1
|
Furxhi I, Perucca M, Koivisto AJ, Bengalli R, Mantecca P, Nicosia A, Burrueco-Subirà D, Vázquez-Campos S, Lahive E, Blosi M, de Ipiña JL, Oliveira J, Carriere M, Vineis C, Costa A. A roadmap towards safe and sustainable by design nanotechnology: Implementation for nano-silver-based antimicrobial textile coatings production by ASINA project. Comput Struct Biotechnol J 2024; 25:127-142. [PMID: 39040658 PMCID: PMC11262112 DOI: 10.1016/j.csbj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA's methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions-functionality, cost, environment, and human health safety-within a broader European context. We then provide an overview of the technical processes involved, including design rationales, experimental procedures, and tools/models developed within ASINA in delivering nano-silver-based antimicrobial textile coatings. The result is pragmatic, actionable metrics intended to be estimated and assessed in future SSbD applications and to be adopted in a common SSbD roadmap aligned with the EU's Green Deal objectives. The methodological approach is transparently and thoroughly described to inform similar projects through the integration of KPIs into SSbD and foster data-driven decision-making. Specific results and project data are beyond this work's scope, which is to demonstrate the ASINA roadmap and thus foster SSbD-oriented innovation in nanotechnology.
Collapse
Affiliation(s)
- Irini Furxhi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Massimo Perucca
- Project HUB360, C.so Laghi 22, 10051 Avigliana, Turin, Italy
| | - Antti Joonas Koivisto
- APM Air Pollution Management, Mattilanmäki 38, FI-33610 Tampere, Finland
- INAR Institute for Atmospheric and Earth System Research, University of Helsinki, PL 64, UHEL, FI-00014 Helsinki, Finland
- ARCHE Consulting, Liefkensstraat 35D, Wondelgem B-9032, Belgium
| | - Rossella Bengalli
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paride Mantecca
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Alessia Nicosia
- CNR-ISAC Institute of Atmospheric Sciences and Climate, Via Gobetti 101, 40129 Bologna, Italy
| | | | | | - Elma Lahive
- Centre for Ecology & Hydrology (UKCEH), England, United Kingdom
| | - Magda Blosi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Jesús Lopez de Ipiña
- TECNALIA Research and Innovation - Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Leonardo Da Vinci 11, 01510 Miñano, Spain
| | - Juliana Oliveira
- CeNTI - Centre of Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Marie Carriere
- CEA, CNRS, Univ. Grenoble Alpes, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Claudia Vineis
- CNR-STIIMA Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Italy
| | - Anna Costa
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| |
Collapse
|
2
|
Groenewold M, Bleeker EAJ, Noorlander CW, Sips AJAM, van der Zee M, Aitken RJ, Baker JH, Bakker MI, Bouman EA, Doak SH, Drobne D, Dumit VI, Florin MV, Fransman W, Gonzalez MM, Heunisch E, Isigonis P, Jeliazkova N, Jensen KA, Kuhlbusch T, Lynch I, Morrison M, Porcari A, Rodríguez-Llopis I, Pozuelo BM, Resch S, Säämänen AJ, Serchi T, Soeteman-Hernandez LG, Willighagen E, Dusinska M, Scott-Fordsmand JJ. Governance of advanced materials: Shaping a safe and sustainable future. NANOIMPACT 2024; 35:100513. [PMID: 38821170 DOI: 10.1016/j.impact.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials. We emphasise the importance of establishing a European approach for risk and sustainability governance of advanced materials as soon as possible to keep up with the pace of innovation and to manage uncertainty among regulators, industry, SMEs and the public, regarding potential risks and impacts of advanced materials. Coordination of safe and sustainable advanced material research efforts, and data management according to the Findable, Accessible, Interoperable and Reusable (FAIR) principles will enhance the generation of regulatory-relevant knowledge. This knowledge is crucial to identify whether current regulatory standardised and harmonised test methods are adequate to assess advanced materials. At the same time, there is urgent need for responsible innovation beyond regulatory compliance which can be promoted through the Safe and Sustainable Innovation Approach. that combines the Safe and Sustainable by Design concept with Regulatory Preparedness, supported by a trusted environment. We further recommend consolidating all efforts and networks related to the risk and sustainability governance of advanced materials in a single, easy-to-use digital portal. Given the anticipated complexity and tremendous efforts required, we identified the need of establishing an organisational structure dedicated to aligning the fast technological developments in advanced materials with proper risk and sustainability governance. Involvement of multiple stakeholders in a trusted environment ensures a coordinated effort towards the safe and sustainable development, production, and use of advanced materials. The existing infrastructures and network of experts involved in the governance of nanomaterials would form a solid foundation for such an organisational structure.
Collapse
Affiliation(s)
- Monique Groenewold
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, Bilthoven, the Netherlands.
| | - Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Cornelle W Noorlander
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Adriënne J A M Sips
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, Bilthoven, the Netherlands
| | | | - Robert J Aitken
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom
| | - James H Baker
- Nanotechnology Industries Association (NIA), Brussels, Belgium
| | - Martine I Bakker
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Evert A Bouman
- The Climate and Environmental Research Institute (NILU), Department of Environmental Chemistry and Health, Kjeller, Norway
| | - Shareen H Doak
- Swansea University, Medical School, Faculty of Medicine, Health & Life Sciences, SA2 8PP, Wales, United Kingdom
| | - Damjana Drobne
- University of Ljubljana, Department of Biology, Biotechnical Faculty, Ljubljana, Slovenia
| | - Verónica I Dumit
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | | | | | - Mar M Gonzalez
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Elisabeth Heunisch
- Federal Institute for Occupational Safety and Health (BAUA), Dortmund/ Berlin, Germany
| | | | | | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Thomas Kuhlbusch
- Federal Institute for Occupational Safety and Health (BAUA), Dortmund/ Berlin, Germany
| | - Iseult Lynch
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Edgbaston, Birmingham, United Kingdom
| | | | - Andrea Porcari
- Italian Association for Industrial Research (AIRI), Roma, Italy
| | | | | | - Susanne Resch
- BioNanoNet Forschungsgesellschaft mbH, Graz, Austria
| | | | - Tommaso Serchi
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Lya G Soeteman-Hernandez
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Egon Willighagen
- Maastricht University, Dept of Bioinformatics - BiGCaT, NUTRIM, Maastricht, the Netherlands
| | - Maria Dusinska
- The Climate and Environmental Research Institute (NILU), Department of Environmental Chemistry and Health, Kjeller, Norway
| | | |
Collapse
|
3
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Sudheshwar A, Apel C, Kümmerer K, Wang Z, Soeteman-Hernández LG, Valsami-Jones E, Som C, Nowack B. Learning from Safe-by-Design for Safe-and-Sustainable-by-Design: Mapping the current landscape of Safe-by-Design reviews, case studies, and frameworks. ENVIRONMENT INTERNATIONAL 2024; 183:108305. [PMID: 38048736 DOI: 10.1016/j.envint.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
With the introduction of the European Commission's "Safe and Sustainable-by-Design" (SSbD) framework, the interest in understanding the implications of safety and sustainability assessments of chemicals, materials, and processes at early-innovation stages has skyrocketed. Our study focuses on the "Safe-by-Design" (SbD) approach from the nanomaterials sector, which predates the SSbD framework. In this assessment, SbD studies have been compiled and categorized into reviews, case studies, and frameworks. Reviews of SbD tools have been further classified as quantitative, qualitative, or toolboxes and repositories. We assessed the SbD case studies and classified them into three categories: safe(r)-by-modeling, safe(r)-by-selection, or safe(r)-by-redesign. This classification enabled us to understand past SbD work and subsequently use it to define future SSbD work so as to avoid confusion and possibilities of "SSbD-washing" (similar to greenwashing). Finally, the preexisting SbD frameworks have been studied and contextualized against the SSbD framework. Several key recommendations for SSbD based on our analysis can be made. Knowledge gained from existing approaches such as SbD, green and sustainable chemistry, and benign-by-design approaches needs to be preserved and effectively transferred to SSbD. Better incorporation of chemical and material functionality into the SSbD framework is required. The concept of lifecycle thinking and the stage-gate innovation model need to be reconciled for SSbD. The development of high-throughput screening models is critical for the operationalization of SSbD. We conclude that the rapid pace of both SbD and SSbD development necessitates a regular mapping of the newly published literature that is relevant to this field.
Collapse
Affiliation(s)
- Akshat Sudheshwar
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Christina Apel
- Leuphana University of Lüneburg, Institute of Sustainable Chemistry, Lüneburg, Germany
| | - Klaus Kümmerer
- Leuphana University of Lüneburg, Institute of Sustainable Chemistry, Lüneburg, Germany; International Sustainable Chemistry Collaborative Centre (ISC3), Bonn, Germany
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Lya G Soeteman-Hernández
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | | | - Claudia Som
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
5
|
Corsi I, Venditti I, Trotta F, Punta C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161181. [PMID: 36581299 DOI: 10.1016/j.scitotenv.2022.161181] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanosafety is paramount considering the risks associated with manufactured nanomaterials (MNMs) whose implications could outweigh their advantages for environmental applications. Although nanotechnology-based solutions to implement pollution control, remediation and prevention are incremental with clear benefits for public health and Earth' natural ecosystems, nanoremediation is having a setback due to the risks associated with the safety of MNMs for humans and the environment. MNMs are diverse, work differently and bionano-interactions occurring upon environmental exposure will guide their fate and hazardous outcomes. Here we propose a new ecologically-based design strategy (eco-design) having its roots in green nanoscience and LCA that will ground on an Ecological Risk Assessment approach, which introduces the evaluation of MNMs' ecotoxicity along with their performances and efficacies at the design stage. As such, the proposed eco-design strategy will allow recognition and design-out since the very beginning of material synthesis, those hazardous peculiar features that can be hazardous to living beings and the natural environment. A more ecologically sound eco-design strategy in which nanosafety is conceptually included in MNMs design will sustain safer nanotechnologies including those for the environment as remediation by leveraging any risks for humans and natural ecosystems.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, via della Vasca Navale 79, 00146 Rome, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
6
|
Barjoveanu G, Teodosiu C, Morosanu I, Ciobanu R, Bucatariu F, Mihai M. Life Cycle Assessment as Support Tool for Development of Novel Polyelectrolyte Materials Used for Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:840. [PMID: 36903718 PMCID: PMC10005425 DOI: 10.3390/nano13050840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This life cycle assessment (LCA) study focused on comparing the environmental performances of two types of synthesis strategies for polyethyleneimine (PEI) coated silica particles (organic/inorganic composites). The classic layer-by-layer and the new approach (one-pot coacervate deposition) were the two synthesis routes that were tested for cadmium ions removal from aqueous solutions by adsorption in equilibrium conditions. Data from the laboratory scale experiments for materials synthesis, testing, and regeneration, were then fed into a life cycle assessment study so that the types and values of environmental impacts associated with these processes could be calculated. Additionally, three eco-design strategies based on material substitution were investigated. The results point out that the one-pot coacervate synthesis route has considerably lower environmental impacts than the layer-by-layer technique. From an LCA methodology point of view, it is important to consider material technical performances when defining the functional unit. From a wider perspective, this research is important as it demonstrates the usefulness of LCA and scenario analysis as environmental support tools for material developers because they highlight environmental hotspots and point out the environmental improvement possibilities from the very early stages of material development.
Collapse
Affiliation(s)
- George Barjoveanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Irina Morosanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Ramona Ciobanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
| | - Florin Bucatariu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marcela Mihai
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
7
|
Sun Y, Zhu G, Zhao W, Jiang Y, Wang Q, Wang Q, Rui Y, Zhang P, Gao L. Engineered Nanomaterials for Improving the Nutritional Quality of Agricultural Products: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4219. [PMID: 36500842 PMCID: PMC9736685 DOI: 10.3390/nano12234219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
To ensure food safety, the current agricultural development has put forward requirements for improving nutritional quality and reducing the harmful accumulation of agricultural chemicals. Nano-enabled sustainable agriculture and food security have been increasingly explored as a new research frontier. Nano-fertilizers show the potential to be more efficient than traditional fertilizers, reducing the amount used while ensuring plant uptake, supplying the inorganic nutrients needed by plants, and improving the process by which plants produce organic nutrients. Other agricultural uses of nanotechnology affect crop productivity and nutrient quality in addition to nano-fertilizers. This article will review the research progress of using nanomaterials to improve nutritional quality in recent years and point out the focus of future research.
Collapse
Affiliation(s)
- Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor’s Workstation of Yuhuangmiao Town, Shanghe County, Jinan 250061, China
- China Agricultural University Professor’s Workstation of Sunji Town, Shanghe County, Jinan 250061, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Gomes SIL, Guimarães B, Campodoni E, Sandri M, Sprio S, Blosi M, Costa AL, Scott-Fordsmand JJ, Amorim MJB. Safer and Sustainable-by-Design Hydroxyapatite Nanobiomaterials for Biomedical Applications: Assessment of Environmental Hazards. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4060. [PMID: 36432346 PMCID: PMC9699464 DOI: 10.3390/nano12224060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Developments in the nanotechnology area occur ensuring compliance with regulatory requirements, not only in terms of safety requirements, but also to meet sustainability goals. Hence, safer and sustainable-by-design (SSbD) materials are also aimed for during developmental process. Similar to with any new materials their safety must be assessed. Nanobiomaterials can offer large advantages in the biomedical field, in areas such as tissue repair and regeneration, cancer therapy, etc. For example, although hydroxyapatite-based nanomaterials (nHA) are among the most studied biomaterials, its ecotoxicological effects are mostly unknown. In the present study we investigated the toxicity of seven nHA-based materials, covering both different biomedical applications, e.g., iron-doped hydroxyapatite designed for theragnostic applications), hybrid collagen/hydroxyapatite composites, designed for bone tissue regeneration, and SSbD alternative materials such as titanium-doped hydroxyapatite/alginate composite, designed as sunscreen. The effects were assessed using the soil model Enchytraeus crypticus (Oligochaeta) in the natural standard LUFA 2.2 soil. The assessed endpoints included the 2, 3 and 4 days avoidance behavior (short-term), 28 days survival, size and reproduction (long term based on the OECD standard reproduction test), and 56 days survival and reproduction (longer-term OECD extension). Although overall results showed little to no toxicity among the tested nHA, there was a significant decrease in animals' size for Ti-containing nHA. Moreover, there was a tendency for higher toxicity at the lowest concentrations (i.e., 100 mg/kg). This requires further investigation to ensure safety.
Collapse
Affiliation(s)
- Susana I. L. Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Guimarães
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisabetta Campodoni
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | - Monica Sandri
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | - Magda Blosi
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | - Anna L. Costa
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | | | - Mónica J. B. Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Gambardella C, Pinsino A. Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review. TOXICS 2022; 10:393. [PMID: 35878298 PMCID: PMC9323026 DOI: 10.3390/toxics10070393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/16/2023]
Abstract
This systematic review analyzes the studies available on the ecotoxicity of nanomaterials (NMs) in the environment to understand where future research should be addressed for achieving Agenda 2030 goals on sustainable development and environmental safety. We discuss the status of NMs ecotoxicological effects across different organisms that are representative of all natural environments (land, air, water). A total of 1562 publications were retrieved from the Web of Science (all databases) by using the search criteria "nanomaterials" and "ecotoxicology"; among them, 303 studies were included in the systematic review because they met any of the following criteria: (i) focalize on both search criteria; (ii) deal with terrestrial, or aquatic environment; (iii) address models (organisms, cells) for the nano environmental risk assessment and exposure. The knowledge gaps are identified together with novel insights that need to be further investigated to better understand the ecotoxicological environmental impacts of NMs.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research Council, 16149 Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
10
|
Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. NANOMATERIALS 2022; 12:nano12111810. [PMID: 35683670 PMCID: PMC9181910 DOI: 10.3390/nano12111810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.
Collapse
|
11
|
Topuz E. Integration of ecotoxicity assessment with product design for circularity management. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:305-307. [PMID: 35262254 DOI: 10.1002/ieam.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Emel Topuz
- Gebze Technical University, Gebze/Kocaeli, Turkey
| |
Collapse
|
12
|
|
13
|
Sánchez Jiménez A, Puelles R, Perez-Fernandez M, Barruetabeña L, Jacobsen NR, Suarez-Merino B, Micheletti C, Manier N, Salieri B, Hischier R, Tsekovska R, Handzhiyski Y, Bouillard J, Oudart Y, Galea KS, Kelly S, Shandilya N, Goede H, Gomez-Cordon J, Jensen KA, van Tongeren M, Apostolova MD, Llopis IR. Safe(r) by design guidelines for the nanotechnology industry. NANOIMPACT 2022; 25:100385. [PMID: 35559891 DOI: 10.1016/j.impact.2022.100385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/15/2023]
Abstract
Expectations for safer and sustainable chemicals and products are growing to comply with the United Nations and European strategies for sustainability. The application of Safe(r) by Design (SbD) in nanotechnology implies an iterative process where functionality, human health and safety, environmental and economic impact and cost are assessed and balanced as early as possible in the innovation process and updated at each step. The EU H2020 NanoReg2 project was the first European project to implement SbD in six companies handling and/or manufacturing nanomaterials (NMs) and nano-enabled products (NEP). The results from this experience have been used to develop these guidelines on the practical application of SbD. The SbD approach foresees the identification, estimation, and reduction of human and environmental risks as early as possible in the development of a NM or NEP, and it is based on three pillars: (i) safer NMs and NEP; (ii) safer use and end of life and (iii) safer industrial production. The presented guidelines include a set of information and tools that will help deciding at each step of the innovation process whether to continue, apply SbD measures or carry out further tests to reduce uncertainty. It does not intend to be a prescriptive protocol where all suggested steps have to be followed to achieve a SbD NM/NEP or process. Rather, the guidelines are designed to identify risks at an early state and information to be considered to identify those risks. Each company adapts the approach to its specific needs and circumstances as company decisions influence the way forward.
Collapse
Affiliation(s)
| | - Raquel Puelles
- Avanzare Innovación Tecnológica S.L., Av. Lentiscares, 4-6, 26370 Navarrete, La Rioja, Spain
| | - Marta Perez-Fernandez
- Avanzare Innovación Tecnológica S.L., Av. Lentiscares, 4-6, 26370 Navarrete, La Rioja, Spain
| | - Leire Barruetabeña
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, E-48170 Zamudio, Spain
| | - Nicklas Raun Jacobsen
- National Research Centre for the Working Environment (NRCWE), Lersoe Park Alle 105, 2100 Copenhagen, Denmark
| | | | | | - Nicolas Manier
- Institut national de l'environnement industriel et des risques (INERIS), Verneuil-en-Halatte 60550, France
| | - Beatrice Salieri
- TEMAS AG, 8048 Zurich, Switzerland; Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Lab (TSL), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Rositsa Tsekovska
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Yordan Handzhiyski
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Jacques Bouillard
- Institut national de l'environnement industriel et des risques (INERIS), Verneuil-en-Halatte 60550, France
| | - Yohan Oudart
- Nanomakers, 1 Rue de Clairefontaine, 78 120 Rambouillet, France
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Edinburgh, UK
| | - Sean Kelly
- Nanotechnology Industries Association (NIA), Avenue Tervueren 143, 1150 Brussels, Belgium
| | | | - Henk Goede
- TNO, Princetonlaan 6, 3584 CB Utrecht, Netherlands
| | - Julio Gomez-Cordon
- Avanzare Innovación Tecnológica S.L., Av. Lentiscares, 4-6, 26370 Navarrete, La Rioja, Spain
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NRCWE), Lersoe Park Alle 105, 2100 Copenhagen, Denmark
| | - Martie van Tongeren
- School of Health Sciences, The University of Manchester, Oxford Rd., Manchester M13 9PL,UK
| | - Margarita D Apostolova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Isabel Rodríguez Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, E-48170 Zamudio, Spain
| |
Collapse
|
14
|
Tavernaro I, Dekkers S, Soeteman-Hernández LG, Herbeck-Engel P, Noorlander C, Kraegeloh A. Safe-by-Design part II: A strategy for balancing safety and functionality in the different stages of the innovation process. NANOIMPACT 2021; 24:100354. [PMID: 35559813 DOI: 10.1016/j.impact.2021.100354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 06/15/2023]
Abstract
Manufactured nanomaterials have the potential to impact an exceedingly wide number of industries and markets ranging from energy storage, electronic and optical devices, light-weight construction to innovative medical approaches for diagnostics and therapy. In order to foster the development of safer nanomaterial-containing products, two main aspects are of major interest: their functional performance as well as their safety towards human health and the environment. In this paper a first proposal for a strategy is presented to link the functionality of nanomaterials with safety aspects. This strategy first combines information on the functionality and safety early during the innovation process and onwards, and then identifies Safe-by-Design (SbD) actions that allow for optimisation of both aspects throughout the innovation process. The strategy encompasses suggestions for the type of information needed to balance functionality and safety to support decision making in the innovation process. The applicability of the strategy is illustrated using a literature-based case study on carbon nanotube-based transparent conductive films. This is a first attempt to identify information that can be used for balancing functionality and safety in a structured way during innovation processes.
Collapse
Affiliation(s)
- Isabella Tavernaro
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Petra Herbeck-Engel
- Innovation Center INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Cornelle Noorlander
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Annette Kraegeloh
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| |
Collapse
|
15
|
Jantunen P, Rauscher H, Riego Sintes J, Rasmussen K. Commentary on "Safe(r) by design implementation in the nanotechnology industry" [NanoImpact 20 (2020) 100267] and "Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials" [NanoImpact 23 (2021) 100335]. NANOIMPACT 2021; 24:100356. [PMID: 35559815 DOI: 10.1016/j.impact.2021.100356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 06/15/2023]
Abstract
Commentary on two recent papers published in NanoImpact "Safe(r) by design implementation in the nanotechnology industry" and "Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials".
Collapse
Affiliation(s)
- Paula Jantunen
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | | | | |
Collapse
|