1
|
Gao Z, Gong Z, Huang H, Ren X, Li Z, Gao P. Transcriptomic analysis of key genes and signaling pathways in sepsis-associated intestinal mucosal barrier damage. Gene 2025; 936:149137. [PMID: 39617276 DOI: 10.1016/j.gene.2024.149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES The aim is to analyze differentially expressed genes (DEGs) in mice with sepsis-related intestinal mucosal barrier damage and to explore the diagnostic and protective mechanisms of this condition at the transcriptome level. METHODS Small intestinal tissues from healthy male C57BL/6J mice subjected to Cecal ligation and puncture (CLP) and sham operation were collected. High-throughput sequencing was performed using the paired-end sequencing mode of the Illumina HiSeq platform. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted on the differentially expressed genes (DEGs). A protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified with Cytoscape. These hub genes were then validated using quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS A total of 239 DEGs were identified, with 49 upregulated and 130 downregulated genes. KEGG enrichment analysis showed that these DEGs were primarily involved in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, viral protein interactions with cytokines and their receptors, and the IL-17 signaling pathway. The top 10 hub genes were selected using the cytoHubba plugin. Experimental validation confirmed that the expression levels of TBX21, CSF3, IL-6, CXCR3, and CXCL9 matched the sequencing results. CONCLUSION TBX21, CSF3, IL-6,CXCR3, and CXCL9 may be potential biological markers for the diagnosis and treatment the sepsis-associated intestinal mucosal barrier.
Collapse
Affiliation(s)
- Zhao Gao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China
| | | | - Hai Huang
- Department of Emergency Medicine, Changzhou Wujin People's Hospital, 2 Yongningbei Road, Changzhou 213000, PR China
| | - Xuemeng Ren
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China
| | - Zhenlu Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China.
| | - Peng Gao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Ackermann K, Lynch I, Aryal N, Westbrook J, Li L. Hospital readmission after surviving sepsis: A systematic review of readmission reasons and meta-analysis of readmission rates. J Crit Care 2025; 85:154925. [PMID: 39393165 DOI: 10.1016/j.jcrc.2024.154925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/23/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE To review the evidence regarding hospital readmission diagnoses and analyse related readmission rates following a sepsis admission. METHODS Five databases, grey literature, and selected article reference lists were searched in May and June 2024. Included studies investigated sepsis survivor readmissions and reported readmission diagnoses and rates. Meta-analyses of readmission rates were performed. RESULTS After screening, 51 studies were included, with most studies (46/51; 90.2 %) investigating adult survivors. Infection or sepsis were reported as the most common readmission reason in 18 of the 21 studies investigating three or more readmission diagnoses in adults. Meta-analyses showed that 4.7 % (95 % CI: 3.1 to 6.5 %, PI: 0.3-13.4 %, n = 11 studies) of adult survivors readmitted to hospital with another sepsis diagnosis at 30 days, 8.1 % (95 % CI: 4.5 to 12.7 %, PI: <0.1-29.0 %, n = 7) at 90 days, and 16.4 % (95 % CI: 11.3 to 22.2 %, PI: <0.1-96.3 %, n = 3) at one year. At 30 days 3.5 % (95 % CI: 2.2-5.0 %, PI: 0.3-10.0 %, n = 7) of adult survivors readmitted to hospital with a cardiovascular disease diagnosis. CONCLUSIONS Infection and sepsis are frequent readmission diagnoses for sepsis survivors, with one in 21 adult survivors readmitted for sepsis at 30-days. PROSPERO registration: CRD42023455851.
Collapse
Affiliation(s)
- Khalia Ackermann
- Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.
| | - Isabelle Lynch
- Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Nanda Aryal
- Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Johanna Westbrook
- Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Ling Li
- Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Xia Z, Li G, Zhai Y, Tong L, Ru Y, Wu M, Hu J, Wang M, Meng Y, Sun B, Wang C, Luo X, Liu Y, Zhao Y, Zheng X, Jia P. Immunomodulatory effects and multi-omics analysis of Codonopsis Pilosula Extract in septic rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118847. [PMID: 39368762 DOI: 10.1016/j.jep.2024.118847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis Pilosula (CP), as a well-known traditional Chinese medicine (TCM) with medicinal and edible herb, is one of the most representative tonic Chinese herbal medicine. It has been widely used for regulating immune function with hardly any adverse effects in clinical practice. AIM OF THE STUDY This study aimed to elucidate the immunomodulatory effect and to explore probable mechanism of Codonopsis Pilosula Extract (CPE) in septic rats. MATERIALS AND METHODS The model of septic rat was established by cecal ligation and perforation (CLP). The thymus index, spleen index and cerebral index were calculated. Histological changes were observed by Hematoxylin-eosin (HE). The positive expression of CD4+ T cells was determined in the thymus and spleen by immunohistochemical (IHC). The expression level of 24 h CD4 was corroborated by real-time quantitative polymerase chain reaction (RT-QPCR). Infectious factors, immune factors and inflammatory factors were determined by enzyme-linked immunosorbent assay (ELISA). Blood cells were detected by automatic biochemical analyzer. The metabolite changes and gene expression levels, the potential targets and pathways of CPE in regulating immune function of thymus were analyzed by integrative analysis of transcriptomic and metabolomic methods. RESULTS High dose of CPE increased the thymus index and spleen index of septic rats at different stages, and the brain index at different stages could be increased at medium dose and high dose. Medium and high doses of CPE reduced the pathological changes of thymus, spleen and brain tissue. CPE promoted the expression levels of CD4 in the thymus and spleen. CPE improved the levels of red blood cells (RBC), lymphocytes (LYM) and hemoglobin (HGB), and decreased the levels of neutrophils (NEUT), NLR (NEUT/LYM) and PLR (PLT/LYM). CPE dynamically regulated the levels of white blood cells (WBC) and PLT (platelet). CPE dynamically regulated the expression levels of infectious factors, immune factors, and inflammatory factors related to disease severity. CONCLUSION CPE has the ability to dynamically modulate the expression levels of infectious factors, immune factors, and inflammatory factors related to disease severity, and alleviate the damages of immune organs. The research has provided a global view of the integration of metabolomics and transcriptomics to elucidate the immunomodulatory effects and mechanisms of CPE. CPE could affect a series of biological processes in glycerophospholipid metabolism by interfering with the B cell receptor (BCR) signaling pathway in the thymus, to maintain immune homeostasis of septic rats on the whole, especially humoral immunity.
Collapse
Affiliation(s)
- Zhaodi Xia
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Gufeng Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yufei Zhai
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Liguo Tong
- Shanxi Academy of Traditional Chinese Medicine, Taiyuan, Shanxi, 030012, PR China
| | - Yilin Ru
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Mengyao Wu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Jinming Hu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Mengyuan Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yaxi Meng
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Bao Sun
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China; Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Chunliu Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, PR China
| | - Xianlin Luo
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yidi Liu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Ye Zhao
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Pu Jia
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| |
Collapse
|
4
|
Wang Y, Fu X, Shang Z, Qiao Y, Liu Y, Zhou L, Liu D. In vivo and in vitro study on the regulatory mechanism of XiaoChaiHu decoction on PANoptosis in sepsis-induced cardiomyopathy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118740. [PMID: 39197800 DOI: 10.1016/j.jep.2024.118740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In accordance with the tenets of traditional Chinese medicine, sepsis is categorized into three distinct syndromes: heat syndrome, blood stasis syndrome, and deficiency syndrome. Xiaochaihu decoction (XCHD) has many functions, including the capacity to protect the liver, cholagogue, antipyretic, anti-inflammatory, and anti-pathogenic microorganisms. XCHD exerts the effect of clearing heat and reconciling Shaoyang. The XCHD contains many efficacious active ingredients, yet the mechanism of sepsis-induced cardiomyopathy (SIC) remains elusive. AIM OF THE STUDY To investigate the molecular mechanisms underlying the protective effects of XCHD against SIC using an integrated approach combining network pharmacology and molecular biology techniques. MATERIALS AND METHODS Network pharmacology methods identified the active ingredients, target proteins, and pathways affected by XCHD in the context of SIC. We conducted in vivo experiments using mice with lipopolysaccharide-induced SIC, evaluating cardiac function through echocardiography and histology. XCHD-containing serum was analyzed to determine its principal active components using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The effects of XCHD-containing serum on SIC were further tested in vitro in LPS-treated H9c2 cardiac cells. Protein expression levels were quantified via Western blotting and enzyme-linked immunosorbent assay (ELISA). Additionally, molecular docking was performed between the active components and ZBP1, a potential target protein. Overexpression of ZBP1 in H9c2 cells allowed for a deeper exploration of its role in modulating SIC-associated gene expression. RESULTS UPLC-MS/MS identified 31 shared XCHD and XCHD-containing serum components. These included organic acids, terpenoids, and flavonoids, which have been identified as the active components of XCHD. Our findings revealed that XCHD alleviated LPS-induced myocardial injury, improved cardiac function, and preserved cardiomyocyte morphology in mice. In vitro studies, we demonstrated that XCHD-containing serum significantly suppressed the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-α) in LPS-induced H9c2 cells. Mechanistic investigations showed that XCHD downregulated genes associated with PANoptosis, a novel cell death pathway, suggesting its protective role in sepsis-damaged hearts. Conversely, overexpression of ZBP1 abolished the protective effects of XCHD and amplified PANoptosis-related gene expression. CONCLUSIONS Our study provides the first evidence supporting the protective effects of XCHD against SIC, both in vitro and in vivo. The underlying mechanism involves the inhibition of ZBP1-initiated PANoptosis, offering new insights into treating SIC using XCHD.
Collapse
Affiliation(s)
- Yaru Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xingxing Fu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Zhao Shang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yue Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Li Zhou
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Dan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
5
|
Yao H, Xie Q, Yang Y, Zhou C, Zeng Z, Zhang W. Melatonin attenuates sepsis-induced muscle atrophy by regulating the PI3K/Akt signaling pathway. Int Immunopharmacol 2025; 144:113619. [PMID: 39602954 DOI: 10.1016/j.intimp.2024.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND In intensive care units, sepsis-related muscle atrophy is a severe complication of numerous diseases, yet the underlying mechanism and potential therapeutic options remain elusive. Recent research has identified melatonin as a promising candidate for attenuating organ dysfunction triggered by sepsis. METHODS We used in vitro and in vivo models to simulate sepsis, C2C12 myotubes were treated with LPS, and the mice underwent cecal ligation and puncture (CLP) surgery. Following a pretreatment regimen involving melatonin and the AKT inhibitor MK-2206 2HCl, we analyzed changes in p-Akt and MuRF1 protein levels, fiber cross-sectional areas, and myotube diameters. The analyses included RNA sequencing, Western blotting, qRT-PCR, and immunofluorescence staining. RESULTS Activation of the PI3K/Akt pathway in skeletal muscle occurred 24 h post-CLP surgery in mice. This was accompanied by upregulated MuRF1 expression and reduced muscle fiber cross-sectional area, which culminated in muscle atrophy. However, these detrimental effects were attenuated when the mice were pretreated with melatonin via intraperitoneal injection for seven consecutive days. Similarly, LPS treatment of C2C12 myotubes activated the PI3K/Akt pathway, elevated MuRF1 expression, and markedly reduced myotube diameter after 48 h, leading to muscle atrophy. Pretreatment of C2C12 myotubes with melatonin 24 h in advance mitigated these adverse effects. However, cotreatment of C2C12 myotubes with melatonin and MK-2206 2HCl attenuated the beneficial effects of melatonin. CONCLUSION Melatonin can attenuate sepsis-induced muscle atrophy by regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Huiming Yao
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qian Xie
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuting Yang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Chaoqi Zhou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Griffin K, Miller L, Yang Y, Sharp E, Young L, Garcia L, Griswold J, Pappas D. Affinity-based 3D-printed microfluidic chip for clinical sepsis detection with CD69, CD64, and CD25. J Pharm Biomed Anal 2025; 252:116500. [PMID: 39383543 DOI: 10.1016/j.jpba.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Sepsis is a life-threatening immune response to infection in the body, eventually resulting in fatal organ failure. Current methods utilize blood cultures and quick-Sequential-Organ-Failure-Assessment (qSOFA), but there is a need for more accurate and time-sensitive diagnostic methods to improve survival rates. We present a 3D-printed microfluidic chip that bioconjugates antibodies CD69, CD64, and CD25 to channel surfaces to capture sepsis cells in blood samples and validate it with clinical samples (n = 125 septic, n = 10 healthy). Other variables were taken such as healthy volunteer blood samples and patient demographics to validate and confirm our device's diagnostic ability. Statistical differences were found between healthy volunteer and sepsis patient antigen cell counts (CD69 p-value < 0.001, CD64 p-value < 0.004, CD25 p-value < 0.0009), and were confirmed using principal component analysis. Demographics such as length of stay, age, culture results, and need for surgery also factored into sepsis detection on a smaller scale than the antigen cell counts. The receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.989, 0.988, and 0.992 for CD69, CD64, and CD25, respectively, and a combined biomarker panel of 0.997. Overall, the device performed within a shorter time frame of 4 h compared to standard blood culture tests and was validated for use in detecting sepsis in patients.
Collapse
Affiliation(s)
- Kitiara Griffin
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Lindsee Miller
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Yijia Yang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elizabeth Sharp
- Clinical Research Institute, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Lane Young
- Clinical Research Institute, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Liza Garcia
- Clinical Research Institute, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - John Griswold
- Department of Surgery, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
7
|
Prithula J, Islam KR, Kumar J, Tan TL, Reaz MBI, Rahman T, Zughaier SM, Khan MS, Murugappan M, Chowdhury MEH. A novel classical machine learning framework for early sepsis prediction using electronic health record data from ICU patients. Comput Biol Med 2025; 184:109284. [PMID: 39579661 DOI: 10.1016/j.compbiomed.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
Sepsis, a life-threatening condition triggered by the body's response to infection, remains a significant global health challenge, annually affecting millions in the United States alone with substantial mortality and healthcare costs. Early prediction of sepsis is critical for timely intervention and improved patient outcomes. This study introduces an innovative predictive model leveraging machine learning techniques and a specific data-splitting approach on highly imbalanced electronic health records (EHRs). Using PhysioNet/CinC Challenge 2019 data from 40,336 patients, including vital signs, lab values, and demographics. Preliminary assessments using classical and stacked ML models with Synthetic Minority Oversampling Technique (SMOTE) augmentation were conducted, showing improved performance. It is found that stacking ML models enhances overall accuracy but faces limitations in precision, recall, and F1 score for positive class prediction. A novel data-splitting approach with 5-fold cross-validation and SMOTE and COPULA augmentation techniques demonstrated promise, with F1 scores ranging from 93 % to 94 % using the COPULA technique. COPULA excelled at predictions for different hours' onsets compared to the SMOTE technique. The proposed model outperformed existing studies, suggesting clinical viability for early sepsis prediction.
Collapse
Affiliation(s)
- Johayra Prithula
- Department of Electrical and Electronics Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Khandaker Reajul Islam
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Mamun Bin Ibne Reaz
- Department of Electrical and Electronic Engineering, Independent University, Bangladesh, Bashundhara, Dhaka, Bangladesh
| | - Tawsifur Rahman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | | | - M Murugappan
- Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Block 4, Doha, Kuwait; Department of Electronics and Communication Engineering, Vels Institute of Sciences, Technology, and Advanced Studies, Chennai, Tamilnadu, India.
| | | |
Collapse
|
8
|
Chai J, Wu J, Yang J, Ye T, Gao Y, Zeng B, Xiong W, Kotsyfakis M, Dijkgraaf I, Liu J, Chen X, Xu X. Cath-HG improves the survival rates and symptoms in LPS-induced septic mice due to its multifunctional properties. Int Immunopharmacol 2024; 143:113332. [PMID: 39395379 DOI: 10.1016/j.intimp.2024.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
The clinical syndrome of sepsis arises from severe infection, triggering an abnormal immune response that can lead to multiple organ dysfunction and ultimately the death of the host. Current therapies for sepsis are often limited in efficacy and fail to target the complex interplay of infection, inflammation and coagulation, leading to high mortality rates, which underscores the urgent need for novel therapeutics to combat sepsis. We previously identified Cath-HG, a compound capable of alleviating platelet dysfunction by suppressing GPVI-mediated platelet activation, thereby improving the survival of septic mice subjected to cecal ligation and puncture. Here, we further explored the antimicrobial, anti-inflammatory, LPS-neutralizing and anticoagulant properties of Cath-HG, as well as its protective effects in LPS-induced septic mice. Our results demonstrated that Cath-HG can bind to LPS, aggregate bacteria, and disrupt bacterial cell membranes, subsequently resulting in microbial death. Unlike most other Cathelicidins, Cath-HG displayed anticoagulation properties by regulating the enzymes plasmin, thrombin, β-tryptase, chymase and tissue plasminogen activator. In septic mice, Cath-HG provided protection against sepsis induced by LPS injection and exhibited bactericidal killing, LPS neutralization and inhibition of coagulation and MAPK signal transduction. Furthermore, Cath-HG obviously reduced the expression of pro-inflammatory cytokines and improved the pathological manifestations of tissue injury across multiple organs. Thus, Cath-HG emerges as a promising drug candidate for protecting against sepsis.
Collapse
Affiliation(s)
- Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxi Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiaofei Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yihan Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Baishuang Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Michail Kotsyfakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, Netherlands
| | - Junfang Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Xu F, Xie J, Mou W, Li D, Rui S, Lin L, Hu L, Yang G, Xie P, Tao Y, Yang F, Ma Y. The VDR/FFAR2 axis mitigates sepsis-induced lung injury by suppressing macrophage lipid peroxidation. Int Immunopharmacol 2024; 143:113328. [PMID: 39418731 DOI: 10.1016/j.intimp.2024.113328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Sepsis-induced lung injury is a common critical condition in clinical practice, characterized by the accumulation of peroxides and inflammatory damage caused by excessive macrophage activation. Currently, effective treatments for sepsis-induced lung injury are lacking. Short-chain fatty acid receptor FFAR2 serves as an anti-inflammatory biomarker, but its role and mechanism in sepsis-induced lung injury remain unclear. To elucidate the influence and mechanism of FFAR2 on macrophage lipid peroxidation levels in sepsis-induced lung injury, this study conducted bioinformatics analysis and cellular experiments using the THP-1 macrophage cell line. By dual luciferase reporter and chromatin immunoprecipitation-quantitative PCR assays, it is confirmed that the transcription factor VDR upregulates FFAR2 expression in macrophages by binding to the promoter region -1695 ∼ 1525, thereby increasing the expression of iron death negative regulatory molecules and lowering macrophage lipid peroxidation levels. Moreover, both in vitro using THP-1 cells and bone marrow-derived macrophages (BMDMs) and in vivo using an LPS-induced septic mice model experiments revealed that activating the VDR/FFAR2 axis could reduce inflammation-induced macrophage lipid peroxide accumulation and alleviate lung injury in septic mice. This finding highlights the potential of FFAR2 as an immunotherapeutic target for mitigating sepsis-related lung injury.
Collapse
Affiliation(s)
- Fan Xu
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Jia Xie
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Weijiao Mou
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Donglin Li
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Shunli Rui
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Ling Lin
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Li Hu
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Guo Yang
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Puguang Xie
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Yang Tao
- Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing 400014, China
| | - Fan Yang
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China.
| | - Yu Ma
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center/Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China; Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing 400014, China.
| |
Collapse
|
10
|
Luo J, Zhang C, Chen D, Chang T, Chen S, Lin Z, Yi C, Tang ZH. Tim-3 pathway dysregulation and targeting in sepsis-induced immunosuppression. Eur J Med Res 2024; 29:583. [PMID: 39696711 DOI: 10.1186/s40001-024-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Sepsis is a major medical problem which causes millions of deaths worldwide every year. The host immune response in sepsis is characterized by acute inflammation and a simultaneous state of immunosuppression. In the later stage of sepsis, immunosuppression is a crucial factor that increases the susceptibility of septic patients to secondary infection and mortality. It is characterized by T cell exhaustion, excessive production of anti-inflammatory cytokines, hyperproliferation of immune suppressor cells and aberrant expression of immune checkpoint molecules. T cell immunoglobulin and mucin domain 3 (Tim-3), an immune checkpoint molecule, is found on the surface of various cells, including macrophages, NK cells, NKT cells, and T cells. There are four different ligands for Tim-3, and accumulating evidence indicates that Tim-3 and its ligands play a crucial role in regulating immune cell dysfunction during sepsis. Anti-Tim-3 antibodies have been applied in the field of cancer immunotherapy and have achieved positive therapeutic effects in some clinical trials. However, the therapeutic efficacy of Tim-3 blockade is still controversial in animal models of sepsis. These challenges highlight the need for a deeper understanding of Tim-3 signaling in sepsis. This review examines the comprehensive effect of Tim-3 signaling in the development of sepsis-induced immunosuppression and the therapeutic efficacy of Tim-3 blockade.
Collapse
Affiliation(s)
- Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Gouveia G, Saateh A, Swietlikowska A, Scarpellini C, Tsang E, Altug H, Merkx M, Dillen A, Leirs K, Spasic D, Lammertyn J, Gothelf KV, Bonedeau E, Porzberg N, Smeets RL, Koenen HJPM, Prins MWJ, de Jonge MI. Continuous Biosensing to Monitor Acute Systemic Inflammation, a Diagnostic Need for Therapeutic Guidance. ACS Sens 2024. [PMID: 39692622 DOI: 10.1021/acssensors.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Continuous monitoring of acute inflammation can become a very important next step for guiding therapeutic interventions in severely ill patients. This Perspective discusses the current medical need for patients with acute inflammatory diseases and the potential of continuous biosensing technologies. First, we discuss biomarkers that could help to monitor the state of a patient with acute systemic inflammation based on theoretical studies and empirical data. Then, based on the state of the art, we describe sensing strategies that could be applied for the continuous monitoring of acute inflammatory biomarkers, followed by challenges that must be overcome. Nanoswitch-based continuous biosensors enable suitable measurement frequencies but still lack sensitivity, while regeneration risks lower sensor reliability. Developments are still needed in bioreceptors and molecular architectures, regeneration techniques, combined with suitable sampling and sample pretreatment methods, for bringing continuous biosensing of inflammation closer to reality. Furthermore, collaborations between healthcare professionals and scientists, regulatory bodies, and biosensor engineers are needed for a successful translation of sensing technologies from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Guilherme Gouveia
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Abtin Saateh
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Anna Swietlikowska
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Claudia Scarpellini
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Annelies Dillen
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Karen Leirs
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Estelle Bonedeau
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicola Porzberg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ruben L Smeets
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
- Department of Laboratory Medicine, Radboudumc Laboratory for Diagnostics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Menno W J Prins
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Helia Biomonitoring, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
12
|
Lu RY, Ling ZY, Chen LL, Xu WH, Xing XH, Song ZC, Chen L, Wang Y. Anti-sepsis effects of Dahuang Mudan decoction and its disassembled prescriptions. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119248. [PMID: 39681199 DOI: 10.1016/j.jep.2024.119248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dahuang Mudan decoction (DMD) is a traditional Chinese prescription from Zhang Zhongjing's Synopsis of the Golden Chamber. In clinical practice, it is often used in the treatment of infectious diseases. AIM OF THE STUDY To assess the therapeutic effect of DMD and its disassembled prescriptions on septic mice, and explore its potential mechanism. MATERIALS AND METHODS Cecal ligation and puncture (CLP) sepsis and endotoxemia mice models were established. The effects of DMD, its disassembled prescriptions and active compounds were studied. Xuebijing injection (XBJ) was used as positive drug. Mice 7-day survival rates, blood biochemical markers, hematoxylin and eosin (HE) staining and immune cell infiltration were used to evaluate the overall protective effect of the drugs on mice. Inflammatory cytokines and coagulation activation indicators were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS DMD, its Huoxue prescription, constituent drugs Mudanpi (MDP) and Taoren (TR) significantly protected mice with sepsis, improved the survival rate, reduced the degree of organ damage, and reduced the infiltration of immune cells in the lung tissues. The protective effect is comparable to that of XBJ. MDP and TR inhibited the levels of inflammatory factors and coagulation activation in septic mice. Paeonol and paeoniflorin in MDP showed significant protective effects on septic mice, and inhibited inflammatory cytokines level and coagulation activation. CONCLUSION These results confirm that DMD and its disassembled prescriptions have good therapeutic effect on septic mice, and the mechanism may be related to inhibition of the inflammatory response and coagulation activation.
Collapse
Affiliation(s)
- Ren-Yi Lu
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; The Center for Fungal Infectious Diseases Basic Research and Innovation of Medicine and Pharmacy, Ministry of Education, Shanghai, 200433, China
| | - Zhong-Yi Ling
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lin-Lin Chen
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; The Center for Fungal Infectious Diseases Basic Research and Innovation of Medicine and Pharmacy, Ministry of Education, Shanghai, 200433, China; School of Anesthesiology, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Wei-Heng Xu
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; The Center for Fungal Infectious Diseases Basic Research and Innovation of Medicine and Pharmacy, Ministry of Education, Shanghai, 200433, China
| | - Xin-Hao Xing
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; The Center for Fungal Infectious Diseases Basic Research and Innovation of Medicine and Pharmacy, Ministry of Education, Shanghai, 200433, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Ze-Cheng Song
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; The Center for Fungal Infectious Diseases Basic Research and Innovation of Medicine and Pharmacy, Ministry of Education, Shanghai, 200433, China
| | - Li Chen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Yan Wang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; The Center for Fungal Infectious Diseases Basic Research and Innovation of Medicine and Pharmacy, Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
13
|
Campey A, Łapińska U, Chait R, Tsaneva-Atanasova K, Pagliara S. Antibiotic resistant bacteria survive treatment by doubling while shrinking. mBio 2024; 15:e0237524. [PMID: 39565111 PMCID: PMC11633386 DOI: 10.1128/mbio.02375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Many antibiotics that are used in healthcare, farming, and aquaculture end up in environments with different spatial structures that might promote heterogeneity in the emergence of antibiotic resistance. However, the experimental evolution of microbes at sub-inhibitory concentrations of antibiotics has been mainly carried out at the population level which does not allow capturing single-cell responses to antibiotics. Here, we investigate and compare the emergence of resistance to ciprofloxacin in Escherichia coli in well-mixed and structured environments using experimental evolution, genomics, and microfluidics-based time-lapse microscopy. We discover that resistance to ciprofloxacin and cross-resistance to other antibiotics is stronger in the well-mixed environment due to the emergence of target mutations, whereas efflux regulator mutations emerge in the structured environment. The latter mutants also harbor sub-populations of persisters that survive high concentrations of ciprofloxacin that inhibit bacterial growth at the population level. In contrast, genetically resistant bacteria that display target mutations also survive high concentrations of ciprofloxacin that inhibit their growth via population-level antibiotic tolerance. These resistant and tolerant bacteria keep doubling while shrinking in size in the presence of ciprofloxacin and regain their original size after antibiotic removal, which constitutes a newly discovered phenotypic response. This new knowledge sheds light on the diversity of strategies employed by bacteria to survive antibiotics and poses a stepping stone for understanding the link between mutations at the population level and phenotypic single-cell responses. IMPORTANCE The evolution of antimicrobial resistance poses a pressing challenge to global health with an estimated 5 million deaths associated with antimicrobial resistance every year globally. Here, we investigate the diversity of strategies employed by bacteria to survive antibiotics. We discovered that bacteria evolve genetic resistance to antibiotics while simultaneously displaying tolerance to very high doses of antibiotics by doubling while shrinking in size.
Collapse
Affiliation(s)
- Adrian Campey
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Remy Chait
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, Devon, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
14
|
Guo N, Xia Y, He N, Cheng H, Zhang L, Liu J. IRGM Deficiency Exacerbates Sepsis-Induced Acute Lung Injury by Inhibiting Autophagy Through the AKT/mTOR Signaling Pathway. J Inflamm Res 2024; 17:10255-10272. [PMID: 39654860 PMCID: PMC11626208 DOI: 10.2147/jir.s496687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Background Sepsis is a life-threatening condition characterized by organ dysfunction due to an impaired immune response to infection. The lungs are highly susceptible to infection, often resulting in acute lung injury (ALI). The immune-related GTPase M (IRGM) and its murine homolog Irgm1 mediate autophagy and are implicated in inflammatory diseases, yet their roles in sepsis-induced ALI remain unclear. Methods We used RNA sequencing and bioinformatics to explore IRGM regulation. Sepsis-induced ALI was modeled in mice using cecal ligation and puncture (CLP). An in vitro model was created by stimulating A549 cells with lipopolysaccharide (LPS). Results In A549 cells, LPS treatment induced upregulation of IRGM expression and enhanced autophagy levels. IRGM knockdown exacerbated LPS-induced ALI, characterized by suppressed autophagy and increased apoptosis, along with significantly elevated levels of p-AKT and p-mTOR. Further investigation revealed that treatment with the AKT inhibitor MK2206 effectively reversed the autophagy inhibition caused by IRGM knockdown and reduced apoptosis. These findings suggest that the AKT/mTOR signaling pathway plays a crucial role in IRGM-mediated protection against sepsis-related ALI. Conclusion This study identifies the protective role of IRGM in sepsis-induced ALI and reveals that IRGM mitigates ALI by promoting autophagy through inhibition of the AKT/mTOR pathway. These findings provide insights into the pathogenesis of sepsis-related ALI and highlight IRGM as a potential therapeutic target.
Collapse
Affiliation(s)
- Na Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Yu Xia
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Nannan He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Huixin Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Lei Zhang
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
15
|
Sayyad MS, Dehpour A, Poopak A, Azami A, Shafaroodi H. Investigating the efficacy of dapsone in treating sepsis induced by cecal ligation and puncture surgery in male mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9909-9917. [PMID: 38940849 DOI: 10.1007/s00210-024-03251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Sepsis is a life-threatening condition caused by the body's response to an infection. Dapsone is a sulfone with antibiotic properties, and experimental evidence suggests it has significant anti-inflammatory and anti-oxidative stress effects. The objective of this study was to investigate the efficacy of dapsone in mice after CLP (cecal ligation and puncture) surgery, which is a model for inducing sepsis. The study divided animals into five groups: CLP, sham, and three groups receiving different doses of dapsone (0.5, 1, 2 mg/kg). Sepsis was induced through CLP surgery, followed by dapsone administration. In each group, half of the mice were used to evaluate levels of various markers and pathological changes at 24 h post-CLP, while the other half was used to record the mortality rates within 96 h. The results showed that single-dose administration of dapsone at (0.5, 1, 2 mg/kg) after CLP surgery improved survival compared to the CLP group. Dapsone was also associated with a significant reduction in pro-inflammatory cytokines TNF-α, IL-1β, IL-6, NO, and MPO, as well as lactate and creatinine serum levels. However, dapsone did not have a significant effect on urea serum levels. In conclusion, the data suggest that dapsone treatment leads to increased survival in septic mice after CLP, and due to its ability to reduce TNF-α, IL-1β, IL-6, MPO, and lactate levels, it has anti-inflammatory effects in sepsis. The sepsis treatment with dapsone in mice protects against inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Shokati Sayyad
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Poopak
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Azami
- Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Jiang J, Zhang J, Wang T, Yu D, Ren X. Prediction of Prognosis in Patients with Sepsis Based on Platelet-Related Genes. Horm Metab Res 2024; 56:900-909. [PMID: 38870987 DOI: 10.1055/a-2331-1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The study aimed to develop a risk prognostic model using platelet-related genes (PRGs) to predict sepsis patient outcomes. Sepsis patient data from the Gene Expression Omnibus (GEO) database and PRGs from the Molecular Signatures Database (MSigDB) were analyzed. Differential analysis identified 1139 differentially expressed genes (DEGs) between sepsis and control groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed enrichment in functions related to immune cell regulation and pathways associated with immune response and infectious diseases. A risk prognostic model was established using LASSO and Cox regression analyses, incorporating 10 PRGs selected based on their association with sepsis prognosis. The model demonstrated good stratification and prognostic effects, confirmed by survival and receiver operating characteristic (ROC) curve analyses. It served as an independent prognostic factor in sepsis patients. Further analysis using the CIBERSORT algorithm showed higher infiltration of activated natural killer (NK) cells and lower infiltration of CD8 T cells and CD4 T cells naïve in the high-risk group compared to the low-risk group. Additionally, expression levels of human leukocyte antigen (HLA) genes were significantly lower in the high-risk group. In conclusion, the 10-gene risk model based on PRGs accurately predicted sepsis patient prognosis and immune infiltration levels. This study provides valuable insights into the role of platelets in sepsis prognosis and diagnosis, offering potential implications for personalized treatment strategies.
Collapse
Affiliation(s)
- Jing Jiang
- Intensive Care Unit, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| | - Juan Zhang
- Cardiology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| | - Ting Wang
- Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| | - Daihua Yu
- Intensive Care Unit, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| | - Xiu Ren
- Intensive Care Unit, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
17
|
Jing J, Li X, Liu S, Yu J, Wang K, Li Y, Wang J, Wan X. Molecular patterns of microbial and metabolic interactions in septic patients with persistent lymphopenia. Microb Pathog 2024; 197:107093. [PMID: 39486555 DOI: 10.1016/j.micpath.2024.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Persistent lymphopenia can be regarded as an important index of acquired immune dysfunction in sepsis. Whether the specific immune factor changes in septic patients with lymphopenia and the correlation to gut microbiota and metabolites remain unclear. METHODS This single-center prospective observation conducted lymphocyte subgroup analysis of blood samples and 16S rRNA gene amplicons sequencing and untargeted metabolomics analysis of fecal samples from 36 subjects with the persistent (≥3d) (n = 21) and non-persistent lymphopenia (<3d) (n = 15). RESULTS The persistent lymphopenia showed higher the 28d mortality and 90d mortality, while significantly lower CD3+T/LY, CD3+T cells, CD3+CD4+T cells, CD3+CD8+T cells, Th1 cells, Th2 cells, CD45RA + Treg cells. The 16S rRNA results showed that Staphylococcus, Peptostreptococcus, Bulleidia, Leuconostoc were significant enriched in the persistent lymphopenia. The metabolomics analysis showed that α-Ketoisovaleric acid was increased and 7-DHCA, α-MCA, β-MCA, HCA, LCA-3S, CA, UCA and Citramalic acid were decreased in the persistent lymphopenia. CONCLUSION In the process of interaction between host receptors and gut microbiota in patients with persistent lymphopenia sepsis, with a significant reduction in gut microbiota diversity and bile acid metabolites. That can affect various inflammatory pathways of gut immune cells, causing immune dysfunction in the body, which may be one of the main causes of death.
Collapse
Affiliation(s)
- Juanjuan Jing
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Xiaonan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Shanshan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Jiawen Yu
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Kaixuan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Yi Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| |
Collapse
|
18
|
Liu J, Wang Y, Zeng L, Yu C, Kang R, Klionsky DJ, Jiang J, Tang D. Extracellular NCOA4 is a mediator of septic death by activating the AGER-NFKB pathway. Autophagy 2024; 20:2616-2631. [PMID: 38916095 PMCID: PMC11587848 DOI: 10.1080/15548627.2024.2372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mechanistically, lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria, induces NCOA4 secretion through autophagy-dependent lysosomal exocytosis mediated by ATG5 and MCOLN1. Moreover, bacterial infection with E. coli or S. enterica leads to passive release of NCOA4 during GSDMD-mediated pyroptosis. Upon release, extracellular NCOA4 triggers the activation of the proinflammatory transcription factor NFKB/NF-κB by promoting the degradation of NFKBIA/IκB molecules. This process is dependent on the pattern recognition receptor AGER, rather than TLR4. In vivo studies employing endotoxemia and polymicrobial sepsis mouse models reveal that a monoclonal neutralizing antibody targeting NCOA4 or AGER delays animal death, protects against organ damage, and attenuates systemic inflammation. Furthermore, elevated plasma NCOA4 levels in septic patients, particularly in non-survivors, correlate positively with the sequential organ failure assessment score and concentrations of lactate and proinflammatory mediators, such as TNF, IL1B, IL6, and HMGB1. These findings demonstrate a previously unrecognized role of extracellular NCOA4 in inflammation, suggesting it as a potential therapeutic target for severe infectious diseases. Abbreviation: BMDMs: bone marrow-derived macrophages; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; LPS: lipopolysaccharide; NO: nitric oxide; SOFA: sequential organ failure assessment.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yichun Wang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Zhao J, Wu L, Zhang R, Yuan M, Huang J, Jia X, Mao X. Clostridium butyricum attenuates LPS-induced myocardial injury in septic mice by modulating CD4 + CD25 + FOXP3 + Treg. Immunobiology 2024; 230:152857. [PMID: 39642442 DOI: 10.1016/j.imbio.2024.152857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Sepsis-induced myocardial injury has become a major threat to patient health and safety. Intestinal microbiota imbalance plays a crucial role in sepsis regulation. Using 16srRNA technology, we explored how intestinal colonization of Clostridium butyricum over 28 days impacted mice with LPS-induced sepsis. Significant changes were noted in the gut microbiota of the mice, highlighting that C. butyricum can positively influence the immune state in septic myocardial injury models. The bacterium's ability to prevent intestinal mucosal damage and alleviate the immunosuppressive state during the later stages of sepsis by regulating CD4 + CD25 + FOXP3 + Treg cells is particularly noteworthy. This suggests a therapeutic role for C. butyricum in sepsis management by protecting against myocardial injury and improving immune regulation.
Collapse
Affiliation(s)
- Jinglin Zhao
- Department of Medical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Liuli Wu
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming 650500, China
| | - Rupan Zhang
- Yan'an Hospital of Kunming City, Kunming 650000, Yunnan Province, China
| | - Mei Yuan
- Department of Medical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Junchao Huang
- The First People's Hospital of Yunnan Province New Kun Hua Hospital, Kunming 650000, Yunnan Province, China
| | - Xiongfei Jia
- Department of Clinical laboratory,920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650000, Yunnan Province, China
| | - Xiaoqin Mao
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
20
|
Whitefoot-Keliin KM, Benaske CC, Allen ER, Guerrero MT, Grapentine JW, Schiff BD, Mahon AR, Greenlee-Wacker MC. In response to bacteria, neutrophils release extracellular vesicles capable of initiating thrombin generation through DNA-dependent and independent pathways. J Leukoc Biol 2024; 116:1223-1236. [PMID: 38809773 PMCID: PMC11599124 DOI: 10.1093/jleuko/qiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Neutrophils release extracellular vesicles, and some subsets of neutrophil-derived extracellular vesicles are procoagulant. In response to Staphylococcus aureus, neutrophils produce extracellular vesicles that associate electrostatically with neutrophil extracellular traps. DNA in neutrophil extracellular traps is procoagulant, but whether neutrophil extracellular vesicles produced during bacterial challenge have similar activity is unknown. Given that extracellular vesicle activity is agonist and cell-type dependent and coagulation contributes to sepsis, we hypothesized that sepsis-causing bacteria increase production of neutrophil-derived extracellular vesicles, as well as extracellular vesicle-associated DNA, and intact extracellular vesicles and DNA cause coagulation. We recovered extracellular vesicles from neutrophils challenged with S. aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa and measured associated DNA and procoagulant activity. Extracellular vesicles from S. aureus-challenged neutrophils, which were previously characterized, displayed dose-dependent procoagulant activity as measured by thrombin generation in platelet-poor plasma. Extracellular vesicle lysis and DNase treatment reduced thrombin generation by 90% and 37%, respectively. S. epidermidis, E. coli, and P. aeruginosa also increased extracellular vesicle production and extracellular vesicle-associated extracellular DNA, and these extracellular vesicles were also procoagulant. Compared to spontaneously released extracellular vesicles, which demonstrated some ability to amplify factor XII-dependent coagulation in the presence of an activator, only extracellular vesicles produced in response to bacteria could initiate the pathway. S. aureus and S. epidermidis extracellular vesicles had more surface-associated DNA than E. coli and P. aeruginosa extracellular vesicles, and S. aureus and S. epidermidis extracellular vesicles contributed to initiation and amplification of thrombin generation in a DNA-dependent manner. However, DNA on E. coli or P. aeruginosa extracellular vesicles played no role, suggesting that neutrophils release procoagulant extracellular vesicles, which can activate the coagulation cascade through both DNA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Kaitlyn M Whitefoot-Keliin
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Chase C Benaske
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Edwina R Allen
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Mariana T Guerrero
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Justin W Grapentine
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Benjamin D Schiff
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Andrew R Mahon
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Mallary C Greenlee-Wacker
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| |
Collapse
|
21
|
Li S, Chen W, Zhang Z, Yuan L, Hu Y, Chen M. Screening of prognostic core genes based on cell-cell interaction in the peripheral blood of patients with sepsis. Open Life Sci 2024; 19:20220999. [PMID: 39655195 PMCID: PMC11627055 DOI: 10.1515/biol-2022-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Peripheral blood samples from 15 septic patients admitted within 24 h and 8 healthy volunteers were used to conduct RNA-seq. Quantitative PCR of THP1 cells was performed to investigate the expression levels of the selected key genes. A total of 1,128 differential genes were identified, 721 of which were upregulated and 407 were downregulated. These genes are mainly involved in neutrophil activation, T cell regulation, immune effector process regulation, cytokine receptor activity, and cytokine binding. The six target genes were ELANE, IL1R2, RAB13, RNASE3, FCGR1A, and TLR5. In the sepsis group, FCGR1A and TLR5 were positively associated with survival compared to ELANE, IL1R2, RAB13, and RNASE3, which were adversely associated with survival. Furthermore, a meta-analysis based on public databases revealed an increased expression of these six target genes in the peripheral blood of patients with sepsis. In addition, we discovered that monocytes primarily express these genes. Using qPCR, we confirmed that these six important genes were highly expressed in lipopolysaccharide-treated THP1 cells. In summary, these findings suggest that ELANE, IL1R2, RAB13, RNASE3, FCGR1A, and TLR5 may influence the prognosis of patients with sepsis and provide novel insights and potential avenues for the treatment of sepsis.
Collapse
Affiliation(s)
- Shaolan Li
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Wenhao Chen
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Zhihong Zhang
- Emergency Department of the Affiliated Traditional Chinese Medical Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Ling Yuan
- Emergency Department of Sichuan Luzhou People’s Hospital, Luzhou, Sichuan, 646100, China
| | - Yingchun Hu
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| | - Muhu Chen
- Emergency Department of the Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, 646100, China
| |
Collapse
|
22
|
Tan Y, Ma Z, Qian W. Utilizing integrated bioinformatics and machine learning approaches to elucidate biomarkers linking sepsis to fatty acid metabolism-associated genes. Sci Rep 2024; 14:28972. [PMID: 39578562 PMCID: PMC11584728 DOI: 10.1038/s41598-024-80550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
Sepsis, characterized as a systemic inflammatory response triggered by the invasion of pathogens, represents a continuum that may escalate from mild systemic infection to severe sepsis, potentially resulting in septic shock and multiple organ dysfunction syndrome. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. Leveraging bioinformatics, this investigation aimed to identify and substantiate potential FAM-related genes (FAMGs) implicated in sepsis. The approach encompassed a differential expression analysis across a pool of 36 candidate FAMGs. GSEA and GSVA were employed to assess the biological significance and pathways associated with these genes. Furthermore, Lasso regression and SVM-RFE methodologies were implemented to determine key hub genes and assess the diagnostic prowess of nine selected FAMGs in sepsis identification. The study also investigated the correlation between these hub FAMGs. Validation was conducted through expression-level analysis using the GSE13904 and GSE65682 datasets. The study identified 13 sepsis-associated FAMGs, including ABCD2, ACSL3, ACSM1, ACSS1, ACSS2, ACOX1, ALDH9A1, ACACA, ACACB, FASN, OLAH, PPT1, and ELOVL4. As demonstrated by functional enrichment analysis results, these genes played key roles in several critical biological pathways, such as the Peroxisome, PPAR signaling pathway, and Insulin signaling pathway, all of which are intricately linked to metabolic regulation and inflammatory responses. The diagnostic potential of these FAMGs was further highlighted. In short, the expression patterns of these FAMGs c effectively distinguished sepsis cases from non-septic controls, which suggested that they may be promising biomarkers for early sepsis detection. This discovery not only enhanced our understanding of the molecular mechanisms underpinning sepsis but also paved the way for developing novel diagnostic tools and therapeutic strategies targeting metabolic dysregulation in septic patients. This research sheds light on 13 FAMGs associated with sepsis, providing valuable insights into novel biomarkers for this condition and facilitating the monitoring of its progression. These findings underscore the significance of purine metabolism in sepsis pathogenesis and open avenues for further investigation into therapeutic targets.
Collapse
Affiliation(s)
- Yuqiu Tan
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, 611730, Sichuan, China
| | - Zengwen Ma
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weiwei Qian
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, 611730, Sichuan, China.
| |
Collapse
|
23
|
He J, Xu P, Chen R, Chen M, Wang B, Xie Y, Yang Q, Sun D, Ji M. Exploiting the Zebrafish Model for Sepsis Research: Insights into Pathophysiology and Therapeutic Potentials. Drug Des Devel Ther 2024; 18:5333-5349. [PMID: 39600867 PMCID: PMC11590671 DOI: 10.2147/dddt.s500276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis, a severe condition instigated by infections, continues to be a primary global cause of death, typified by systemic inflammation and advancing immune dysfunction. Comprehending the complex pathological processes that underlie sepsis is integral to the creation of efficacious treatments. Despite the inability of animal models to entirely reproduce the clinical intricacies related to sepsis, they are invaluable instruments for the exploration and development of therapeutic approaches. Within this context, the zebrafish model is particularly noteworthy due to its genetic tractability, transparency, and appropriateness for high-throughput screening of genetic mutants and therapeutic compounds. This scholarly review emphasizes the crucial role that the zebrafish disease model plays in enhancing our comprehension of sepsis, by exploring its applications in deciphering immune and inflammatory responses, evaluating the consequences of genetic alterations, and examining novel therapeutic agents. The Insights derived from zebrafish research not only augment our understanding of the underlying mechanisms of sepsis, but also possess considerable potential for the transference of these discoveries into clinical therapies, thus potentially transforming the approach to sepsis management. The objective of this scholarly article is to underscore the importance of zebrafish in the realm of biomedical research pertaining to sepsis, and to delineate forthcoming opportunities for utilizing this model in clinical applications.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, People’s Republic of China
| | - Mengyan Chen
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yilun Xie
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| |
Collapse
|
24
|
de Moura ELB, Pereira RW. Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. J Clin Med 2024; 13:7038. [PMID: 39685497 DOI: 10.3390/jcm13237038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
Sepsis is a pervasive condition that affects individuals of all ages, with significant social and economic consequences. The early diagnosis of sepsis is fundamental for establishing appropriate treatment and is based on warning scores and clinical characteristics, with positive microbiological cultures being the gold standard. Research has yet to identify a single biomarker to meet this diagnostic demand. Presepsin is a molecule that has the potential as a biomarker for diagnosing sepsis. In this paper, we present a narrative review of the diagnostic and prognostic performance of presepsin in different age groups. Given its particularities, it is identified that presepsin is a potential biomarker for sepsis at all stages of life.
Collapse
Affiliation(s)
- Edmilson Leal Bastos de Moura
- Health Sciences Doctoral Program, University of Brasília (UnB), Brasilia 70910-900, Distrito Federal, Brazil
- School of Health Sciences, Distrito Federal University (UnDF), Brasilia 70710-907, Distrito Federal, Brazil
| | - Rinaldo Wellerson Pereira
- Health Sciences Doctoral Program, University of Brasília (UnB), Brasilia 70910-900, Distrito Federal, Brazil
- Genomic Sciences and Biotechnology Graduate Program, Catholic University of Brasilia, Brasilia 71966-700, Distrito Federal, Brazil
| |
Collapse
|
25
|
Zhang D, Song J, Zhan J, Wang Y, Deng J, Deng Y. The impact of ulinastatin on lymphocyte apoptosis and autophagy in sepsis patients. Sci Rep 2024; 14:28791. [PMID: 39567616 PMCID: PMC11579385 DOI: 10.1038/s41598-024-79878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
This study aimed to assess the influence of ulinastatin (UTI) on lymphocyte apoptosis and autophagy in sepsis patients, as well as its effect on inflammatory factors and vital organ function, with the goal of providing insights for improved clinical management of sepsis. A total of 40 sepsis patients were randomly assigned to the UTI group or the control group. The UTI group received standard treatment plus intravenous UTI, while the control group received standard treatment alone. Peripheral blood samples were collected at multiple time points for analysis of lymphocyte apoptosis, autophagy, inflammatory markers, and organ function. Various experimental techniques including Hoechst staining, transmission electron microscopy, and Western blot analysis were utilized to assess lymphocyte apoptosis, autophagy, and related protein expression levels. The study revealed that UTI treatment significantly inhibited lymphocyte apoptosis and promoted autophagy in sepsis patients. The levels of autophagy-related proteins LC3-II and Beclin-1 were substantially elevated, while the ratio of anti-apoptotic Bcl-2 to pro-apoptotic Bax was increased following UTI treatment. Furthermore, the levels of inflammatory markers IL-6, procalcitonin, and C-reactive protein were markedly reduced in the UTI group compared to the control group. Additionally, UTI treatment led to improved liver, kidney and cardiac function as evidenced by reduced levels of liver enzymes and creatinine, and cardiac enzymes. The findings of this study demonstrate that UTI exerts a protective effect on septic patients by inhibiting lymphocyte apoptosis, promoting autophagy, and attenuating systemic inflammation. Moreover, UTI treatment was associated with improved liver, kidney, and cardiac function in septic patients. These results contribute to a better understanding of the clinical management of sepsis and underscore the potential of UTI as a therapeutic intervention in septic patients.
Collapse
Affiliation(s)
- Dexin Zhang
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Juanjuan Song
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jie Zhan
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yi Wang
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Junyi Deng
- Emergency Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Deng
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
26
|
Wang L, Xiao Y, Zhang X, Zhu K, Chen W, Zhao L, Zhao Q, Zhou H, Chen G. Single-cell RNA sequencing and immune repertoire analysis revealed dynamic immune characteristics associated with peripheral blood during sepsis. Biochem Biophys Res Commun 2024; 734:150751. [PMID: 39357334 DOI: 10.1016/j.bbrc.2024.150751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Sepsis is a potentially fatal condition arising from an abnormal immune response to an infection, which can result in organ failure and even death. To explore the mechanism underlying the dysregulated immune response during sepsis and identify potential therapeutic targets, single-cell RNA sequencing (scRNA-seq) and immune repertoire analysis were conducted to depict the cellular landscape of peripheral blood cells in septic mice. We observed significant alterations in the number and proportion of peripheral blood cell populations driven by sepsis. By combining single-cell gene expression profiles and B cell receptor (BCR) repertoire analysis, we discerned that infection inflicted serious damage on the antigen presentation ability of B cells and the diversity of BCR in a short time. In addition, we found that the cecal ligation and puncture procedure in mice inhibited the communication signals of CD4+ and CD8+ T cells and decreased the interactions between B cells and other cells. Our study provides detailed insights into the dynamic changes in the biological characteristics of peripheral blood cells driven by sepsis and provides important advances in our understanding of immune disorders during sepsis.
Collapse
Affiliation(s)
- Lijun Wang
- Academy of Military Medical Sciences, Beijing, 100850, China; Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yao Xiao
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyong Zhang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Kai Zhu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wanyi Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lian Zhao
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Qingjie Zhao
- Department of Pediatricsn, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Hong Zhou
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Gan Chen
- Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
27
|
Su J, Lin C, Lin X, Hu S, Deng X, Xie L, Ye H, Zhou F, Wu S. Combining ulinastatin with TIENAM improves the outcome of sepsis induced by cecal ligation and puncture in mice by reducing inflammation and regulating immune responses. Int Immunopharmacol 2024; 141:112927. [PMID: 39163689 DOI: 10.1016/j.intimp.2024.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Despite the high mortality associated with sepsis, effective and targeted treatments remain scarce. The use of conventional antibiotics such as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging because of the increasing bacterial resistance, which diminishes their efficacy and leads to adverse effects. Our previous studies demonstrated that ulinastatin (UTI) exerts a therapeutic impact on sepsis by reducing systemic inflammation and modulating immune responses. In this study, we examined the possibility of administering UTI and TIE after inducing sepsis in a mouse model using cecal ligation and puncture (CLP). We assessed the rates of survival, levels of inflammatory cytokines, the extent of tissue damage, populations of immune cells, microbiota in ascites, and important signaling pathways. The combination of UTI and TIE significantly improved survival rates and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Notably, the survival rates of UTI+TIE-treated mice increased from 10 % to 75 % within 168 h compared to those of mice that were subjected to CLP. The dual treatment successfully regulated the levels of inflammatory indicators (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) and immune cell numbers by reducing B cells, natural killer cells, and TNFR2+ Treg cells and increasing CD8+ T cells. Additionally, the combination of UTI and TIE alleviated tissue damage, reduced bacterial load in the peritoneal cavity, and suppressed the NF-κB signaling pathway. Our findings indicate that UTI and TIE combination therapy can significantly enhance sepsis outcomes by reducing inflammation and boosting the immune system. The results offer a promising therapeutic approach for future sepsis treatment.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
28
|
Su J, Chen K, Sang X, Feng Z, Zhou F, Zhao H, Wu S, Deng X, Lin C, Lin X, Xie L, Ye H, Chen Q. Huperzine a ameliorates sepsis-induced acute lung injury by suppressing inflammation and oxidative stress via α7 nicotinic acetylcholine receptor. Int Immunopharmacol 2024; 141:112907. [PMID: 39159557 DOI: 10.1016/j.intimp.2024.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Sepsis, characterized by high mortality rates, causes over 50 % of acute lung injury (ALI) cases, primarily due to the heightened susceptibility of the lungs during this condition. Suppression of the excessive inflammatory response is critical for improving the survival of patients with sepsis; nevertheless, no specific anti-sepsis drugs exist. Huperzine A (HupA) exhibits neuroprotective and anti-inflammatory properties; however, its underlying mechanisms and effects on sepsis-induced ALI have yet to be elucidated. In this study, we demonstrated the potential of HupA for treating sepsis and explored its mechanism of action. To investigate the in vivo impacts of HupA, a murine model of sepsis was induced through cecal ligation and puncture (CLP) in both wild-type (WT) and α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. Our results showed that HupA ameliorates sepsis-induced acute lung injury by activating the α7nAChR. We used the CLP sepsis model in wild-type and α7nAChR -/- mice and found that HupA significantly increased the survival rate through α7nAChR, reduced the pro-inflammatory cytokine levels and oxidative stress, ameliorated histopathological lung injury, altered the circulating immune cell composition, regulated gut microbiota, and promoted short-chain fatty acid production through α7nAChR in vivo. Additionally, HupA inhibited Toll-like receptor NF-κB signaling by upregulating the α7nAChR/protein kinase B/glycogen synthase kinase-3 pathways. Our data elucidate HupA's mechanism of action and support a "new use for an old drug" in treating sepsis. Our findings serve as a basis for further in vivo studies of this drug, followed by application to humans. Therefore, the findings have the potential to benefit patients with sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiao Sang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
29
|
Chen JW, Liu CY, Li S, Wu SW, Cai C, Lu MQ. Sepsis-associated liver injury: Mechanisms and potential therapeutic targets. World J Gastroenterol 2024; 30:4518-4522. [PMID: 39563749 PMCID: PMC11572628 DOI: 10.3748/wjg.v30.i42.4518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/31/2024] Open
Abstract
In this editorial, we examined a recent article in the World Journal of Gastroenterology that focused on sepsis-associated liver injury (SLI) and its treatment. SLI is a serious complication of sepsis, primarily caused by microcirculatory disturbances, the gut-liver axis, and inflammatory responses. Specific treatment recommendations for SLI are lacking. The gut-liver axis represents a potential therapeutic target, with metformin showing promise in modulating the gut microbiome and enhancing intestinal barrier function. Although immunomodulatory therapies are being explored, anti-tumor necrosis factor agents and interleukin-1 receptor antagonists have not demonstrated significant clinical benefits. Statins may reduce liver inflammation and prevent injury in sepsis, but their clinical application is limited. Reduced D-related human leucocyte antigen expression on monocytes and lymphocytes suggests immune suppression in patients, indicating that corticosteroids could reverse clinical deterioration in severe infections and address adrenal cortical insufficiency. Current large-scale studies on glucocorticoid therapy for sepsis have yielded mixed results, likely due to inadequate assessment of the immune status of the host. Future research should prioritize the development of personalized immunotherapy tailored to patients' immune profiles, focusing on identifying novel indicators of immune status and advancing immunomodulatory targets and therapeutics for septic patients.
Collapse
Affiliation(s)
- Jia-Wen Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chen-Yi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shi-Wen Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ming-Qin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
30
|
Strohl JJ, Carrión J, Huerta PT. Brain imaging and machine learning reveal uncoupled functional network for contextual threat memory in long sepsis. Sci Rep 2024; 14:27747. [PMID: 39533062 PMCID: PMC11557587 DOI: 10.1038/s41598-024-79259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Positron emission tomography (PET) utilizes radiotracers like [18F]fluorodeoxyglucose (FDG) to measure brain activity in health and disease. Performing behavioral tasks between the FDG injection and the PET scan allows the FDG signal to reflect task-related brain networks. Building on this principle, we introduce an approach called behavioral task-associated PET (beta-PET) consisting of two scans: the first after a mouse is familiarized with a conditioning chamber, and the second upon recall of contextual threat. Associative threat conditioning occurs between scans. Beta-PET focuses on brain regions encoding threat memory (e.g., amygdala, prefrontal cortex) and contextual aspects (e.g., hippocampus, subiculum, entorhinal cortex). Our results show that beta-PET identifies a biologically defined network encoding contextual threat memory and its uncoupling in a mouse model of long sepsis. Moreover, machine learning algorithms (linear logistic regression) and ordinal trends analysis demonstrate that beta-PET robustly predicts the behavioral defense response and its breakdown during long sepsis.
Collapse
Affiliation(s)
- Joshua J Strohl
- Laboratory of Immune and Neural Networks, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Joseph Carrión
- Laboratory of Immune and Neural Networks, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Patricio T Huerta
- Laboratory of Immune and Neural Networks, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| |
Collapse
|
31
|
Gamberi C, Leverette CL, Davis AC, Ismail M, Piccialli I, Borbone N, Oliviero G, Vicidomini C, Palumbo R, Roviello GN. Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health. Vaccines (Basel) 2024; 12:1263. [PMID: 39591167 PMCID: PMC11598900 DOI: 10.3390/vaccines12111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as Nannochloropsis spp. and Dunaliella salina are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in Dunaliella salina and Nannochloropsis spp. to induce immunoprotection. In humans, several antigens produced in microalgae have shown potential in combating diseases caused by the human papillomavirus, human immunodeficiency virus, hepatitis B virus, influenza virus, Zika virus, Zaire Ebola virus, Plasmodium falciparum, and Staphylococcus aureus. For animals, microalgae-derived vaccine prototypes have been developed to fight against the foot-and-mouth disease virus, classical swine fever virus, vibriosis, white spot syndrome virus, and Histophilus somni. Marine organisms offer unique advantages, including the ability to express complex antigens and sustainable production. Additionally, the oceans provide an array of bioactive compounds that serve as therapeutics, potent adjuvants, delivery systems, and immunomodulatory agents. These innovations from the sea not only enhance vaccine efficacy but also contribute to broader immunological and general health. This review explores the transformative role of marine-derived substances in modern medicine, emphasizing their importance in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Chad L. Leverette
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Alexis C. Davis
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Moayad Ismail
- Faculty of Medicine, European University, 76 Guramishvili Ave., 0141 Tbilisi, Georgia;
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| |
Collapse
|
32
|
Mo Q, Mo Q, Mo F. Single-cell RNA sequencing and transcriptomic analysis reveal key genes and regulatory mechanisms in sepsis. Biotechnol Genet Eng Rev 2024; 40:1636-1658. [PMID: 37017187 DOI: 10.1080/02648725.2023.2196475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
The pathogenesis of sepsis, with a high mortality rate and often poor prognosis, has not been fully elucidated. Therefore, an in-depth study on the pathogenesis of sepsis at the molecular level is essential to identify key sepsis-related genes. The aim of this study was to explore the key genes and potential molecular mechanisms of sepsis using a bioinformatics approach. In addition, key genes with miRNA network correlation analysis and immune infiltration correlation analysis were investigated. The scRNA dataset (GSE167363) and RNA-seq dataset (GSE65682, GSE134347) from GEO database were used for screening out differentially expressed genes using single-cell sequencing and transcriptome sequencing. The analysis of immune infiltration was evaluated by the CIBERSORT method. Key genes and possible mechanisms were identified by WGCNA analysis, GSVA analysis, GSEA enrichment analysis and regulatory network analysis, and miRNA networks associated with key genes were constructed. Nine key genes associated with the development of sepsis, namely IL7R, CD3D, IL32, GPR183, HLA-DPB1, CD81, PEBP1, NCL, and ETS1 were screened, and the specific signaling mechanisms associated with the key genes causing sepsis were predicted. Immune profiling showed immune heterogeneity between control and sepsis samples. A regulatory network of 82 miRNAs, 266 pairs of mRNA-miRNA relationship pairs was also constructed. These nine key genes have the potential to become biomarkers for the diagnosis of sepsis and provide new targets and research directions for the treatment of sepsis.
Collapse
Affiliation(s)
- Qingping Mo
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingying Mo
- Shuda College, Hunan Normal University, Changsha, Hunan, China
| | - Fansen Mo
- University of South China, Hengyang, Hunan, China
| |
Collapse
|
33
|
David S, Stahl K, Bode C. Plasma exchange in septic shock: are we ready for prime time? PRO. Intensive Care Med 2024; 50:1903-1907. [PMID: 39259294 DOI: 10.1007/s00134-024-07635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland.
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany.
| | - Klaus Stahl
- Department of Gastroenterology, Infectious Diseases and Hepatology, Hannover Medical School, Hannover, Germany
| | - Christian Bode
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
34
|
Huang Y, Li G, Chen Z, Chen M, Zhai W, Li D, Xu Q. Exosomal Drug Delivery Systems: A Novel Therapy Targeting PD-1 in Septic-ALI. Stem Cell Rev Rep 2024; 20:2253-2267. [PMID: 39235552 DOI: 10.1007/s12015-024-10784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The cytokine storm triggered by sepsis can lead to the development of acute lung injury (ALI). Human umbilical cord Mesenchymal stem cells derived exosomes (HucMSCs-EXOs) have been demonstrated to possess immunosuppressive and anti-inflammatory properties. Programmed cell death receptor 1 (PD-1) plays a crucial role in maintaining the inflammatory immune homeostasis. The aim of this study is to investigate the synergistic therapeutic effect of EXOs loaded with anti-PD-1 peptide on septic-ALI. METHODS This study prepares a novel EXOs-based drug, named MEP, by engineering modification of HucMSCs-EXOs, which are non-immunogenic extracellular vesicles, loaded with anti-PD-1 peptide. The therapeutic effect and potential mechanism of MEP on septic-ALI are elucidated through in vivo and in vitro experiments, providing experimental evidence for the treatment of septic acute lung injury with MEP. RESULTS We found that, compared to individual components (anti-PD-1 peptide or EXOs), MEP treatment can more effectively improve the lung injury index of septic-ALI mice, significantly reduce the expression levels of inflammatory markers CRP and PCT, as well as pro-inflammatory cytokines TNF-α and IL-1β in serum, decrease lung cell apoptosis, and significantly increase the expression of anti-inflammatory cytokine IL-10 and CD68+ macrophages. In vitro, MEP co-culture promotes the proliferation of CD206+ macrophages, increases the M2/M1 macrophage ratio, and attenuates the inflammatory response. GEO data analysis and qRT-PCR validation show that MEP reduces the expression of inflammasome-related genes and M1 macrophage marker iNOS. CONCLUSION In both in vitro and in vivo settings, MEP demonstrates superior therapeutic efficacy compared to individual components in the context of septic-ALI.
Collapse
Affiliation(s)
- Yuanlan Huang
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Gang Li
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Zeqi Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Mengying Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Weibin Zhai
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Dan Li
- Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China.
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
35
|
Sun Y, Lu J, Wu J, Qi X, Huang Y, Lin K, Yang J, Wang H, Li J, Fang S, Yang A, Chen S, Chang W, Jin J, Xu Z, Wang S. Potential mechanism of CARD16 protein action and susceptibility to sepsis in the elderly infected population: Through transcriptome analysis of blood. Int J Biol Macromol 2024; 281:136578. [PMID: 39406325 DOI: 10.1016/j.ijbiomac.2024.136578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
As global aging accelerates, the super-elderly population is at higher risk of infectious diseases, especially sepsis, a condition that may be associated with declining immune system function and abnormal inflammatory responses. The aim of this study was to investigate the role of CARD16 protein in sepsis susceptibility in the elderly population and its potential mechanism, and to reveal the expression characteristics of CARD16-related genes through blood transcriptomic analysis. Transcriptome sequencing was conducted on peripheral blood samples obtained from patients suffering from senile sepsis, along with samples from a healthy elderly control group. To examine the differences in gene expression, bioinformatics techniques were employed to compare the expression levels of CARD16-related genes between the two groups. Additionally, a comprehensive analysis was performed on the downstream inflammatory pathways and cytokines that are regulated by CARD16.The findings from the transcriptome analysis indicated that the expression of CARD16 was markedly upregulated in the cohort of patients experiencing hypersenile sepsis. This upregulation was associated with an increase in a variety of pro-inflammatory factors. Further network analysis suggested that CARD16 may potentiate the inflammatory response by modulating the NF-κB signaling pathway, which could consequently heighten the patients' vulnerability to sepsis.In comparison to the healthy elderly control group, the levels of anti-inflammatory genes in the super-elderly cohort were found to be significantly diminished. This observation points to a notable imbalance in immune regulation, further emphasizing the altered immune response in individuals with senile sepsis.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jiahuan Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China
| | - Xiao Qi
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanfang Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jingnan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hua Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jinwei Li
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shuyu Fang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ali Yang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shu Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wenhong Chang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China; Institute of Infection and Health, Fudan University, Shanghai 200040, China
| | - Jialin Jin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Zhongqing Xu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China.
| |
Collapse
|
36
|
Wu X, Zhao X, Li F, Wang Y, Ou Y, Zhang H, Li X, Wu X, Wang L, Li M, Zhang Y, Liu J, Xing M, Liu H, Tan Y, Wang Y, Xie Y, Zhang H, Luo Y, Li H, Wang J, Sun L, Li Y, Zhang H. MLKL-mediated endothelial necroptosis drives vascular damage and mortality in systemic inflammatory response syndrome. Cell Mol Immunol 2024; 21:1309-1321. [PMID: 39349742 PMCID: PMC11527879 DOI: 10.1038/s41423-024-01217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024] Open
Abstract
The hypersecretion of cytokines triggers life-threatening systemic inflammatory response syndrome (SIRS), leading to multiple organ dysfunction syndrome (MODS) and mortality. Although both coagulopathy and necroptosis have been identified as important factors in the pathogenesis of SIRS, the specific cell types that undergo necroptosis and the interrelationships between coagulopathy and necroptosis remain unclear. In this study, we utilized visualization analysis via intravital microscopy to demonstrate that both anticoagulant heparin and nonanticoagulant heparin (NAH) pretreatment protect mice against TNF-α-induced mortality in SIRS. Moreover, the deletion of Mlkl or Ripk3 resulted in decreased coagulation and reduced mortality in TNF-α-induced SIRS. These findings suggest that necroptosis plays a key role upstream of coagulation in SIRS-related mortality. Furthermore, using a genetic lineage tracing mouse model (Tie2-Cre;Rosa26-tdT), we tracked endothelial cells (ECs) and verified that EC necroptosis is responsible for the vascular damage observed in TNF-α-treated mice. Importantly, Mlkl deletion in vascular ECs in mice had a similar protective effect against lethal SIRS by blocking EC necroptosis to protect the integrity of the endothelium. Collectively, our findings demonstrated that RIPK3-MLKL-dependent necroptosis disrupted vascular integrity, resulting in coagulopathy and multiorgan failure, eventually leading to mortality in SIRS patients. These results highlight the importance of targeting vascular EC necroptosis for the development of effective treatments for SIRS patients.
Collapse
Affiliation(s)
- Xiaoxia Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiaoming Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Fang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yang Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yangjing Ou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Haiwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiaoming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xuanhui Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Ming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yue Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jianling Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Mingyan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Han Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yongchang Tan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yangyang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yangyang Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Hanwen Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hong Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Jing Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Liming Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
37
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
38
|
Fang K, Chen H, Xie J, Sun D, Li L. Group 2 innate lymphocytes protect the balance between autophagy and apoptosis in cardiomyocytes during sepsis-induced cardiac injury. Sci Rep 2024; 14:25011. [PMID: 39443633 PMCID: PMC11500105 DOI: 10.1038/s41598-024-76606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Group 2 innate lymphocytes (ILC2) have an important role in orchestrating sepsis-induced immune response. However, the impact of LC2 on sepsis-induced cardiac injury is still not fully understood. This study investigated the mechanisms governing ILC2 activation within the cardiac tissue after sepsis. In vivo experiments using wild-type and IL-33 deficient mice indicated that the presence of interleukin (IL)-33, which participates in expanding and activating ILC2 cells, was correlated with higher ILC2 levels (246 ± 34 vs. 66 ± 18, p < 0.01), reduced cardiac dysfunction, and lower markers of cardiac injury. Conversely, IL-33 deficiency led to exacerbated cardiac damage. Additionally, heart ILC2 significantly increased the expression and secretion of IL-5 (2.18 ± 0.34 ng/ml vs. 1.18 ± 0.24 ng/ml, p < 0.05) and IL-13 (10.55 ± 1.13 ng/ml vs. 7.59 ± 1.13 ng/ml, p < 0.05) following sepsis, with this response being mediated by IL-33. Moreover, IL-5 deficient mice exhibited increased cardiac dysfunction and myocardial apoptosis post-sepsis (20.7 ± 4.28% vs. 29.61 ± 4.28%, p < 0.05). Furthermore, in vitro experiments involving co-cultures of ILC2 with mice cardiomyocytes after lipopolysaccharide (LPS) administration suggested that IL-5 derived from ILC2 protects cardiomyocytes from autophagy and apoptosis. These findings imply that IL-33, released in response to sepsis, induces ILC2 activation and IL-5 secretion, orchestrating the equilibrium between autophagy and apoptosis in cardiomyocytes and offering potential therapeutic avenues for mitigating sepsis-induced cardiac injury.
Collapse
Affiliation(s)
- Kun Fang
- Geriatric Medicine Center, Department of Geriatric Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, China
- Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hong Chen
- Emergency Department, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jianhong Xie
- Geriatric Medicine Center, Department of Geriatric Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, China
| | - Dongsheng Sun
- Geriatric Medicine Center, Department of Geriatric Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, China
| | - Li Li
- Geriatric Medicine Center, Department of Geriatric Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, China.
| |
Collapse
|
39
|
Misset B, Diep AN, Bertrand A, Piagnerelli M, Hoste E, Michaux I, De Waele E, Dumoulin A, Jorens PG, van der Hauwaert E, Vallot F, Swinnen W, De Schryver N, de Mey N, Layios N, Mesland JB, Robinet S, Cavalier E, Donneau AF, Moutschen M, Laterre PF. Immunological sub-phenotypes and response to convalescent plasma in COVID-19 induced ARDS: a secondary analysis of the CONFIDENT trial. Ann Intensive Care 2024; 14:160. [PMID: 39432177 PMCID: PMC11493925 DOI: 10.1186/s13613-024-01392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Convalescent plasma (CP) reduced the mortality in COVID-19 induced ARDS (C-ARDS) patients treated in the CONFIDENT trial. As patients are immunologically heterogeneous, we hypothesized that clusters may differ in their treatment responses to CP. METHODS We measured 20 cytokines, chemokines and cell adhesion markers using a multiplex technique at the time of inclusion in the CONFIDENT trial in patients of centers having accepted to participate in this secondary study. We performed descriptive statistics, unsupervised hierarchical cluster analysis, and examined the association between the clusters and CP effect on day-28 mortality. RESULTS Of the 475 patients included in CONFIDENT, 391 (82%) were sampled, and 196/391 (50.1%) had been assigned to CP. We identified four sub-phenotypes representing 89 (22.8%), 178 (45.5%), 38 (9.7%), and 86 (22.0%) patients. The most contributing biomarkers in the principal component analysis were IL-1β, IL-12p70, IL-6, IFN-α, IL-17A, IFN-γ, IL-13, TFN-α, total IgG, and CXCL10. Sub-phenotype-1 displayed a lower immune response, sub-phenotype-2 a higher adaptive response, sub-phenotype-3 the highest innate antiviral, pro and anti-inflammatory response, and adhesion molecule activation, and sub-phenotype-4 a higher pro and anti-inflammatory response, migration protein and adhesion molecule activation. Sub-phenotype-2 and sub-phenotype-4 had higher severity at the time of inclusion. The effect of CP treatment on mortality appeared higher than standard care in each sub-phenotype, without heterogeneity between sub-phenotypes (p = 0.97). CONCLUSION In patients with C-ARDS, we identified 4 sub-phenotypes based on their immune response. These sub-phenotypes were associated with different clinical profiles. The response to CP was similar across the 4 sub-phenotypes. TRIAL REGISTRATION Ethics Committee of the University Hospital of Liège CE 2020/239. CLINICALTRIALS gov NCT04558476. Registered 2020-09-11, https://www. CLINICALTRIALS gov/study/NCT04558476 .
Collapse
Affiliation(s)
- Benoît Misset
- Department of Intensive Care Medicine, Liège University, CHU de Liège, Liege, Belgium.
- Department of Intensive Care Medicine, University Hospital of Liège, Domaine Universitaire du Sart-Tilman, 4000, Liège, Belgium.
| | - Anh Nguyet Diep
- Biostatistic Unit, Public Health Department, Liège University, Liege, Belgium
| | - Axelle Bertrand
- Department of Intensive Care Medicine, Liège University, CHU de Liège, Liege, Belgium
| | - Michael Piagnerelli
- Department of Intensive Care Medicine, Marie-Curie University Hospital, Université Libre de Bruxelles, Charleroi, Belgium
| | - Eric Hoste
- Department of Intensive Care Medicine, University Hospital, Ghent, Belgium
| | - Isabelle Michaux
- Department of Intensive Care, Université Catholique de Louvain, CHU UCL Namur, Yvoir, Belgium
| | - Elisabeth De Waele
- Department of Clinical Nutrition, Vrije Universiteit Brussel Brussels University Hospital, Jette, Belgium
| | - Alexander Dumoulin
- Department of Intensive Care Medicine, Delta General Hospital, Roeselare, Belgium
| | - Philippe G Jorens
- Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, LEMP, Edegem, Belgium
| | | | - Frédéric Vallot
- Department of Intensive Care Medicine, Wallonie Picarde General Hospital, Tournai, Belgium
| | - Walter Swinnen
- Department of Intensive Care Medicine, Sint Blasius General Hospital, Dendermonde, Belgium
| | - Nicolas De Schryver
- Department of Intensive Care Medicine, Saint-Pierre Medical Clinic, Ottignies, Belgium
| | - Nathalie de Mey
- Department of Intensive Care Medicine, OLV General Hospital, Aalst, Belgium
| | - Nathalie Layios
- Department of Intensive Care Medicine, Liège University, CHU de Liège, Liege, Belgium
| | - Jean-Baptiste Mesland
- Department of Intensive Care Medicine, Saint-Luc University Hospital, Brussels, Belgium
| | - Sébastien Robinet
- Department of Intensive Care Medicine, Liège University, CHU de Liège, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liege, CIRM, CHU de Liège, Liege, Belgium
| | | | | | | |
Collapse
|
40
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2024:10.1038/s41577-024-01098-2. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
41
|
Röder M, Ng AYKC, Conway Morris A. Bronchoscopic Diagnosis of Severe Respiratory Infections. J Clin Med 2024; 13:6020. [PMID: 39408080 PMCID: PMC11477651 DOI: 10.3390/jcm13196020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The diagnosis of severe respiratory infections in intensive care remains an area of uncertainty and involves a complex balancing of risks and benefits. Due to the frequent colonisation of the lower respiratory tract in mechanically ventilated patients, there is an ever-present possibility of microbiological samples being contaminated by bystander organisms. This, coupled with the frequency of alveolar infiltrates arising from sterile insults, risks over-treatment and antimicrobial-associated harm. The use of bronchoscopic sampling to obtain protected lower respiratory samples has long been advocated to overcome this problem. The use of bronchoscopy further enables accurate cytological assessment of the alveolar space and direct inspection of the proximal airways for signs of fungal infection or alternative pathologies. With a growing range of molecular techniques, including those based on nucleic acid amplification and even alveolar visualisation and direct bacterial detection, the potential for bronchoscopy is increasing concomitantly. Despite this, there remain concerns regarding the safety of the technique and its benefits versus less invasive sampling techniques. These discussions are reflected in the lack of consensus among international guidelines on the topic. This review will consider the benefits and challenges of diagnostic bronchoscopy in the context of severe respiratory infection.
Collapse
Affiliation(s)
- Maire Röder
- School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK;
| | | | - Andrew Conway Morris
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK;
- Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 0QQ, UK
- JVF Intensive Care Unit, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
42
|
Vear A, Chakraborty A, Fahimi F, Ferens D, Widdop R, Samuel CS, Gaspari T, van Endert PM, Chai SY. Sex- and time-dependent role of insulin regulated aminopeptidase in lipopolysaccharide-induced inflammation. Front Immunol 2024; 15:1466692. [PMID: 39430768 PMCID: PMC11486674 DOI: 10.3389/fimmu.2024.1466692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The enzyme, insulin regulated aminopeptidase (IRAP), is expressed in multiple immune cells such as macrophages, dendritic cells and T cells, where it plays a role in regulating the innate and adaptive immune response. There is a genetic association between IRAP and survival outcomes in patients with septic shock where a variant of its gene was found to be associated with increased 28-day mortality. This study investigated the role for IRAP in a lipopolysaccharide (LPS)-induced inflammatory response which is thought to model facets of the systemic inflammation observed in the early stages of human gram-negative sepsis. The frequencies and activation of splenic immune cell populations were investigated in the IRAP knockout (KO) mice compared to the wildtype controls over a period of 4-, 24-, or 48-hours following LPS stimulation. Dendritic cells isolated from the spleen of female IRAP KO mice, displayed significant increases in the activation markers CD40, CD86 and MHCII at 24 hours after LPS induction. A modest heightened pro-inflammatory response to LPS was observed with increased expression of activation marker CD40 in M1 macrophages from male IRAP knockout mice. Observations in vitro in bone marrow-derived macrophages (BMDM) revealed a heightened pro-inflammatory response to LPS with significant increases in the expression of CD40 in IRAP deficient cells compared with BMDM from WT mice. The heightened LPS-induced response was associated with increased pro-inflammatory cytokine secretion in these BMDM cells. A genotype difference was also detected in the BMDM from female mice displaying suppression of the LPS-induced increases in the activation markers CD40, CD86, CD80 and MHCII in IRAP deficient cells. Thus, this study suggests that IRAP plays specific time- and sex-dependent roles in the LPS-induced inflammatory response in dendritic cells and macrophages.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Amlan Chakraborty
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Farnaz Fahimi
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dorota Ferens
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Robert Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chrishan S. Samuel
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter M. van Endert
- Institut Necker Enfants Malades, Université Paris Cité, INSERM, CNRS, Paris, France
- Service Immunologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Siew Yeen Chai
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
43
|
Ge J, Deng Q, Zhou R, Hu Y, Zhang X, Zheng Z. Identification of key biomarkers and therapeutic targets in sepsis through coagulation-related gene expression and immune pathway analysis. Front Immunol 2024; 15:1470842. [PMID: 39430765 PMCID: PMC11486639 DOI: 10.3389/fimmu.2024.1470842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
Sepsis, characterized by a widespread and dysregulated immune response to infection leading to organ dysfunction, presents significant challenges in diagnosis and treatment. In this study, we investigated 203 coagulation-related genes in sepsis patients to explore their roles in the disease. Through differential gene expression analysis, we identified 20 genes with altered expression patterns. Subsequent correlation analysis, visualized through circos plots and heatmaps, revealed significant relationships among these genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that these genes are involved in immune response activation, coagulation, and immune receptor activity. Disease Ontology (DO) enrichment analysis further linked these genes to autoimmune hemolytic anemia and tumor-related signaling pathways. Additionally, the CIBERSORT analysis highlighted differences in immune cell composition in sepsis patients, revealing an increase in neutrophils and monocytes and a decrease in inactive NK cells, CD8 T cells, and B cells. We employed machine learning techniques, including random forest and SVM, to construct a diagnostic model, identifying FCER1G and FYN as key biomarkers. These biomarkers were validated through their expression levels and ROC curve analysis in an independent validation cohort, demonstrating strong diagnostic potential. Single-cell analysis from the GSE167363 dataset further confirmed the distinct expression profiles of these genes across various cell types, with FCER1G predominantly expressed in monocytes, NK cells, and platelets, and FYN in CD4+ T cells and NK cells. Enrichment analysis via GSEA and ssGSEA revealed that these genes are involved in critical pathways, including intestinal immune networks, fatty acid synthesis, and antigen processing. In conclusion, our comprehensive analysis identifies FCER1G and FYN as promising biomarkers for sepsis, providing valuable insights into the molecular mechanisms of this complex condition. These findings offer new avenues for the development of targeted diagnostic and therapeutic strategies in sepsis management.
Collapse
Affiliation(s)
- Jing Ge
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qijie Deng
- Grade 2020, The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yahui Hu
- Department of Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaotong Zhang
- Department of Ultrasound, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Zemao Zheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Pang G, Hu K, Ji J, Xiong B, Han L, Pang J, Xiang S. Investigating hub genes in the relationship between septic cardiomyopathy and cuproptosis and potential Chinese herbal drug candidates with bioinformatic tools. Minerva Cardiol Angiol 2024; 72:453-464. [PMID: 38804624 DOI: 10.23736/s2724-5683.23.06476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND The aim of this study was using bioinformatic tools to identify hub genes in the relationship between septic cardiomyopathy (SCM) and cuproptosis and predict potential Chinese herbal drug candidates. METHODS SCM datasets were downloaded from the gene expression omnibus. Cuproptosis related genes were collected from a research published on Science in March, 2022. The expression profiles of genes related to cuproptosis in SCM were extracted. Differentially expressed genes (DEGs) were analyzed using R package limma. A single-sample gene set enrichment analysis was conducted to measure the correlation between DEGs and immune cell infiltration. Hub genes were screened out by random forest model. Finally, HERB database and COREMINE database were used to predict Chinese herbal drugs for hub genes and carry out molecular docking. RESULTS A total of 9 DEGs were identified. Cuproptosis differential genes PDHB, DLAT, DLD, FDX1, GCSH, LIAS were significantly correlated with one or more cells and their functions in immune infiltration. The random forest model screened pyruvate dehydrogenase E1 beta subunit (PDHB) as the hub gene. PDHB was negatively correlated with Plasmacytoid dendritic cell infiltration. Pyruvic acid, rhodioloside and adenosine were predicted with PDHB as the target, and all three components are able to bind to PDHB. CONCLUSIONS Cuproptosis related gene PDHB is associated with the occurrence and immune infiltration of septic cardiomyopathy. Rhodioloside and other Chinese herbal drugs may play a role in the treatment of SCM by regulating the expression of PDHB.
Collapse
Affiliation(s)
- Guangbao Pang
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kunlin Hu
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianyu Ji
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bin Xiong
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lin Han
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Pang
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shulin Xiang
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China -
| |
Collapse
|
45
|
Bi J, Wang Y, Wang K, Sun Y, Ye F, Wang X, Pan J. FGF1 attenuates sepsis-induced coagulation dysfunction and hepatic injury via IL6/STAT3 pathway inhibition. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167281. [PMID: 38870868 DOI: 10.1016/j.bbadis.2024.167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND & AIMS Sepsis, a globally prevalent and highly lethal condition, remains a critical medical challenge. This investigation aims to assess the relevance of FGF1 as a potential therapeutic target for sepsis. METHODS Sepsis was induced in C57BL/6 mice through LPS administration to establish an in vivo animal model. Various in vitro assays were conducted using human umbilical vein endothelial cells to elucidate the role of FGF1 in the disruption of the coagulation system and liver injury associated with sepsis, as well as to explore its underlying molecular mechanisms. RESULTS In in vivo experiments, FGF1 ameliorated coagulation system disruption in septic mice by reducing the levels of pro-inflammatory and coagulation-related factors in the bloodstream. FGF1 also enhanced liver function in septic mice, mitigating liver inflammation and cell apoptosis, fostering liver vascular regeneration, increasing liver blood perfusion, and improving mouse survival. In vitro experiments demonstrated that FGF1 could inhibit LPS-induced inflammatory responses and apoptosis in endothelial cells, fortify endothelial cell barrier function, decrease endothelial cell permeability, promote endothelial cell proliferation, and restore endothelial cell tube-forming ability. Both in vivo and in vitro experiments substantiated that FGF1 improved sepsis by inhibiting the IL-6/STAT3 signaling pathway. CONCLUSION In summary, our study indicates that FGF1 mitigates excessive inflammatory responses in sepsis by suppressing the IL-6/STAT3 signaling pathway, thereby improving systemic blood circulation and ameliorating liver damage in septic organisms. Consequently, this research identifies FGF1 as a potential clinical target for the treatment of human sepsis.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Yanjing Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kaicheng Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Yuanyuan Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Fanrong Ye
- Departments of Nuclear Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China.
| |
Collapse
|
46
|
Ma Y, Zhao Y, Zhang X. Factors affecting neutrophil functions during sepsis: human microbiome and epigenetics. J Leukoc Biol 2024; 116:672-688. [PMID: 38734968 DOI: 10.1093/jleuko/qiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a severe disease that occurs when the body's immune system reacts excessively to infection. The body's response, which includes an intense antibacterial reaction, can damage its tissues and organs. Neutrophils are the major components of white blood cells in circulation, play a vital role in innate immunity while fighting against infections, and are considered a feature determining sepsis classification. There is a plethora of basic research detailing neutrophil functioning, among which, the study of neutrophil extracellular traps is providing novel insights into mechanisms and treatments of sepsis. This review explores their functions, dysfunctions, and influences in the context of sepsis. The interplay between neutrophils and the human microbiome and the impact of DNA methylation on neutrophil function in sepsis are crucial areas of study. The interaction between neutrophils and the human microbiome is complex, particularly in the context of sepsis, where dysbiosis may occur. We highlight the importance of deciphering neutrophils' functional alterations and their epigenetic features in sepsis because it is critical for defining sepsis endotypes and opening up the possibility for novel diagnostic methods and therapy. Specifically, epigenetic signatures are pivotal since they will provide a novel implication for a sepsis diagnostic method when used in combination with the cell-free DNA. Research is exploring how specific patterns of DNA methylation in neutrophils, detectable in cell-free DNA, could serve as biomarkers for the early detection of sepsis.
Collapse
Affiliation(s)
- Yina Ma
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| |
Collapse
|
47
|
Li Y, Liu W, Wang Y, Liu T, Feng Y. Nanotechnology-Mediated Immunomodulation Strategy for Inflammation Resolution. Adv Healthc Mater 2024; 13:e2401384. [PMID: 39039994 DOI: 10.1002/adhm.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Inflammation serves as a common characteristic across a wide range of diseases and plays a vital role in maintaining homeostasis. Inflammation can lead to tissue damage and the onset of inflammatory diseases. Although significant progress is made in anti-inflammation in recent years, the current clinical approaches mainly rely on the systemic administration of corticosteroids and antibiotics, which only provide short-term relief. Recently, immunomodulatory approaches have emerged as promising strategies for facilitating the resolution of inflammation. Especially, the advanced nanosystems with unique biocompatibility and multifunctionality have provided an ideal platform for immunomodulation. In this review, the pathophysiology of inflammation and current therapeutic strategies are summarized. It is mainly focused on the nanomedicines that modulate the inflammatory signaling pathways, inflammatory cells, oxidative stress, and inflammation targeting. Finally, the challenges and opportunities of nanomaterials in addressing inflammation are also discussed. The nanotechnology-mediated immunomodulation will open a new treatment strategy for inflammation therapy.
Collapse
Affiliation(s)
- Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
| |
Collapse
|
48
|
Alves VS, Cristina-Rodrigues F, Coutinho-Silva R. The P2Y 2 receptor as a sensor of nucleotides and cell recruitment during inflammatory processes of the liver. Purinergic Signal 2024; 20:465-467. [PMID: 38627279 PMCID: PMC11377366 DOI: 10.1007/s11302-024-10008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fabiana Cristina-Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
49
|
Han D, Kang SH, Um YW, Kim HE, Hwang JE, Lee JH, Jo YH, Jung YS, Lee HJ. Temperature trajectories and mortality in hypothermic sepsis patients. Am J Emerg Med 2024; 84:18-24. [PMID: 39047342 DOI: 10.1016/j.ajem.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Hypothermia is associated with poor outcomes in sepsis patients, and hypothermic sepsis patients exhibit temperature alterations during initial treatment. The objective of this study was to classify hypothermic sepsis patients based on body temperature trajectories and investigate the associations of these patients with 28-day mortality. METHODS This was a retrospective analysis of prospectively collected data from adult sepsis or septic shock patients who visited three emergency departments between August 2014 and December 2019. Hypothermic sepsis was defined as an initial body temperature <36 °C. delta temperature was calculated by subtracting the 0 h body temperature from the 6 h body temperature. We divided the patients into three groups according to delta temperature: Group A (delta temperature ≤ 0), Group B (0 < delta temperature ≤ 1) and Group C (delta temperature > 1). The primary outcome was 28-day mortality, and a multivariable Cox proportional hazards regression model was generated. RESULTS Among 7344 patients with sepsis or septic shock, 325 hypothermic patients were included in the analysis, and the overall mortality rate was 36%. While initial body temperature was not different between survivors and nonsurvivors, survivors exhibited a higher body temperature at 6 h. The 28-day mortality rates for Groups A, B and C were 53.1%, 36.0%, and 30.0%, respectively, and Group A had significantly higher mortality than Group C did (p < 0.05). Group C demonstrated a 44.2% decrease in 28-day mortality compared to Group A (adjusted hazard ratio of 0.558; 95% confidence interval of 0.330-0.941). CONCLUSIONS In hypothermic sepsis patients, an increase of 1 °C or more in body temperature after the initial 6 h is associated with a reduced risk of 28-day mortality.
Collapse
Affiliation(s)
- Dongkwan Han
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung Hyun Kang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Young Woo Um
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hee Eun Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea; Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Disaster Medicine Research Center, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Yoon Sun Jung
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hui Jai Lee
- Department of Emergency Medicine, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
50
|
Li N, Deng J, Zhang J, Yu F, Ye F, Hao L, Li S, Hu X. A New Strategy for Targeting UCP2 to Modulate Glycolytic Reprogramming as a Treatment for Sepsis A New Strategy for Targeting UCP2. Inflammation 2024; 47:1634-1647. [PMID: 38429403 PMCID: PMC11549132 DOI: 10.1007/s10753-024-01998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Fei Yu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanghang Ye
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|