sports Medicine, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhongkai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2025; 25:22-41. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
4
|
Paczkowska J, Tang M, Wright KT, Song L, Luu K, Shanmugam V, Welsh EL, Weirather JL, Besson N, Olszewski H, Porter BA, Pfaff KL, Redd RA, Cader FZ, Mandato E, Ouyang J, Calabretta E, Bai G, Lawton LN, Armand P, Rodig SJ, Liu XS, Shipp MA. Cancer-specific innate and adaptive immune rewiring drives resistance to PD-1 blockade in classic Hodgkin lymphoma. Nat Commun 2024; 15:10740. [PMID: 39737927 DOI: 10.1038/s41467-024-54512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/11/2024] [Indexed: 01/01/2025] Open
Abstract
Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4+ T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL. Compared with non-responders, responding patients have more circulating CD4+ naïve and central memory T cells and B cells, as well as more diverse CD4+ T cell and B cell receptor repertoires. Importantly, a population of circulating and tumor-infiltrating IL1β+ monocytes/macrophages is detectable in patients with cHL but not healthy donors, and a proinflammatory, tumor-promoting signature of these circulating IL1β+ monocytes is associated with resistance to PD-1 blockade in cHL. Altogether, our findings reveal extensive immune rewiring and complementary roles of CD4+ T cells, B cells and IL1β+ monocytes in the response to PD-1 blockade and suggest that these features can be captured with a peripheral blood test.
Collapse
Affiliation(s)
- Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ming Tang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Astra Zeneca, Waltham, MA, USA
| | - Kyle T Wright
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| | - Kelsey Luu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- PathAI, Boston, MA, USA
| | - Vignesh Shanmugam
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma L Welsh
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Naomi Besson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Harrison Olszewski
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Billie A Porter
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L Pfaff
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fathima Zumla Cader
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- AstraZeneca, City House, Cambridge, UK
| | - Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Mechanisms of Cancer Resistance Thematic Center, Bristol Myers Squibb, Cambridge, MA, USA
| | - Eleonora Calabretta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gali Bai
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lee N Lawton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaole Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- GV20 Therapeutics, LLC, Cambridge, MA, USA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Mukherjee AK, Dutta S, Singh A, Sharma S, Roy SS, Sengupta A, Chatterjee M, Vinayagamurthy S, Bagri S, Khanna D, Verma M, Soni D, Budharaja A, Bhisade SK, Anand V, Perwez A, George N, Faruq M, Gupta I, Sabarinathan R, Chowdhury S. Telomere length sensitive regulation of interleukin receptor 1 type 1 (IL1R1) by the shelterin protein TRF2 modulates immune signalling in the tumour microenvironment. eLife 2024; 13:RP95106. [PMID: 39728924 DOI: 10.7554/elife.95106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajit Dutta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankita Singh
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Megha Chatterjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Khanna
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dristhi Soni
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | | | - Vivek Anand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ahmad Perwez
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nija George
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Mohammed Faruq
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ishaan Gupta
- IIT Delhi, Delhi, India
- IISER Bhopal, Bhopal, India
| | - Radhakrishnan Sabarinathan
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Trivedi School of Biosciences, Ashoka University, Sonepat, India
| |
Collapse
|
6
|
Wright SS, Kumari P, Fraile-Ágreda V, Wang C, Shivcharan S, Kappelhoff S, Margheritis EG, Matz A, Vasudevan SO, Rubio I, Bauer M, Zhou B, Vanaja SK, Cosentino K, Ruan J, Rathinam VA. Transplantation of gasdermin pores by extracellular vesicles propagates pyroptosis to bystander cells. Cell 2024:S0092-8674(24)01334-5. [PMID: 39742811 DOI: 10.1016/j.cell.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/18/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Pyroptosis mediated by gasdermins (GSDMs) plays crucial roles in infection and inflammation. Pyroptosis triggers the release of inflammatory molecules, including damage-associated molecular patterns (DAMPs). However, the consequences of pyroptosis-especially beyond interleukin (IL)-1 cytokines and DAMPs-that govern inflammation are poorly defined. Here, we show intercellular propagation of pyroptosis from dying cells to bystander cells in vitro and in vivo. We identified extracellular vesicles (EVs) released by pyroptotic cells as the propagator of lytic death to naive cells, promoting inflammation. DNA-PAINT super-resolution and immunoelectron microscopy revealed GSDMD pore structures on EVs released by pyroptotic cells. Importantly, pyroptotic EVs transplant GSDMD pores on the plasma membrane of bystander cells and kill them. Overall, we demonstrate that cell-to-cell vesicular transplantation of GSDMD pores disseminates pyroptosis, revealing a domino-like effect governing disease-associated bystander cell death.
Collapse
Affiliation(s)
- Skylar S Wright
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Puja Kumari
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA; Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Víctor Fraile-Ágreda
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA; Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Sonia Shivcharan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Shirin Kappelhoff
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Eleonora G Margheritis
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Alyssa Matz
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Swathy O Vasudevan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Ignacio Rubio
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Michael Bauer
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Beiyan Zhou
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Katia Cosentino
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
7
|
Aimuzi R, Xie Z, Qu Y, Luo K, Jiang Y. Proteomic signatures of ambient air pollution and risk of non-alcoholic fatty liver disease: A prospective cohort study in the UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177529. [PMID: 39547383 DOI: 10.1016/j.scitotenv.2024.177529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Air pollution has been linked with non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms characterized by perturbations in the circulating proteome profile are largely unknown. Therefore, we included 51,357 participants from the UK Biobank with 2941 plasma proteins measured in blood samples collected between 2006 and 2010, measurements of annual fine particular matter <2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2), and follow-up data on NAFLD (743 incident cases occurred over a median follow-up of 13.6 years). Multiple linear regression was used to identify proteins associated with PM2.5 and NO2. Cox proportional hazards models were applied to assess associations of PM2.5 and NO2 and identified proteins with incident NAFLD. Mediation analyses were conducted to explore the mediation role of proteins in the associations between air pollution and incident NAFLD. After adjusting for selected covariates, PM2.5 (hazard ratio [HR] = 2.57, 95%CI:1.27, 5.21, per ln increase) and NO2 (HR = 1.43, 95%CI: 1.10, 1.84, per ln increase) were positively associated with incident NAFLD. We identified 138 proteins associated with PM2.5 (92 positively, 46 inversely, FDR <0.05) and 143 with NO2 (100 positively, 43 inversely). Of the proteins that were significantly associated with both PM2.5 and NO2, 93 (79 positively, 14 inversely) and 79 (69 positively, 10 inversely) were significantly associated with incident NAFLD. Furthermore, 84 PM2.5-associated proteins and 66 NO2-associated proteins significantly mediated the corresponding association between air pollutants and incident NAFLD, with the proportion of mediation effects ranging from 3.2 % to 27.3 % for PM2.5 and 2.6 % to 20.8 % for NO2, respectively. Of note, the majority of significant mediating proteins were enriched in pathways of cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor. Our findings suggested that long-term exposure to PM2.5 and NO2 was associated with an increased risk of NAFLD partially by perturbating circulating proteins involved in pathways of inflammation and immunity responses.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
8
|
Kureshi CT, Dougan SK. Cytokines in cancer. Cancer Cell 2024:S1535-6108(24)00446-X. [PMID: 39672170 DOI: 10.1016/j.ccell.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Cytokines are proteins used by immune cells to communicate with each other and with cells in their environment. The pleiotropic effects of cytokine networks are determined by which cells express cytokines and which cells express cytokine receptors, with downstream outcomes that can differ based on cell type and environmental cues. Certain cytokines, such as interferon (IFN)-γ, have been clearly linked to anti-tumor immunity, while others, such as the innate inflammatory cytokines, promote oncogenesis. Here we provide an overview of the functional roles of cytokines in the tumor microenvironment. Although we have a sophisticated understanding of cytokine networks, therapeutically targeting cytokine pathways in cancer has been challenging. We discuss current progress in cytokine blockade, cytokine-based therapies, and engineered cytokine therapeutics as emerging cancer treatments of interest.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Bae IS, Hoa VB, Lee JA, Park WS, Kim DG, Kim HW, Seong PN, Ham JS. Skin Function Improvement and Anti-Inflammatory Effects of Goat Meat Extract. Foods 2024; 13:3934. [PMID: 39683006 DOI: 10.3390/foods13233934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic skin conditions, such as atopic dermatitis, are characterized by a weakened skin barrier and persistent inflammation. Traditional treatments can frequently cause substantial side effects, emphasizing the need for safer alternatives. This study investigated the anti-inflammatory properties of goat meat extract and its effects on improving skin function. We conducted wound healing assays using HaCaT cells and analyzed the expression of key skin barrier-related genes. Additionally, the anti-inflammatory effects of goat meat extract were assessed in HaCaT cells stimulated with TNFα and IFNγ, as well as in LPS-treated RAW264.7 cells. Mechanistic studies focused on the activation of mitogen-activated protein kinase (MAPK) pathways. The results showed that goat meat extract significantly promoted wound closure in HaCaT cells and upregulated the expression of filaggrin, loricrin, and involucrin. The extract also reduced the production of pro-inflammatory cytokines and chemokines in both HaCaT and RAW264.7 cells. Furthermore, it inhibited the activation of the JNK, p38, and ERK pathways in TNFα/IFNγ-stimulated HaCaT cells. These findings suggest that goat meat extract improves skin barrier function and exhibits anti-inflammatory effects, indicating its potential as a therapeutic agent for chronic skin. Further research is required to investigate the in vivo effects of goat meat extract and validate its therapeutic potential.
Collapse
Affiliation(s)
- In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jeong-Ah Lee
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Won-Seo Park
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Dong-Gyun Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyoun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Pil-Nam Seong
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jun-Sang Ham
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|
10
|
Boussios S, Sheriff M, Ovsepian SV. Molecular Biology of Cancer-Interplay of Malignant Cells with Emerging Therapies. Int J Mol Sci 2024; 25:13090. [PMID: 39684799 DOI: 10.3390/ijms252313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is currently one of the leading causes of death worldwide, and according to data from the World Health Organization reported in 2020, it ranks as the second leading cause of death globally, accounting for 10 million fatalities [...].
Collapse
Affiliation(s)
- Stergios Boussios
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury CT1 1QU, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Gillingham ME4 4AG, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia
| |
Collapse
|
11
|
Peeyatu C, Prompat N, Voravuthikunchai SP, Roongsawang N, Sangkhathat S, Khongkow P, Saetang J, Tipmanee V. Role of Non-Binding T63 Alteration in IL-18 Binding. Int J Mol Sci 2024; 25:12992. [PMID: 39684709 DOI: 10.3390/ijms252312992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Engineered interleukin-18 (IL-18) has attracted interest as a cytokine-based treatment. However, knowledge-based mutagenesis of IL-18 has been reported for only a few regions of the protein structures, including binding sites I and II. When coupled with the binding region mutant (E6K), the non-binding residue of IL-18, Thr63 (T63), has been shown to increase the flexibility of the binding loop. Nevertheless, the function of Thr63 in conformational regulation is still unknown. Using homology modeling, molecular dynamics simulation, and structural analysis, we investigated the effects of Thr63 alteration coupling with E6K on conformational change pattern, binding loop flexibility, and the hydrogen bond network. The results indicate that the 63rd residue was significantly associated with hydrogen-bond relaxation at the core β-barrel binding sites I and II Glu85-Ile100 loop. This result provided conformational and flexible effects to binding sites I and III by switching their binding loops and stabilizing the 63rd residue cavity. These findings may pave the way for the conceptualization of a new design for IL-18 proteins by modifying non-binding residues for structure-based drug development.
Collapse
Affiliation(s)
- Chariya Peeyatu
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napat Prompat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellent, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jirakrit Saetang
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
12
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
13
|
Zhan D, Zhang N, Zhao L, Sun Z, Cang C. Inhibition of Hsp90 K284 Acetylation Aalleviates Cardiac Injury After Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1427-1441. [PMID: 39046654 PMCID: PMC11634933 DOI: 10.1007/s12265-024-10548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Our objective was to determine the role of acetyl-Hsp90 and its relationship with the NF-κB p65 signaling pathway in CVDs. We investigated the effect of acetyl-Hsp90 on cardiac inflammation and apoptosis after ischemia-reperfusion injury (I/RI). The results showed that the induction of acetyl-Hsp90 occurred in the heart during I/R and in primary cardiomyocytes during oxygen-glucose deprivation/reoxygenation (OGD/R). Moreover, the nonacetylated mutant of Hsp90 (Hsp90-K284R), through the regulation of ATPase activities within its N-terminal domain (NTD), indirectly or directly increases its interaction with NF-κB p65. This led to a reduction in the activation of the NF-κB p65 pathway, thereby attenuating inflammation, apoptosis, and fibrosis, ultimately leading to an improvement in cardiac function. Furthermore, we demonstrated that recombinant human interleukin-37 (rIL-37) exerts a similar cardioprotective effect by reducing acetylation at K284 of Hsp90 after inhibiting the expression of KAT2A.
Collapse
Affiliation(s)
- Dongyu Zhan
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Na Zhang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Li Zhao
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Zhirui Sun
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Chunyang Cang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China.
| |
Collapse
|
14
|
Wang Z, Shu Q, Wu J, Cheng Y, Liang X, Huang X, Liu Y, Tao Z, Wang J, Bai F, Liu N, Xie N. Evaluating the association between immunological proteins and common intestinal diseases using a bidirectional two-sample Mendelian randomization study. Cytokine 2024; 184:156788. [PMID: 39467484 DOI: 10.1016/j.cyto.2024.156788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Dysregulation of intestinal homeostasis, characterized by imbalanced immunological proteins, contributes to the pathogenesis of common intestinal diseases, e.g., irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and colorectal cancer (CRC). However, the potential causal relationships between specific immunological proteins and these diseases remain to be fully elucidated. In this study, we employed the bidirectional two-sample Mendelian randomization analysis to infer potential causal relationships between representative immunological proteins and these intestinal diseases. Genome-wide association study (GWAS) summary statistics of IBS, IBD, and CRC were obtained from public databases and utilized in MR analysis. Multiple sensitivity analyses were performed to evaluate the robustness, with p-values adjusted using the Benjamini-Hochberg method for multiple comparisons. Our findings revealed a significant association between IL-1β (OR = 0.783, 95 % CI: 0.676 to 0.908, adjusted P = 0.048) and a decreased risk of IBS. Furthermore, genetic predisposition to IBS was related to the reduced levels of IL-25 (β = - 0.233, 95 % CI: -0.372 to -0.094, adjusted P = 0.047). Additionally, genetic predisposition to IBD was correlated with elevated levels of IL-6 (β = 0.046, 95 % CI: 0.022-0.069, adjusted P = 0.010). The levels of TNF-α (OR = 1.252, 95 % CI: 1.102 to 1.423, adjusted P = 0.047) were associated with an increased risk of CRC. Our study suggests associations between specific immunological proteins and intestinal diseases, which would provide valuable insights for developing targeted immunomodulation therapies for these conditions. Further investigation into underlying mechanisms remains a research priority in the future.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiuai Shu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jian Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yutong Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Xiru Liang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Xindi Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yixin Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Zhiwei Tao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Na Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China.
| | - Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
15
|
Obi ON, Saketkoo LA, Maier LA, Baughman RP. Developmental drugs for sarcoidosis. J Autoimmun 2024; 149:103179. [PMID: 38548579 DOI: 10.1016/j.jaut.2024.103179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 12/15/2024]
Abstract
Sarcoidosis is a multi-organ granulomatous inflammatory disease of unknown etiology. Over 50% of patients will require treatment at some point in their disease and 10%-30% will develop a chronic progressive disease with pulmonary fibrosis leading to significant morbidity and mortality. Recently published guidelines recommend immunosuppressive therapy for sarcoidosis patients at risk of increased disease-related morbidity and mortality, and in whom disease has negatively impacted quality of life. Prednisone the currently recommended first line therapy is associated with significant toxicity however none of the other guideline recommended steroid sparing therapy is approved by regulatory agencies for use in sarcoidosis, and data in support of their use is weak. For patients with severe refractory disease requiring prolonged therapy, treatment options are limited. The need for expanding treatment options in sarcoidosis has been emphasized. Well conducted large, randomized trials evaluating currently available therapeutic options as well as novel pathways for targeting disease are necessary to better guide treatment decisions. These trials will not be without significant challenges. Sarcoidosis is a rare disease with heterogenous presentation and variable progression and clinical outcome. There are no universally agreed upon biomarkers of disease activity and measurement of outcomes is confounded by the need to balance patient centric measures and objective measures of disease activity. Our paper provides an update on developmental drugs in sarcoidosis and outlines several novel pathways that may be targeted for future drug development. Currently available trials are highlighted and ongoing challenges to drug development and clinical trial design are briefly discussed.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; University Medical Center - Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, USA; Louisiana State University School of Medicine, Section of Pulmonary Medicine, New Orleans, LA, USA; Tulane University School of Medicine, Undergraduate Honors Department, New Orleans, LA, USA
| | - Lisa A Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA; Division of Pulmonary and Critical Care Sciences, Department of Medicine, University of Colorado School of Medicine, Denver, CO, USA
| | - Robert P Baughman
- Emeritus Professor of Medicine, Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
16
|
Yang Z, Zhang M, Gao N, Peng J, Wei H. Type 3 immune response protects against Salmonella Typhimurium infection in the small intestine of neonatal rats. Emerg Microbes Infect 2024; 13:2417867. [PMID: 39435479 PMCID: PMC11520099 DOI: 10.1080/22221751.2024.2417867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/09/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Bacterial infections, particularly Salmonella, pose a significant health risk to neonates due to their underdeveloped immune systems. Understanding the immune responses in the neonatal intestine during S. Typhimurium infection is crucial for developing effective therapeutic and prevention strategies. This study found neonatal rats exhibited severe symptoms, including significant mortality, body weight loss, diarrhea, and bacterial load increases in the gastrointestinal tract and various organs, particularly in the ileum. Moreover, neonatal rats exhibited a high percentage of type 3 immune cells including Th17, γδT17, and ILC3 after S. Typhimurium infection. Furthermore, cintirorgon treatment during early life, the agonist of RORγt, significantly enhanced IL-17A-secreting type 3 immune response and alleviated the symptoms. Our data reveal targeting RORγt and IL-17A pathways may offer a promising therapeutic strategy for bacterial infections in neonatal populations.
Collapse
MESH Headings
- Animals
- Salmonella typhimurium/immunology
- Rats
- Animals, Newborn
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Th17 Cells/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella Infections, Animal/prevention & control
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Salmonella Infections/immunology
- Salmonella Infections/microbiology
- Salmonella Infections/prevention & control
- Rats, Sprague-Dawley
- Disease Models, Animal
- Bacterial Load
- Female
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ning Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| |
Collapse
|
17
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Hosgood SA, Moore T, Walker A, Nicholson ML. IL-1 receptor antagonist anakinra downregulates inflammatory cytokines during renal normothermic machine perfusion: Preliminary results. Artif Organs 2024. [PMID: 39565032 DOI: 10.1111/aor.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The interleukin 1 (IL-1) cytokine group plays a key role in sterile inflammation and may be an important target for transplant-related renal injury. This study examined the effects of anakinra, a non-specific IL-1 receptor antagonist, administered during normothermic machine perfusion (NMP) of porcine kidneys. METHOD Paired porcine kidneys (n = 5 pairs) underwent 15 min of warm ischemia plus 2 h of static cold storage in ice. Kidneys were then perfused with autologous whole blood using an ex vivo NMP platform. Kidneys were randomly allocated to receive anakinra or vehicle administered at the start of NMP. Cortical biopsies were collected at baseline before ischemic injury and at the end of NMP. Functional parameters were recorded and calculated, and inflammatory markers were measured by qPCR and ELISA techniques. RESULTS During NMP, there were no statistically significant differences in renal blood flow, urine output, creatinine clearance or fractional excretion of sodium in the anakinra and control groups. The administration of anakinra significantly downregulated transcriptional expression of IL-6, Fas ligand and intercellular adhesion molecule 1 (p = 0.029, 0.029, 0.028, respectively). CONCLUSION Anakinra, an IL-1 receptor blocker, successfully attenuated the downstream inflammatory and immune-mediated response within the kidney during NMP.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tom Moore
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Alex Walker
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Michael L Nicholson
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Gaal OI, Leask M, Nica V, Cabău G, Badii M, Hotea I, de Graaf DM, Zhang Z, Li Y, Pamfil C, Rednic S, Merriman TR, Crișan TO, Joosten LAB. Gout-associated SNP at the IL1RN-IL1F10 region is associated with altered cytokine production in PBMCs of patients with gout and controls. Arthritis Res Ther 2024; 26:205. [PMID: 39568029 PMCID: PMC11577629 DOI: 10.1186/s13075-024-03436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVES Gout is caused by the response of the innate immune system to monosodium urate (MSU) crystals. A recent gout GWAS identified a signal of genetic association at a locus encompassing IL1RN-IL1F10. Colocalisation analysis using Genotype Tissue Expression Database (GTEx) eQTL data showed that the signal overlaps with genetic control of IL1RN/IL1F10 gene expression. We assess the functional implications of IL1RN rs9973741, the lead gout-associated variant. METHODS We conducted functional validation of IL1RN rs9973741 in patients with gout and controls. The transcription level of IL1RN/IL1F10 was investigated in unstimulated or MSU-crystal co-stimulated PBMCs. Ex vivo functional assays were performed in PBMCs stimulated with C16 + MSU crystals or LPS for 24 h. Cytokine levels were assessed by ELISA. RESULTS In unstimulated PBMCs, no association of IL1RN rs9973741 (gout risk allele G) to IL1RN expression was observed while IL-1F10 was hindered by low expression at both transcriptional and protein levels. However, G allele carriers showed lower IL1RN expression in PBMCs stimulated with C16/MSU crystal and lower concentrations of circulating IL-1Ra in both controls and gout patients. PBMCs depicted less spontaneous IL-1Ra release in GG homozygous controls and lower IL-1Ra production in response to C16 + MSU crystal costimulation in patients with gout. The G allele was associated with elevated IL-1β cytokine production in response to C16 + MSU crystal stimulation in controls. CONCLUSIONS The gout risk allele G associates with lower circulating IL-1Ra, lower IL-1Ra production in PBMC assays and elevated IL-1β production in PBMCs challenged with C16 + MSU crystals but not in unchallenged cells. Our data indicate that the genetic signal that associates with gout at IL1RN-IL1F10 region functions to alter expression of IL-1Ra when stimulated by MSU crystals.
Collapse
Grants
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- 2462/22 University of Medicine and Pharmacy "Iuliu Hațieganu", Cluj-Napoca, Romania
- University of Medicine and Pharmacy „Iuliu Hațieganu”, Cluj-Napoca, Romania
Collapse
Affiliation(s)
- Orsolya I Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Megan Leask
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentin Nica
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
| | - Georgiana Cabău
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
| | - Medeea Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ioana Hotea
- Department of Rheumatology, University of Medicine and Pharmay, Cluj-Napoca, Romania
| | - Dennis M de Graaf
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Zhenhua Zhang
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany
| | - Cristina Pamfil
- Department of Rheumatology, University of Medicine and Pharmay, Cluj-Napoca, Romania
| | - Simona Rednic
- Department of Rheumatology, University of Medicine and Pharmay, Cluj-Napoca, Romania
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tania O Crișan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania.
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Leo A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Zhang N, Yang Y, Xu D. Emerging roles of palmitoylation in pyroptosis. Trends Cell Biol 2024:S0962-8924(24)00211-3. [PMID: 39521664 DOI: 10.1016/j.tcb.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis is a lytic, proinflammatory type of programmed cell death crucial for the immune response to pathogen infections and internal danger signals. Gasdermin D (GSDMD) acts as the pore-forming protein in pyroptosis following inflammasome activation. While recent research has improved our understanding of pyroptosis activation and execution, many aspects regarding the molecular mechanisms controlling inflammasome and GSDMD activation remain to be elucidated. A growing body of literature has shown that S-palmitoylation, a reversible post-translational modification (PTM) that attaches palmitate to cysteine residues, contributes to multi-layered regulation of pyroptosis. This review summarizes the emerging roles of S-palmitoylation in pyroptosis research with a focus on mechanisms that regulate NLRP3 inflammasome and GSDMD activation.
Collapse
Affiliation(s)
- Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, China.
| |
Collapse
|
21
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2024:10.1038/s41577-024-01103-8. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
22
|
Lu Y, Xu J, Lin H, Zhu M, Li M. Gasdermin E mediates pyroptosis in the progression of hepatocellular carcinoma: a double-edged sword. Gastroenterol Rep (Oxf) 2024; 12:goae102. [PMID: 39526199 PMCID: PMC11549059 DOI: 10.1093/gastro/goae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer worldwide. It usually develops due to viral hepatitis or liver cirrhosis. The molecular mechanisms involved in HCC pathogenesis are complex and incompletely understood. Gasdermin E (GSDME) is a tumor suppressor gene and is inhibited in most cancers. Recent studies have reported that, unlike those in most tumors, GSDME is highly expressed in liver cancer, and GSDME expression in HCC is negatively associated with prognosis, suggesting that GSDME may promote HCC. However, antitumor drugs can induce pyroptosis through GSDME, killing HCC cells. Therefore, GSDME may both inhibit and promote HCC development. Because functional studies of GSDME in HCC are limited, the precise molecular mechanisms of GSDME in liver cancer remain unclear. In this article, we have reviewed the role, related mechanisms, and clinical importance of GSDME at the onset and development of HCC to provide a theoretical foundation to improve the clinical diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan, P. R. China
| | - Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan, P. R. China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, P. R. China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, P. R. China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan, P. R. China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan, P. R. China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, P. R. China
- Institution of Tumor, Hainan Medical University, Haikou, Hainan, P. R. China
| |
Collapse
|
23
|
Leal VNC, Roa MEGV, Cantoni JS, Reis ECD, Lara AN, Pontillo A. Integrated Genetic and Cellular Analysis Reveals NLRP1 Activation in CD4+ T Lymphocytes During Chronic HIV Infection. Immunol Invest 2024:1-20. [PMID: 39495019 DOI: 10.1080/08820139.2024.2419940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Most of the investigations related to inflammasome activation during HIV infection have focused on the receptor NLRP3 and innate immune cells such as monocytes/macrophages. However, during the past years, inflammasome activation has also been explored in lymphocytes, and novel sensors, other than the NLRP3, have been shown to play a role in the biology of these cells. Here, we hypothesized that NLRP1 may be involved in CD4+ T cell dysregulation in people living with HIV (PLWH), therefore contributing to chronic inflammation and to the pathogenesis of non-HIV-associated diseases. METHODS The activation of NLRP1 in CD4+ T cells was assessed ex-vivo and in-vitro by the meaning of anti-CD3/anti-CD28 and Talabostat/Val-boroPro (VbP) response. RESULTS Our results showed that the NLRP1 inflammasome was activated in PLWH CD4+ T cells, and that the stimulation of CD4+ T cells resulted in increased response to anti-CD3/anti-CD28 and VbP. Functional variants in NLRP1 significantly affected the level of inflammatory dysregulation of CD4+ T cells, therefore explaining at least in part the association with CD4+ T-mediated diseases. CONCLUSION PLWH CD4+ T cells are more prone to IL-1β release and pyroptosis, therefore contributing to chronic inflammation.
Collapse
Affiliation(s)
- Vinicius Nunes Cordeiro Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Mariela Estefany Gislane Vera Roa
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Julia Silva Cantoni
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Edione Cristina Dos Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Amanda Nazareth Lara
- Departamento de Moléstias Infecciosas e Parasitárias da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
24
|
Becher B, Derfuss T, Liblau R. Targeting cytokine networks in neuroinflammatory diseases. Nat Rev Drug Discov 2024; 23:862-879. [PMID: 39261632 DOI: 10.1038/s41573-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of 'sterile' neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Tobias Derfuss
- Department of Neurology and Biomedicine, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Roland Liblau
- Institute for inflammatory and infectious diseases, INSERM UMR1291 - CNRS UMR505, Toulouse, France.
| |
Collapse
|
25
|
Hu Y, Feng Z, An G, Lv Z, Wang J, Cui Y, Corrigan CJ, Wang W, Li Q, Ying S. Edwardsiella tarda induces airways inflammation and production of autoantibodies against lung tissues through regulation of the IL-33-ST2 axis. Immunology 2024; 173:575-589. [PMID: 39126327 DOI: 10.1111/imm.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic respiratory disease characterised by irreversible airways obstruction associated with chronic airways inflammation and remodelling, while the pathogenesis and the mechanistic differences between patients remain to be fully elucidated. We previously reported that alarmin cytokine IL-33 may contribute to the production of autoantibodies against respiratory epithelial cells. Here we expand the hypothesis that pulmonary autoimmune responses induced by airway microbiota also contribute to the progression of COPD. We focused on Edwardsiella tarda which we detected uniquely in the induced sputum of patients with acute exacerbations of COPD. Pernasal challenge of the airways of WT mice with supernatants of cultured E. tarda induced marked, elevated expression of IL-33 in the lung tissues. Immunisation of animals with supernatants of cultured E. tarda resulted in significantly elevated airways inflammation, the formation of tertiary lymphatic structures and significantly elevated proportions of T follicular helper T cells in the lung tissue and mediastinal lymph nodes. Interestingly, such challenge also induced production of IgG autoantibodies directed against lung tissue lysate, alveolar epithelial cell proteins and elastin fragment, while putrescine, one of metabolites generated by the bacterium, might play an important role in the autoantibody production. Furthermore, all of these effects were partly but significantly abrogated in mice with deletion of the IL-33 receptor ST2. Collectively, these data support the hypothesis that COPD is progressed at least partly by airways microbiota such as E. tarda initiating autoimmune attack of the airways epithelium mediated at least partly through the IL-33-ST2 axis.
Collapse
Affiliation(s)
- Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhihong Feng
- Department of Respiratory Medicine, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gao An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Department of Inflammation Biology, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qin Li
- Department of Laboratory, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Yan Y, Li J, He Y, Ji P, Xu J, Li Y. Potential pro-tumour cytokine in oral squamous cellular carcinoma: IL37. J Cell Mol Med 2024; 28:e70167. [PMID: 39500733 PMCID: PMC11537803 DOI: 10.1111/jcmm.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 11/09/2024] Open
Abstract
Inflammation and immunosuppression are important features of tumours, including oral squamous cellular carcinoma (OSCC). Interleukin 37 (IL37), a cytokine known for the ability to suppress inflammation and immunity, shows two seemingly contradictory functions in tumours. This study aims to investigate the mechanism that regulates IL37 and its role in OSCC progression. Herein, IL37, CD86 and CD206 in OSCC specimens were determined. Hypoxia, MCC950 and siRNA-Gasdermin D (GSDMD) were utilised to investigate the mechanism of IL37 production and release. Animal experiments were established to examine the role of IL37 in OSCC growth in vivo. We found the levels of IL37 are elevated in OSCC tissues compared with normal oral mucosa. In cell experiments, hypoxia was proved to be a vital facilitator in IL37 expression and release. Mechanically, hypoxia promoted IL37 expression through the activation of NACHT-LRR-PYD-containing protein 3 (NLRP3) inflammasome, and promoted IL37 release via GSDMD. Furthermore, IL37 levels in OSCC specimens are positively correlated with the number of M2 macrophages, but negatively with M1. Further studies revealed IL37 facilitated OSCC progression via promoting macrophage polarization from M1 to M2 and enhancing tumour cell proliferation. Thus, IL37 could be a promising target for OSCC treatment in the future.
Collapse
Affiliation(s)
- Ying Yan
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jun Li
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yungang He
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jie Xu
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yong Li
- Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical ScienceChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
27
|
Taru V, Szabo G, Mehal W, Reiberger T. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation. J Hepatol 2024; 81:895-910. [PMID: 38908436 DOI: 10.1016/j.jhep.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Chronic liver disease leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types, ultimately resulting in liver fibrosis, cirrhosis, portal hypertension and liver failure. Thus, an improved understanding of inflammasomes - as key molecular drivers of liver injury - may result in the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic insults by activating cell-intrinsic inflammasomes via toll-like receptors and NF-κB, and by releasing pro-inflammatory cytokines (such as IL-1β, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation and hepatic parenchymal cells may undergo gasdermin D-mediated programmed cell death, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in MASH (metabolic dysfunction-associated steatohepatitis). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunction/failure, as seen in ACLF (acute-on-chronic liver failure). This review provides an overview of current concepts regarding inflammasome activation in liver disease progression, with a focus on related biomarkers and therapeutic approaches that are being developed for patients with liver disease.
Collapse
Affiliation(s)
- Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Iuliu Hatieganu University of Medicine and Pharmacy, 4(th) Dept. of Internal Medicine, Cluj-Napoca, Romania
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; West Haven Veterans Medical Center, West Haven, CT, USA.
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Science, Vienna, Austria
| |
Collapse
|
28
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Exploring cytokines dynamics: Uncovering therapeutic concepts for metabolic disorders in postmenopausal women- diabetes, metabolic bone diseases, and non-alcohol fatty liver disease. Ageing Res Rev 2024; 101:102505. [PMID: 39307315 DOI: 10.1016/j.arr.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Menopause is an age-related change that persists for around one-third of a woman's life. Menopause increases the risk of metabolic illnesses such as diabetes, osteoporosis (OP), and nonalcoholic fatty liver disease (NAFLD). Immune mediators (pro-inflammatory cytokines), such as interleukin-1 (IL-1), IL-6, IL-17, transforming growth factor (TGF), and tumor necrosis factor (TNF), exacerbate the challenges of a woman undergoing menopause by causing inflammation and contributing to the development of these metabolic diseases in postmenopausal women. Furthermore, studies have shown that anti-inflammatory cytokines such as interleukin-1 receptor antagonists (IL-1Ra), IL-2, and IL-10 have a double-edged effect on diabetes and OP. Likewise, several interferon (IFN) members are double-edged swords in the OP. Therefore, addressing these immune mediators precisely may be an approach to improving the health of postmenopausal women. Hence, considering the significant changes in these cytokines, the present review focuses on the latest findings concerning the molecular mechanisms by which pro- and anti-inflammatory cytokines (interleukins) impact postmenopausal women with diabetes, OP, and NAFLD. Furthermore, we comprehensively discuss the therapeutic approaches that identify cytokines as therapeutic targets, such as hormonal therapy, physical activities, natural inhibitors (drugs), and others. Finally, this review aims to provide valuable insights into the role of cytokines in postmenopausal women's diabetes, OP, and NAFLD. Deeply investigating the mechanisms and therapeutic interventions involved will address the characteristics of immune mediators (cytokines) and improve the management of these illnesses, thereby enhancing the general quality of life and health of the corresponding populations of women.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
29
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-cell transcriptomics unveils skin cell specific antifungal immune responses and IL-1Ra- IL-1R immune evasion strategies of emerging fungal pathogen Candida auris. PLoS Pathog 2024; 20:e1012699. [PMID: 39536069 PMCID: PMC11588283 DOI: 10.1371/journal.ppat.1012699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Shrihari M. Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, Indiana, United States of America
| |
Collapse
|
30
|
Guo M, Sun R, Wu Z, Li A, Wang Q, Zhao Z, Liu H, Wang B, Xiao K, Shi Z, Ji W. A comparative study on the immune response in the head and trunk kidney of yellow catfish infected with Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109895. [PMID: 39265963 DOI: 10.1016/j.fsi.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The teleost kidneys are anatomically divided into head kidney and trunk kidney, each performing distinct physiological functions. Although previous research has elucidated the role of the head kidney in immune responses, there is a paucity of literature on the comparative studies of the head and trunk kidney response to bacterial infection. Therefore, an Edwardsiella ictaluri infection model of yellow catfish was constructed to investigate and compare the immune responses between the two kidney types. The findings indicated that E. ictaluri infection induced significant pathological changes in both the head and trunk kidney. Despite variances in structure, both the head and trunk kidney of yellow catfish exhibit robust immune responses following E. ictaluri infection. Unexpectedly, the up-regulation level of IgM was found to be higher in the trunk kidney compared to the head kidney. Additionally, both the IgM+ and IgD+ B cells were increased after bacterial infection. This research elucidates the parallels and distinctions in immune functions between both the head and trunk kidney in fish, enriching the immune theory of the fish kidney, and also providing a theoretical basis for the immune response of teleost kidney against bacterial infections.
Collapse
Affiliation(s)
- Mengge Guo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengyan Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anqi Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangchun Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huimin Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingchao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Xiao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
32
|
Zheng Y, Hu J, Chen J, Wang H, Zhao Z, Zhu H, Li Z, Wang N, Chen X, Liu M, Luo Z, Zhang S, Zhang H, Xuan X, Li X, Xue L, Wang G, Wu J. Association between dust exposure and lung function levels in steelworkers: mediation analysis of inflammatory biomarkers. Int Arch Occup Environ Health 2024; 97:971-980. [PMID: 39306641 DOI: 10.1007/s00420-024-02101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 11/14/2024]
Abstract
PURPOSE This investigation aimed to examine the mediating effect of inflammatory biomarkers on the relationship between dust exposure and lung function levels among steelworkers. METHODS The study comprised 2,315 front-line workers employed at an iron and steel company in Tangshan, who underwent occupational health assessments through cluster sampling. Demographic and lifestyle data were collected via a self-administered questionnaire, while physical examinations measured parameters such as height and weight. Lung function was assessed using a portable pulmonary function tester (CHEST). Blood cell counts were uniformly analyzed using a Mindray fully automated biochemistry analyzer (BS-800). Inflammatory biomarkers, including leukocyte count, neutrophil count, lymphocyte count, and platelet count, were assessed, and the neutrophil-to-lymphocyte ratio and systemic immune inflammation index were computed. Generalized linear models and Spearman rank correlation analyses were employed to explore the interplay among dust exposure, inflammatory biomarkers, and alterations in lung function. A mediation analysis model was constructed to elucidate how inflammatory biomarkers mediate the relationship between dust exposure and lung function levels. RESULTS After adjusting for covariates, dust exposure was significantly associated with reduced lung function levels, with statistically significant differences observed between dust-exposed and non-exposed groups across various lung function indicators (P < 0.001). In the dust-exposed group, inflammatory biomarkers were elevated, showing significant correlations with FVC and FEV1 (P < 0.05). However, the correlation between FEV1/FVC and various inflammatory biomarkers was insignificant (P > 0.05). Mediation analysis revealed that white blood cells and neutrophils partially mediated the association between dust exposure and FVC, with proportions of 1.75% and 1.09%, respectively. Similarly, white blood cells, neutrophils, and the systemic immune inflammation index partially mediated the association between dust exposure and FEV1, with proportions of 1.15%, 0.82%, and 0.82%, respectively. CONCLUSION In conclusion, dust exposure poses a risk for decreased lung function levels. Inflammatory biomarkers derived from blood cells offer a valuable and easily obtainable means of identifying changes in lungfunction levels. Among these biomarkers, white blood cells, neutrophils, and the systemic immune inflammation index significantly mediate the association between dust exposure and lung function levels, although further exploration is needed to understand their underlying mechanisms.
Collapse
Affiliation(s)
- Yizhan Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Jiaqi Hu
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Jiaqi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Huan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Ziqi Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Hongmin Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Zheng Li
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Nan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Xinyang Chen
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Mingyue Liu
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Zhenghao Luo
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Shangmingzhu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Haoruo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Xiaoqing Xuan
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Xiaoming Li
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Ling Xue
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China
| | - Guoli Wang
- School of Emergency Management and Safety Engineering, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China.
| | - Jianhui Wu
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China.
- Hebei Key Laboratory of Coal Health and Safety, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210, China.
| |
Collapse
|
33
|
Sattanathan G, Padmapriya S, Kadaikunnan S, Khaled JM, Malafaia G, Govindarajan M. Marine macroalgae Chaetomorpha aerea as a dietary supplement: Optimizing immunity and resistance to Edwardsiella tarda in tilapia (Oreochromis mossambicus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109956. [PMID: 39393614 DOI: 10.1016/j.fsi.2024.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The intensification of aquaculture has led to a rise in fish infections, necessitating the search for alternative antibiotics. In this context, our study investigated the effects of dietary supplementation with Chaetomorpha aerea, a filamentous green algae, on the immune health and resistance to infections in tilapia (Oreochromis mossambicus). Diets containing varying concentrations of C. aerea (0, 1, 2, 5, and 10 g/kg) were prepared and administered to the fish for 30 days, followed by a challenge with Edwardsiella tarda to evaluate survival rates. The results were significant. The diet containing 5 g/kg of C. aerea (group T3) brought about substantial improvements in hematological parameters, including increases in red blood cell count (RBC), hematocrit (Hct), and hemoglobin (Hb). The T3 group exhibited a robust immune response, with higher lysozyme and ceruloplasmin activity in immunological assays. LBP gene expression was significantly elevated in the spleen and thymus of fish in the T3 group, which correlated with higher survival after bacterial challenge compared to the control group. Principal Component Analysis (PCA) and cluster analysis confirmed that the 5 g/kg concentration stood out for maximizing immunological benefits without compromising the overall health of the fish. These findings highlight the robust immune response in the T3 group, a key finding of our study. We conclude that supplementation with C. aerea represents a promising and sustainable alternative in the formulation of diets for tilapia, contributing to improved health and resistance to diseases. Future studies are recommended to explore its application in other species and development stages, in addition to evaluating other health biomarkers.
Collapse
Affiliation(s)
- Govindharajan Sattanathan
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang, 261061, China.
| | - Swaminathan Padmapriya
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, TamilNadu, India.
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Guilherme Malafaia
- Post-GraduationProgram in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-GraduationProgram in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-GraduationProgram in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Marimuthu Govindarajan
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, TamilNadu, India; Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
34
|
Yuan H, Li Y, Kong Z, Peng L, Song J, Hou X, Zhang W, Liu R, Feng T, Zhu C. IL-33-Pretreated Mesenchymal Stem Cells Attenuate Acute Liver Failure by Improving Homing and Polarizing M2 Macrophages. Stem Cells Int 2024; 2024:1273099. [PMID: 39478979 PMCID: PMC11524710 DOI: 10.1155/2024/1273099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/05/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are highly effective in the treatment of acute liver failure (ALF). The efficacy of MSCs is closely related to the inflammatory environment. Therefore, we investigated the functional changes of MSCs in response to interleukin-33 (IL-33) stimulation. The results showed that bone marrow mesenchymal stem cells (BMSCs) pretreated with IL-33 had increased CCR2 expression, targeted CCL2 in the injured liver tissue, and improved the migration ability. Under LPS stimulation, the NF-κB pathway of BMDM was activated, and its phenotype polarized to the M1-type, while BMSCs pretreated with IL-33 inhibited the NF-κB pathway and enhanced M2 macrophage polarization. The M2-type macrophages could further inhibit hepatocytes inflammation, reduce hepatocytes apoptosis, and promote hepatocytes repair. These results suggest that IL-33 can enhance the efficacy of BMSCs in ALF and provide a new strategy for cell therapy of liver diseases.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Kong
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Song
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxue Hou
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Tiantong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| |
Collapse
|
35
|
Wójciak M, Paduch R, Drozdowski P, Wójciak W, Żuk M, Płachno BJ, Sowa I. Antioxidant and Anti-Inflammatory Effects of Nettle Polyphenolic Extract: Impact on Human Colon Cells and Cytotoxicity Against Colorectal Adenocarcinoma. Molecules 2024; 29:5000. [PMID: 39519642 PMCID: PMC11547774 DOI: 10.3390/molecules29215000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Urtica dioica L. is one of the most widely utilized medicinal plants commonly applied in the form of tea, juice, and dietary supplements. This study aimed to assess the effect of the U. dioica ethanol-water extract (UdE) and polyphenolic fraction isolated from the extract (UdF) on normal human colon epithelial cells and to evaluate their protective activity against induced oxidative stress. The cytotoxic potential against human colorectal adenocarcinoma (HT29) and the anti-inflammatory effects were also investigated. UPLC-MS-DAD analysis revealed that both extracts were abundant in caffeic acid derivatives, specifically chlorogenic and caffeoylmalic acids, and therefore, they showed significant protective and ROS scavenging effects in normal human colon epithelial cells. Moreover, they had no negative impact on cell viability and morphology in normal cells and the extracts, particularly UdF, moderately suppressed adenocarcinoma cells. Furthermore, UdF significantly decreased IL-1β levels in HT29 cells. Our research indicates that U. dioica may provide significant health advantages because of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland;
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| |
Collapse
|
36
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-Cell Transcriptomics Unveils Skin Cell Specific Antifungal Immune Responses and IL-1Ra- IL-1R Immune Evasion Strategies of Emerging Fungal Pathogen Candida auris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619653. [PMID: 39463935 PMCID: PMC11507746 DOI: 10.1101/2024.10.22.619653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Shrihari M Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, IN 47906
| | | | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906
| |
Collapse
|
37
|
Díaz-García C, Moreno E, Talavera-Rodríguez A, Martín-Fernández L, González-Bodí S, Martín-Pedraza L, Pérez-Molina JA, Dronda F, Gosalbes MJ, Luna L, Vivancos MJ, Huerta-Cepas J, Moreno S, Serrano-Villar S. Fecal microbiota transplantation alters the proteomic landscape of inflammation in HIV: identifying bacterial drivers. MICROBIOME 2024; 12:214. [PMID: 39438902 PMCID: PMC11494993 DOI: 10.1186/s40168-024-01919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite effective antiretroviral therapy, people with HIV (PWH) experience persistent systemic inflammation and increased morbidity and mortality. Modulating the gut microbiome through fecal microbiota transplantation (FMT) represents a novel therapeutic strategy. We aimed to evaluate proteomic changes in inflammatory pathways following repeated, low-dose FMT versus placebo. METHODS This double-masked, placebo-controlled pilot study assessed the proteomic impacts of weekly FMT versus placebo treatment over 8 weeks on systemic inflammation in 29 PWH receiving stable antiretroviral therapy (ART). Three stool donors with high Faecalibacterium and butyrate profiles were selected, and their individual stools were used for FMT capsule preparation. Proteomic changes in 345 inflammatory proteins in plasma were quantified using the proximity extension assay, with samples collected at baseline and at weeks 1, 8, and 24. Concurrently, we characterized shifts in the gut microbiota composition and annotated functions through shotgun metagenomics. We fitted generalized additive models to evaluate the dynamics of protein expression. We selected the most relevant proteins to explore their correlations with microbiome composition and functionality over time using linear mixed models. RESULTS FMT significantly reduced the plasma levels of 45 inflammatory proteins, including established mortality predictors such as IL6 and TNF-α. We found notable reductions persisting up to 16 weeks after the final FMT procedure, including in the expression of proteins such as CCL20 and CD22. We identified changes in 46 proteins, including decreases in FT3LG, IL6, IL10RB, IL12B, and IL17A, which correlated with multiple bacterial species. We found that specific bacterial species within the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae families, and the Clostridium genus, in addition to their associated genes and functions, were significantly correlated with changes in inflammatory markers. CONCLUSIONS Targeting the gut microbiome through FMT effectively decreased inflammatory proteins in PWH, with sustained effects. These findings suggest the potential of the microbiome as a therapeutic target to mitigate inflammation-related complications in this population, encouraging further research and development of microbiome-based interventions. Video Abstract.
Collapse
Affiliation(s)
- Claudio Díaz-García
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Alba Talavera-Rodríguez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lucía Martín-Fernández
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sara González-Bodí
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Laura Martín-Pedraza
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBERESP, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
38
|
Liang C, Kan J, Wang J, Lu W, Mo X, Zhang B. Nasopharyngeal carcinoma-associated inflammatory cytokines: ongoing biomarkers. Front Immunol 2024; 15:1448012. [PMID: 39483474 PMCID: PMC11524805 DOI: 10.3389/fimmu.2024.1448012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a neoplasm related to inflammation; the expression of cytokines, such as CCL3, CCL4, CCL20, IL-1α, IL-1β, IL-6, IL-8, and IL-10, among others, is presumed to be associated with NPC occurrence and development. Therefore, the circulating levels of these cytokines may be potential biomarkers for assessing tumor aggressiveness, exploring cellular interactions, and monitoring tumor therapeutic responses. Numerous scholars have comprehensively explored the putative mechanisms through which these inflammatory factors affect NPC progression and therapeutic responses. Moreover, investigations have focused on elucidating the correlation between the systemic levels of these cytokines and the incidence and prognosis of NPC. This comprehensive review aims to delineate the advancements in research concerning the relationship between inflammatory factors and NPC while considering their prospective roles as novel prognostic and predictive biomarkers in the context of NPC.
Collapse
Affiliation(s)
- Chuwen Liang
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Kan
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingli Wang
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Lu
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyan Mo
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bei Zhang
- TCM&VIP Inpatient Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
39
|
Hsieh LL, Looney M, Figueroa A, Massaccesi G, Stavrakis G, Anaya EU, D'Alessio FR, Ordonez AA, Pekosz AS, DeFilippis VR, Karakousis PC, Karaba AH, Cox AL. Bystander monocytic cells drive infection-independent NLRP3 inflammasome response to SARS-CoV-2. mBio 2024; 15:e0081024. [PMID: 39240187 PMCID: PMC11481483 DOI: 10.1128/mbio.00810-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 09/07/2024] Open
Abstract
The pathogenesis of COVID-19 is associated with a hyperinflammatory immune response. Monocytes and macrophages play a central role in this hyperinflammatory response to SARS-CoV-2. NLRP3 inflammasome activation has been observed in monocytes of patients with COVID-19, but the mechanism and consequences of inflammasome activation require further investigation. In this study, we inoculated a macrophage-like THP-1 cell line, primary differentiated human nasal epithelial cell (hNEC) cultures, and primary monocytes with SARS-CoV-2. We found that the activation of the NLRP3 inflammasome in macrophages does not rely on viral replication, receptor-mediated entry, or actin-dependent entry. SARS-CoV-2 productively infected hNEC cultures without triggering the production of inflammasome cytokines IL-18 and IL-1β. Importantly, these cytokines did not inhibit viral replication in hNEC cultures. SARS-CoV-2 inoculation of primary monocytes led to inflammasome activation and induced a macrophage phenotype in these cells. Monocytic cells from bronchoalveolar lavage (BAL) fluid, but not from peripheral blood, of patients with COVID-19, showed evidence of inflammasome activation, expressed the proinflammatory marker CD11b, and displayed oxidative burst. These findings highlight the central role of activated macrophages, as a result of direct viral sensing, in COVID-19 and support the inhibition of IL-1β and IL-18 as potential therapeutic strategies to reduce immunopathology without increasing viral replication. IMPORTANCE Inflammasome activation is associated with severe COVID-19. The impact of inflammasome activation on viral replication and mechanistic details of this activation are not clarified. This study advances our understanding of the role of inflammasome activation in macrophages by identifying TLR2, NLRP3, ASC, and caspase-1 as dependent factors in this activation. Further, it highlights that SARS-CoV-2 inflammasome activation is not a feature of nasal epithelial cells but rather activation of bystander macrophages in the airway. Finally, we demonstrate that two pro inflammatory cytokines produced by inflammasome activation, IL-18 and IL-1β, do not restrict viral replication and are potential targets to ameliorate pathological inflammation in severe COVID-19.
Collapse
Affiliation(s)
- Leon L. Hsieh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monika Looney
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Georgia Stavrakis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eduardo U. Anaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Franco R. D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew S. Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Liu L, Zhang L, Hao X, Wang Y, Zhang X, Ge L, Wang P, Tian B, Zhang M. Coronavirus envelope protein activates TMED10-mediated unconventional secretion of inflammatory factors. Nat Commun 2024; 15:8708. [PMID: 39379362 PMCID: PMC11461611 DOI: 10.1038/s41467-024-52818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect. The E protein of severe coronaviruses contains an SS/DS motif, which is not present in milder strains and facilitates interaction with TMED10. This interaction enhances TMED10-oligomerization, facilitating UcPS cargo translocation into the ER-Golgi intermediate compartment (ERGIC)-a pivotal step in interleukin-1 UcPS. Progesterone analogues were identified as compounds inhibiting E-enhanced release of proinflammatory factors and lung inflammation in a Mouse Hepatitis Virus (MHV) infection model. These findings elucidate a molecular mechanism driving coronavirus-induced hyperinflammation, proposing the E-TMED10 interaction as a potential therapeutic target to counteract the adverse effects of coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lijingyao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyan Hao
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
41
|
Oberkircher LM, Scheiding VM, Rafeld HL, Hanssen E, Hansen JN, Fleischmann MJ, Kessler N, Pitsch D, Wachten D, Kastenmüller W, Brown AS, Hartland EL, van Driel IR, Ng GZ, Garbi N. Opposing roles of resident and infiltrating immune cells in the defense against Legionella longbeachae via IL-18R/IFN-γ/ROS axis in mice. Mucosal Immunol 2024; 17:777-792. [PMID: 38750967 DOI: 10.1016/j.mucimm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024]
Abstract
The immune response against Legionella longbeachae, a causative agent of the often-fatal Legionnaires' pneumonia, is poorly understood. Here, we investigated the specific roles of tissue-resident alveolar macrophages (AMs) and infiltrating phagocytes during infection with this pathogen. AMs were the predominant cell type that internalized bacteria 1 day after infection. A total of 3 and 5 days after infection, AM numbers were greatly reduced, whereas there was an influx of neutrophils and, later, monocyte-derived cells (MCs) into lung tissue. AMs carried greater numbers of viable L. longbeachae than neutrophils and MCs, which correlated with a higher capacity of L. longbeachae to translocate bacterial effector proteins required for bacterial replication into the AM cytosol. Cell ablation experiments demonstrated that AM promoted infection, whereas neutrophils and MC were required for efficient bacterial clearance. Interleukin (IL)-18 was important for interferon-γ production by IL-18R+ natural killer cells and T cells, which, in turn, stimulated reactive oxygen species-mediated bactericidal activity in neutrophils, resulting in the restriction of L. longbeachae infection. Ciliated bronchiolar epithelial cells also expressed IL-18R but did not play a role in IL-18-mediated L. longbeachae clearance. Our results have identified opposing innate functions of tissue-resident and infiltrating immune cells during L. longbeachae infection that may be manipulated to improve protective responses.
Collapse
Affiliation(s)
- Lara M Oberkircher
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Victoria M Scheiding
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - H Linda Rafeld
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Life & Medical-Sciences Institute, University of Bonn, Bonn, Germany
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; Ian Holmes Imaging Centre, University of Melbourne, Melbourne, Australia
| | - Jan N Hansen
- Institute of Innate Immunity, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Markus J Fleischmann
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - David Pitsch
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Andrew S Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Ian R van Driel
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Garrett Z Ng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
42
|
Yu C, Xu H, Jiang S, Sun L. IL-18 signaling is regulated by caspase 6/8 and IL-18BP in turbot (Scophthalmus maximus). Int J Biol Macromol 2024; 278:135015. [PMID: 39181350 DOI: 10.1016/j.ijbiomac.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Interleukin (IL)-18 is synthesized as a precursor that requires intracellular processing to become functionally active. In human, IL-18 is processed by caspase 1 (CASP1). In teleost, the maturation and signal transduction mechanisms of IL-18 are unknown. We identified two IL-18 variants, IL-18a and IL-18b, in turbot. IL-18a, but not IL-18b, was processed by CASP6/8 cleavage. Mature IL-18a bound specifically to IL-18 receptor (IL-18R) α-expressing cells and induced IL-18Rα-IL-18Rβ association. Bacterial infection promoted IL-18a maturation in a manner that required CASP6 activation and correlated with gasdermin E activation. The mature IL-18a induced proinflammatory cytokine expression and enhanced bacterial clearance. IL-18a-mediated immune response was suppressed by IL-18 binding protein (IL-18BP), which functioned as a decoy receptor for IL-18a. IL-18BP also functioned as a pathogen pattern recognition receptor and directly inhibited pathogen infection. Our findings revealed unique mechanism of IL-18 maturation and conserved mechanism of IL-18 signaling and regulation in turbot, and provided new insights into the regulation and function of IL-18 related immune signaling.
Collapse
Affiliation(s)
- Chao Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Ruze R, Chen Y, Song J, Xu R, Yin X, Xu Q, Wang C, Zhao Y. Enhanced cytokine signaling and ferroptosis defense interplay initiates obesity-associated pancreatic ductal adenocarcinoma. Cancer Lett 2024; 601:217162. [PMID: 39127339 DOI: 10.1016/j.canlet.2024.217162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Obesity is a significant risk factor for various cancers, including pancreatic cancer (PC), but the underlying mechanisms are still unclear. In our study, pancreatic ductal epithelial cells were cultured using serum from human subjects with diverse metabolic statuses, revealing that serum from patients with obesity alters inflammatory cytokine signaling and ferroptosis, where a mutual enhancement between interleukin 34 (IL-34) expression and ferroptosis defense was observed in these cells. Notably, oncogenic KRASG12D amplified their interaction and this leads to the initiation of pancreatic ductal adenocarcinoma (PDAC) in diet-induced obese mice via macrophage-mediated immunosuppression. Single-cell RNA sequencing (scRNA-seq) of human samples showed that cytokine signaling, ferroptosis defense, and immunosuppression are correlated with the patients' body mass index (BMI) during PDAC progression. Our findings provide a mechanistic link between obesity, inflammation, ferroptosis defense, and pancreatic cancer, suggesting novel therapeutic targets for the prevention and treatment of obesity-associated PDAC.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Chengcheng Wang
- General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China; Medical Research Center, PUMCH, CAMS&PUMC, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| |
Collapse
|
44
|
Chu CS, Chen HP, Lin PH, Cheng CC, Kuo HY, Fan PH, Peng WH, Wu LL. Interleukin-1 receptor 1 deficiency worsens hepatocellular carcinoma, while gemcitabine treatment alleviates the hepatocellular carcinoma-induced increase in intra-hepatic immune cells. J Gastroenterol Hepatol 2024; 39:2208-2218. [PMID: 39005010 DOI: 10.1111/jgh.16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND AIM Primary liver cancer, particularly hepatocellular carcinoma (HCC), represents a substantial global health challenge. Although immune checkpoint inhibitors are effective in HCC treatment, several patients still experience disease progression. Interleukin-1 (IL-1) regulates immunity and inflammation. We investigate the role of IL-1 in HCC development and progression and determine the potential therapeutic impact of gemcitabine in treating HCC. METHODS Hydrodynamics-based transfection, employing the sleeping beauty transposase system, delivered surrogate tumor antigens, NRAS (NRAS proto-oncogene, GTPase), ShP53, and SB100 to C57BL/6 mice. A basic HCC mouse model was established. Pathogen-free animals were tested for serum and hepatotoxicity. The HCC prognosis was monitored using alanine aminotransferase and aspartate aminotransferase levels. Liver histology immunohistochemistry and mouse splenocyte/intra-hepatic immune cell flow cytometry were conducted. IL-1β levels in human and mouse serum were assessed. RESULTS Interleukin-1β levels were elevated in patients with HCC compared with those in non-HCC controls. Hepatic IL-1β levels were higher in HCC mouse models than those in non-HCC mice, suggesting localized hepatic inflammation. IL-1 receptor type 1 (IL-1R1) knockout (IL-1R1-/-) mice exhibited less severe HCC progression than that in wild-type mice, despite the high intra-hepatic IL-1β concentration. IL-1R1-/- mice exhibited increased hepatic levels of myeloid-derived suppressor cells and regulatory T cells, which may exacerbate HCC. Gemcitabine significantly reduced the HCC tumor burden, improved liver conditions, and increased survival rates in HCC mouse models. Gemcitabine reduced the hepatic levels of myeloid-derived suppressor cells and regulatory T cells, potentially alleviating immune suppression in the liver. CONCLUSIONS Targeting IL-1 or combining gemcitabine with immunotherapy is a promising approach for treating advanced-stage HCC.
Collapse
Affiliation(s)
- Chia-Sheng Chu
- Ph.D. Program of Interdisciplinary Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Ever Health Clinic, Taichung, Taiwan
| | - Hsiao-Ping Chen
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pin-Hung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Chen Cheng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ho-Yu Kuo
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Han Fan
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hao Peng
- School of Medicine, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Ling Wu
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
45
|
Arrigo F, Aragona F, Faggio C, Giudice E, Giannetto C, Piccione G, Rizzo M, Arfuso F. Monitoring the physiological inflammatory alertness in horse after road transport. Vet Res Commun 2024; 48:3331-3338. [PMID: 38965174 DOI: 10.1007/s11259-024-10459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The aim of this study was to assess the changes of pro-inflammatory interleukins in 10 horses subjected to road transport practices (distance of 150 km) from the training site (Messina, Sicily) to the competition centre in Syracuse (Sicily). Blood sampling and interleukins analysis were performed during a round trip transportation (transport 1 and transport 2). In particular, blood samples were collected before the transport took place (Pre), five minutes later (Post) and one hour later (Post 1 h), for each transport, in order to assess the serum concentration of IL-1α, IL-1β, IL-2 and IL-6. The results showed that the serum concentration of IL-1α decreased at Post and Post 1 h compared to the values obtained at rest condition (P < 0.05). The other interleukins analysed (i.e. IL-1β, IL-2 and IL-6) showed increased levels at Post than Rest and Post 1 h in transport 1 (P < 0.05). In transport 2 the analysed parameters showed no change throughout the analysed time points (P > 0.05); however, higher levels of IL-1α at Pre and higher IL-1β, IL-2 and IL-6 values at Post were found in transport 1 than transport 2 (P < 0.05). The increase in pro-inflammatory cytokines after transport 1 suggests the triggering of the inflammatory event and this may show that, although horses are animals accustomed to transport, this is a stressful event that could activate the well-orchestrated inflammation cascade, albeit physiological and temporary, as highlighted by the lower serum concentrations of the investigated interleukins found in transport 1 than transport 2 and by the lack of significant differences in the serum concentrations of the investigated interleukins among the time points of transport 2. It must be taken into account that enrolled animals are well-trained and healthy athletic horses participating to a jumper competition, thus, such inflammation did not occur thanks to a good balance between pro-inflammatory and anti-inflammatory cytokines which allowed a prompt restoration of homeostasis eventually impaired by the stressful event.
Collapse
Affiliation(s)
- Federica Arrigo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| |
Collapse
|
46
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
47
|
Matys P, Mirończuk A, Starosz A, Grubczak K, Kochanowicz J, Kułakowska A, Kapica-Topczewska K. Expanding Role of Interleukin-1 Family Cytokines in Acute Ischemic Stroke. Int J Mol Sci 2024; 25:10515. [PMID: 39408843 PMCID: PMC11476913 DOI: 10.3390/ijms251910515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Ischemic stroke (IS) is a critical medical condition that results in significant neurological deficits and tissue damage, affecting millions worldwide. Currently, there is a significant lack of reliable tools for assessing and predicting IS outcomes. The inflammatory response following IS may exacerbate tissue injury or provide neuroprotection. This review sought to summarize current knowledge on the IL-1 family's involvement in IS, which includes pro-inflammatory molecules, such as IL-1α, IL-1β, IL-18, and IL-36, as well as anti-inflammatory molecules, like IL-1Ra, IL-33, IL-36A, IL-37, and IL-38. The balance between these opposing inflammatory processes may serve as a biomarker for determining patient outcomes and recovery paths. Treatments targeting these cytokines or their receptors show promise, but more comprehensive research is essential to clarify their precise roles in IS development and progression.
Collapse
Affiliation(s)
- Paulina Matys
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Anna Mirończuk
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Katarzyna Kapica-Topczewska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| |
Collapse
|
48
|
Chen J, Chen L, Zhang X, Yao W, Xue Z. Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in European populations: a Mendelian randomization analysis. Front Nutr 2024; 11:1415793. [PMID: 39381354 PMCID: PMC11459460 DOI: 10.3389/fnut.2024.1415793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Background Antioxidants from both supplements and diet have been suggested to potentially reduce oxidative stress in individuals with ADHD. However, there is a lack of studies utilizing the Mendelian randomization (MR) method to explore the relationship between dietary and supplemental antioxidants with ADHD. Methods This study employed two-sample mendelian randomization. Various specific antioxidant dietary supplements (such as coffee, green tea, herbal tea, standard tea, and red wine intake per week), along with diet-derived circulating antioxidants including Vitamin C (ascorbate), Vitamin E (α-tocopherol), Vitamin E (γ-tocopherol), carotene, Vitamin A (retinol), zinc, and selenium (N = 2,603-428,860), were linked to independent single nucleotide polymorphisms (SNPs). Data on ADHD was gathered from six sources, comprising 246,888 participants. The primary analytical method utilized was inverse variance weighting (IVW), with sensitivity analysis conducted to assess the robustness of the main findings. Results In different diagnostic periods for ADHD, we found that only green tea intake among the antioxidants was significantly associated with a reduced risk of ADHD in males (OR: 0.977, CI: 0.963-0.990, p < 0.001, FDR = 0.065), with no evidence of pleiotropy or heterogeneity observed in the results. Additionally, a nominal causal association was found between green tea intake and childhood ADHD (OR: 0.989, 95% CI: 0.979-0.998, p = 0.023, FDR = 0.843). No causal relationships were detected between the intake of other antioxidant-rich diets and ADHD. Conclusion Our study found a significant inverse association between green tea intake and male ADHD, suggesting that higher green tea consumption may reduce ADHD risk in males. Further research is needed to explore optimal doses and underlying mechanisms.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lifei Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinguang Zhang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbo Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Strobl S, Zucchetta D, Vašíček T, Monti A, Ruda A, Widmalm G, Heine H, Zamyatina A. Nonreducing Sugar Scaffold Enables the Development of Immunomodulatory TLR4-specific LPS Mimetics with Picomolar Potency. Angew Chem Int Ed Engl 2024; 63:e202408421. [PMID: 38870340 DOI: 10.1002/anie.202408421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Innate immune defense mechanisms against infection and cancer encompass the modulation of pattern recognition receptor (PRR)-mediated inflammation, including upregulation of various transcription factors and the activation of pro-inflammatory pathways important for immune surveillance. Dysfunction of PRRs-mediated signaling has been implicated in cancer and autoimmune diseases, while the overactivation of PRRs-driven responses during infection can lead to devastating consequences such as acute lung injury or sepsis. We used crystal structure-based design to develop immunomodulatory lipopolysaccharide (LPS) mimetics targeting one of the ubiquitous PRRs, Toll-like Receptor 4 (TLR4). Taking advantage of an exo-anomeric conformation and specific molecular shape of synthetic nonreducing β,β-diglucosamine, which was investigated by NMR, we developed two sets of lipid A mimicking glycolipids capable of either potently activating innate immune responses or inhibiting pro-inflammatory signaling. Stereoselective 1,1'-glycosylation towards fully orthogonally protected nonreducing GlcNβ(1↔1')βGlcN followed by stepwise assembly of differently functionalised phosphorylated glycolipids provided biologically active molecules that were evaluated for their ability to trigger or to inhibit cellular innate immune responses. Two LPS mimetics, identified as potent TLR4-specific inducers of the intracellular signaling pathways, serve as vaccine adjuvant- and immunotherapy candidates, while anionic glycolipids with TLR4-inhibitory potential hold therapeutic promise for the management of acute or chronic inflammation.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Daniele Zucchetta
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Tomáš Vašíček
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Monti
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Ruda
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, Borstel, 23845, Germany
| | - Alla Zamyatina
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
50
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|