1
|
Uribe-García A, Medina-Reyes EI, Flores-Reyes CA, Zagal-Salinas AA, Ispanixtlahuatl-Meraz O, Delgado-Armenta E, Santibáñez-Andrade M, Flores CM, Sánchez-Pérez Y, García-Cuéllar CM, Chirino YI. Food grade titanium dioxide induced endoplasmic reticulum stress in colon cells: Comparison between normal and colorectal carcinoma cells. Toxicol In Vitro 2024:105957. [PMID: 39461655 DOI: 10.1016/j.tiv.2024.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Food-grade titanium dioxide (E171) has been under scrutiny in the last decade since its possible adverse effects; however, the cellular mechanisms underlying E171 toxicity have not been thoroughly described. AIM We aimed to compare the effects of E171 on endoplasmic reticulum (ER) homeostasis in normal and cancer colon cells. EXPERIMENTAL DESIGN We exposed normal, carcinoma, and adenocarcinoma cells to 0.1, 1, 10, 50 and 100 μg/cm2 of E171 for 24, 48 and 72 h, and we evaluated ER stress, cell viability, titanium uptake, intracellular calcium concentration, and gene expression related to unfolded protein response (UPR) and chaperone pathways. RESULTS Cell viability decreased only after 72 h of exposure to 100 μg/cm2 of E171. Adenocarcinoma cells internalized higher titanium amounts than normal and carcinoma cells, but the effects in ER distribution, intracellular calcium concentration, and gene expression were similar among the three cell lines. The expression of UPR and chaperone pathways were downregulated at the lowest concentrations but upregulated at the highest concentrations in the three cell lines. CONCLUSION E171 induces ER stress through alterations in ER distribution, intracellular calcium, and UPR and chaperone protein pathways.
Collapse
Affiliation(s)
- Alina Uribe-García
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP 54090, Mexico.
| | - Estefany I Medina-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP 54090, Mexico.
| | - Carlos A Flores-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP 54090, Mexico
| | - Alejandro A Zagal-Salinas
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP 54090, Mexico
| | - Octavio Ispanixtlahuatl-Meraz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP 54090, Mexico
| | - Eduardo Delgado-Armenta
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP 54090, Mexico
| | - Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, Ciudad de México CP 14080, Mexico.
| | - Cesar M Flores
- Laboratorio de Fisiología Vegetal, UBIPRO Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala UNAM, Tlalnepantla de Baz, Estado de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, Ciudad de México CP 14080, Mexico
| | - Claudia M García-Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, Ciudad de México CP 14080, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP 54090, Mexico.
| |
Collapse
|
2
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024:d4en00488d. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
3
|
Castagnola V, Tomati V, Boselli L, Braccia C, Decherchi S, Pompa PP, Pedemonte N, Benfenati F, Armirotti A. Sources of biases in the in vitro testing of nanomaterials: the role of the biomolecular corona. NANOSCALE HORIZONS 2024; 9:799-816. [PMID: 38563642 DOI: 10.1039/d3nh00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The biological fate of nanomaterials (NMs) is driven by specific interactions through which biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition of this layer, called the biomolecular corona (BMC), depends on both the physical-chemical features of the NMs and the biological media in which the NMs are dispersed and cells grow. In this work, we demonstrate that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration, with NMs being transported by the blood. For this purpose, we undertook a comparative journey involving proteomics, lipidomics, high throughput multiparametric in vitro screening, and single molecular feature analysis to investigate the molecular details behind this in vivo/in vitro bias. Our work indirectly highlights the need to introduce novel, more physiological-like media closer in composition to human plasma to produce realistic in vitro screening data for NMs. We also aim to set the basis to reduce this in vitro-in vivo mismatch, which currently limits the formulation of NMs for clinical settings.
Collapse
Affiliation(s)
- Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Sergio Decherchi
- Data Science and Computation Facility, Istituto Italiano di Tecnologia, via Morego, 30, Genova, 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
4
|
Brouwer H, Porbahaie M, Boeren S, Busch M, Bouwmeester H. The in vitro gastrointestinal digestion-associated protein corona of polystyrene nano- and microplastics increases their uptake by human THP-1-derived macrophages. Part Fibre Toxicol 2024; 21:4. [PMID: 38311718 PMCID: PMC10838446 DOI: 10.1186/s12989-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Micro- and nanoplastics (MNPs) represent one of the most widespread environmental pollutants of the twenty-first century to which all humans are orally exposed. Upon ingestion, MNPs pass harsh biochemical conditions within the gastrointestinal tract, causing a unique protein corona on the MNP surface. Little is known about the digestion-associated protein corona and its impact on the cellular uptake of MNPs. Here, we systematically studied the influence of gastrointestinal digestion on the cellular uptake of neutral and charged polystyrene MNPs using THP-1-derived macrophages. RESULTS The protein corona composition was quantified using LC‒MS-MS-based proteomics, and the cellular uptake of MNPs was determined using flow cytometry and confocal microscopy. Gastrointestinal digestion resulted in a distinct protein corona on MNPs that was retained in serum-containing cell culture medium. Digestion increased the uptake of uncharged MNPs below 500 nm by 4.0-6.1-fold but did not affect the uptake of larger sized or charged MNPs. Forty proteins showed a good correlation between protein abundance and MNP uptake, including coagulation factors, apolipoproteins and vitronectin. CONCLUSION This study provides quantitative data on the presence of gastrointestinal proteins on MNPs and relates this to cellular uptake, underpinning the need to include the protein corona in hazard assessment of MNPs.
Collapse
Affiliation(s)
- Hugo Brouwer
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Mojtaba Porbahaie
- Laboratory of Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Mathias Busch
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
5
|
Li Z, Huang Y, Zhong Y, Liang B, Yang X, Wang Q, Sui H, Huang Z. Impact of food matrices on the characteristics and cellular toxicities of ingested nanoplastics in a simulated digestive tract. Food Chem Toxicol 2023; 179:113984. [PMID: 37567356 DOI: 10.1016/j.fct.2023.113984] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Microplastic and nanoplastic (MNP) pollution has become a major global food safety concern. MNPs can interact with food matrices, and their passage through the gastrointestinal tract can modify their properties. To explore whether and how food matrices influence MNP toxicity, we investigated the interactions between polystyrene nanoplastics (PS-NPs) and food matrices, using an in vitro gastrointestinal digestion model. Then, we tested cell viability, particle uptake and cellular toxicities induced by PS-NPs with food matrices in Caco-2 cells. The results showed that PS-NPs were aggregated, both with and without food matrices, after in vitro gastrointestinal digestion. Glyceryl trioleate exerted greater ability to stabilize digestas and to disperse PS-NPs than starch and bovine serum albumin. The protein corona's protein composition on PS-NPs varied when it interacted with different food matrices. Moreover, when combined with food matrices, the PS-NPs' uptake was enhanced, thus aggravating cellular inflammation, stress, and apoptosis levels. Finally, through co-exposure to a mixture of food matrices, we found a combined negative effect of PS-NPs and cadmium on cellular inflammation, stress, and apoptosis levels. This is the first study to compare the impact of various food matrices on the characteristics and cellular toxicities of ingested NPs in a simulated digestive tract.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Almomen A, Alsaleh NB, El-Toni AM, EL-Mahrouky MA, Alhowyan AA, Alkholief M, Alshamsan A, Khurana N, Ghandehari H. In Vitro Safety Assessment of In-House Synthesized Titanium Dioxide Nanoparticles: Impact of Washing and Temperature Conditions. Int J Mol Sci 2023; 24:9966. [PMID: 37373112 PMCID: PMC10298741 DOI: 10.3390/ijms24129966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in food, cosmetics, and biomedical research. However, human safety following exposure to TiO2 NPs remains to be fully understood. The aim of this study was to evaluate the in vitro safety and toxicity of TiO2 NPs synthesized via the Stöber method under different washing and temperature conditions. TiO2 NPs were characterized by their size, shape, surface charge, surface area, crystalline pattern, and band gap. Biological studies were conducted on phagocytic (RAW 264.7) and non-phagocytic (HEK-239) cells. Results showed that washing amorphous as-prepared TiO2 NPs (T1) with ethanol while applying heat at 550 °C (T2) resulted in a reduction in the surface area and charge compared to washing with water (T3) or a higher temperature (800 °C) (T4) and influenced the formation of crystalline structures with the anatase phase in T2 and T3 and rutile/anatase mixture in T4. Biological and toxicological responses varied among TiO2 NPs. T1 was associated with significant cellular internalization and toxicity in both cell types compared to other TiO2 NPs. Furthermore, the formation of the crystalline structure induced toxicity independent of other physicochemical properties. Compared with anatase, the rutile phase (T4) reduced cellular internalization and toxicity. However, comparable levels of reactive oxygen species were generated following exposure to the different types of TiO2, indicating that toxicity is partially driven via non-oxidative pathways. TiO2 NPs were able to trigger an inflammatory response, with varying trends among the two tested cell types. Together, the findings emphasize the importance of standardizing engineered nanomaterial synthesis conditions and evaluating the associated biological and toxicological consequences arising from changes in synthesis conditions.
Collapse
Affiliation(s)
- Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11491, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Mohamed A. EL-Mahrouky
- Soil Science Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adel Ali Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.)
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.)
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.)
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Ferrante M, Grasso A, Giuberti G, Dall'Asta M, Puglisi E, Arena G, Nicosia A, Fiore M, Copat C. Behaviour and fate of Ag-NPs, TiO 2-NPs and ZnO-NPs in the human gastrointestinal tract: Biopersistence rate evaluation. Food Chem Toxicol 2023; 176:113779. [PMID: 37062331 DOI: 10.1016/j.fct.2023.113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
This study aims to provide information on the behaviour and biopersistence rate (BP) of metallic nanoparticles (Ag-NPs, TiO2-NPs, ZnO-NPs) naturally occurring in canned seafood and subjected to static in vitro digestion. Single particle ICP-MS analysis was performed to determine NPs distribution and concentrations in oral, gastric, and intestinal digests. Depending on the conditions of the digestive phase and the sample matrix, the phenomena of agglomeration and dispersion were highlighted and confirmed by Dynamic Light Scattering (DLS) technique. In standard suspensions, Ag-NPs had lower biopersistence (BP) than ZnO and TiO2-NPs (BP 34%, 89% and >100%, respectively). Among Ag-NPs and TiO2-NPs naturally present in the food matrix, those in canned tuna were more degradable than those in canned clam (BP Ag-NPs 36% vs. > 100%; BP TiO2-NPs 96% vs. > 100%), while BP ZnO-NPs showed high biopersistence in both seafood matrix (>100%). The biopersistence rates were higher than the recommended limit set by European Food Safety Authority (EFSA) (12%), referred to nanotechnologies to be applied in the food and feed chain, thus the investigated naturally occurring NPs cannot be considered readily degradable.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy.
| | - Gianluca Giuberti
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Dall'Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Angelo Nicosia
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, I-95125, Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| |
Collapse
|
9
|
Baranowska-Wójcik E, Szwajgier D, Gustaw K, Jośko I, Pawlikowska-Pawlęga B, Kapral-Piotrowska J. Reduced bioaccessibility of TiO 2 (E 171) during puree soup digestion in a gastrointestinal tract simulated in vitro. Food Res Int 2023; 164:112189. [PMID: 36737890 DOI: 10.1016/j.foodres.2022.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
E171 (TiO2- Ttitanium dioxide), a food colourant containing nano fractions, is one of the additives used e.g. in the food industry, whose consumption may have a negative impact on human health. In order to determine the ability of food products and intestinal lactic acid bacteria to interact with TiO2, we conducted in vitro "digestions" of a food matrix (meat/vegetable puree soup) using an advanced in vitro model of the "gastrointestinal tract". The "bioaccessibility" of TiO2 was simulated using microfiltration (0.2 µm) of the post-digestive fluid. We observed changes in the content of TiO2 in the microfiltrates obtained at various stages of the in vitro digestions, dependent on the stage of the process. This result suggests that TiO2 interacts with food components and bacterial cells. Furthermore, scanning electron microscopy revealed visible morphological changes to bacterial cells in the presence of TiO2.
Collapse
Affiliation(s)
- E Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland.
| | - D Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - K Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - I Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - B Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - J Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
10
|
Ammendolia MG, De Berardis B. Nanoparticle Impact on the Bacterial Adaptation: Focus on Nano-Titania. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3616. [PMID: 36296806 PMCID: PMC9609019 DOI: 10.3390/nano12203616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (nano-titania/TiO2 NPs) are used in different fields and applications. However, the release of TiO2 NPs into the environment has raised concerns about their biosafety and biosecurity. In light of the evidence that TiO2 NPs could be used to counteract antibiotic resistance, they have been investigated for their antibacterial activity. Studies reported so far indicate a good performance of TiO2 NPs against bacteria, alone or in combination with antibiotics. However, bacteria are able to invoke multiple response mechanisms in an attempt to adapt to TiO2 NPs. Bacterial adaption arises from global changes in metabolic pathways via the modulation of regulatory networks and can be related to single-cell or multicellular communities. This review describes how the impact of TiO2 NPs on bacteria leads to several changes in microorganisms, mainly during long-term exposure, that can evolve towards adaptation and/or increased virulence. Strategies employed by bacteria to cope with TiO2 NPs suggest that their use as an antibacterial agent has still to be extensively investigated from the point of view of the risk of adaptation, to prevent the development of resistance. At the same time, possible effects on increased virulence following bacterial target modifications by TiO2 NPs on cells or tissues have to be considered.
Collapse
|
11
|
Chen J, Zhang X, Bassey AP, Xu X, Gao F, Guo K, Zhou G. Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges. Crit Rev Food Sci Nutr 2022; 64:3583-3603. [PMID: 36239319 DOI: 10.1080/10408398.2022.2133077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As living standards rise, the demand for high-quality chilled meat among consumers also grows. Researchers and enterprises have been interested in ensuring the quality of chilled meat in all links of the downstream industry. Nanozyme has shown the potential to address the aforementioned requirements. Reasons and approaches for the application of nanozymes in the freshness assessment or shelf life extension of chilled meat were discussed. The challenges for applying these nanozymes to ensure the quality of chilled meat were also summarized. Finally, this review examined the safety, regulatory status, and consumer attitudes toward nanozymes. This review revealed that the freshness assessment of chilled meat is closely related to mimicking the enzyme activities of nanozymes, whereas the shelf life changes of chilled meat are mostly dependent on the photothermal activities and pseudophotodynamic activities of nanozymes. In contrast, studies regarding the shelf life of chilled meat are more challenging to develop, as excessive heat or reactive oxygen species impair its quality. Notably, meat contains a complex matrix composition that may interact with the nanozyme, reducing its effectiveness. Nanopollution and mass manufacturing are additional obstacles that must be overcome. Therefore, it is vital to choose suitable approaches to ensure meat quality. Furthermore, the safety of nanozymes in meat applications still needs careful consideration owing to their widespread usage.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen, Germany
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kaijin Guo
- Institute of Orthopedics, Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
DeLoid GM, Cao X, Coreas R, Bitounis D, Singh D, Zhong W, Demokritou P. Incineration-Generated Polyethylene Micro-Nanoplastics Increase Triglyceride Lipolysis and Absorption in an In Vitro Small Intestinal Epithelium Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12288-12297. [PMID: 35973094 PMCID: PMC9559972 DOI: 10.1021/acs.est.2c03195] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite mounting evidence of micro-nanoplastics (MNPs) in food and drinking water, little is known of the potential health risks of ingested MNPs, and nothing is known of their potential impact on nutrient digestion and absorption. We assessed the effects of environmentally relevant secondary MNPs generated by incineration of polyethylene (PE-I), on digestion and absorption of fat in a high fat food model using a 3-phase in vitro simulated digestion coupled with a tri-culture small intestinal epithelium model. The presence of 400 μg/mL PE-I increased fat digestion by 33% and increased fat absorption by 147 and 145% 1 and 2 h after exposure. Analysis of the PE-I lipid corona during digestion revealed predominantly triacylglycerols with enrichment of fatty acids in the small intestinal phase. Protein corona analysis showed enrichment of triacylglycerol lipase and depletion of β-casein in the small intestinal phase. These findings suggest digestion of triacylglycerol by lipase on the surface of lipid-coated MNPs as a potential mechanism. Further studies are needed to investigate the mechanisms underlying the greater observed increase in fat absorption, to verify these results in an animal model, and to determine the MNP properties governing their effects on lipid digestion and absorption.
Collapse
Affiliation(s)
- Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roxana Coreas
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Dimitrios Bitounis
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dilpreet Singh
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Qiaorun Z, Honghong S, Yao L, Bing J, Xiao X, Julian McClements D, Chongjiang C, Biao Y. Investigation of the interactions between food plant carbohydrates and titanium dioxide nanoparticles. Food Res Int 2022; 159:111574. [DOI: 10.1016/j.foodres.2022.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
14
|
Baranowska-Wójcik E, Szwajgier D, Jośko I, Pawlikowska-Pawlęga B, Gustaw K. Smoothies Reduce the "Bioaccessibility" of TiO 2 (E 171) in the Model of the In Vitro Gastrointestinal Tract. Nutrients 2022; 14:3503. [PMID: 36079762 PMCID: PMC9460534 DOI: 10.3390/nu14173503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The food colorant E171 (TiO2) containing nano fractions can cause potential health problems. In the presented work, we used a "gastrointestinal tract" model (oral→large intestine) to "digest" a fruit smoothie in the presence of TiO2 nanoparticles and the Lactiplantibacillus plantarum B strain. The TiO2 migration was measured using the microfiltration membrane (0.2 µm; model of "TiO2 bioacessability"). We observed that the addition of the smoothie reduced the Ti content in the microfiltrate (reduced "bioacessability") at the "mouth", "stomach" and "large intestine" stages, probably due to the entrapment of Ti by the smoothie components. A significant decrease in Ti "bioaccessibility" at the "gastric" stage may have resulted from the agglomeration of nanoparticles at a low pH. Additionally, the presence of bacterial cells reduced the "bioaccessibility" at the "large intestine" stage. Microscopic imaging (SEM) revealed clear morphological changes to the bacterial cells in the presence of TiO2 (altered topography, shrunk-deformed cells with collapsed walls due to leakage of the content, indentations). Additionally, TiO2 significantly reduced the growth of the tested bacteria. It can be stated that the interactions (most probably entrapment) of TiO2 in the food matrix can occur during the digestion. This can influence the physicochemical properties, bioavailability and in vivo effect of TiO2. Research aimed at understanding the interactions between TiO2 and food components is in progress.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Akademicka Street 13, 20-950 Lublin, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| |
Collapse
|
15
|
Hernández ÁP, Micaelo A, Piñol R, García-Vaquero ML, Aramayona JJ, Criado JJ, Rodriguez E, Sánchez-Gallego JI, Landeira-Viñuela A, Juanes-Velasco P, Díez P, Góngora R, Jara-Acevedo R, Orfao A, Miana-Mena J, Muñoz MJ, Villanueva S, Millán Á, Fuentes M. Comprehensive and systematic characterization of multi-functionalized cisplatin nano-conjugate: from the chemistry and proteomic biocompatibility to the animal model. J Nanobiotechnology 2022; 20:341. [PMID: 35858906 PMCID: PMC9301860 DOI: 10.1186/s12951-022-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Nowadays, nanoparticles (NPs) have evolved as multifunctional systems combining different custom anchorages which opens a wide range of applications in biomedical research. Thus, their pharmacological involvements require more comprehensive analysis and novel nanodrugs should be characterized by both chemically and biological point of view. Within the wide variety of biocompatible nanosystems, iron oxide nanoparticles (IONPs) present mostly of the required features which make them suitable for multifunctional NPs with many biopharmaceutical applications. Results Cisplatin-IONPs and different functionalization stages have been broadly evaluated. The potential application of these nanodrugs in onco-therapies has been assessed by studying in vitro biocompatibility (interactions with environment) by proteomics characterization the determination of protein corona in different proximal fluids (human plasma, rabbit plasma and fetal bovine serum),. Moreover, protein labeling and LC–MS/MS analysis provided more than 4000 proteins de novo synthetized as consequence of the nanodrugs presence defending cell signaling in different tumor cell types (data available via ProteomeXchanges with identified PXD026615). Further in vivo studies have provided a more integrative view of the biopharmaceutical perspectives of IONPs. Conclusions Pharmacological proteomic profile different behavior between species and different affinity of protein coating layers (soft and hard corona). Also, intracellular signaling exposed differences between tumor cell lines studied. First approaches in animal model reveal the potential of theses NPs as drug delivery vehicles and confirm cisplatin compounds as strengthened antitumoral agents.
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01546-y.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,Department of Pharmaceutical Sciences. Organic Chemistry Section. Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Ania Micaelo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Rafael Piñol
- INMA, Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, 50018, Saragossa, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Marina L García-Vaquero
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José J Aramayona
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Julio J Criado
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Plaza de los Caídos S/N, 37008, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Emilio Rodriguez
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Plaza de los Caídos S/N, 37008, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Ignacio Sánchez-Gallego
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Ricardo Jara-Acevedo
- ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Javier Miana-Mena
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - María Jesús Muñoz
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Sergio Villanueva
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Ángel Millán
- INMA, Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, 50018, Saragossa, Spain. .,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain. .,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
16
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
17
|
Smela D, Chang CJ, Hromadko L, Macak J, Bilkova Z, Taniguchi A. SiO 2 Fibers of Two Lengths and Their Effect on Cellular Responses of Macrophage-like Cells. Molecules 2022; 27:4456. [PMID: 35889328 PMCID: PMC9320682 DOI: 10.3390/molecules27144456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/27/2023] Open
Abstract
The immunoreactivity or/and stress response can be induced by nanomaterials' different properties, such as size, shape, etc. These effects are, however, not yet fully understood. This study aimed to clarify the effects of SiO2 nanofibers (SiO2NFs) on the cellular responses of THP-1-derived macrophage-like cells. The effects of SiO2NFs with different lengths on reactive oxygen species (ROS) and pro-inflammatory cytokines TNF-α and IL-1β in THP-1 cells were evaluated. From the two tested lengths, it was only the L-SiO2NFs with a length ≈ 44 ± 22 µm that could induce ROS. Compared to this, only S-SiO2NFs with a length ≈ 14 ± 17 µm could enhance TNF-α and IL-1β expression. Our results suggested that L-SiO2NFs disassembled by THP-1 cells produced ROS and that the inflammatory reaction was induced by the uptake of S-SiO2NFs by THP-1 cells. The F-actin staining results indicated that SiO2NFs induced cell motility and phagocytosis. There was no difference in cytotoxicity between L- and S-SiO2NFs. However, our results suggested that the lengths of SiO2NFs induced different cellular responses.
Collapse
Affiliation(s)
- Denisa Smela
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (C.-J.C.); (A.T.)
| | - Chia-Jung Chang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (C.-J.C.); (A.T.)
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic; (L.H.); (J.M.)
- Central European Institute of Technology, Brno University of Technology, Zerotinovo nam. 617/9, 601 77 Brno, Czech Republic
| | - Jan Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic; (L.H.); (J.M.)
- Central European Institute of Technology, Brno University of Technology, Zerotinovo nam. 617/9, 601 77 Brno, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
| | - Akiyoshi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (C.-J.C.); (A.T.)
| |
Collapse
|
18
|
Jagiello K, Ciura K. In vitro to in vivo extrapolation to support the development of the next generation risk assessment (NGRA) strategy for nanomaterials. NANOSCALE 2022; 14:6735-6742. [PMID: 35446334 DOI: 10.1039/d2nr00664b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is growing interest in developing novel strategies to support assessment of human health risks due to chemicals. Regulatory and decision-making agencies have recommended that non-animal-based alternatives should be applied whenever possible instead of experimentation on living animals. These alternative methods are beneficial because they are ethical, inexpensive, and rapid. Herein, we review recent activities aimed at developing in vitro to in vivo extrapolation (IVIVE) models as a part of the Next Generation Risk Assessment (NGRA) of nanomaterials. In this context, we show the adverse outcome pathway (AOP)-based methodology for the identification of mechanistically relevant events serving as biomarkers for the targeted selection of in vitro assays. Considered events need to be biologically plausible, regulatory relevant, and crucial for the examination of occurrence of adverse outcomes. The promising advantages of using high-throughout-based omics data are highlighted. Furthermore, the application of 3D in vitro models and nano genome atlases to study nanoparticle toxicity is briefly summarized. Additionally, the challenges related to the extrapolation of in vitro doses into in vivo-relevant responses are presented. We also discuss the limitations of models applied thus far to study the fate of chemicals in the human body, which exist due to the lack of available knowledge regarding transformations of nanomaterials occurring in biological systems.
Collapse
Affiliation(s)
- Karolina Jagiello
- QSAR Lab Ltd., Trzy Lipy 3, 80-172 Gdansk, Poland.
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Krzesimir Ciura
- QSAR Lab Ltd., Trzy Lipy 3, 80-172 Gdansk, Poland.
- Medical University of Gdansk, Faculty of Pharmacy, Department of Physical Chemistry, J. Hallera Avenue 107, 80-416, Gdansk, Poland
| |
Collapse
|
19
|
Tan Y, Zhou H, McClements DJ. Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. NANOMATERIALS 2022; 12:nano12071099. [PMID: 35407216 PMCID: PMC9000219 DOI: 10.3390/nano12071099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Inorganic or organic nanoparticles are often incorporated into foods to enhance their quality, stability, nutrition, or safety. When they pass through the gastrointestinal environment, the properties of these nanoparticles are altered, which impacts their biological effects and potential toxicity. Consequently, there is a need to understand how different kinds of nanoparticles behave within the gastrointestinal tract. In this article, the current understanding of the gastrointestinal fate of nanoparticles in foods is reviewed. Initially, the fundamental physicochemical and structural properties of nanoparticles are discussed, including their compositions, sizes, shapes, and surface chemistries. Then, the impact of food matrix effects and gastrointestinal environments on the fate of ingested nanoparticles is discussed. In particular, the influence of nanoparticle properties on food digestion and nutraceutical bioavailability is highlighted. Finally, future research directions are highlighted that will enable the successful utilization of nanotechnology in foods while also ensuring they are safe.
Collapse
|
21
|
Moradi M, Razavi R, Omer AK, Farhangfar A, McClements DJ. Interactions between nanoparticle-based food additives and other food ingredients: A review of current knowledge. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Liu N, Liang Y, Wei T, Zou L, Bai C, Huang X, Wu T, Xue Y, Tang M, Zhang T. Protein corona mitigated the cytotoxicity of CdTe QDs to macrophages by targeting mitochondria. NANOIMPACT 2022; 25:100367. [PMID: 35559897 DOI: 10.1016/j.impact.2021.100367] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 06/15/2023]
Abstract
Despite the potential of cadmium telluride quantum dots (CdTe QDs) in bioimaging and drug delivery, their toxic effects have been documented. It is known that the immunotoxicity of CdTe QDs targeting macrophages is one of their adverse effects, and the protein corona (PC) will affect the biological effects of QDs. In order to prove whether the PC-CdTe QDs complexes could alleviate the toxicity of CdTe QDs without weakening their luminescence, we investigated the impact of protein corona formed in fetal bovine serum (FBS) on the cytotoxicity of CdTe QDs to mitochondria. RAW264.7 cells were used as the model to compare the effects of CdTe QDs and PC-CdTe QDs complexes on the structure, function, quantity, morphology, and mitochondrial quality control of mitochondria. As result, the protein corona form in FBS alleviated the inhibition of CdTe QDs on mitochondrial activity, the damage to mitochondrial membrane, the increase of ROS, and the reduction of ATP content. Also, CdTe QDs increased the number of mitochondria in macrophages, while the complexes did not. In line with this, the morphology of mitochondrial network in macrophages which were exposed to CdTe QDs and PC-CdTe QDs complexes was different. CdTe QDs transformed the network into fragments, punctuations, and short rods, while PC-CdTe QDs complexes made the mitochondrial network highly branched, which was related to the imbalance of mitochondrial fission and fusion. Mechanically, CdTe QDs facilitated mitochondrial fission and inhibited mitochondrial fusion, while protein corona reversed the phenomenon caused by QDs. Besides mitochondrial dynamics, mitochondrial biogenesis and mitophagy were also affected. CdTe QDs increased the expression of mitochondrial biogenesis signaling molecules including PGC-1α, NRF-1 and TFAM, while PC-CdTe QDs complexes played the opposite role. With regard to mitophagy, they both showed promoting effect. In conclusion, the formation of protein corona alleviated the toxic effects of CdTe QDs on the mitochondria in macrophages and affected mitochondrial quality control. Under the premise of ensuring the fluorescence properties of CdTe QDs, these findings provided useful insight into reducing the toxicity of CdTe QDs from two perspectives: protein corona and mitochondria, and shared valuable information for the safe use of QDs.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Martín-Hernández MDC, Burnand D, Jud C, Portmann R, Egger L. Interaction of magnetic silica nanoparticles with food proteins during in vitro digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Huang Z, Fu F, Wu L, Wang W, Wang W, Shi C, Huang Y, Pan X, Wu C. Bibliometric landscape of the researches on protein corona of nanoparticles. FRONTIERS OF MATERIALS SCIENCE 2021; 15:477-493. [PMID: 34840853 PMCID: PMC8606624 DOI: 10.1007/s11706-021-0571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Unclear biological fate hampers the clinical translation of nanoparticles for biomedical uses. In recent years, it is documented that the formation of protein corona upon nanoparticles is a critical factor leading to the ambiguous biological fate. Efforts have been made to explore the protein corona forming behaviors on nanoparticles, and rearrangement of the relevant studies will help to understand the current trend of such a topic. In this work, the publications about protein corona of nanoparticles in Science Citation Index Expanded database of Web of Science from 2007 to 2020 (1417 in total) were analyzed in detail, and the bibliometrics landscape of them was showcased. The basic bibliometrics characteristics were summarized to provide an overall understanding. Citation analysis was performed to scrutinize the peer interests of these papers. The research hotspots in the field were evaluated, based on which some feasible topics for future studies were proposed. In general, the results demonstrated that protein corona of nanoparticles was a prospective research area, and had attracted global research interests. It was believed that this work could comprehensively highlight the bibliometrics landscape, inspire further exploitation on protein corona of nanoparticles, and ultimately promote the clinical translation of nanoparticles.
Collapse
Affiliation(s)
- Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chaonan Shi
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| |
Collapse
|
25
|
Bazina L, Bitounis D, Cao X, DeLoid GM, Parviz D, Strano MS, Greg Lin HY, Bell DC, Thrall BD, Demokritou P. Biotransformations and cytotoxicity of eleven graphene and inorganic two-dimensional nanomaterials using simulated digestions coupled with a triculture in vitro model of the human gastrointestinal epithelium. ENVIRONMENTAL SCIENCE. NANO 2021; 8:3233-3249. [PMID: 37465590 PMCID: PMC10353755 DOI: 10.1039/d1en00594d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Background Engineered nanomaterials (ENMs) have already made their way into myriad applications and products across multiple industries. However, the potential health risks of exposure to ENMs remain poorly understood. This is particularly true for the emerging class of ENMs know as 2-dimensional nanomaterials (2DNMs), with a thickness of one or a few layers of atoms arranged in a planar structure. Methods The present study assesses the biotransformations and in vitro cytotoxicity in the gastrointestinal tract of 11 2DNMs, namely graphene, graphene oxide (GO), partially reduced graphene oxide (prGO), reduced graphene oxide (rGO), hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2). The evaluated pristine materials were either readily dispersed in water or dispersed with the use of a surfactant (Na-cholate or PF108). Materials dispersed in a fasting food model (FFM, water) were subjected to simulated 3-phase (oral, gastric, and small intestinal) digestion to replicate the biotransformations that would occur in the GIT after ingestion. A triculture model of small intestinal epithelium was used to assess the effects of the digested products (digestas) on epithelial layer integrity, cytotoxicity, viability, oxidative stress, and initiation of apoptosis. Results Physicochemical characterization of the 2DNMs in FFM dispersions and in small intestinal digestas revealed significant agglomeration by all materials during digestion, most prominently by graphene, which was likely caused by interactions with digestive proteins. Also, MoS2 had dissolved by ~75% by the end of simulated digestion. Other than a low but statistically significant increase in cytotoxicity observed with all inorganic materials and graphene dispersed in PF108, no adverse effects were observed in the exposed tricultures. Conclusions Our results suggest that occasional ingestion of small quantities of 2DNMs may not be highly cytotoxic in a physiologically relevant in vitro model of the intestinal epithelium. Still, their inflammatory or genotoxic potential after short- or long-term ingestion remains unclear and needs to be studied in future in vitro and in vivo studies. These would include studies of effects on co-ingested nutrient digestion and absorption, which have been documented for numerous ingested ENMs, as well as effects on the gut microbiome, which can have important health implications.
Collapse
Affiliation(s)
- Lila Bazina
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hao-Yu Greg Lin
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David C Bell
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA 99354, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| |
Collapse
|
26
|
Interaction between ZnO Nanoparticles and Albumin and Its Effect on Cytotoxicity, Cellular Uptake, Intestinal Transport, Toxicokinetics, and Acute Oral Toxicity. NANOMATERIALS 2021; 11:nano11112922. [PMID: 34835685 PMCID: PMC8625151 DOI: 10.3390/nano11112922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are used as zinc supplements due to the nutritional value of Zn. The toxicity of ZnO NPs in the food industry is required to be elucidated because they have large surface area and high reactivity compared with bulk-sized materials and have potentials to interact with food matrices, which may lead to different biological responses. In this study, interactions between ZnO NPs and food proteins (albumin, casein, and zein) were evaluated by measuring changes in physicochemical property, fluorescence quenching ratios, and structural protein stability compared with ZnO interaction with glucose, the most interacted saccharide in our previous report. The interaction effects on cytotoxicity, cellular uptake, intestinal transport, toxicokinetics, and acute oral toxicity were also investigated. The results demonstrate that interaction between ZnO and albumin reduced hydrodynamic diameters, but increased cytotoxicity, cellular uptake, and intestinal transport in a similar manner to ZnO interaction with glucose, without affecting primary structural protein stability and toxicokinetic behaviors. Hematological, serum biochemical, and histopathological analysis reveal no toxicological findings after orally administered ZnO NPs interacted with albumin or glucose in rats for 14 consecutive days, suggesting their low oral toxicity. In conclusion, the interactions between ZnO NPs and food proteins modulate in vitro biological responses, but do not affect in vivo acute oral toxicity. Further study is required to ascertain the interaction effects on chronic oral toxicity.
Collapse
|
27
|
Ivanov M, Lyubartsev AP. Atomistic Molecular Dynamics Simulations of Lipids Near TiO 2 Nanosurfaces. J Phys Chem B 2021; 125:8048-8059. [PMID: 34269053 PMCID: PMC8389913 DOI: 10.1021/acs.jpcb.1c04547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Understanding of
interactions between inorganic nanomaterials and
biomolecules, and particularly lipid bilayers, is crucial in many
biotechnological and biomedical applications, as well as for the evaluation
of possible toxic effects caused by nanoparticles. Here, we present
a molecular dynamics study of adsorption of two important constituents
of the cell membranes, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE), lipids to a number of titanium dioxide planar surfaces, and
a spherical nanoparticle under physiological conditions. By constructing
the number density profiles of the lipid headgroup atoms, we have
identified several possible binding modes and calculated their relative
prevalence in the simulated systems. Our estimates of the adsorption
strength, based on the total fraction of adsorbed lipids, show that
POPE binds to the selected titanium dioxide surfaces stronger than
DMPC, due to the ethanolamine group forming hydrogen bonds with the
surface. Moreover, while POPE shows a clear preference toward anatase
surfaces over rutile, DMPC has a particularly high affinity to rutile(101)
and a lower affinity to other surfaces. Finally, we study how lipid
concentration, addition of cholesterol, as well as titanium dioxide
surface curvature may affect overall adsorption.
Collapse
Affiliation(s)
- Mikhail Ivanov
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
28
|
Cao X, Pan X, Couvillion SP, Zhang T, Tamez C, Bramer LM, White JC, Qian WJ, Thrall BD, Ng KW, Hu X, Demokritou P. Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NANOIMPACT 2021; 23:100349. [PMID: 34514184 PMCID: PMC8428805 DOI: 10.1016/j.impact.2021.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) are a promising material currently being explored in many industrial applications in the biomedical and agri-food areas; however, studies supporting the environmental health risk assessment of CDs are needed. This study focuses on various CD forms including iron (FeCD) and copper (CuCD) doped CDs synthesized using hydrothermal method, their fate in gastrointestinal tract, and their cytotoxicity and potential changes to cellular metabolome in a triculture small intestinal epithelial model. Physicochemical characterization revealed that 75% of Fe in FeCD and 95% of Cu in CuCD were dissolved during digestion. No significant toxic effects were observed for pristine CDs and FeCDs. However, CuCD induced significant dose-dependent toxic effects including decreases in TEER and cell viability, increases in cytotoxicity and ROS production, and alterations in important metabolites, including D-glucose, L-cysteine, uridine, citric acid and multiple fatty acids. These results support the current understanding that pristine CDs are relatively non-toxic and the cytotoxicity is dependent on the doping molecules.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| | - Xiaoyong Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carlos Tamez
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Lisa M. Bramer
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason C. White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
29
|
Dudefoi W, Rabesona H, Rivard C, Mercier-Bonin M, Humbert B, Terrisse H, Ropers MH. In vitro digestion of food grade TiO 2 (E171) and TiO 2 nanoparticles: physicochemical characterization and impact on the activity of digestive enzymes. Food Funct 2021; 12:5975-5988. [PMID: 34032251 DOI: 10.1039/d1fo00499a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Titanium dioxide is a food additive that has raised some concerns for humans due to the presence of nanoparticles. We were interested in knowing the fate of TiO2 particles in the gastro-intestinal tract and their potential effect on digestive enzymes. For this purpose, we analysed the behaviour of two different food grade TiO2 samples (E171) and one nano-sized TiO2 sample (P25) through a standardized static in vitro digestion protocol simulating the oral, gastric and intestinal phases with appropriate juices including enzymes. Both E171 and P25 TiO2 particles remained intact in the digestive fluids but formed large agglomerates, and especially in the intestinal fluid where up to 500 μm sized particles have been identified. The formation of these agglomerates is mediated by the adsorption of mainly α-amylase and divalent cations. Pepsin was also identified to adsorb onto TiO2 particles but only in the case of silica-covered E171. In the salivary conditions, TiO2 exerted an inhibitory action on the enzymatic activity of α-amylase. The activity was reduced by a factor dependent on enzyme concentrations (up to 34% at 1 mg mL-1) but this inhibitory effect was reduced to hardly 10% in the intestinal fluid. In the gastric phase, pepsin was not affected by any form of TiO2. Our results hint that food grade TiO2 has a limited impact on the global digestion of carbohydrates and proteins. However, the reduced activity specifically observed in the oral phase deserves deeper investigation to prevent any adverse health effects related to the slowdown of carbohydrate metabolism.
Collapse
Affiliation(s)
- William Dudefoi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France.
| | - Hanitra Rabesona
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France.
| | - Camille Rivard
- INRAE, UAR 1008 TRANSFORM, 44300 Nantes, France and Synchrotron SOLEIL, LUCIA Beamline, 91192 Gif-sur-Yvette, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Bernard Humbert
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | | |
Collapse
|