1
|
Ahmadi AN, Ganjeali A, Mohassel MHR, Mashreghi M. Controlled release of trifluralin herbicide using luminescent Vibrio-derived polyhydroxyalkanoate (PHA) microcapsules. Int J Biol Macromol 2025; 289:138845. [PMID: 39694375 DOI: 10.1016/j.ijbiomac.2024.138845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The controlled release of herbicides using new and safe materials can mitigate environmental pollution. Polyhydroxyalkanoate (PHA) is a type of biopolymer that can be produced by various bacteria. It has properties that make it suitable for encapsulation and controlled release applications. A luminescent bacterium, Vibrio sp. VLC strain was used as the PHA producer in this study. Initially, the polymer was synthesized by the bacterium following optimization of the culture medium, resulting in an approximate yield of 25 %. Subsequently, the produced polymer was analyzed using TEM, FTIR, and H-NMR techniques. Microcapsules were produced using the emulsion method. FE-SEM imaging revealed spherical microcapsules with an average diameter of 0.5-2 μm. The herbicide loading content and encapsulation efficiency were determined to be 16.64 % and 66.56 %, respectively. The herbicidal effect of the microcapsules containing trifluralin was investigated using Amaranthus retroflexus and Setaria viridis plants, demonstrating a significant reduction in various parameters after application. Furthermore, the impact of encapsulated herbicide on soil microbial population was assessed, revealing a less negative effect compared to its free form. These findings suggest that the PHA from a luminescent vibrio holds promise as an eco-friendly, biodegradable, nontoxic material for the controlled release of herbicides.
Collapse
Affiliation(s)
- Arefe N Ahmadi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Amir M, Bano N, Gupta A, Zaheer MR, Roohi. Purification and characterization of extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) and their biodegradation studies with polymer films. Biodegradation 2024; 35:137-153. [PMID: 37639167 DOI: 10.1007/s10532-023-10051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
PHB depolymerase enzymes are able to breakdown the PHB polymers and thereby get significant economic value in the bioplastics industry and for bioremediation as well. This study shows the purification of novel extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) using dialysis followed by gel filtration and HPLC. The purification fold and yield after HPLC were 45.92 and 27.04%, respectively. HPLC data showed a single peak with a retention time of 1.937 min. GC-MS analysis reveals the presence of three compounds, of which 1-Dodecanol was found to be most significant with 54.48% area and 8.623-min retention time (RT). The molecular weight of the purified enzyme was obtained as 35 kDa with Km and apparent Vmax values of 0.769 mg/mL and 1.89 U/mL, respectively. The enzyme was moderately active at an optimum temperature of 35 °C and at pH 8.0. The stability was detected at pH 7.0-9.0 and 35-45 °C. Complete activity loss was observed with EDTA, SDS, Tween-20 at 5 mM and with 0.1% Triton X 100. A biodegradation study of commercially available biodegradable polymer films was carried out in a liquid medium and in soil separately with pure microbial culture and with purified enzyme for 7, 14, 28, and 49 consecutive days. In a liquid medium, with a pure strain of Aeromonas caviae Kuk1-(34), the maximum degradation (89%) was achieved on the PHB film, while no changes were observed with other polymer films. With purified enzyme in the soil, 71% degradation of the PHB film was noticed, and it was only 18% in the liquid medium. All such weight analysis were confirmed by SEM images where several holes, pits, grooves, crest, and surface roughness are clearly observed. Our results demonstrated the potential utility of Aeromonas caviae Kuk1-(34) as a source of extracellular PHB depolymerase capable of degrading PHB under a wide range of natural/ lab conditions.
Collapse
Affiliation(s)
- Mohd Amir
- Protein research Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Naushin Bano
- Protein research Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India
| | - Mohd Rehan Zaheer
- Department of Chemistry, R.M.P.S.P. Girls Post Graduate College, Basti, Uttar Pradesh, 272301, India
| | - Roohi
- Protein research Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
3
|
Mandragutti T, Jarso TS, Godi S, Begum SS, K B. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074. Microb Cell Fact 2024; 23:59. [PMID: 38388436 PMCID: PMC10882773 DOI: 10.1186/s12934-024-02324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Polyhydroxybutyrate is a biopolymer produced by bacteria and archaea under nitrogen-limiting conditions. PHB is an essential polymer in the bioplastic sector because of its biodegradability, eco-friendliness, and adaptability. The characterization of PHB is a multifaceted process for studying the structure and its properties. This entire aspect can assure the long-term viability and performance attributes of the PHB. The characteristics of PHB extracted from the halophile Brachybacterium paraconglomeratum were investigated with the objective of making films for application in healthcare. RESULTS This was the first characterization study on PHB produced by a rare halophile, Brachybacterium paraconglomeratum (MTCC 13074). In this study, the strain produced 2.72 g/l of PHB for.5.1 g/l of biomass under optimal conditions. Methods are described for the determination of the physicochemical properties of PHB. The prominent functional groups CH3 and C = O were observed by FT-IR and the actual chemical structure of the PHB was deduced by NMR. GCMS detects the confirmation of four methyl ester derivatives of the extracted PHB in the sample. Mass spectrometry revealed the molecular weight of methyl 3-hydroxybutyric acid (3HB) present in the extract. The air-dried PHB films were exposed to TGA, DSC and a universal testing machine to determine the thermal profile and mechanical stability. Additionally, the essential property of biopolymers like viscosity was also assessed for the extracted PHB. CONCLUSIONS The current study demonstrated the consistency and quality of B. paraconglomeratum PHB. Therefore, Brachybacterium sps are also a considerable source of PHB with desired characteristics for industrial production.
Collapse
Affiliation(s)
- Teja Mandragutti
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India.
| | - Tura Safawo Jarso
- Department of Biology (Applied Genetics and Biotechnology Stream), College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Sudhakar Godi
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India
| | - S Sharmila Begum
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| | - Beulah K
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| |
Collapse
|
4
|
Hossain KR, Akter S, Nanjeba M, Mahmud MA. Properties and Performance of Biopolymers in Textile Applications. BIOPOLYMERS IN THE TEXTILE INDUSTRY 2024:41-86. [DOI: 10.1007/978-981-97-0684-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Witt BL, Tollefsbol TO. Molecular, Cellular, and Technical Aspects of Breast Cancer Cell Lines as a Foundational Tool in Cancer Research. Life (Basel) 2023; 13:2311. [PMID: 38137912 PMCID: PMC10744609 DOI: 10.3390/life13122311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer comprises about 30% of all new female cancers each year and is the most common malignant cancer in women in the United States. Breast cancer cell lines have been harnessed for many years as a foundation for in vitro analytic studies to understand the use of cancer prevention and therapy. There has yet to be a compilation of works to analyze the pitfalls, novel discoveries, and essential techniques for breast cancer cell line studies in a scientific context. In this article, we review the history of breast cancer cell lines and their origins, as well as analyze the molecular pathways that pharmaceutical drugs apply to breast cancer cell lines in vitro and in vivo. Controversies regarding the origins of certain breast cancer cell lines, the benefits of utilizing Patient-Derived Xenograft (PDX) versus Cell-Derived Xenograft (CDX), and 2D versus 3D cell culturing techniques will be analyzed. Novel outcomes from epigenetic discovery with dietary compound usage are also discussed. This review is intended to create a foundational tool that will aid investigators when choosing a breast cancer cell line to use in multiple expanding areas such as epigenetic discovery, xenograft experimentation, and cancer prevention, among other areas.
Collapse
Affiliation(s)
- Brittany L. Witt
- Department of Biology, University of Alabama at Birmingham, 902 14th Street, Birmingham, AL 35228, USA;
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street, Birmingham, AL 35228, USA;
- Integrative Center for Aging Research, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Nagajothi K, Murugesan AG. Polyhydroxy butyrate biosynthesis by Azotobacter chroococcum MTCC 3858 through groundnut shell as lignocellulosic feedstock using resource surface methodology. Sci Rep 2023; 13:10743. [PMID: 37400483 DOI: 10.1038/s41598-022-15672-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 07/05/2023] Open
Abstract
This work appraises the prospect of utilising groundnut shell hydrolysate as a feedstock used for PHB biosynthesis by Azotobacter chroococcum MTCC 3853 under SMF conditions. Sugar reduction: untreated and pretreated 20% H2SO4 (39.46 g/l and 62.96 g/l, respectively), untreated and enzymatic hydrolysis (142.35 mg/g and 568.94 mg/g). The RSM-CCD optimization method was used to generate augment PHB biosynthesis from groundnut shell hydrolysate (30 g/l), ammonium sulphate (1.5 g/l), ammonium chloride (1.5 g/l), peptone (1.5 g/l), pH 7, 30 °C, and a 48 h incubation time. The most convincing factors (p < 0.0001), coefficient R2 values of biomass 0.9110 and PHB yield 0.9261, PHB production, highest biomass (17.23 g/l), PHB Yield(11.46 g/l), and 66.51 (wt% DCW) values were recorded. The control (untreated GN) PHB yield value of 2.86 g/l increased up to fourfold in pretreated GN. TGA results in a melting range in the peak perceived at 270.55 °C and a DSC peak range of 172.17 °C, correspondingly. According to the results, it furnishes an efficient agricultural waste executive approach by diminishing the production expenditure. It reinforces the production of PHB, thereby shrinking our reliance on fossil fuel-based plastics.
Collapse
Affiliation(s)
- Kasilingam Nagajothi
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tamil Nadu, India.
- Dept. of Microbiology, K.R. College of Arts and Science, Kovilpatti, 628503, Tamil Nadu, India.
| | - A G Murugesan
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tamil Nadu, India
| |
Collapse
|
7
|
Zhou W, Bergsma S, Colpa DI, Euverink GJW, Krooneman J. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118033. [PMID: 37156023 DOI: 10.1016/j.jenvman.2023.118033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Overusing non-degradable plastics causes a series of environmental issues, inferring a switch to biodegradable plastics. Polyhydroxyalkanoates (PHAs) are promising biodegradable plastics that can be produced by many microbes using various substrates from waste feedstock. However, the cost of PHAs production is higher compared to fossil-based plastics, impeding further industrial production and applications. To provide a guideline for reducing costs, the potential cheap waste feedstock for PHAs production have been summarized in this work. Besides, to increase the competitiveness of PHAs in the mainstream plastics economy, the influencing parameters of PHAs production have been discussed. The PHAs degradation has been reviewed related to the type of bacteria, their metabolic pathways/enzymes, and environmental conditions. Finally, the applications of PHAs in different fields have been presented and discussed to induce comprehension on the practical potentials of PHAs.
Collapse
Affiliation(s)
- Wen Zhou
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Simon Bergsma
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Dana Irene Colpa
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Gert-Jan Willem Euverink
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Janneke Krooneman
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands; Bioconversion and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Groningen, the Netherlands.
| |
Collapse
|
8
|
Aragosa A, Specchia V, Frigione M. Valorization of Waste from Argan Seeds for Polyhydroxybutyrate Production Using Bacterial Strains Isolated from Argan Soils. Polymers (Basel) 2023; 15:polym15081972. [PMID: 37112119 PMCID: PMC10141640 DOI: 10.3390/polym15081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to study the valorization of argan seed pulp, a waste material obtained from argan oil extraction, for the biosynthesis of polyhydroxybutyrate (PHB). A new species that showed the metabolic capacity for the conversion of argan waste into the bio-based polymer was isolated from an argan crop located in Teroudant, a southwestern region of Morocco, where the arid soil is exploited for goat grazing. The PHB accumulation efficiency of this new species was compared to the previously identified species 1B belonging to the genus Sphingomonas, and results were reported as dry cell weight residual biomass and PHB final yield measured. Temperature, incubation time, pH, NaCl concentration, nitrogen sources, residue concentrations, and culture medium volumes were analyzed with the aim of obtaining a maximum accumulation of PHB. UV-visible spectrophotometry and FTIR analysis confirmed that PHB was present in the material extracted from the bacterial culture. The results of this wide investigation indicated that the new isolated species 2D1 had a higher efficiency in PHB production compared to the previously identified strain 1B, which was isolated from a contaminated argan soil in Teroudant. PHB final yield of the two bacterial species, i.e., the new isolated and 1B, cultivated under optimal culture conditions, in 500 mL MSM enriched with 3% argan waste, were 21.40% (5.91 ± 0.16 g/L) and 8.16% (1.92 ± 0.23 g/L), respectively. For the new isolated strain, the result of the UV-visible spectrum indicates the absorbance at 248 nm, while the FTIR spectrum showed peaks at 1726 cm-1 and 1270 cm-1: these characteristic peaks indicated the presence of PHB in the extract. The data from the species 1B UV-visible and FTIR spectra were previously reported and were used in this study for a correlation analysis. Furthermore, additional peaks, uncharacteristic of standard PHB, suggest the presence of impurities (e.g., cell debris, solvent residues, biomass residues) that persisted after extraction. Therefore, a further enhancement of the sample purification during extraction is recommended for more accuracy in the chemical characterization. If 470,000 tons of argan fruit waste can be produced annually, and 3% of waste is consumed in 500 mL culture by 2D1 to produce 5.91 g/L (21.40%) of the bio-based polymer PHB, it can be estimated that the amount of putative PHB that can be extracted annually from the total argan fruit waste is about 2300 tons.
Collapse
Affiliation(s)
- Amina Aragosa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- School of Science and Engineering, Al Akhawayn University, Ifrane 53000, Morocco
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|
9
|
Banu JR, Kumar G, Gunasekaran M. Augmentation in polyhydroxybutyrate and biogas production from waste activated sludge through mild sonication induced thermo-fenton disintegration. BIORESOURCE TECHNOLOGY 2023; 369:128376. [PMID: 36414138 DOI: 10.1016/j.biortech.2022.128376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, an innovative approach was developed to enhance the hydrolysis through phase-separated pretreatment by removing exopolymeric substances via mild sonication followed by thermo-Fenton disintegration. The exopolymeric substances fragmentation was enhanced at the sonic specific energy input of 2.58 kJ/kg total solids. After exopolymeric substance removal, the disintegration of biomass by thermo-Fenton yield the solubilization of 29.8 % at Fe2+:H2O2 dosage and temperature of 0.009:0.036 g/g suspended solids and 80 °C as compared to thermo-Fenton alone disintegration. The polyhydroxybutyrate content of 93.1 % was accumulated by Bacillus aryabhattai at the optimum time of 42 h, while providing 70 % (v/v) pre-treated supernatant as a carbon source under nutrient-limiting condition. Moreover, the biogas generation of 0.187 L/g chemical oxygen demand was achieved using settled pretreated sludge. The pretreated sludge sample thus served as a carbon source for polyhydroxybutyrate producers as well as substrate for biogas production.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, TamilNadu 627007, India.
| |
Collapse
|
10
|
Aragosa A, Saccomanno B, Specchia V, Frigione M. A Novel Sphingomonas sp. Isolated from Argan Soil for the Polyhydroxybutyrate Production from Argan Seeds Waste. Polymers (Basel) 2023; 15:polym15030512. [PMID: 36771813 PMCID: PMC9921021 DOI: 10.3390/polym15030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bio-based polymer synthesized by microorganisms under unfavorable conditions from agro-industrial residues as a source of carbon. These aspects make the bio-based polymer attractive for the mass production of biodegradable plastics, and a definitive replacement for petroleum-based plastics. The aim of this work was to characterize the putative PHB-producing bacterium 1B isolated from the argan soil, to identify the polymer produced, and quantify the PHB production using argan seeds waste. DNA extraction, PCR, and Sanger sequencing were conducted for the molecular identification of strain 1B; the residual biomass and the PHB quantification were measured and compared in the presence of simple sugars and pretreated argan seeds waste. The 1B growth and PHB synthesis were optimized by selecting physical and nutritional parameters: temperature, incubation time, pH, NaCl concentration, and nitrogen sources concentrations. A preliminary characterization of the bio-based polymer extracted was conducted by UV-Visible spectrophotometry and FTIR analysis. The strain 1B was identified as belonging to the genus Sphingomonas. The PHB final yield was higher in a growth culture enriched with argan waste (3.06%) than with simple sugars. The selected conditions for the bacterial optimal growth incremented the PHB final yield to 6.13%, while the increase in the argan residue concentration from 1 to 3% in a larger culture volume led to the PHB final yield of 8.16%. UV-Visible spectrophotometry of the extracted sample reported a remarkable peak at 248 nm, as well as FTIR spectra analysis, showed peaks at 1728 and 1282 wavenumber/cm. Both preliminary characterizations demonstrated that the extracted sample is the bio-based polymer polyhydroxybutyrate. The results reported in this work reveal how the costless available argan seeds can be used for polyhydroxybutyrate production using a novel Sphingomonas species.
Collapse
Affiliation(s)
- Amina Aragosa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- School of Science and Engineering, Al Akhawayn University, Ifrane 53000, Morocco
| | - Benedetta Saccomanno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mariaenrica Frigione
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Correspondence: ; Tel.: +39-0832-297215
| |
Collapse
|
11
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
12
|
Hamdy SM, Danial AW, Gad El-Rab SMF, Shoreit AAM, Hesham AEL. Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiol 2022; 22:183. [PMID: 35869433 PMCID: PMC9306189 DOI: 10.1186/s12866-022-02593-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polyhydroxybutyrate (PHB) is a biopolymer formed by some microbes in response to excess carbon sources or essential nutrient depletion. PHBs are entirely biodegradable into CO2 and H2O under aerobic and anaerobic conditions. It has several applications in various fields such as medicine, pharmacy, agriculture, and food packaging due to its biocompatibility and nontoxicity nature.
Result
In the present study, PHB-producing bacterium was isolated from the Dirout channel at Assiut Governorate. This isolate was characterized phenotypically and genetically as Bacillus cereus SH-02 (OM992297). According to one-way ANOVA test, the maximum PHB content was observed after 72 h of incubation at 35 °C using glucose and peptone as carbon and nitrogen source. Response surface methodology (RSM) was used to study the interactive effects of glucose concentration, peptone concentration, and pH on PHB production. This result proved that all variables have a significant effect on PHB production either independently or in the interaction with each other. The optimized medium conditions with the constraint to maximize PHB content and concentration were 22.315 g/L glucose, and 15.625 g/L peptone at pH 7.048. The maximum PHB content and concentration were 3100.799 mg/L and 28.799% which was close to the actual value (3051 mg/l and 28.7%). The polymer was identified as PHB using FTIR, NMR, and mass spectrometry. FT-IR analysis showed a strong band at 1724 cm− 1 which attributed to the ester group’s carbonyl while NMR analysis has different peaks at 169.15, 67.6, 40.77, and 19.75 ppm that were corresponding to carbonyl, methine, methylene, and methyl resonance. Mass spectroscopy exhibited molecular weight for methyl 3- hydroxybutyric acid.
Conclusion
PHB–producing strain was identified as Bacillus cereus SH-02 (OM992297). Under optimum conditions from RSM analysis, the maximum PHB content and concentration of this strain can reach (3100.799 mg/L and 28.799%); respectively. FTIR, NMR, and Mass spectrometry were used to confirm the polymer as PHB. Our results demonstrated that optimization using RSM is one of the strategies used for reducing the production cost. RSM can determine the optimal factors to produce the polymer in a better way and in a larger quantity without consuming time.
Collapse
|
13
|
Abu Bakar AA, Zainuddin MZ, Abdullah SM, Tamchek N, Mohd Noor IS, Alauddin MS, Alforidi A, Mohd Ghazali MI. The 3D Printability and Mechanical Properties of Polyhydroxybutyrate (PHB) as Additives in Urethane Dimethacrylate (UDMA) Blends Polymer for Medical Application. Polymers (Basel) 2022; 14:4518. [PMID: 36365512 PMCID: PMC9657082 DOI: 10.3390/polym14214518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 04/12/2024] Open
Abstract
The integration of additive manufacturing (3D printing) in the biomedical sector required material to portray a holistic characteristic in terms of printability, biocompatibility, degradability, and mechanical properties. This research aims to evaluate the 3D printability and mechanical properties of polyhydroxybutyrate (PHB) as additives in the urethane dimethacrylate (UDMA) based resin and its potential for medical applications. The printability of the PHB/UDMA resin blends was limited to 11 wt.% as it reached the maximum viscosity value at 2188 cP. Two-way analysis of variance (ANOVA) was also conducted to assess the significant effect of the varied PHB (wt.%) incorporation within UDMA resin, and the aging duration of 3D printed PHB/UDMA on mechanical properties in terms of tensile and impact properties. Meanwhile, the increasing crystallinity index (CI) of X-ray diffraction (XRD) in the 3D printed PHB/UDMA as the PHB loading increased, indicating that there is a strong correlation with the lower tensile and impact strength. FESEM images also proved that the agglomerations that occurred within the UDMA matrix had affected the mechanical performance of 3D printed PHB/UDMA. Nonetheless, the thermal stability of the 3D printed PHB/UDMA had only a slight deviation from the 3D printed UDMA since it had better thermal processability.
Collapse
Affiliation(s)
- Ahmad Adnan Abu Bakar
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Muhammad Zulhilmi Zainuddin
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Shahino Mah Abdullah
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Nizam Tamchek
- Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ikhwan Syafiq Mohd Noor
- Physics Division, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Syafiq Alauddin
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Ahmad Alforidi
- Electrical Engineering Department, Taibah University, Medina 42353, Saudi Arabia
| | - Mohd Ifwat Mohd Ghazali
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| |
Collapse
|
14
|
Varghese S, Dhanraj ND, Rebello S, Sindhu R, Binod P, Pandey A, Jisha MS, Awasthi MK. Leads and hurdles to sustainable microbial bioplastic production. CHEMOSPHERE 2022; 305:135390. [PMID: 35728665 DOI: 10.1016/j.chemosphere.2022.135390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Indiscriminate usage, disposal and recalcitrance of petroleum-based plastics have led to its accumulation leaving a negative impact on the environment. Bioplastics, particularly microbial bioplastics serve as an ecologically sustainable solution to nullify the negative impacts of plastics. Microbial production of biopolymers like Polyhydroxyalkanoates, Polyhydroxybutyrates and Polylactic acid using renewable feedstocks as well as industrial wastes have gained momentum in the recent years. The current study outlays types of bioplastics, their microbial sources and applications in various fields. Scientific evidence on bioplastics has suggested a unique range of applications such as industrial, agricultural and medical applications. Though diverse microorganisms such as Alcaligenes latus, Burkholderia sacchari, Micrococcus species, Lactobacillus pentosus, Bacillus sp., Pseudomonas sp., Klebsiella sp., Rhizobium sp., Enterobacter sp., Escherichia sp., Azototobacter sp., Protomonas sp., Cupriavidus sp., Halomonas sp., Saccharomyces sp., Kluyveromyces sp., and Ralstonia sp. are known to produce bioplastics, the industrial production of bioplastics is still challenging. Thus this paper also provides deep insights on the advancements made to maximise production of bioplastics using different approaches such as metabolic engineering, rDNA technologies and multitude of cultivation strategies. Finally, the constraints to microbial bioplastic production and the future directions of research are briefed. Hence the present review emphasizes on the importance of using bioplastics as a sustainable alternative to petroleum based plastic products to diminish environmental pollution.
Collapse
Affiliation(s)
- Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - N D Dhanraj
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sharrel Rebello
- School of Food Science & Technology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
15
|
Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: a short review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Tyagi B, Gupta B, Khatak D, Meena R, Shekhar Thakur I. Genomic analysis, simultaneous production, and process optimization of extracellular polymeric substances and polyhydroxyalkanoates by Methylobacterium sp. ISTM1 by utilizing molasses. BIORESOURCE TECHNOLOGY 2022; 354:127204. [PMID: 35460844 DOI: 10.1016/j.biortech.2022.127204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
In the current study, the isolated Methylobacterium sp. ISTM1 simultaneously produced both extracellular polymeric substances (EPS) and polyhydroxyalkanoates (PHA) in a single-step process. The yield of biopolymers (EPS and PHA) was enhanced by optimizing the process parameters of EPS and PHA production. Methylobacterium sp. ISTM1 was able to produce 7.18 ± 0.04 g L-1 EPS and 1.41 ± 0.04 g L-1 PHA simultaneously at optimized culture conditions i.e., 9% molasses and pH 7. The genomic analysis of the strain has identified the involved genes and pathways in the production of EPS and PHA. Both the biopolymers were found non-toxic according to the cytotoxicity analysis. The results of the current study present the potential of the bacterium Methylobacterium sp. ISTM1 produces non-toxic biopolymers by utilizing agro-industrial waste (molasses) that can be harnessed sustainably for various applications.
Collapse
Affiliation(s)
- Bhawna Tyagi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bulbul Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Centre of Innovative and Applied Bioprocessing, Mohali, Punjab
| | - Deepak Khatak
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ramovatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Amity School of Earth and Environmental Sciences, Amity University, Gurugram, Haryana, India.
| |
Collapse
|
17
|
Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
The power of two: An artificial microbial consortium for the conversion of inulin into Polyhydroxyalkanoates. Int J Biol Macromol 2021; 189:494-502. [PMID: 34428488 DOI: 10.1016/j.ijbiomac.2021.08.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
One of the major issues for the microbial production of polyhydroxyalkanoates (PHA) is to secure renewable, non-food biomass feedstocks to feed the fermentation process. Inulin, a polydisperse fructan that accumulates as reserve polysaccharide in the roots of several low-requirement crops, has the potential to face this challenge. In this work, a "substrate facilitator" microbial consortium was designed to address PHA production using inulin as feedstock. A microbial collection of Bacillus species was screened for efficient inulinase producer and the genome of the selected strain, RHF15, identified as Bacillus gibsonii, was analysed unravelling its wide catabolic potential. RHF15 was co-cultured with Cupriavidus necator, an established PHA producer, lacking the ability to metabolize inulin. A Central Composite Rotary Design (CCRD) was applied to optimise PHA synthesis from inulin by the designed artificial microbial consortium, assessing the impact of species inoculum ratio and inulin and N-source concentrations. In the optimized conditions, a maximum of 1.9 g L-1 of Polyhydroxybutyrate (PHB), corresponding to ~80% (gpolymer/gCDW) polymer content was achieved. The investigated approach represents an effective process optimization method, potentially applicable to the production of PHA from other complex C- sources.
Collapse
|
19
|
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 2021; 42:668-692. [PMID: 34645360 DOI: 10.1080/07388551.2021.1960265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymers are synonymous with the modern way of living. However, polymers with a large carbon footprint, especially those derived from nonrenewable petrochemical sources, are increasingly perceived as detrimental to the environment and a sustainable future. Polyhydroxyalkanoate (PHA) is a microbial biopolymer and a plausible alternative for renewable sources. However, PHA in its monomeric forms has very limited applications due to its limited flexibility, tensile strength, and moldability. Herein, the life cycle of PHA molecules, from biosynthesis to commercial utilization for diverse applications is discussed. For clarity, the applications of this bioplastic biocomposite material are further segregated into two domains, namely, the industrial sector and the medical sector. The industry sectors reviewed here include food packaging, textiles, agriculture, automotive, and electronics. High-value addition of PHA for a sustainable future can be foreseen in the medical domain. Properties such as biodegradability and biocompatibility make PHA a suitable candidate for decarbonizing biomaterials during tissue repair, organ reconstruction, drug delivery, bone tissue engineering, and chemotherapeutics.
Collapse
Affiliation(s)
- Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
20
|
Production of eco-friendly PHB-based bioplastics by Pseudomonas aeruginosa CWS2020 isolate using poultry (chicken feather) waste. Biol Futur 2021; 72:497-508. [PMID: 34606079 DOI: 10.1007/s42977-021-00099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the accumulation of non-degradable plastics and other disposed wastes leads to environmental pollution across the world. The production of eco-friendly and cost-effective poly-β-hydroxybutyrate (PHB) could be a better alternative to conventional petroleum-based plastics and prevent environmental pollution. Besides, the area in and around Namakkal, Tamil Nadu, India is well known for poultries, currently facing the number of environmental issues due to the accumulation of chicken feather waste. This study focused on the production of eco-friendly PHB by recycling poultry (chicken feather) waste as the substrate. The native PHB producers were screened from the chicken waste disposal site in Namakkal by Sudan black B staining method. Further, the potent bacterial isolate was identified as Pseudomonas aeruginosa (NCBI accession MF18889) by phenotypic and genotypic characteristics. The PHB production media with chicken feather waste was statistically optimized by response surface methodology. The dry weight of PHB produced under optimized condition (15.96 g/L chicken feather waste, 37 °C temperature, 19.8 g/L glucose and 6.85 pH) was found to be 4.8 g/L. Besides, PHB was characterized and confirmed by thin-layer chromatography, Fourier-transform infrared spectroscopy and Gas chromatography-mass spectrometry analysis. Thus, this study concludes that poultry waste could be a complex nitrogen source for improving the growth of PHB producers and substantially increasing the yield of PHB, and it will be an eco-friendly and low-cost production in bioprocess technology.
Collapse
|
21
|
Polyhydroxyalkanoate (PHA) Production in Pseudomonas sp. phDV1 Strain Grown on Phenol as Carbon Sources. Microorganisms 2021; 9:microorganisms9081636. [PMID: 34442715 PMCID: PMC8398824 DOI: 10.3390/microorganisms9081636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas strains have a variety of potential uses in bioremediation and biosynthesis of biodegradable plastics. Pseudomonas sp. strain phDV1, a Gram-negative phenol degrading bacterium, has been found to utilize monocyclic aromatic compounds as sole carbon source via the meta-cleavage pathway. The degradation of aromatic compounds comprises an important step in the removal of pollutants. The present study aimed to investigate the ability of the Pseudomonas sp. strain phDV1 to produce polyhydroxyalkanoates (PHAs) and examining the effect of phenol concentration on PHA production. The bacterium was cultivated in minimal medium supplemented with different concentrations of phenol ranging from 200-600 mg/L. The activity of the PHA synthase, the key enzyme which produces PHA, was monitored spectroscopically in cells extracts. Furthermore, the PHA synthase was identified by mass spectrometry in cell extracts analyzed by SDS-PAGE. Transmission electron micrographs revealed abundant electron-transparent intracellular granules. The isolated biopolymer was confirmed to be polyhydroxybutyrate (PHB) by FTIR, NMR and MALDI-TOF/TOF analyses. The ability of strain Pseudomonas sp. phDV1 to remove phenol and to produce PHB makes the strain a promising biocatalyst in bioremediation and biosynthesis of biodegradable plastics.
Collapse
|
22
|
Microbial cell factories for the production of polyhydroxyalkanoates. Essays Biochem 2021; 65:337-353. [PMID: 34132340 DOI: 10.1042/ebc20200142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Pollution caused by persistent petro-plastics is the most pressing problem currently, with 8 million tons of plastic waste dumped annually in the oceans. Plastic waste management is not systematized in many countries, because it is laborious and expensive with secondary pollution hazards. Bioplastics, synthesized by microorganisms, are viable alternatives to petrochemical-based thermoplastics due to their biodegradable nature. Polyhydroxyalkanoates (PHAs) are a structurally and functionally diverse group of storage polymers synthesized by many microorganisms, including bacteria and Archaea. Some of the most important PHA accumulating bacteria include Cupriavidus necator, Burkholderia sacchari, Pseudomonas sp., Bacillus sp., recombinant Escherichia coli, and certain halophilic extremophiles. PHAs are synthesized by specialized PHA polymerases with assorted monomers derived from the cellular metabolite pool. In the natural cycle of cellular growth, PHAs are depolymerized by the native host for carbon and energy. The presence of these microbial PHA depolymerases in natural niches is responsible for the degradation of bioplastics. Polyhydroxybutyrate (PHB) is the most common PHA with desirable thermoplastic-like properties. PHAs have widespread applications in various industries including biomedicine, fine chemicals production, drug delivery, packaging, and agriculture. This review provides the updated knowledge on the metabolic pathways for PHAs synthesis in bacteria, and the major microbial hosts for PHAs production. Yeasts are presented as a potential candidate for industrial PHAs production, with their high amenability to genetic engineering and the availability of industrial-scale technology. The major bottlenecks in the commercialization of PHAs as an alternative for plastics and future perspectives are also critically discussed.
Collapse
|
23
|
Potential Chemicals from Plastic Wastes. Molecules 2021; 26:molecules26113175. [PMID: 34073300 PMCID: PMC8199254 DOI: 10.3390/molecules26113175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Plastic is referred to as a “material of every application”. From the packaging and automotive industries to the medical apparatus and computer electronics sectors, plastic materials are fulfilling demands efficiently. These plastics usually end up in landfills and incinerators, creating plastic waste pollution. According to the Environmental Protection Agency (EPA), in 2015, 9.1% of the plastic materials generated in the U.S. municipal solid waste stream was recycled, 15.5% was combusted for energy, and 75.4% was sent to landfills. If we can produce high-value chemicals from plastic wastes, a range of various product portfolios can be created. This will help to transform chemical industries, especially the petrochemical and plastic sectors. In turn, we can manage plastic waste pollution, reduce the consumption of virgin petroleum, and protect human health and the environment. This review provides a description of chemicals that can be produced from different plastic wastes and the research challenges involved in plastic waste to chemical production. This review also provides a brief overview of the state-of-the-art processes to help future system designers in the plastic waste to chemicals area.
Collapse
|
24
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
25
|
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Su Kim D, Mulla SI, Seung Shin H. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. BIORESOURCE TECHNOLOGY 2021; 325:124685. [PMID: 33508681 DOI: 10.1016/j.biortech.2021.124685] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are appealing as an important alternative to replace synthetic plastics owing to its comparable physicochemical properties to that of synthetic plastics, and biodegradable and biocompatible nature. This review gives an inclusive overview of the current research activities dealing with PHA production by utilizing different waste fluxes generated from food, milk and sugar processing industries. Valorization of these waste fluxes makes the process cost effective and practically applicable. Recent advances in the approaches adopted for waste treatment, fermentation strategies, and genetic engineering can give insights to the researchers for future direction of waste to bioplastics production. Lastly, synthesis and application of PHA-nanocomposites, research and development challenges, future perspectives for sustainable and cost-effective PHB production are also discussed. In addition, the review addresses the useful information about the opportunities and confines associated with the sustainable PHA production using different waste streams and their evaluation for commercial implementation within a biorefinery.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| |
Collapse
|
26
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
27
|
El-malek FA, Farag A, Omar S, Khairy H. Polyhydroxyalkanoates (PHA) from Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 isolated from Mariout salt lakes. Int J Biol Macromol 2020; 161:1318-1328. [DOI: 10.1016/j.ijbiomac.2020.07.258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022]
|
28
|
Narayanan M, Kandasamy S, Kumarasamy S, Gnanavel K, Ranganathan M, Kandasamy G. Screening of polyhydroxybutyrate producing indigenous bacteria from polluted lake soil. Heliyon 2020; 6:e05381. [PMID: 33163664 PMCID: PMC7610324 DOI: 10.1016/j.heliyon.2020.e05381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
The prime aim of this study was to enumerate predominant bacteria from polluted lake soil samples, which possess polyhydroxybutyrate (PHB) fabricating potential and identify the suitable growth conditions and nutritional factors for PHB fabrication. From several numbers of bacterial cultures, one culture has the competence to yield PHB, and it was endorsed through Sudan Black B stain, Nile red staining, SEM analysis, and growth in PHB selective media. Under the microscopic observation, the fluorescent cells and polymeric granules were observed in the fluorescent microscope and SEM, respectively. This PHB fabricating isolate was recognized as Bacillus cereus NDRMN001 through 16S rRNA partial sequence analysis. The structural characteristics of PHB produced by B. cereus NDRMN001 were studied through FT-IR, 1H NMR, and 13C NMR analysis. The peak observed at 1759.27 cm-1 on FT-IR analysis is corresponding to the signal band of PHB. In 1H NMR peaks were noticed at 1.67, 2.37 to 2.71, and 3.38 to 7.68 which corresponding to -CH3, -CH2, and -CH protons of PHB. About 4 notable peaks were noticed in 13C NMR analysis at 19.62, 68.27, 40.68, and 169.11 ppm which appeared close to the carboxyl group of PHB. About 10% of inoculum, pH 7.5, 2 g L of yeast extract, 20 g L of rice bran, 35 °C, and 2 days of incubation were recognized as optimal growth conditions for B. cereus NDRMN001 to produce PHB. The identified B. cereus NDRMN001 has the potential to yield 91.48% of PHB as 33.19 g L of PHB from 36.26 g L of culture biomass. The complete results conclude that the B. cereus NDRMN001 screened from polluted lake soil has the competence to produce fine quality and quantity of PHB in a short duration of fabrication process under favorable conditions with the utilization of cheap nutritional factors.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | | | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Keerthana Gnanavel
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Muthusamy Ranganathan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| |
Collapse
|
29
|
El-malek FA, Khairy H, Farag A, Omar S. The sustainability of microbial bioplastics, production and applications. Int J Biol Macromol 2020; 157:319-328. [DOI: 10.1016/j.ijbiomac.2020.04.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 01/09/2023]
|
30
|
Villegas M, Cid AG, Briones CA, Romero AI, Pistán FA, Gonzo EE, Gottifredi JC, Bermúdez JM. Films based on the biopolymer poly(3-hydroxybutyrate) as platforms for the controlled release of dexamethasone. Saudi Pharm J 2019; 27:694-701. [PMID: 31297024 PMCID: PMC6598214 DOI: 10.1016/j.jsps.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
Controlled drug delivery aims to achieve an effective drug concentration in the action site for a desired period of time, while minimizing side effects. In this contribution, biodegradable poly(3-hydroxybutyrate) films were evaluated as a reservoir platform for dexamethasone controlled release. These systems were morphological and physicochemically characterized. In vitro release assays were performed for five different percentages of drug in the films and data were fitted by a mathematical model developed and validated by our research group. When the profiles were normalized, a single curve properly fitted all the experimental data. Using this unique curve, the dissolution efficiency (DE), the time to release a given amount of drug (tX% ), and the mean dissolution time were calculated. Furthermore, the dissolution rate, the initial dissolution rate (a%) and the intrinsic dissolution rate were determined. The a% mean value was 1.968 × 10-2% released/min, t80% was about 14 days, and the DE was 59.6% at 14 days and 66.5% at 20 days. After 2 days, when approximately 40% of the drug was released, the dissolution rate decreased about 60% respect to the initial value. The poly(3-hydroxybutyrate) platforms behaved as an appropriate system to release and control the dexamethasone delivery, suggesting that they could be an alternative to improve drug therapy.
Collapse
Affiliation(s)
- Mercedes Villegas
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, Salta Capital 4400, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, Salta Capital 4400, Argentina
| | - Cintia Alejandra Briones
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
| | - Analía Irma Romero
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, Salta Capital 4400, Argentina
| | - Florencia Alejandra Pistán
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, Salta Capital 4400, Argentina
| | - Elio Emilio Gonzo
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, Salta Capital 4400, Argentina
| | - Juan Carlos Gottifredi
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, Salta Capital 4400, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bolivia 5150, Salta Capital 4400, Argentina
- Corresponding author at: Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta Capital 4400, Argentina.
| |
Collapse
|