1
|
Nersesjan V, Boldingh MI, Paulsen EQ, Argren M, Høgestøl E, Aamodt AH, Popperud TH, Kondziella D, Jørgensen CS, Jensen VVS, Benros ME. Antibodies against SARS-CoV-2 spike protein in the cerebrospinal fluid of COVID-19 patients and vaccinated controls: a multicentre study. J Neurol 2024; 272:60. [PMID: 39680178 DOI: 10.1007/s00415-024-12769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION SARS-CoV-2 antibodies in the cerebrospinal fluid (CSF) of COVID-19 patients possibly reflect blood-cerebrospinal fluid barrier (BCB) disruption due to systemic inflammation. However, some studies indicate that CSF antibodies signal a neurotropic infection. Currently, larger studies are needed to clarify this, and it is unknown if CSF antibodies appear solely after infection or also after COVID-19 vaccination. Therefore, we aimed to investigate the CSF dynamics of SARS-CoV-2 antibodies in a multicenter study of COVID-19 patients and vaccinated controls. METHODS A cohort study of Danish and Norwegian COVID-19 patients and controls investigated with a lumbar puncture (April 2020-December 2022). Serum and CSF were analysed locally for routine investigations, and centrally at Statens Serum Institut (Danish governmental public health institute) for SARS-CoV-2 IgG antibodies against the spike protein using the Euroimmun (quantitative) and Wantai (qualitative) assays. Primary outcome was the quantity of CSF SARS-CoV-2 antibodies post-COVID versus post-vaccination. Secondary outcomes included regression models examining the relationship between CSF antibodies and serum levels, albumin ratio, CSF pleocytosis, COVID-19 severity, and temporal antibody dynamics. RESULTS We included 124 individuals (Mean [SD] age 47.2 [16.6]; 59.7% males surviving COVID-19 and controls. Of these, 86 had paired CSF-serum testing. Antibody-index calculations did not support a SARS-CoV-2 brain infection. Multi-variate regression revealed that CSF SARS-CoV-2 antibodies were most strongly influenced by serum antibody levels and BCB permeability, as measured by increasing albumin ratio. CSF antibody levels displayed a dose-response relationship (p < 0.0001) influenced by preceding vaccinations or infections. CSF antibody levels (median [IQR]) were highest among those both previously infected and vaccinated, 100.0 [25.0-174.0], and those vaccinated without prior infection, 85.0 [12.0-142.0], and lowest among previously infected individuals without preceding vaccination, 5.9 [2.7-55.1], (p = 0.003). SARS-CoV-2 antibodies in CSF were also detected via qualitative assays in the COVID-19 (46.8%) and vaccinated (78.6%) groups, p = 0.03. CONCLUSION SARS-CoV-2 antibodies detected in CSF can be derived following both infection and vaccination for COVID-19. CSF antibody levels increase in a dose-response relationship with the number of prior infections and vaccinations and are most strongly influenced by serum antibody levels and BCB permeability. These findings stress the importance of carefully interpreting CSF antibody results when assessing neurological complications following infections not categorized as neurotropic.
Collapse
Affiliation(s)
- Vardan Nersesjan
- Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Maria Argren
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Einar Høgestøl
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Psychology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Hege Aamodt
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Neuromedicine and Movement Science, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Daniel Kondziella
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Michael E Benros
- Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00804-1. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Chauvet-Gelinier JC, Cottenet J, Jollant F, Quantin C. Hospitalization for SARS-CoV-2 and the risk of self-harm readmission: a French nationwide retrospective cohort study. Epidemiol Psychiatr Sci 2024; 33:e65. [PMID: 39539238 DOI: 10.1017/s2045796024000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
AIMS The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the risk of self-harming behaviours warrants further investigation. Here, we hypothesized that people with a history of hospitalization for self-harm may be particularly at risk of readmission in case of SARS-CoV-2 hospitalization. METHODS We conducted a retrospective analysis based on the French national hospitalization database. We identified all patients hospitalized for deliberate self-harm (10th edition of the International Classification of Diseases codes X60-X84) between March 2020 and March 2021. To study the effect of SARS-CoV-2 hospitalization on the risk of readmission for self-harm at 1-year of the inclusion, we performed a multivariable Fine and Gray model considering hospital death as a competing event. RESULTS A total of 61,782 individuals were hospitalized for self-harm. During the 1-year follow-up, 9,403 (15.22%) were readmitted for self-harm. Between inclusion and self-harm readmission or the end of follow-up, 1,214 (1.96% of the study cohort) were hospitalized with SARS-CoV-2 (mean age 60 years, 52.9% women) while 60,568 were not (mean age 45 years, 57% women). Multivariate models revealed that the factors independently associated with self-harm readmission were: hospitalization with SARS-CoV-2 (adjusted hazard ratio (aHR) = 3.04 [2.73-3.37]), psychiatric disorders (aHR = 1.61 [1.53-1.69]), self-harm history (aHR = 2.00 [1.88-2.04]), intensive care and age above 80. CONCLUSIONS In hospitalized people with a personal history of self-harm, infection with SARS-CoV-2 increased the risk of readmission of self-harm, with an effect that seemed to add to the effect of a history of mental disorders, with an equally significant magnitude. Infection may be a significantly stressful condition that precipitates self-harming acts in vulnerable individuals. Clinicians should pay particular attention to the emergence of suicidal ideation in these patients in the aftermath of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jean-Christophe Chauvet-Gelinier
- Department of Psychiatry, Dijon University Hospital (CHU), Dijon, France
- INSERM Unit, U-1231, Center for Translational and Molecular medicine, University of Burgundy, Dijon, France
| | - Jonathan Cottenet
- Biostatistics and Bioinformatics (DIM), University Hospital, CHU Dijon Bourgogne, INSERM, Université de Bourgogne, Dijon, France
| | - Fabrice Jollant
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service de psychiatrie, Hôpital Paul-Brousse, APHP, Villejuif, France
- McGill Group for Suicide Studies, Department of psychiatry, McGill University, Montréal, Quebec, Canada
| | - Catherine Quantin
- Biostatistics and Bioinformatics (DIM), University Hospital, CHU Dijon Bourgogne, INSERM, Université de Bourgogne, Dijon, France
- High-Dimensional Biostatistics for Drug Safety and Genomics, Center of Research in Epidemiology and Population Health, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
4
|
Elahi S, Rezaeifar M, Osman M, Shahbaz S. Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Front Immunol 2024; 15:1443363. [PMID: 39386210 PMCID: PMC11461188 DOI: 10.3389/fimmu.2024.1443363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
This study aimed to assess plasma galectin-9 (Gal-9) and artemin (ARTN) concentrations as potential biomarkers to differentiate individuals with Long COVID (LC) patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from SARS-CoV-2 recovered (R) and healthy controls (HCs). Receiver operating characteristic (ROC) curve analysis determined a cut-off value of plasma Gal-9 and ARTN to differentiate LC patients from the R group and HCs in two independent cohorts. Positive correlations were observed between elevated plasma Gal-9 levels and inflammatory markers (e.g. SAA and IP-10), as well as sCD14 and I-FABP in LC patients. Gal-9 also exhibited a positive correlation with cognitive failure scores, suggesting its potential role in cognitive impairment in LC patients with ME/CFS. This study highlights plasma Gal-9 and/or ARTN as sensitive screening biomarkers for discriminating LC patients from controls. Notably, the elevation of LPS-binding protein in LC patients, as has been observed in HIV infected individuals, suggests microbial translocation. However, despite elevated Gal-9, we found a significant decline in ARTN levels in the plasma of people living with HIV (PLWH). Our study provides a novel and important role for Gal-9/ARTN in LC pathogenesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, Edmonton, AB, Canada
- Glycomics Institute of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
| | - Maryam Rezaeifar
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Mohammed Osman
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Department of Medicine, Division of Rheumatology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| |
Collapse
|
5
|
Liu YH, Hu C, Yang XM, Zhang Y, Cao YL, Xiao F, Zhang JJ, Ma LQ, Zhou ZW, Hou SY, Wang E, Loepke AW, Deng M. Association of preoperative coronavirus disease 2019 with mortality, respiratory morbidity and extrapulmonary complications after elective, noncardiac surgery: An observational cohort study. J Clin Anesth 2024; 95:111467. [PMID: 38593491 DOI: 10.1016/j.jclinane.2024.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
STUDY OBJECTIVE To assess the impact of preoperative infection with the contemporary strain of severe acute respiratory coronavirus 2 (SARS-CoV-2) on postoperative mortality, respiratory morbidity and extrapulmonary complications after elective, noncardiac surgery. DESIGN An ambidirectional observational cohort study. SETTING A tertiary and teaching hospital in Shanghai, China. PATIENTS All adult patients (≥ 18 years of age) who underwent elective, noncardiac surgery under general anesthesia at Huashan Hospital of Fudan University from January until March 2023 were screened for eligibility. A total of 2907 patients were included. EXPOSURE Preoperative coronavirus disease 2019 (COVID-19) positivity. MEASUREMENTS The primary outcome was 30-day postoperative mortality. The secondary outcomes included postoperative pulmonary complications (PPCs), myocardial injury after noncardiac surgery (MINS), acute kidney injury (AKI), postoperative delirium (POD) and postoperative sleep quality. Multivariable logistic regression was used to assess the risk of postoperative mortality and morbidity imposed by preoperative COVID-19. MAIN RESULTS The risk of 30-day postoperative mortality was not associated with preoperative COVID-19 [adjusted odds ratio (aOR), 95% confidence interval (CI): 0.40, 0.13-1.28, P = 0.123] or operation timing relative to diagnosis. Preoperative COVID-19 did not increase the risk of PPCs (aOR, 95% CI: 0.99, 0.71-1.38, P = 0.944), MINS (aOR, 95% CI: 0.54, 0.22-1.30; P = 0.168), or AKI (aOR, 95% CI: 0.34, 0.10-1.09; P = 0.070) or affect postoperative sleep quality. Patients who underwent surgery within 7 weeks after COVID-19 had increased odds of developing delirium (aOR, 95% CI: 2.26, 1.05-4.86, P = 0.036). CONCLUSIONS Preoperative COVID-19 or timing of surgery relative to diagnosis did not confer any added risk of 30-day postoperative mortality, PPCs, MINS or AKI. However, recent COVID-19 increased the risk of POD. Perioperative brain health should be considered during preoperative risk assessment for COVID-19 survivors.
Collapse
Affiliation(s)
- Yi-Heng Liu
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Chenghong Hu
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Xia-Min Yang
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yu Zhang
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yan-Ling Cao
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Fan Xiao
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jun-Jie Zhang
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Li-Qing Ma
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Zi-Wen Zhou
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Si-Yu Hou
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Andreas W Loepke
- Department of Anesthesiology and Critical Care Medicine and Division of Cardiac Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Meng Deng
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Chen M, Zhang Y, Yao Y, Huang Y, Jiang L. Mendelian randomization supports causality between COVID-19 and glaucoma. Medicine (Baltimore) 2024; 103:e38455. [PMID: 38875430 PMCID: PMC11175937 DOI: 10.1097/md.0000000000038455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
To determine whether there is a causal relationship between Corona Virus Disease 2019 (COVID-19) and glaucoma, a 2-sample Mendelian Randomization (MR) design was applied with the main analysis method of inverse-variance-weighted. The reliability of the results was checked using the heterogeneity test, pleiotropy test, and leave-one-out method. Four sets of instrumental variables (IVs) were used to investigate the causality between COVID-19 and glaucoma risk according to data from the IEU Genome Wide Association Study (GWAS). The results showed that 2 sets of COVID-19(RELEASE) were significantly associated with the risk of glaucoma [ID: ebi-a-GCST011071, OR (95% CI) = 1.227 (1.076-1.400), P = .002259; ID: ebi-a-GCST011073: OR (95% CI) = 1.164 (1.022-1.327), P = .022450; 2 sets of COVID-19 hospitalizations were significantly associated with the risk of glaucoma (ID: ebi-a-GCST011081, OR (95% CI) = 1.156 (1.033-1.292), P = .011342; ID: ebi-a-GCST011082: OR (95% CI) = 1.097 (1.007-1.196), P = .034908)]. The sensitivity of the results was acceptable (P > .05) for the 3 test methods. In conclusion, this MR analysis provides preliminary evidence of a potential causal relationship between COVID-19 and glaucoma.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinhui Zhang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu Yao
- Department of Ophthalmology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Longyang Jiang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Radke J, Meinhardt J, Aschman T, Chua RL, Farztdinov V, Lukassen S, Ten FW, Friebel E, Ishaque N, Franz J, Huhle VH, Mothes R, Peters K, Thomas C, Schneeberger S, Schumann E, Kawelke L, Jünger J, Horst V, Streit S, von Manitius R, Körtvélyessy P, Vielhaber S, Reinhold D, Hauser AE, Osterloh A, Enghard P, Ihlow J, Elezkurtaj S, Horst D, Kurth F, Müller MA, Gassen NC, Melchert J, Jechow K, Timmermann B, Fernandez-Zapata C, Böttcher C, Stenzel W, Krüger E, Landthaler M, Wyler E, Corman V, Stadelmann C, Ralser M, Eils R, Heppner FL, Mülleder M, Conrad C, Radbruch H. Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19. Nat Neurosci 2024; 27:409-420. [PMID: 38366144 DOI: 10.1038/s41593-024-01573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.
Collapse
Affiliation(s)
- Josefine Radke
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany.
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Lorenz Chua
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Farztdinov
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Foo Wei Ten
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ekaterina Friebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Naveed Ishaque
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Franz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Valerie Helena Huhle
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ronja Mothes
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristin Peters
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Carolina Thomas
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Shirin Schneeberger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Schumann
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leona Kawelke
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Jünger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Horst
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Regina von Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Péter Körtvélyessy
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Anja Osterloh
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Ihlow
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Horst
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Julia Melchert
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Jechow
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Camila Fernandez-Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institut für Biologie, Humboldt Universität, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victor Corman
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner, Berlin, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Ralser
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Conrad
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Mohme M, Schultheiß C, Piffko A, Fitzek A, Paschold L, Thiele B, Püschel K, Glatzel M, Westphal M, Lamszus K, Matschke J, Binder M. SARS-CoV-2-associated T-cell infiltration in the central nervous system. Clin Transl Immunology 2024; 13:e1487. [PMID: 38304555 PMCID: PMC10831126 DOI: 10.1002/cti2.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Although an acute SARS-CoV-2 infection mainly presents with respiratory illness, neurologic symptoms and sequelae are increasingly recognised in the long-term treatment of COVID-19 patients. The pathophysiology and the neuropathogenesis behind neurologic complications of COVID-19 remain poorly understood, but mounting evidence points to endothelial dysfunction either directly caused by viral infection or indirectly by inflammatory cytokines, followed by a local immune response that may include virus-specific T cells. However, the type and role of central nervous system-infiltrating T cells in COVID-19 are complex and not fully understood. Methods We analysed distinct anatomical brain regions of patients who had deceased as a result of COVID-19-associated pneumonia or complications thereof and performed T cell receptor Vβ repertoire sequencing. Clonotypes were analysed for SARS-CoV-2 association using public TCR repertoire data. Results Our descriptive study demonstrates that SARS-CoV-2-associated T cells are found in almost all brain areas of patients with fatal COVID-19 courses. The olfactory bulb, medulla and cerebellum were brain regions showing the most SARS-CoV-2 specific sequence patterns. Neuropathological workup demonstrated primary CD8+ T-cell infiltration with a perivascular infiltration pattern. Conclusion Future research is needed to better define the relationship between T-cell infiltration and neurological symptoms and its long-term impact on patients' cognitive and mental health.
Collapse
Affiliation(s)
- Malte Mohme
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Christoph Schultheiß
- Medical OncologyUniversity Hospital BaselBaselSwitzerland
- Laboratory of Translational Immuno‐Oncology, Department of BiomedicineUniversity of Basel and University Hospital of BaselBaselSwitzerland
| | - Andras Piffko
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Antonia Fitzek
- Department of Legal MedicineUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Lisa Paschold
- Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Benjamin Thiele
- Medical OncologyUniversity Hospital BaselBaselSwitzerland
- Laboratory of Translational Immuno‐Oncology, Department of BiomedicineUniversity of Basel and University Hospital of BaselBaselSwitzerland
- Hematology and OncologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Klaus Püschel
- Department of Legal MedicineUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Manfred Westphal
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Katrin Lamszus
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Jakob Matschke
- Institute of NeuropathologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Mascha Binder
- Medical OncologyUniversity Hospital BaselBaselSwitzerland
- Laboratory of Translational Immuno‐Oncology, Department of BiomedicineUniversity of Basel and University Hospital of BaselBaselSwitzerland
| |
Collapse
|
9
|
Xu P, Yu Y, Wu P. Role of microglia in brain development after viral infection. Front Cell Dev Biol 2024; 12:1340308. [PMID: 38298216 PMCID: PMC10825034 DOI: 10.3389/fcell.2024.1340308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Microglia are immune cells in the brain that originate from the yolk sac and enter the developing brain before birth. They play critical roles in brain development by supporting neural precursor proliferation, synaptic pruning, and circuit formation. However, microglia are also vulnerable to environmental factors, such as infection and stress that may alter their phenotype and function. Viral infection activates microglia to produce inflammatory cytokines and anti-viral responses that protect the brain from damage. However, excessive or prolonged microglial activation impairs brain development and leads to long-term consequences such as autism spectrum disorder and schizophrenia spectrum disorder. Moreover, certain viruses may attack microglia and deploy them as "Trojan horses" to infiltrate the brain. In this brief review, we describe the function of microglia during brain development and examine their roles after infection through microglia-neural crosstalk. We also identify limitations for current studies and highlight future investigated questions.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5-5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
He Z, Li Y, Liu S, Li J. Mendelian randomization reveals no causal relationship between COVID-19 susceptibility, hospitalization, or severity and epilepsy. Epilepsia Open 2023; 8:1452-1459. [PMID: 37602490 PMCID: PMC10690698 DOI: 10.1002/epi4.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE Observational studies have shown an association between COVID-19 and epilepsy. However, causality remains unproven. This study aimed to investigate the causative effect of genetically predicted COVID-19 phenotypes on epilepsy risk using a two-sample Mendelian randomization (MR) analysis. METHODS We retrieved summary-level datasets for three COVID-19 phenotypes (COVID-19 susceptibility, COVID-19 hospitalization, and COVID-19 severity) and epilepsy from the genome-wide association studies conducted by the COVID-19 Host Genetics Initiative (COVID-19 HGI) and International League Against Epilepsy (ILAE) consortium, respectively. To analyze the final results, nine MR analytic methods were utilized. The inverse-variance weighted (IVW) method was chosen as the primary approach for data analysis to evaluate the potential causal effect. Other MR analytic methods (MR-Egger regression, weighted median estimator, mode based-estimator, and MR-PRESSO) were used as a supplement to IVW to ensure the robustness of the results. RESULTS The IVW approach demonstrated no causal association between any genetically predicted COVID-19 phenotype and the risk of epilepsy [COVID-19 susceptibility: odds ratio (OR) = 0.99, 95% confidence interval (CI) = 0.86-1.14, p = 0.92; COVID-19 hospitalization: OR = 1.00, 95% CI = 0.96-1.04, p = 0.95; COVID-19 severity: OR = 0.99, 95% CI = 0.96-1.01, p = 0.25]. Other MR complementary methods revealed consistent results. Additionally, no evidence for heterogeneity and horizontal pleiotropy was found. SIGNIFICANCE This MR study revealed no genetically predicted causal relationship between COVID-19 phenotypes and epilepsy.
Collapse
Affiliation(s)
- Zihua He
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Yinghong Li
- The Department of NeurologyInstitute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M)ChengduChina
| | - Shengyi Liu
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Jinmei Li
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Liang XZ, Tang YP, Wang JG. The youngest infant with COVID-19-associated necrotizing encephalitis in Asia: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231211713. [PMID: 38022854 PMCID: PMC10658771 DOI: 10.1177/2050313x231211713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Acute necrotic encephalopathy in children is a very rare complication of severe acute respiratory syndrome coronavirus 2 infection and has rarely been reported worldwide. A 45-day-old girl was admitted to our hospital with fever and listlessness. A nose swab tested positive for the novel coronavirus nucleic acid, and her cerebrospinal fluid was positive for severe acute respiratory syndrome coronavirus 2. An early head magnetic resonance imaging scan indicated multiple abnormal signals in her bilateral cerebral hemispheres, and encephalitis was diagnosed. Twenty-three days after hospitalization, bilateral cerebral atrophy-like changes were observed on magnetic resonance imaging, with multiple softening lesions in the bilateral cerebral hemispheres, accompanied by convulsions. She was admitted to the hospital for mechanically assisted ventilation, and her condition improved after treatment of her symptoms with antiepileptic medication, anti-infection drugs, glucocorticoids, and immunoglobulins. Acute necrotic encephalopathy associated with severe acute respiratory syndrome coronavirus 2 infection in children should be detected and treated as early as possible. Satisfactory short-term efficacy can be obtained, but long-term neurological sequelae often linger.
Collapse
Affiliation(s)
- Xing-Zhen Liang
- Department of Pediatrics, Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu-Peng Tang
- Department of Pediatrics, Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ji-Gan Wang
- Department of Pediatrics, Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
13
|
Vimercati A, De Nola R, Dellino M, Vinci L, Ricci I, Malvasi A, Damiani GR, Gaetani M, Lamanna B, Cicinelli E, Salzillo C, Marzullo A, Resta L, Cascardi E, Cazzato G. SARS-CoV-2 Infection in the Second Trimester of Pregnancy: A Case Report of Fetal Intraventricular Hemorrhage After Critical COVID-19 Infection and a Brief Review of the Literature. Cureus 2023; 15:e48659. [PMID: 38090414 PMCID: PMC10712690 DOI: 10.7759/cureus.48659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 10/16/2024] Open
Abstract
More than three and a half years have passed since the start of the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there have been several studies in the literature about the different damage and symptom patterns related to the condition; particular attention has been paid to the transmission of the disease from pregnant mothers to fetus. In this report, we present the case of a 36-year-old patient with a history of two cesarean sections (CS), two miscarriages, and hypothyroidism on replacement therapy, who contracted COVID-19 during the 15th week of gestation. Ultrasound (US) examination at 22 weeks revealed regular fetal biometry and bilateral ventriculomegaly, highly suggestive of massive intracerebral hemorrhage. The patient opted for the interruption of pregnancy. Given the critical maternal COVID-19 complications, especially tracheoesophageal fistula and the patient's two previous cesareans, we decided on an abortive CS at 23 weeks of gestation, and the samples were sent to the Pathology Department. Histologic analysis showed massive intervillous deposition of fibrin and inflammatory infiltration with hotspots of necrotic deciduitis and confirmed massive cerebral hemorrhage in the fetus. This morphological appearance was consistent with COVID-19 infection and probable fetal oxygenation compromise related to deciduitis. Immunoexpression of anti-SARS-CoV-2 S1 antibody was almost entirely positive at the level of syncytiotrophoblast cells and maternal leukocytes in the absence of a clear signal in the fetal circulation. Conversely, in the brain, immunoexpression of angiotensin-converting enzyme 2 (ACE2) and the S1 subunit of the spike protein of SARS-CoV-2, detected by a monoclonal antibody, was almost entirely negative, suggesting that there was no infection in the brain and that the massive intraventricular hemorrhage was probably a secondary effect of placental damage.
Collapse
Affiliation(s)
- Antonella Vimercati
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Rosalba De Nola
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Miriam Dellino
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Lorenzo Vinci
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Ilaria Ricci
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | | | - Gianluca Raffaello Damiani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Maria Gaetani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Bruno Lamanna
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Ettore Cicinelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Cecilia Salzillo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Andrea Marzullo
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, ITA
| | - Leonardo Resta
- Department of Pathology, University of Bari Aldo Moro, Bari, ITA
| | - Eliano Cascardi
- Pathology Unit, FPO-IRCCS Candiolo Cancer Institute, University of Turin, Turin, ITA
| | - Gerardo Cazzato
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| |
Collapse
|
14
|
Wong AC, Devason AS, Umana IC, Cox TO, Dohnalová L, Litichevskiy L, Perla J, Lundgren P, Etwebi Z, Izzo LT, Kim J, Tetlak M, Descamps HC, Park SL, Wisser S, McKnight AD, Pardy RD, Kim J, Blank N, Patel S, Thum K, Mason S, Beltra JC, Michieletto MF, Ngiow SF, Miller BM, Liou MJ, Madhu B, Dmitrieva-Posocco O, Huber AS, Hewins P, Petucci C, Chu CP, Baraniecki-Zwil G, Giron LB, Baxter AE, Greenplate AR, Kearns C, Montone K, Litzky LA, Feldman M, Henao-Mejia J, Striepen B, Ramage H, Jurado KA, Wellen KE, O'Doherty U, Abdel-Mohsen M, Landay AL, Keshavarzian A, Henrich TJ, Deeks SG, Peluso MJ, Meyer NJ, Wherry EJ, Abramoff BA, Cherry S, Thaiss CA, Levy M. Serotonin reduction in post-acute sequelae of viral infection. Cell 2023; 186:4851-4867.e20. [PMID: 37848036 PMCID: PMC11227373 DOI: 10.1016/j.cell.2023.09.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.
Collapse
Affiliation(s)
- Andrea C Wong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ashwarya S Devason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iboro C Umana
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy O Cox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Molecular Bio Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Perla
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Patrick Lundgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zienab Etwebi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luke T Izzo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jihee Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Tetlak
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone L Park
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stephen Wisser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D McKnight
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwon Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina Thum
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Mason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Beltra
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michaël F Michieletto
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brittany M Miller
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Megan J Liou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bhoomi Madhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Oxana Dmitrieva-Posocco
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alex S Huber
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Hewins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Candice P Chu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwen Baraniecki-Zwil
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Amy E Baxter
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charlotte Kearns
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Montone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly Ramage
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kellie A Jurado
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA; Rush Center for Integrated Microbiome and Chronobiology Research, Chicago, IL, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Abramoff
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Kotzalidis GD, Ferrara OM, Margoni S, Ieritano V, Restaino A, Bernardi E, Fischetti A, Catinari A, Monti L, Chieffo DPR, Simonetti A, Sani G. Are the Post-COVID-19 Posttraumatic Stress Disorder (PTSD) Symptoms Justified by the Effects of COVID-19 on Brain Structure? A Systematic Review. J Pers Med 2023; 13:1140. [PMID: 37511753 PMCID: PMC10381510 DOI: 10.3390/jpm13071140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
COVID-19 affects brain function, as deduced by the "brain fog" that is often encountered in COVID-19 patients and some cognitive impairment that is observed in many a patient in the post-COVID-19 period. Approximately one-third of patients, even when they have recovered from the acute somatic disease, continue to show posttraumatic stress disorder (PTSD) symptoms. We hypothesized that the persistent changes induced by COVID-19 on brain structure would overlap with those associated with PTSD. We performed a thorough PubMed search on 25 April 2023 using the following strategy: ((posttraumatic OR PTSD) AND COVID-19 AND (neuroimaging OR voxel OR VBM OR freesurfer OR structural OR ROI OR whole-brain OR hippocamp* OR amygd* OR "deep gray matter" OR "cortical thickness" OR caudate OR striatum OR accumbens OR putamen OR "regions of interest" OR subcortical)) OR (COVID-19 AND brain AND (voxel[ti] OR VBM[ti] OR magnetic[ti] OR resonance[ti] OR imaging[ti] OR neuroimaging[ti] OR neuroimage[ti] OR positron[ti] OR photon*[ti] OR PET[ti] OR SPET[ti] OR SPECT[ti] OR spectroscop*[ti] OR MRS[ti])), which produced 486 records and two additional records from other sources, of which 36 were found to be eligible. Alterations were identified and described and plotted against the ordinary PTSD imaging findings. Common elements were hypometabolism in the insula and caudate nucleus, reduced hippocampal volumes, and subarachnoid hemorrhages, while white matter hyperintensities were widespread in both PTSD and post-COVID-19 brain infection. The comparison partly supported our initial hypothesis. These data may contribute to further investigation of the effects of long COVID on brain structure and function.
Collapse
Affiliation(s)
- Georgios D Kotzalidis
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza-Università di Roma, 00189 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
- Centro Lucio Bini, 00193 Rome, Italy
| | - Ottavia Marianna Ferrara
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Stella Margoni
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Valentina Ieritano
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Antonio Restaino
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Evelina Bernardi
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Alessia Fischetti
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Antonello Catinari
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Laura Monti
- UOS Clinical Psychology, Clinical Government, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Daniela Pia Rosaria Chieffo
- UOS Clinical Psychology, Clinical Government, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Women, Children and Public Health Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Alessio Simonetti
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
- Centro Lucio Bini, 00193 Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
16
|
de Broucker T. [COVID-19: Neurological manifestations and complications during the acute phase of the disease]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2023; 207:S0001-4079(23)00190-5. [PMID: 38620177 PMCID: PMC10293933 DOI: 10.1016/j.banm.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2024]
Abstract
The neurological manifestations and complications of the acute phase of COVID-19 are numerous. They mainly concern the central nervous system in the frequent forms of encephalopathy, encephalitis and neurovascular pathologies. Peripheral neurological manifestations mainly include acute polyneuropathies such as Guillain-Barré syndrome and intensive care neuromyopathies. Most of these manifestations were described during the first wave of the pandemic. The epidemiological, clinical, paraclinical, pathophysiological and therapeutic aspects are addressed in this general review of the literature published from 2020 to early 2023.
Collapse
|
17
|
Pattanaik A, Bhandarkar B S, Lodha L, Marate S. SARS-CoV-2 and the nervous system: current perspectives. Arch Virol 2023; 168:171. [PMID: 37261613 PMCID: PMC10232347 DOI: 10.1007/s00705-023-05801-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/15/2023] [Indexed: 06/02/2023]
Abstract
SARS-CoV-2 infection frequently causes neurological impairment in both adults and children. Recent publications have described significant aspects of the viral pathophysiology associated with neurological dysfunction. In theory, neurological manifestations following SARS-CoV-2 infection may be caused directly by the effects of the virus infecting the brain or indirectly by the local and systemic immune responses against the virus. Neurological manifestations can occur during the acute phase as well as in the post-acute phase of the infection. In this review, we discuss recent literature describing the association of nervous system disorders with COVID-19.
Collapse
Affiliation(s)
- Amrita Pattanaik
- Manipal Institute of Virology, Manipal Academy of Higher Education (MAHE), PIN-576104, Manipal, Karnataka, India.
| | - Sushma Bhandarkar B
- Manipal Institute of Virology, Manipal Academy of Higher Education (MAHE), PIN-576104, Manipal, Karnataka, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), PIN-560029, Bengaluru, Karnataka, India
| | - Srilatha Marate
- Manipal Institute of Virology, Manipal Academy of Higher Education (MAHE), PIN-576104, Manipal, Karnataka, India
| |
Collapse
|
18
|
Gelpi E, Klotz S, Beyerle M, Wischnewski S, Harter V, Kirschner H, Stolz K, Reisinger C, Lindeck-Pozza E, Zoufaly A, Leoni M, Gorkiewicz G, Zacharias M, Haberler C, Hainfellner J, Woehrer A, Hametner S, Roetzer T, Voigtländer T, Ricken G, Endmayr V, Haider C, Ludwig J, Polt A, Wilk G, Schmid S, Erben I, Nguyen A, Lang S, Simonitsch-Klupp I, Kornauth C, Nackenhorst M, Kläger J, Kain R, Chott A, Wasicky R, Krause R, Weiss G, Löffler-Rag J, Berger T, Moser P, Soleiman A, Asslaber M, Sedivy R, Klupp N, Klimpfinger M, Risser D, Budka H, Schirmer L, Pröbstel AK, Höftberger R. Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence. Viruses 2023; 15:908. [PMID: 37112888 PMCID: PMC10144140 DOI: 10.3390/v15040908] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND There is an urgent need to better understand the mechanisms underlying acute and long-term neurological symptoms after COVID-19. Neuropathological studies can contribute to a better understanding of some of these mechanisms. METHODS We conducted a detailed postmortem neuropathological analysis of 32 patients who died due to COVID-19 during 2020 and 2021 in Austria. RESULTS All cases showed diffuse white matter damage with a diffuse microglial activation of a variable severity, including one case of hemorrhagic leukoencephalopathy. Some cases revealed mild inflammatory changes, including olfactory neuritis (25%), nodular brainstem encephalitis (31%), and cranial nerve neuritis (6%), which were similar to those observed in non-COVID-19 severely ill patients. One previously immunosuppressed patient developed acute herpes simplex encephalitis. Acute vascular pathologies (acute infarcts 22%, vascular thrombosis 12%, diffuse hypoxic-ischemic brain damage 40%) and pre-existing small vessel diseases (34%) were frequent findings. Moreover, silent neurodegenerative pathologies in elderly persons were common (AD neuropathologic changes 32%, age-related neuronal and glial tau pathologies 22%, Lewy bodies 9%, argyrophilic grain disease 12.5%, TDP43 pathology 6%). CONCLUSIONS Our results support some previous neuropathological findings of apparently multifactorial and most likely indirect brain damage in the context of SARS-CoV-2 infection rather than virus-specific damage, and they are in line with the recent experimental data on SARS-CoV-2-related diffuse white matter damage, microglial activation, and cytokine release.
Collapse
Affiliation(s)
- Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Miriam Beyerle
- Departments of Neurology, Biomedicine and Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland; (M.B.); (A.-K.P.)
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Department of Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland;
| | - Sven Wischnewski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Verena Harter
- Department of Pathology, Klinik Favoriten, 1100 Vienna, Austria (H.K.); (R.S.); (M.K.)
| | - Harald Kirschner
- Department of Pathology, Klinik Favoriten, 1100 Vienna, Austria (H.K.); (R.S.); (M.K.)
| | - Katharina Stolz
- Department of Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (C.R.); (N.K.); (D.R.)
| | - Christoph Reisinger
- Department of Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (C.R.); (N.K.); (D.R.)
| | | | - Alexander Zoufaly
- Intensive Care Unit, Klinik Favoriten, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Marlene Leoni
- D&F Institute of Pathology, Neuropathology, Medical University Graz, 8036 Graz, Austria; (M.L.); (G.G.); (M.Z.); (M.A.)
| | - Gregor Gorkiewicz
- D&F Institute of Pathology, Neuropathology, Medical University Graz, 8036 Graz, Austria; (M.L.); (G.G.); (M.Z.); (M.A.)
| | - Martin Zacharias
- D&F Institute of Pathology, Neuropathology, Medical University Graz, 8036 Graz, Austria; (M.L.); (G.G.); (M.Z.); (M.A.)
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Till Voigtländer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Judith Ludwig
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Polt
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Wilk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Susanne Schmid
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Irene Erben
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Anita Nguyen
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Susanna Lang
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (S.L.); (I.S.-K.); (C.K.); (M.N.); (R.K.)
| | - Ingrid Simonitsch-Klupp
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (S.L.); (I.S.-K.); (C.K.); (M.N.); (R.K.)
| | - Christoph Kornauth
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (S.L.); (I.S.-K.); (C.K.); (M.N.); (R.K.)
- Münchner Leukämielabor, 81377 Munich, Germany
| | - Maja Nackenhorst
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (S.L.); (I.S.-K.); (C.K.); (M.N.); (R.K.)
| | - Johannes Kläger
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (S.L.); (I.S.-K.); (C.K.); (M.N.); (R.K.)
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (S.L.); (I.S.-K.); (C.K.); (M.N.); (R.K.)
| | - Andreas Chott
- Institute of Pathology, Klinik Ottakring, 1160 Vienna, Austria; (A.C.); (R.W.)
| | - Richard Wasicky
- Institute of Pathology, Klinik Ottakring, 1160 Vienna, Austria; (A.C.); (R.W.)
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Günter Weiss
- Department of Internal Medicine and Pulmonology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.W.); (J.L.-R.)
| | - Judith Löffler-Rag
- Department of Internal Medicine and Pulmonology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.W.); (J.L.-R.)
| | - Thomas Berger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patrizia Moser
- Department of Neuropathology, Tirol Kliniken GmbH, 6020 Innsbruck, Austria; (P.M.); (A.S.)
| | - Afshin Soleiman
- Department of Neuropathology, Tirol Kliniken GmbH, 6020 Innsbruck, Austria; (P.M.); (A.S.)
| | - Martin Asslaber
- D&F Institute of Pathology, Neuropathology, Medical University Graz, 8036 Graz, Austria; (M.L.); (G.G.); (M.Z.); (M.A.)
| | - Roland Sedivy
- Department of Pathology, Klinik Favoriten, 1100 Vienna, Austria (H.K.); (R.S.); (M.K.)
| | - Nikolaus Klupp
- Department of Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (C.R.); (N.K.); (D.R.)
| | - Martin Klimpfinger
- Department of Pathology, Klinik Favoriten, 1100 Vienna, Austria (H.K.); (R.S.); (M.K.)
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (S.L.); (I.S.-K.); (C.K.); (M.N.); (R.K.)
| | - Daniele Risser
- Department of Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (C.R.); (N.K.); (D.R.)
| | - Herbert Budka
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Lucas Schirmer
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Department of Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland;
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Anne-Katrin Pröbstel
- Departments of Neurology, Biomedicine and Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland; (M.B.); (A.-K.P.)
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Department of Clinical Research, University Hospital and University of Basel, 4031 Basel, Switzerland;
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (S.K.); (C.H.); (J.H.); (A.W.); (S.H.); (T.R.); (T.V.); (V.E.); (C.H.); (J.L.); (A.P.); (G.W.); (S.S.); (I.E.); (A.N.); (T.B.); (H.B.)
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
19
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
20
|
Emmenegger M, De Cecco E, Lamparter D, Jacquat RP, Riou J, Menges D, Ballouz T, Ebner D, Schneider MM, Morales IC, Doğançay B, Guo J, Wiedmer A, Domange J, Imeri M, Moos R, Zografou C, Batkitar L, Madrigal L, Schneider D, Trevisan C, Gonzalez-Guerra A, Carrella A, Dubach IL, Xu CK, Meisl G, Kosmoliaptsis V, Malinauskas T, Burgess-Brown N, Owens R, Hatch S, Mongkolsapaya J, Screaton GR, Schubert K, Huck JD, Liu F, Pojer F, Lau K, Hacker D, Probst-Müller E, Cervia C, Nilsson J, Boyman O, Saleh L, Spanaus K, von Eckardstein A, Schaer DJ, Ban N, Tsai CJ, Marino J, Schertler GF, Ebert N, Thiel V, Gottschalk J, Frey BM, Reimann RR, Hornemann S, Ring AM, Knowles TP, Puhan MA, Althaus CL, Xenarios I, Stuart DI, Aguzzi A. Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region. iScience 2023; 26:105928. [PMID: 36619367 PMCID: PMC9811913 DOI: 10.1016/j.isci.2023.105928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - David Lamparter
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Raphaël P.B. Jacquat
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Julien Riou
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Tala Ballouz
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Matthias M. Schneider
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - Berre Doğançay
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Anne Wiedmer
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Julie Domange
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Marigona Imeri
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chryssa Zografou
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Leyla Batkitar
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Dezirae Schneider
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | | | | | - Irina L. Dubach
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Catherine K. Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Tomas Malinauskas
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | | | - Ray Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- The Rosalind Franklin Institute, Harwell Campus, Oxford OX11 0FA, UK
| | - Stephanie Hatch
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gavin R. Screaton
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - John D. Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Florence Pojer
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - David Hacker
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | | | - Carlo Cervia
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Lanja Saleh
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ching-Ju Tsai
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Jacopo Marino
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Gebhard F.X. Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jochen Gottschalk
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Beat M. Frey
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tuomas P.J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Christian L. Althaus
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
- Agora Center, University of Lausanne, 25 Avenue du Bugnon, 1005 Lausanne, Switzerland
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
21
|
Suzzi S, Tsitsou-Kampeli A, Schwartz M. The type I interferon antiviral response in the choroid plexus and the cognitive risk in COVID-19. Nat Immunol 2023; 24:220-224. [PMID: 36717725 DOI: 10.1038/s41590-022-01410-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
The type I interferon (IFN) response is the body's typical immune defense against viruses. Previous studies linked high expression of genes encoding type I IFNs in the brain's choroid plexus to cognitive decline under virus-free conditions in aging and neurodegeneration. Multiple reports have documented persisting cognitive symptoms following recovery from COVID-19. Cumulative evidence shows that the choroid plexus is one of the brain regions most vulnerable to infection with the coronavirus SARS-CoV-2, and manifests increased expression of genes encoding type I IFNs even in the absence of viral traces within the brain. In this Perspective, we propose that the type I IFN defensive immune response to SARS-CoV-2 infection in the choroid plexus poses a risk to cognitive function if not resolved in a timely manner.
Collapse
Affiliation(s)
- Stefano Suzzi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Wallach T, Raden M, Hinkelmann L, Brehm M, Rabsch D, Weidling H, Krüger C, Kettenmann H, Backofen R, Lehnardt S. Distinct SARS-CoV-2 RNA fragments activate Toll-like receptors 7 and 8 and induce cytokine release from human macrophages and microglia. Front Immunol 2023; 13:1066456. [PMID: 36713399 PMCID: PMC9880480 DOI: 10.3389/fimmu.2022.1066456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The pandemic coronavirus disease 19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is marked by thromboembolic events and an inflammatory response throughout the body, including the brain. Methods Employing the machine learning approach BrainDead we systematically screened for SARS-CoV-2 genome-derived single-stranded (ss) RNA fragments with high potential to activate the viral RNA-sensing innate immune receptors Toll-like receptor (TLR)7 and/or TLR8. Analyzing HEK TLR7/8 reporter cells we tested such RNA fragments with respect to their potential to induce activation of human TLR7 and TLR8 and to activate human macrophages, as well as iPSC-derived human microglia, the resident immune cells in the brain. Results We experimentally validated several sequence-specific RNA fragment candidates out of the SARS-CoV-2 RNA fragments predicted in silico as activators of human TLR7 and TLR8. Moreover, these SARS-CoV-2 ssRNAs induced cytokine release from human macrophages and iPSC-derived human microglia in a sequence- and species-specific fashion. Discussion Our findings determine TLR7 and TLR8 as key sensors of SARS-CoV-2-derived ssRNAs and may deepen our understanding of the mechanisms how this virus triggers, but also modulates an inflammatory response through innate immune signaling.
Collapse
Affiliation(s)
- Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Raden
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lukas Hinkelmann
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mariam Brehm
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik Rabsch
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hannah Weidling
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Rolf Backofen
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,*Correspondence: Seija Lehnardt, ; Rolf Backofen,
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,*Correspondence: Seija Lehnardt, ; Rolf Backofen,
| |
Collapse
|
23
|
COVID-19-associated monocytic encephalitis (CAME): histological and proteomic evidence from autopsy. Signal Transduct Target Ther 2023; 8:24. [PMID: 36609561 PMCID: PMC9816522 DOI: 10.1038/s41392-022-01291-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Severe neurological symptoms are associated with Coronavirus disease 2019 (COVID-19). However, the morphologic features, pathological nature and their potential mechanisms in patient brains have not been revealed despite evidence of neurotropic infection. In this study, neuropathological damages and infiltrating inflammatory cells were quantitatively evaluated by immunohistochemical staining, ultrastructural examination under electron microscopy, and an image threshold method, in postmortem brains from nine critically ill COVID-19 patients and nine age-matched cadavers of healthy individuals. Differentially expressed proteins were identified by quantitative proteomic assays. Histopathological findings included neurophagocytosis, microglia nodules, satellite phenomena, extensive edema, focal hemorrhage, and infarction, as well as infiltrating mononuclear cells. Immunostaining of COVID-19 brains revealed extensive activation of both microglia and astrocytes, severe damage of the blood-brain barrier (BBB) and various degrees of perivascular infiltration by predominantly CD14+/CD16+/CD141+/CCR7+/CD11c+ monocytes and occasionally CD4+/CD8+ T lymphocytes. Quantitative proteomic assays combined with bioinformatics analysis identified upregulated proteins predominantly involved in immune responses, autophagy and cellular metabolism in COVID-19 patient brains compared with control brains. Proteins involved in brain development, neuroprotection, and extracellular matrix proteins of the basement membrane were downregulated, potentially caused by the activation of transforming growth factor β receptor and vascular endothelial growth factor signaling pathways. Thus, our results define histopathological and molecular profiles of COVID-19-associated monocytic encephalitis (CAME) and suggest potential therapeutic targets.
Collapse
|
24
|
Dimitriadis K, Schmidbauer M, Bösel J. [Neurointensive care medicine and COVID-19]. DER NERVENARZT 2023; 94:84-92. [PMID: 36520214 PMCID: PMC9751507 DOI: 10.1007/s00115-022-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/16/2022]
Abstract
This review article summarizes important findings on the interfaces between the coronavirus disease 2019 (COVID-19) pandemic and neurology with an emphasis of the implications for neurointensive care medicine. More specifically, the prevalence, pathomechanisms and impact of neurological manifestations are reported. The most common neurological manifestations of critically ill COVID-19 patients are cerebrovascular complications, encephalopathies and intensive care unit-acquired weakness (ICUAW). A relevant direct pathophysiological effect by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) itself has not yet been established with certainty. In fact, indirect systemic inflammatory processes triggered by the viral infection and side effects of intensive care treatment are much more likely to cause the reported sequelae. The impact of the pandemic on patients with neurological disorders and neurointensive care medicine is far-reaching but not yet sufficiently studied.
Collapse
Affiliation(s)
- Konstantinos Dimitriadis
- Neurologische Klinik, Universitätsklinikum LMU München, München, Deutschland.
- Institut für Schlaganfall- und Demenzforschung (ISD), LMU München, Feodor-Lynen-Str. 17, 81377, München, Deutschland.
| | - Moritz Schmidbauer
- Neurologische Klinik, Universitätsklinikum LMU München, München, Deutschland
| | - Julian Bösel
- Neurologische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
25
|
Khan M, Clijsters M, Choi S, Backaert W, Claerhout M, Couvreur F, Van Breda L, Bourgeois F, Speleman K, Klein S, Van Laethem J, Verstappen G, Dereli AS, Yoo SJ, Zhou H, Dan Do TN, Jochmans D, Laenen L, Debaveye Y, De Munter P, Gunst J, Jorissen M, Lagrou K, Meersseman P, Neyts J, Thal DR, Topsakal V, Vandenbriele C, Wauters J, Mombaerts P, Van Gerven L. Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients. Neuron 2022; 110:3919-3935.e6. [PMID: 36446381 PMCID: PMC9647025 DOI: 10.1016/j.neuron.2022.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Can SARS-CoV-2 hitchhike on the olfactory projection and take a direct and short route from the nose into the brain? We reasoned that the neurotropic or neuroinvasive capacity of the virus, if it exists, should be most easily detectable in individuals who died in an acute phase of the infection. Here, we applied a postmortem bedside surgical procedure for the rapid procurement of tissue, blood, and cerebrospinal fluid samples from deceased COVID-19 patients infected with the Delta, Omicron BA.1, or Omicron BA.2 variants. Confocal imaging of sections stained with fluorescence RNAscope and immunohistochemistry afforded the light-microscopic visualization of extracellular SARS-CoV-2 virions in tissues. We failed to find evidence for viral invasion of the parenchyma of the olfactory bulb and the frontal lobe of the brain. Instead, we identified anatomical barriers at vulnerable interfaces, exemplified by perineurial olfactory nerve fibroblasts enwrapping olfactory axon fascicles in the lamina propria of the olfactory mucosa.
Collapse
Affiliation(s)
- Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marnick Clijsters
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Wout Backaert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Michiel Claerhout
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Floor Couvreur
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laure Van Breda
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Florence Bourgeois
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Kato Speleman
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Sam Klein
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Johan Van Laethem
- Department of Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gill Verstappen
- Department of Otorhinolaryngology - Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Seung-Jun Yoo
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Thuc Nguyen Dan Do
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lies Laenen
- Department of Laboratory Medicine & National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Yves Debaveye
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Paul De Munter
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Mark Jorissen
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine & National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Neuropathology, Department of Imaging & Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology - Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| | - Laura Van Gerven
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Latorre D. Autoimmunity and SARS-CoV-2 infection: Unraveling the link in neurological disorders. Eur J Immunol 2022; 52:1561-1571. [PMID: 35833748 PMCID: PMC9350097 DOI: 10.1002/eji.202149475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Abstract
According to the World Health Organization, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 400 million people and caused over 5 million deaths globally. The infection is associated with a wide spectrum of clinical manifestations, ranging from no signs of illness to severe pathological complications that go beyond the typical respiratory symptoms. On this note, new-onset neurological and neuropsychiatric syndromes have been increasingly reported in a large fraction of COVID-19 patients, thus potentially representing a significant public health threat. Although the underlying pathophysiological mechanisms remain elusive, a growing body of evidence suggests that SARS-CoV-2 infection may trigger an autoimmune response, which could potentially contribute to the establishment and/or exacerbation of neurological disorders in COVID-19 patients. Shedding light on this aspect is urgently needed for the development of effective therapeutic intervention. This review highlights the current knowledge of the immune responses occurring in Neuro-COVID patients and discusses potential immune-mediated mechanisms by which SARS-CoV-2 infection may trigger neurological complications.
Collapse
|
27
|
Asseri AA, Assiri M, Alshehri MA, Asseri M, Ali AS, Awadalla NJ. Acute encephalopathy in a 6-year-old child with concurrent COVID-19 infection: a case report from Saudi Arabia. Int J Infect Dis 2022; 123:76-79. [PMID: 35998873 PMCID: PMC9396438 DOI: 10.1016/j.ijid.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a global health crisis that has impacted the world with heavy economic and social losses. In the early days of the pandemic, pediatric COVID-19 was well-known for its low infectivity and mortality rates as well as its benign clinical outcomes. Herein, we report the case of a 6-year-old girl with COVID-19-associated encephalopathy without respiratory symptoms. To the best of our knowledge, this is the first child reported from Saudi Arabia with COVID-19-induced encephalopathy. A 6-year-old patient with COVID-19 was presented to the Abha Maternity and Child Hospital in southeastern Saudi Arabia. Routine clinical and laboratory examinations revealed normal findings. Despite the absence of COVID-19 respiratory manifestations, the patient manifested COVID-19-related encephalopathy. The patient responded well to pulse steroid, favipiravir, and symptomatic seizure therapies. The patient recovered completely without any neurologic morbidities. A COVID-19-related encephalopathy was observed for the first time in Saudi Arabia among pediatric patients. Clinicians should be alert to potential neurologic complications associated with COVID-19. It should be considered in the differential diagnosis of children presenting with acute encephalopathy, even in the absence of respiratory symptoms. To avoid long-term neurologic sequelae, prompt seizure and immunosuppressive therapies are essential.
Collapse
Affiliation(s)
| | - Mohammed Assiri
- Department of Pediatrics, Abha Maternity and Children Hospital, Abha 62521, Saudi Arabia
| | | | - Malak Asseri
- Department of Pediatrics, Abha Maternity and Children Hospital, Abha 62521, Saudi Arabia
| | - Abdelwahid Saeed Ali
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Nabil J. Awadalla
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia,Department of Community Medicine, Mansoura University, Mansoura 35516, Egypt,Corresponding author: Dr. Nabil Joseph Awadalla, Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia. Telephone: +966533487152
| |
Collapse
|
28
|
Heller D, Pandit R, Pandit T, Morris GP. COVID-19 Encephalopathy: Delayed Onset in Unvaccinated Patients. Cureus 2022; 14:e27932. [PMID: 36120267 PMCID: PMC9464455 DOI: 10.7759/cureus.27932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
COVID-19 infections have a broad spectrum of severity, with more severe symptoms observed in elderly patients, patients with underlying comorbidities, and patients with unvaccinated status. This case series aims to highlight two cases of unvaccinated patients who developed COVID-19 encephalopathy, contrasted with a vaccinated patient with similar risk factors. This article highlights the unique characteristics of COVID-19 encephalopathy to guide clinicians while approaching the broad diagnosis of acute encephalopathy or altered mental state in hospitalized patients. Current literature was reviewed and summarized the information available regarding encephalopathy separate from the more complex encephalitis and encephalomyelitis.
Collapse
|