1
|
Hua W, Xie L, Dong C, Yang G, Chi S, Xu Z, Yang C, Wang H, Wu X. Procyanidin C1 ameliorates acidic pH stress induced nucleus pulposus degeneration through SIRT3/FOXO3-mediated mitochondrial dynamics. J Transl Med 2024; 22:1071. [PMID: 39605029 PMCID: PMC11600718 DOI: 10.1186/s12967-024-05805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of low back pain. Procyanidin C1 (PCC1) has been demonstrated to exert a protective effect on nucleus pulposus (NP) cells, and therefore, plays a critical role in the prevention and therapy of IVDD. Clarifying the pathophysiological characteristics and molecular mechanisms of IVDD may be helpful in establishing novel preventive and therapeutic strategies. This study aimed to investigate the probable mechanisms underlying the protection against acidic pH stress induced human NP cell injury. In vitro, acidic pH stress induced degeneration, mitochondrial dynamics imbalance, mitophagy, and mitochondria-mediated apoptosis in NP cells, all of which were ameliorated by PCC1. Autophagy inhibition partially eliminated the protective effects of PCC1 on mitochondrial homeostasis in NP cells. Moreover, PCC1 activated the sirtuin 3 (SIRT3)/forkhead box O3 (FOXO3) signaling pathway, a pivotal signaling pathway involved in the regulation of mitochondrial homeostasis in NP cells. In vivo, PCC1 ameliorated IVDD in a rat model and preserved the extracellular matrix of NP cells. Consequently, the protective effects of PCC1 on NP cells may inhibit IVDD progression via regulation of the SIRT3/FOXO3 signaling pathway. Therefore, regulation of the SIRT3/FOXO3 signaling pathway may be a novel preventive and therapeutic strategy for IVDD.
Collapse
Affiliation(s)
- Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenpeng Dong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyu Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shouyuan Chi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiqiang Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiwen Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Yang QN, Deng W, Wu DT, Li J, Liu HY, Yan HL, Du K, Hu YC, Zou L, Huang JW. Characterization, Antioxidant Capacity, and Anti-Inflammatory Activity of Polyphenol-Enriched Extracts Obtained from Unripe, Mature, and Overripe Fruits of Red-Fleshed Kiwifruit Cultivars. Foods 2024; 13:2860. [PMID: 39335790 PMCID: PMC11430867 DOI: 10.3390/foods13182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Discarded unripe kiwifruits (DUKs) are regarded as the major agro-byproducts in the production of kiwifruits, which have abundantly valuable secondary metabolites. Nevertheless, owing to the limited knowledge about the differences in phytochemicals and bioactivity between DUKs and mature kiwifruits, the utilization of DUKs in the food industry remains scarce. Hence, to promote their food applications, the phenolic compounds and bioactivity of discarded unripe, mature, and overripe fruits from three red-fleshed kiwifruit cultivars were studied and compared. The results revealed that the levels of total phenolics, total flavonoids, and total procyanidins in kiwifruits varied significantly by maturity stage. In addition, our findings demonstrated that DUKs possessed much higher contents of valuable phenolic compounds (e.g., chlorogenic acid (CHA), neochlorogenic acid (NCHA), gallic acid (GA), protocatechuic acid (PA), procyanidin B1 (ProcB1), procyanidin B2 (ProcB2), procyanidin C1 (ProcC1), quercetin 3-O-glucoside (QueG), and quercetin 3-O-rhamnoside (QueR)) than mature and overripe kiwifruits. Furthermore, DUKs exerted much stronger in vitro antioxidant capacity, inhibitory effects on α-glucosidase, and anti-inflammatory activity than mature and overripe kiwifruits, which were mainly attributed to their higher contents of total polyphenols and individual phenolic components, such as GA, CHA, NCHA, PA, ProcB1, ProcB2, ProcC1, and QueR. Overall, these findings provide sufficient evidence for the development and utilization of DUKs in the food/functional food industry.
Collapse
Affiliation(s)
- Qian-Ni Yang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen Deng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jie Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Hui-Ling Yan
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Kui Du
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jing-Wei Huang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Zeng J, Weng Y, Lai T, Chen L, Li Y, Huang Q, Zhong S, Wan S, Luo L. Procyanidin alleviates ferroptosis and inflammation of LPS-induced RAW264.7 cell via the Nrf2/HO-1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4055-4067. [PMID: 38010399 DOI: 10.1007/s00210-023-02854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Inflammation is a common occurrence in many medical conditions and is a natural defense mechanism of the human body. Ferroptosis, an iron-dependent form of cell death related to lipid peroxide build-up, has been found to be involved in inflammation. The anti-inflammatory effects of procyanidin, however, are not yet fully understood. Through network pharmacology and bioinformatics analysis, it was suggested that procyanidin could modulate ferroptosis and cause anti-inflammatory effects on RAW264.7 cells. This was further evidenced through molecular docking, molecular dynamics, and in vitro experiments. The results indicated that procyanidin could diminish inflammation in LPS-induced RAW264.7 cells by regulating ferroptosis via the Nrf2/HO-1/Keap-1 pathway. In conclusion, procyanidin supplementation might be an effective way to reduce inflammation by decreasing the release of inflammatory cytokines and suppressing ferroptosis.
Collapse
Affiliation(s)
- Jiayan Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanmin Weng
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Tianli Lai
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lan Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Ying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Qiqi Huang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, No. 2 Wenming East Road, Xiashan District, Zhanjiang, 524023, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
4
|
Duan L, Hao Z, Ji R, Li X, Wang H, Su Y, Guan F, Ma S. Glucose-modified BSA/procyanidin C1 NPs penetrate the blood-brain barrier and alleviate neuroinflammation in Alzheimer's disease models. Int J Biol Macromol 2024; 268:131739. [PMID: 38657920 DOI: 10.1016/j.ijbiomac.2024.131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease with high prevalence, long duration and poor prognosis. The blood-brain barrier (BBB) is a physiologic barrier in the central nervous system, which hinders the entry of most drugs into the brain from the blood, thus affecting the efficacy of drugs for AD. Natural products are recognized as one of the promising and unique therapeutic approaches to treat AD. To improve the efficiency and therapeutic effect of the drug across the BBB, a natural polyphenolic compound, procyanidin C-1 (C1) was encapsulated in glucose-functionalized bovine serum albumin (BSA) nanoparticles to construct Glu-BSA/C1 NPs in our study. Glu-BSA/C1 NPs exhibited good stability, slow release, biocompatibility and antioxidant properties. In addition, Glu-BSA/C1 NPs penetrated the BBB, accumulated in the brain by targeting Glut1, and maintained the BBB integrity both in vitro and in vivo. Moreover, Glu-BSA/C1 NPs alleviated memory impairment of 5 × FAD mice by reducing Aβ deposition and Tau phosphorylation and promoting neurogenesis. Mechanistically, Glu-BSA/C1 NPs significantly activated the PI3K/AKT pathway and inhibited the NLRP3/Caspase-1/IL-1β pathway thereby suppressing neuroinflammation. Taken together, Glu-BSA/C1 NPs could penetrate the BBB and mitigate neuroinflammation in AD, which provides a new therapeutic approach targeting AD.
Collapse
Affiliation(s)
- Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhizhong Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rong Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yujing Su
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
5
|
Phan UTT, Nguyen HD, Nguyen TKO, Tran TH, Le TH, Tran TTP. Anti-inflammatory effect of Piper longum L. fruit methanolic extract on lipopolysaccharide-treated RAW 264.7 murine macrophages. Heliyon 2024; 10:e26174. [PMID: 38404825 PMCID: PMC10884859 DOI: 10.1016/j.heliyon.2024.e26174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Context The Piper species was studied several potential properties such as anti-tumor, anti-inflammatory and antioxidant activity. However, the specific anti-inflammatory activity of the extract from the fruits of P. longum L. has not been investigated. Objectives Our study want to examine the anti-inflammatory effects of P. longum L. fruit methanolic extracts (PLE) on lipopolysachharide (LPS)-stimulated RAW 264.7 murine macrophages to understand the mechanism of this effect. Method This study examined the chemical profiling of PLE by LC-HRMS analysis and measured the presence of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the supernatant using the Griess reagent assay and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA expression of IL-6, TNF-α, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, the protein expression of COX-2, iNOS and the phosphorylation of MAPK family, c-Jun N-terminal kinase (JNK), p38 in protein level were observed by western blotting. Result PLE have detected 66 compounds which belong to different classes such as alkaloids, flavonoids, terpenoids, phenolics, lactones, and organic acids inhibited nitric oxide products with the IC50 = 28.5 ± 0.91 μg/mL. Moreover, PLE at 10-100 μg/mL up-regulate HO-1 protein expression from 3 to 10 folds at 3 h. It also downregulated the mRNA and protein expression of iNOS, COX-2, decreased IL-6 and TNF-α secretion by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, specifically by decreasing the phosphorylation of p38 and JNK. Conclusion These results shown chemical profiling of PLE and demonstrated that PLE exhibits anti-inflammatory effects by regulating the MAPK family and could be a potential candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Uyen Thi Tu Phan
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Hai Dang Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Kieu Oanh Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Viet Nam
| | - Thanh Huong Le
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Thu Phuong Tran
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
6
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
7
|
Chen Q, Song Y, He Z, Yang G, Wang J, Li X, Wang W, Yuan X, Hu J, He H, Li L, Wang J, Hu S. Effects of cage vs. net-floor mixed rearing system on goose spleen histomorphology and gene expression profiles. Front Vet Sci 2024; 11:1335152. [PMID: 38414655 PMCID: PMC10896902 DOI: 10.3389/fvets.2024.1335152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Due to the demands for both environmental protection and modernization of the goose industry in China, the traditional goose waterside rearing systems have been gradually transitioning to the modern intensive dryland rearing ones, such as the net-floor mixed rearing system (MRS) and cage rearing system (CRS). However, the goose immune responses to different dryland rearing systems remain poorly understood. This study aimed to investigate and compare the age-dependent effects of MRS and CRS on the splenic histomorphological characteristics and immune-related genes expression profiles among three economically important goose breeds, including Sichuan White goose (SW), Gang goose (GE), and Landes goose (LD). Morphological analysis revealed that the splenic weight and organ index of SW were higher under CRS than under MRS (p < 0.05). Histological observations showed that for SW and LD, the splenic corpuscle diameter and area as well as trabecular artery diameter were larger under MRS than under CRS at 30 or 43 weeks of age (p < 0.05), while the splenic red pulp area of GE was larger under CRS than under MRS at 43 weeks of age (p < 0.05). Besides, at 43 weeks of age, higher mRNA expression levels of NGF, SPI1, and VEGFA in spleens of SW were observed under MRS than under CRS (p < 0.05), while higher levels of HSPA2 and NGF in spleens of LD were observed under MRS than under CRS (p < 0.05). For GE, there were higher mRNA expression levels of MYD88 in spleens under CRS at 30 weeks of age (p < 0.05). Moreover, our correlation analysis showed that there appeared to be more pronounced positive associations between the splenic histological parameters and expression levels of several key immune-related genes under MRS than under CRS. Therefore, it is speculated that the geese reared under MRS might exhibit enhanced immune functions than those under CRS, particularly for SW and LD. Although these phenotypic differences are assumed to be associated with the age-dependent differential expression profiles of HSPA2, MYD88, NGF, SPI1, and VEGFA in the goose spleen, the underlying regulatory mechanisms await further investigations.
Collapse
Affiliation(s)
- Qingliang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yang Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiyu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junqi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaopeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wanxia Wang
- Department of Animal Production, General Station of Animal Husbandry of Sichuan Province, Chengdu, Sichuan, China
| | - Xin Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
9
|
Zhong L, Wu C, Liao L, Wu Y. Mycoplasma synoviae induce spleen tissue damage and inflammatory response of chicken through oxidative stress and apoptosis. Virulence 2023:2283895. [PMID: 37963095 DOI: 10.1080/21505594.2023.2283895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Mycoplasma synovium (MS) is a prominent avian pathogen known to elicit robust inflammatory responses in birds while evading immune detection, often leading to chronic infection and immune compromise. The mechanisms underpinning MS-mediated splenic tissue damage in chickens, however, remain undefined. In our investigation with 7-day-old SPF chickens, we administered an MS-Y bacterial solution (200 µl, 1 × 109 CCU/ml) through eye and nose droplets, collecting spleen samples on days 3, 6, and 12 post-infection. Comprehensive analyses utilizing histopathology, electron microscopy, TUNEL assay, qRT-PCR, and western blot were employed. Results demonstrated that MS-infection downregulated T-SOD, GSH-PX, and CAT, while concurrently elevating iNOS, NO, and MDA levels. Evidently, MS-induced oxidative stress compromised the spleen's antioxidant defences. Histological examinations pinpointed splenic damage characterized by lymphocyte reduction and increased inflammatory cell infiltration. Ultrastructural observations revealed clear apoptotic markers, including mitochondrial perturbations and nuclear anomalies. Importantly, MS induced significant spleen tissue apoptosis, as supported by TUNEL assay outputs and gene expression profiles associated with apoptosis. Concurrently, we observed upregulated expressions of mRNAs and proteins affiliated with the NF-κB/MAPK signalling cascade (p < 0.05). Collectively, our data elucidate that MS infection induces splenic apoptosis and oxidative disturbances, perturbs tissue integrity, and potentiates the NF-κB/MAPK-mediated inflammatory cascade.
Collapse
Affiliation(s)
- Lemiao Zhong
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Chunlin Wu
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Lvyan Liao
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| | - Yijian Wu
- University Key Laboratory for Integrated ChineseTraditional and Western Veterinary Medicine and Animal Healthcare, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture And Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
10
|
Kim JH, Hong M, Han JH, Ryu BR, Lim YS, Lim JD, Kim CH, Lee SU, Kwon TH. In Vitro and In Vivo Anti-Inflammatory Effects of Cannabidiol Isolated from Novel Hemp ( Cannabis sativa L.) Cultivar Pink Pepper. Molecules 2023; 28:6439. [PMID: 37764215 PMCID: PMC10535604 DOI: 10.3390/molecules28186439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Cannabis sativa L. contains more than 80 cannabinoids, among which cannabidiol (CBD) is the main neuroactive component. We aimed to investigate the anti-inflammatory efficacy of CBD in vitro and in vivo isolated from "Pink pepper", a novel hemp cultivar, by repeating the method of selecting and cultivating individuals with the highest CBD content. We investigated the effects of CBD on inflammatory markers elevated by lipopolysaccharide (LPS) treatment in RAW 264.7 mouse macrophage cells through Western blot and RT-PCR. In addition, we confirmed these effects through the ELISA of inflamed paw tissue of a λ-carrageenan-induced mouse edema model that received an oral administration of CBD. CBD inhibited the LPS-induced phosphorylation of NF-κB and MAPK in RAW 264.7 and exhibited anti-inflammatory effects by participating in these pathways. In our in vivo study, we confirmed that CBD also inhibited the inflammatory mediators of proteins extracted from edematous mouse paw tissue. These results show that CBD isolated from "Pink pepper" exhibits potent anti-inflammatory effects. These anti-inflammatory effects of CBD have pharmacological and physiological significance, highlighting the industrial value of this novel cultivar.
Collapse
Affiliation(s)
- Jong-Hui Kim
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Min Hong
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Joon-Hee Han
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Byeong Ryeol Ryu
- Department of Bio-Health Convergence, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea; (B.R.R.); (Y.S.L.); (J.D.L.)
| | - Young Seok Lim
- Department of Bio-Health Convergence, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea; (B.R.R.); (Y.S.L.); (J.D.L.)
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Dae Lim
- Department of Bio-Health Convergence, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea; (B.R.R.); (Y.S.L.); (J.D.L.)
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Chang Hyeug Kim
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Soo-Ung Lee
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| | - Tae-Hyung Kwon
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon 24232, Republic of Korea; (J.-H.K.); (M.H.); (J.-H.H.); (C.H.K.)
| |
Collapse
|
11
|
Qaed E, Almoiliqy M, Al-Hamyari B, Qaid A, Alademy H, Al-Maamari A, Alyafeai E, Geng Z, Tang Z, Ma X. Procyanidins: A promising anti-diabetic agent with potential benefits on glucose metabolism and diabetes complications. Wound Repair Regen 2023; 31:688-699. [PMID: 37553788 DOI: 10.1111/wrr.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Diabetes mellitus (DM) is a complex disease with alarming worldwide health implications and high mortality rates, largely due to its complications such as cardiovascular disease, nephropathy, neuropathy, and retinopathy. Recent research has shown that procyanidins (PC), a type of flavonoid, have strong antioxidant and free radical elimination effects, and may be useful in improving glucose metabolism, enhancing pancreatic islet cell activity, and decreasing the prevalence of DM complications. This review article presents a systematic search for peer-reviewed articles on the use of PC in the treatment of DM, without any language restrictions. The article also discusses the potential for PC to sensitise DM medications and improve their efficacy. Recent in vivo and in vitro studies have demonstrated promising results in improving the biological activity and bioavailability of PC for the treatment of DM. The article concludes by highlighting the potential for novel materials and targeted drug delivery methods to enhance the pharmacokinetics and bioactivity of PC, leading to the creation of safer and more effective anti-DM medications in the future.
Collapse
Affiliation(s)
- Eskandar Qaed
- Chemistry and Chemical Engineering Department, Lanzhou University, Gansu, China
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Taizz, Yemen
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhaohong Geng
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Shi Y, Zhang H, Li S, Xin D, Li S, Yan B, Wang S, Liu C. Procyanidin improves experimental colitis by regulating macrophage polarization. Biomed Pharmacother 2023; 165:115076. [PMID: 37478578 DOI: 10.1016/j.biopha.2023.115076] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic disease with an unclear pathogenesis for which successful treatments are still lacking. It has been reported that procyanidin, a natural antioxidant, relieves colitis, but the specific mechanism is elusive. PURPOSE Our present study was designed to investigate the effects of procyanidin on colitis and the regulation of the M1 macrophage phenotype and related signaling pathways. METHODS In vivo, we used two classic colitis models to observe the effect of procyanidin on macrophage polarization. In vitro, we further validated the therapeutic effect of procyanidin in the RAW264.7 cell line and peritoneal macrophages. RESULTS The current findings provide new evidence that procyanidin ameliorated dextran sulfate sodium (DSS)-induced colitis by preventing the polarization of macrophages to the M1 type and downregulating the levels of proinflammatory factors in cells. We also showed that procyanidin prevented lipopolysaccharide (LPS)-induced elevation of inflammatory cytokines and the activation of proinflammatory macrophages, which was achieved by activating the STAT3 and NF-κB pathways. CONCLUSIONS This is the first study to demonstrate that procyanidin alleviates experimental colitis by inhibiting the polarization of proinflammatory macrophages. These data reveal new ideas for the pathogenesis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yao Shi
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Haojie Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Shuang Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Shiyang Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Bing Yan
- Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250012, PR China
| | - Shuanglian Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
13
|
Wu H, Lin T, Chen Y, Chen F, Zhang S, Pang H, Huang L, Yu C, Wang G, Wu C. Ethanol Extract of Rosa laevigata Michx. Fruit Inhibits Inflammatory Responses through NF-κB/MAPK Signaling Pathways via AMPK Activation in RAW 264.7 Macrophages. Molecules 2023; 28:molecules28062813. [PMID: 36985786 PMCID: PMC10054580 DOI: 10.3390/molecules28062813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The fruit of Rosa laevigata Michx. (FR), a traditional Chinese herb utilized for the treatment of a variety diseases, has notably diverse pharmacological activities including hepatoprotective, anti-oxidant, and anti-inflammatory effects. Despite ongoing research on illustrating the underlying anti-inflammatory mechanism of FR, the principal mechanism remained inadequately understood. In this study, we investigated in depth the molecular mechanism of the anti-inflammatory actions of the ethanol extract of FR (EFR) and its potential targets using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro. We showed that EFR effectively ameliorated the overproduction of inflammatory mediators and cytokines, as well as the expression of related genes. It was further demonstrated that LPS-induced activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) were significantly inhibited by pretreatment with EFR, accompanied by a concomitant decrease in the nuclear translocation of the p65 subunit of NF-κB and activator protein 1 (AP-1). In addition, EFR pretreatment potently prevented LPS-induced decreased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Our data also revealed that the activation of AMPK and subsequent inhibition of the mammalian target of the rapamycin (mTOR) signaling pathway was probably responsible for the inhibitory effect of EFR on LPS-induced inflammatory responses, evidenced by reverse changes observed under the condition of AMPK inactivation following co-treatment with the AMPK-specific inhibitor Compound C. Finally, the main components with an anti-inflammatory effect in EFR were identified as madecassic acid, ellagic acid, quinic acid, and procyanidin C1 by LC-MS and testified based on the inhibition of NO production and inflammatory mediator expression. Taken together, our results indicated that EFR was able to ameliorate inflammatory responses via the suppression of MAPKs/NF-κB signaling pathways following AMPK activation, suggesting the therapeutic potential of EFR for inflammatory diseases.
Collapse
Affiliation(s)
- Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Tingting Lin
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Yupei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Shudi Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Haiyue Pang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Lisen Huang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Chihli Yu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Gueyhorng Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Chun Wu
- Department of Clinical Medicine, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
14
|
Geng Q, Liu B, Cao Z, Li L, Lu P, Lin L, Yan L, Lu C. Ethnobotany, phytochemistry and pharmacological properties of Fagopyri Dibotryis Rhizoma: A review. Front Pharmacol 2023; 14:1095554. [PMID: 36950009 PMCID: PMC10025315 DOI: 10.3389/fphar.2023.1095554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Fagopyri Dibotryis Rhizoma (FDR) is an effective Chinese herbal medicine with a long history of use in China. FDR is effective in heat clearing and detoxifying, promotion of blood circulation, relieving carbuncles, dispelling wind, and removing dampness. Its seeds also have high nutritional value, are rich in protein, and contain a variety of mineral elements and vitamins. Therefore, FDR is considered a natural product with medical and economic benefits, and its chemical composition and pharmacological activity are of interest to scientists. The current review provides an overview of the available scientific information on FDR, particularly its botany, chemical constituents, and pharmacological activities. Various sources of valid and comprehensive relevant information were consulted, including the China National Knowledge Infrastructure, Web of Science, and PubMed. Among the keywords used were "Fagopyri Dibotryis Rhizoma", "botanical features", "chemical composition", and "pharmacological activity" in combination. Various ailments are treated with FDR, such as diabetes, tumor, sore throat, headache, indigestion, abdominal distension, dysentery, boils, carbuncles, and rheumatism. FDR is rich in organic acids, tannins, flavonoids, steroids, and triterpenoids. Experiments performed in vitro and in vivo showed that FDR extracts or fractions had a wide range of pharmacological activities, including antitumor, anti-inflammatory, immunomodulatory, antioxidant, antimicrobial, and antidiabetic. The current review provides an integrative perspective on the botany, phytochemistry and pharmacological activities of FDR. FDR may be used as a medicine and food. Based on its chemical composition and pharmacological effects, the main active ingredients of FDR are organic acids, tannins, and flavonoids, and it has obvious antitumor pharmacological activity against a variety of malignant tumors. Therefore, FDR is worthy of further study and application as a potential antitumor drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Wu Z, Chen L, Wang Q, Govindasamy C, Subramaniyan Sivakumar A, Chen X. Betanin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibition of Inflammatory Response and Oxidative Stress. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
16
|
Liu Z, Yan J, Li N, Zheng Z, Zhang C, Liu Z, Song C, Mu S. Influence of Lonicera japonica and Radix Puerariae crude extracts on the Growth Performance, Antioxidant Capacity, and Immunological Functions of Finishing Pigs. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
17
|
Shao X, Li J, Zhang H, Zhang X, Sun C, Ouyang X, Wang Y, Wu X, Chen C. Anti-inflammatory effects and molecular mechanisms of bioactive small molecule garlic polysaccharide. Front Nutr 2023; 9:1092873. [PMID: 36698476 PMCID: PMC9868249 DOI: 10.3389/fnut.2022.1092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Although garlic polysaccharides have been found to possess anti-inflammatory activities, anti-inflammatory study on small molecule water-soluble garlic polysaccharide (WSGP) is few. In this study, a novel WSGP with a molecular weight of 1853 Da was isolated by DEAE-52 and Sephadex G-100 column and the chemical composition was identified by monosaccharide composition and methylation analysis. Furthermore, the antioxidant effects of WSGP and the potential molecular mechanisms on LPS-induced inflammatory responses in RAW264.7 macrophage cells were investigated. The results showed that WSGP has strong antioxidant activity, such as DPPH, hydroxyl, superoxide anion, ABTS radical scavenging capacity, Fe2+ chelating ability and reducing power. Meanwhile, WSGP could considerably suppress the manufacturing of NO and the mRNA and protein expression degrees of IL-6, TNF-α, and IL-1β in LPS inspired RAW264.7 macrophages WSGP could significantly suppress the production of NO and the mRNA and protein expression levels of IL-1β, IL-6, and TNF-α in LPS stimulated RAW264.7 macrophage cells (p < 0.05). In addition, the phosphorylated IκB-α, p65, and STAT3 proteins were significantly increased in LPS-induced macrophages, while this trend was significantly reversed by WSGP treatment in a concentration-dependent manner (p < 0.05). Consequently, WSGP supplementation might reduce LPS-induced inflammatory responses by suppressing proinflammatory cytokines and NF-κB and STAT3 pathway activation. The finding of this research would give scientific guidelines for the judicious use of small molecular garlic polysaccharide in anti-inflammatory treatments.
Collapse
Affiliation(s)
- Xin Shao
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China,Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jialong Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Huidan Zhang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuhui Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Chongzhen Sun
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China,Xiyang Wu ✉
| | - Chunbo Chen
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China,Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Department of Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, China,*Correspondence: Chunbo Chen ✉
| |
Collapse
|
18
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
19
|
Kong L, Wang Z, Xiao C, Zhu Q, Song Z. Glycerol monolaurate attenuated immunological stress and intestinal mucosal injury by regulating the gut microbiota and activating AMPK/Nrf2 signaling pathway in lipopolysaccharide-challenged broilers. ANIMAL NUTRITION 2022; 10:347-359. [PMID: 35919246 PMCID: PMC9307562 DOI: 10.1016/j.aninu.2022.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
This study was conducted to investigate the effects of glycerol monolaurate (GML) on lipopolysaccharide (LPS)-induced immunological stress and intestinal mucosal injury in broilers and its underlying mechanisms. A total of 144 one-d-old Arbor Acres broilers were allocated to a 2 × 2 factorial arrangement involving dietary treatment (0 or 1,200 mg/kg dietary GML) and LPS challenge (injected with saline or Escherichia coli LPS on d 16, 18, and 20). Samples were collected on d 21. The results revealed that dietary GML augmented serum immunoglobulin A (P = 0.009) and immunoglobulin G (P < 0.001) levels in challenged birds. Dietary GML normalized LPS-induced variations in serum interleukin-6, interferon-gamma, and LPS levels (P < 0.05), jejunal villus height (P = 0.030), and gene expression of interleukin-6, macrophage inflammatory protein-3 alpha, Toll-like receptor 4, nuclear factor kappa-B, caspase-1, tight junction proteins, adenosine monophosphate-activated protein kinase alpha 1 (AMPKα1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and superoxide dismutase-1 (P < 0.05). GML supplementation ameliorated LPS-induced peroxidation by reducing malondialdehyde content and increasing antioxidant enzyme activity (P < 0.05). Dietary GML enhanced the abundances of Anaerostipes, Pseudoflavonifractor, and Gordonibacter and reduced the proportion of Phascolarctobacterium in challenged birds. Dietary GML was positively correlated with alterations in antioxidant enzyme activities and AMPKα1, Nrf2, and zonula occludens-1 expressions. The genera Anaerostipes, Lachnospira, Gordonibacter, Lachnospira, Marvinbryantia, Peptococcus, and Pseudoflavonifractor were linked to attenuated inflammation and improved antioxidant capacity of challenged birds. In conclusion, dietary GML alleviated LPS-induced immunological stress and intestinal injury of broilers by suppressing inflammation and oxidative stress. Dietary GML regulated cecal microbiota and activated the AMPK/Nrf2 pathway in LPS-challenged broilers.
Collapse
|
20
|
Anti-inflammatory effects of Torin2 on lipopolysaccharide-treated RAW264.7 murine macrophages and potential mechanisms. Heliyon 2022; 8:e09917. [PMID: 35874059 PMCID: PMC9304722 DOI: 10.1016/j.heliyon.2022.e09917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Context Torin2 has various pharmacological properties. However, its anti-inflammatory activity has not been reported. Objective This study focused on the potential anti-inflammatory properties of Torin2 in lipopolysaccharide (LPS)-evoked RAW264.7 murine macrophages. The study aimed to shed light on the molecular mechanisms that ameliorate these effects. Methods Torin2 was applied to 100 ng/mL lipopolysaccharide-induced RAW 264.7 macrophages in vitro. Nitric oxide (NO) levels were detected using the Griess reagent kit. Prostaglandin E2 (PGE2), pro-inflammatory cytokines interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Gene expression of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were tested using real-time quantitative polymerase chain reaction (qPCR). Cyclooxygenase-2 and inducible nitric oxide synthase proteins, phosphorylation of mitogen-activated protein kinase (MAPK) subgroups, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, I-kappa-B-alpha (IκBα), and nuclear factor-kappa-B (NF-κB), and activation in extracts were detected via western blotting. Nuclear factor-kappa-B/p65 nuclear translocation was tested using an immunofluorescence assay. Results The results demonstrated that pre-treatment with Torin2 profoundly attenuated the lipopolysaccharide-stimulated levels of nitric oxide and prostaglandin E2, pro-inflammatory cytokines, messenger ribonucleic acid (mRNA), and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase. Collectively, Torin2 pre-treatment notably weakened lipopolysaccharide-induced damage by reducing the phosphorylation of nuclear factor-kappa-B, p38, c-Jun N-terminal kinase, extracellular signal-regulated kinase proteins, and nuclear factor-kappa-B/p65 nuclear translocation. Conclusion Numerous pieces of evidence indicated that Torin2 reversed inflammatory activation by regulating nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways and provided a tentative potential candidate for preventing and treating inflammatory diseases.
Collapse
|
21
|
Zhou Z, Chen Y, Min HS, Wan Y, Shan H, Lin Y, Xia W, Yin F, Jiang C, Yu X. Merlin functions as a critical regulator in Staphylococcus aureus-induced osteomyelitis. J Cell Physiol 2021; 237:815-823. [PMID: 34378805 DOI: 10.1002/jcp.30550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/07/2022]
Abstract
Merlin is known as a tumor suppressor, while its role in osteomyelitis remains unclear. This study aimed to investigate the role of Merlin in Staphylococcus aureus-induced osteomyelitis and its underlying mechanisms. S. aureus-induced osteomyelitis mouse model was established in Merlinfl/fl Lyz2cre/+ and Merlinfl/fl Lyz2+/+ mice. Bone marrow-derived macrophages (BMDMs) were isolated and stimulated by lipopolysaccharide (LPS). Bioassays, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and enzyme-linked immunosorbent assays, were conducted to determine the levels of target genes or proteins. Immunoprecipitation was applied to determine the interactions between proteins. DCAF1fl/fl mice were further crossed with Lyz2-Cre mice to establish myeloid cell conditional knockout mice (DCAF1fl/fl Lyz2cre/+ ). It was found that the level of Merlin was elevated in patients with osteomyelitis and S. aureus-infected BMDMs. Merlin deficiency in macrophages suppressed the production of inflammatory cytokines and ameliorated the symptoms of osteomyelitis induced by S. aureus. Merlin deficiency in macrophages also suppressed the production of proinflammatory cytokines in BMDMs induced by LPS. The inhibitory effects of Merlin deficiency on the inflammatory response were associated with DDB1-Cul4-associated factor 1 (DCAF1). In summary, Merlin deficiency ameliorates S. aureus-induced osteomyelitis through the regulation of DCAF1.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanliang Chen
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
| | - Hong Sung Min
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongbai Wan
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
22
|
Moreira V, Stanquevis R, Amaral EP, Lajolo FM, Hassimotto NMA. Anthocyanins from purple maize (Zea mays L.) downregulate lipopolysaccharide-induced peritonitis in mice by modulating the MyD88 signaling pathway. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Liu Y, Jiang G, Huang X, Li C, Huang X, Zhang X, Lin Q, Liu S, Dai Q. Evaluation of serum antioxidative status, immune status and intestinal condition of Linwu duck challenged by lipopolysaccharide with various dosages and replications. Poult Sci 2021; 100:101199. [PMID: 34116351 PMCID: PMC8193623 DOI: 10.1016/j.psj.2021.101199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
The present study investigated the dosage and replication effects of lipopolysaccharide challenges on the serum oxidative and immune status, and the intestinal morphology and permeability of Linwu ducks at the growing stage. A total of 500 54-day-old Linwu ducks were randomly assigned into 10 treatments, which included a factorial arrangement of 2 levels of LPS challenge replications (1 and 2 times) × 5 levels of lipopolysaccharide challenging dosages (0, 0.1, 0.2, 0.4, and 0.8 mg/kg). Each treatment consisted of 5 cages and 10 ducks per cage. The results showed significant replication effects of LPS on the body weight gain of ducks, that 2 replicates of LPS challenges significantly decreased the body weight gain than one challenge (P = 0.036). Regarding to the serum oxidative and immune status, dosage effects of lipopolysaccharide were found on the serum levels of superoxide dismutase (P = 0.034) and immunoglobulin A (P = 0.007), that 0.4 mg/kg lipopolysaccharides significantly increased the levels of these 2 parameters. Additionally, replication effects were found in the serum levels of interlukin 1β, that 2 replicates of LPS challenges significantly increased the interlukin 1β levels comparing to one challenge (P = 0.010). Regarding to the intestinal conditions, dosage effects of lipopolysaccharides were found on the ratio of villus height and crypt depth (P = 0.005) in duodenum, and the wall thickness of duodenum (P = 0.010) and jejunum (P = 0.001), that lipopolysaccharides at 0.1, 0.2, and 0.8 mg/kg significantly deteriorated the intestinal morphologies, especially in the duodenum and jejunum. Moreover, the dosage effects of lipopolysaccharides and the interactions of dosages and replications significantly influenced the permeabilities of the intestinal segments (P < 0.05). It appeared that 2 replicates of lipopolysaccharides at the dosage at 0.4 mg/kg could trigger oxidative and immunological stress, and damage the intestinal morphology and permeability of Linwu ducks at the growing stage.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Guitao Jiang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Chuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Xuan Huang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Xu Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd., Linyi 276000, China
| | - Qiuzhong Dai
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China.
| |
Collapse
|
24
|
Ren Y, Liang S, Zheng Y, Deng X, Lei L, Ai J, Li Y, Zhang T, Chen L, Mei Z, Cheng YC, He C. Investigation on the function tropism of Tiaoqin and Kuqin (different specification of Scutellaria baicalensis) by comparing their curative effect on different febrile disease model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113596. [PMID: 33221498 DOI: 10.1016/j.jep.2020.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis (S. baicalensis) is the root of S. baicalensis Georgi. In traditional Chinese medicine it is divided into Tiaoqin (TQ, 1-3 years old) and Kuqin (KQ, more than 3 years old). However, the differences in TQ and KQ efficacy and their exact mechanisms are still unclear. AIM OF THE STUDY This study aimed to clarify the difference in the efficacy of TQ and KQ in relation to different fever types (damp heat and hyperpyrexia) by using rat models, as well as to determine the primary molecular mechanism. MATERIALS AND METHODS This study compared the compositional content of TQ and KQ by UPLC-MS/MS. Then, rat models of hyperpyrexia (HP, LPS) and damp heat (DH, high-fat and high-sugar diet feeding + fumigation in artificial climate chamber + E. coli injection) were established and their clinical symptoms, blood biochemistry, histopathological sections, cell cytokines and protein expression were compared following treatment with TQ or KQ. Finally, the mechanisms underpinning the differences observed for TQ and KQ were determined by measuring the components of these treatments in different target organs. RESULTS This study identified 31 compounds in the water extracts of both TQ and KQ, which differed significantly in their relative content. TQ and KQ showed different functional tropism in HP and DH model rats. Baicalin, wogonoside, oroxin A, baicalein, wogonin and oroxylin A appeared to be the basic functional components responsible for the functional tropism hypothesis, while the remaining compounds appeared to be the efficacy-oriented components. In addition, the difference in pharmacodynamics between TQ and KQ may be related to their absorption in vivo, which was consistent with the hypothesis of functional tropism proposed in this work. CONCLUSION In this study we adopted TQ and KQ-different specifications of Scutellaria baicalensis with similar chemical components-as a case study to systematically reveal the functional tropism of Chinese herbal medicine (CHM). The results showed that TQ and KQ contain the basic functional components to enable the basic function of 'clearing heat', while the variation in compositional content may result in their different therapeutic effects. A greater understanding and utilisation of the functional tropism of CHM would enormously improve the accuracy and scientific basis for the application of CHM medication, as well as in promoting the multi-function mechanism of CHM and guiding new drug development of CHM.
Collapse
Affiliation(s)
- Yongshen Ren
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China; School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Shuai Liang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yao Zheng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Xin Deng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Lei Lei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Jiao Ai
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yanqiu Li
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Tianpei Zhang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Linlin Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Caijing He
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
25
|
Wei L, Li Y, Chang Q, Guo G, Lan R. Effects of chitosan oligosaccharides on intestinal oxidative stress and inflammation response in heat stressed rats. Exp Anim 2021; 70:45-53. [PMID: 32921697 PMCID: PMC7887628 DOI: 10.1538/expanim.20-0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
This study was to verify the effects of chitosan oligosaccharides (COS) on intestinal integrity, oxidative status, and inflammatory response in a heat-stressed rat model. A total of 24 male Sprague Dawley rats were randomly divided into 3 treatment: CON, the control group; HS, the heat stress group; HSC, the heat stress group with 200 mg/kg COS. Rats in the HS and HSC group exposed to a cyclical heat stress for 7 consecutive days. The CON and HS group provided basal diet, and the HSC group provided the same diet with 200 mg/kg COS. Compared with the HS group, rats in the HSC group had lower serum diamine oxidase and D-lactate acid level, higher villus height of jejunum and ileum, lower malondialdehyde (MDA) content in duodenum, jejunum, and ileum mucosa, higher glutathione peroxidase (GSH-Px), catalase (CAT) and total antioxidant capacity (T-AOC) activity in duodenum mucosa, higher T-AOC activity in jejunum mucosa, and higher glutathione (GSH) level in ileum mucosa. Compared with the HS group, rats in the HSC group had higher interleukin-10 (IL-10) level, but lower tumor necrosis factor-α (TNF-α) level in duodenum, jejunum, and ileum mucosa. These results indicated that COS may alleviate intestinal damage under heat stress condition, probably by modulating intestinal inflammatory response and oxidative status.
Collapse
Affiliation(s)
- Linlin Wei
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Yaxuan Li
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Qingqing Chang
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Guangzhen Guo
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Ruixia Lan
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| |
Collapse
|
26
|
Gao W, Jin Y, Hao J, Huang S, Wang D, Quan F, Ren W, Zhang J, Zhang M, Yu X. Procyanidin B1 promotes in vitro maturation of pig oocytes by reducing oxidative stress. Mol Reprod Dev 2020; 88:55-66. [PMID: 33241626 PMCID: PMC7894521 DOI: 10.1002/mrd.23440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress negatively affects the in vitro maturation (IVM) of oocytes. Procyanidin B1 (PB1) is a natural polyphenolic compound that has antioxidant properties. In this study, we investigated the effect of PB1 supplementation during IVM of porcine oocytes. Treatment with 100 μM PB1 significantly increased the MII oocytes rate (p <0.05), the parthenogenetic (PA) blastocyst rate (p <0.01) and the total cell number in the PA blastocyst (p < 0.01) which were cultured in regular in vitro culture (IVC) medium. The PA blastocyst rate of regular MII oocytes activated and cultured in IVC medium supplemented with 100 and 150 μM PB1 significantly increased compared with control (p < 0.01 and p < 0.05). We also evaluated the reactive oxygen species (ROS) levels, mitochondrial membrane potential (Δψm) levels, glutathione (GSH) levels, and apoptotic levels in MII oocytes and cumulus cells following 100 μM PB1 treatment. The results showed that the PB1 supplementation decreased ROS production and apoptotic levels. In addition, PB1 was found to increase Δψm levels and GSH levels. In conclusion, PB1 inhibited apoptosis of oocytes and cumulus cells by reducing oxidative stress. Moreover, PB1 improved the quality of oocytes and promoted PA embryo development. Taken together, our results suggest that PB1 is a promising antioxidant additive for IVM of oocytes.
Collapse
Affiliation(s)
- Wei Gao
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yongxun Jin
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jindong Hao
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Siyi Huang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Dongxu Wang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Fushi Quan
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Wenzhi Ren
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Mingjun Zhang
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Xianfeng Yu
- Department of Laboratory Animal Science, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| |
Collapse
|
27
|
Li R, Zhu C, Bian X, Jia X, Tang N, Cheng Y. An antioxidative galactomannan extracted from Chinese Sesbania cannabina enhances immune activation of macrophage cells. Food Funct 2020; 11:10635-10644. [PMID: 33211044 DOI: 10.1039/d0fo02131h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study, the antioxidant activities and immunostimulatory ability of a polysaccharide extracted from Chinese Sesbania cannabina, which was identified to be a galactomannan in our previous study, were investigated. The extracted polysaccharide exhibited strong DPPH, ABTS and hydroxyl radical scavenging activities and ferrous ion chelating activity in a concentration-dependent manner. The immune-enhancing effect of our polysaccharide on RAW 264.7 macrophage cells was investigated by determining the cell viability, phagocytic activity, NO and intracellular ROS production and mRNA expression of cytokines. The results indicated that the polysaccharide could increase the production of NO and intracellular ROS, as well as effectively trigger transcriptional activation of TLR-2/4, NF-κB, IL-10/1β/6, IFN-γ, Ik-Bα, iNOS, COX-2 and TNF-α. These findings provide useful information for potential application of the polysaccharide extracted from Chinese Sesbania cannabina in the food industry.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083, China.
| | | | | | | | | | | |
Collapse
|
28
|
José Carlos DLM, Leonardo S, Jesús MC, Paola MR, Alejandro ZC, Juan AV, Cristóbal Noé A. Solid-State Fermentation with Aspergillus niger GH1 to Enhance Polyphenolic Content and Antioxidative Activity of Castilla Rose ( Purshia plicata). PLANTS (BASEL, SWITZERLAND) 2020; 9:E1518. [PMID: 33182299 PMCID: PMC7695294 DOI: 10.3390/plants9111518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
This work was performed to study Castilla Rose (Purshia plicata) as a potential source of polyphenols obtained by solid-state fermentation (SSF)-assisted extraction using the microorganism Aspergillus niger GH1 and to evaluate the antioxidant activity of the extracted compounds. First, water absorption capacity (WAC) of the plant material, radial growth of the microorganism, determination of best fermentation conditions, and maximum accumulation time of polyphenols were tested. Then, a larger-scale fermentation, polyphenols isolation by column liquid chromatography (Amberlite XAD-16) and recovered compounds identification by HPLC-MS were made. Finally, the antioxidant activity of the recovered compounds was tested by ABTS, DPPH, and lipid oxidation inhibition assays. The best fermentation conditions were temperature 25 °C and inoculum 2 × 106 spores/g, while the maximum extraction time of polyphenols was 24 h (173.95 mg/g). The HPLC/MS analysis allowed the identification of 25 different polyphenolic compounds, and the antioxidant activity of the obtained polyphenols was demonstrated, showing ABTS assay the most effective with inhibition of 94.34%.
Collapse
Affiliation(s)
- De León-Medina José Carlos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Mexico; (D.L.-M.J.C.); (S.L.); (A.C.N.)
| | - Sepúlveda Leonardo
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Mexico; (D.L.-M.J.C.); (S.L.); (A.C.N.)
| | - Morlett-Chávez Jesús
- Laboratory of Molecular Biology, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Mexico;
| | - Meléndez-Renteria Paola
- Research and Conservation Center of Coahuila Biodiversity and Ecology, Autonomous University of Coahuila, Cuatrociénegas 27640, Mexico;
| | - Zugasti-Cruz Alejandro
- Laboratory of Toxicology, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Mexico;
| | - Ascacio-Valdés Juan
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Mexico; (D.L.-M.J.C.); (S.L.); (A.C.N.)
| | - Aguilar Cristóbal Noé
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Mexico; (D.L.-M.J.C.); (S.L.); (A.C.N.)
| |
Collapse
|
29
|
Huynh DTN, Baek N, Sim S, Myung CS, Heo KS. Minor Ginsenoside Rg2 and Rh1 Attenuates LPS-Induced Acute Liver and Kidney Damages via Downregulating Activation of TLR4-STAT1 and Inflammatory Cytokine Production in Macrophages. Int J Mol Sci 2020; 21:ijms21186656. [PMID: 32932915 PMCID: PMC7555743 DOI: 10.3390/ijms21186656] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Ginsenosides have been reported to have various biological effects, such as immune regulation and anticancer activity. In this study, we investigated the anti-inflammatory role of a combination of Rg2 and Rh1, which are minor ginsenosides, in lipopolysaccharide (LPS)-stimulated inflammation. In vitro experiments were performed using the RAW264.7 cell line, and an in vivo model of inflammation was established using LPS-treated ICR mice. We employed Griess assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunofluorescence staining, and hematoxylin and eosin staining to evaluate the effect of Rg2 and Rh1. We found that Rg2 and Rh1 significantly decreased LPS-induced major inflammatory mediator production, inducible-nitric oxide synthase expression, and nitric oxide production in macrophages. Moreover, Rg2 and Rh1 combination treatment inhibited the binding of LPS to toll-like receptor 4 (TLR4) on peritoneal macrophages. Therefore, the combination of ginsenoside Rg2 and Rh1 suppressed inflammation by abolishing the binding of LPS to TLR4, thereby inhibiting the TLR4-mediated signaling pathway. The combined ginsenoside synergistically blocked LPS-mediated PKCδ translocation to the plasma membrane, resulting in p38-STAT1 activation and NF-κB translocation. In addition, mRNA levels of pro-inflammatory cytokines, including TNF-α, IL-1β, and IFN-β, were significantly decreased by combined ginsenoside treatment. Notably, the 20 mg/kg ginsenoside treatment significantly reduced LPS-induced acute tissue inflammation levels in vivo, as indicated by the tissue histological damage scores and the levels of biochemical markers for liver and kidney function from mouse serum. These results suggest that the minor ginsenosides Rg2 and Rh1 may play a key role in prevention of LPS-induced acute inflammation and tissue damage.
Collapse
Affiliation(s)
- Diem Thi Ngoc Huynh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (D.T.N.H.); (N.B.); (S.S.); (C.-S.M.)
| | - Naehwan Baek
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (D.T.N.H.); (N.B.); (S.S.); (C.-S.M.)
| | - Sohyun Sim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (D.T.N.H.); (N.B.); (S.S.); (C.-S.M.)
- Department of Chemicals Assessment, Korea Environment Corporation, Incheon 404-708, Korea
| | - Chang-Seon Myung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (D.T.N.H.); (N.B.); (S.S.); (C.-S.M.)
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (D.T.N.H.); (N.B.); (S.S.); (C.-S.M.)
- Correspondence: ; Tel.: +82-42-821-5927
| |
Collapse
|
30
|
Molecular and in silico evidences explain the anti-inflammatory effect of Trachyspermum ammi essential oil in lipopolysaccharide induced macrophages. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Cheng Y, Sihua Z, Lu Q, Zhang W, Wen G, Luo Q, Shao H, Zhang T. Evaluation of young chickens challenged with aerosolized Salmonella Pullorum. Avian Pathol 2020; 49:507-514. [PMID: 32543216 DOI: 10.1080/03079457.2020.1783433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Salmonella enterica serovar Pullorum (S. Pullorum) is an important pathogen specific to avian species, which poses a serious threat to the poultry industry. The transmission of S. Pullorum occurs both horizontally and vertically but the airborne transmission of S. Pullorum has been neglected historically. In this study, the effects of aerosolized S. Pullorum on young chickens were investigated. The results showed that the colonization and morbidity induced by bioaerosol infection are dose dependent. The bacteria colonized in chicken lung for more than 14 days following the exposure to ≥ 1.25 × 106 CFU/m3 of aerosolized S. Pullorum. Tachypnoea and depression were present in all the chickens between 5 and 7 days after infection, and some died, following the exposure to ≥1.25 × 108 CFU/m3 of aerosolized S. Pullorum. RT-PCR results showed that significant expressions of inflammatory cytokines, including tumour necrosis factor α, interleukin 1β (IL-1β), IL-6, and IL-8 were noted in the lung and spleen. Histopathological examination showed lung swelling, with obvious lesions, including inflammatory cell infiltration, tissue injury, and acute haemorrhage. These results suggest that uncontrolled and detrimental inflammation is caused by a high dose of aerosolized S. Pullorum. These results further extend our understanding of the pathogenicity of air-transmitted S. Pullorum on chickens. RESEARCH HIGHLIGHTS Aerosolized S. Pullorum caused tachypnoea, depression, and lung swelling in chickens. The colonization and morbidity caused by aerosolized S. Pullorum are dose dependent. Detrimental inflammation is caused by high doses of aerosolized S. Pullorum in lung.
Collapse
Affiliation(s)
- Yiluo Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Zhang Sihua
- Wuhan Animal Disease Prevention and Control Center, Wuhan, People's Republic of China
| | - Qin Lu
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Wenting Zhang
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China.,Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| |
Collapse
|
32
|
Wong-Paz JE, Guyot S, Aguilar-Zárate P, Muñiz-Márquez DB, Contreras-Esquivel JC, Aguilar CN. Structural characterization of native and oxidized procyanidins (condensed tannins) from coffee pulp (Coffea arabica) using phloroglucinolysis and thioglycolysis-HPLC-ESI-MS. Food Chem 2020; 340:127830. [PMID: 32919355 DOI: 10.1016/j.foodchem.2020.127830] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/20/2020] [Accepted: 08/11/2020] [Indexed: 01/23/2023]
Abstract
Procyanidins from coffee pulp are responsible from the limited valorization of this by-product. Information about procyanidin structure is still scarce and imprecise. The aim of this work was to study the native and oxidized procyanidins from coffee pulp with respect to composition and structure. An aqueous acetone extract from coffee pulp was purified using Sephadex LH-20. Butanolysis, phloroglucinolysis and thioglycolysis coupled to HLPC-ESI-MS were applied for the characterization of the native and oxidized procyanidins. The purification allowed to recovery three fractions (aqueous, ethanolic and acetonic) and only acetone fraction showed a high concentration of procyanidins (98%, w/w). HPLC-ESI-MS of procyanidins-rich fraction without any reaction resulted in a UV-Vis chromatogram unresolved typical of the presence of procyanidins. The extracted ion chromatogram and MS2 analysis revealed the presence from dimers to pentamers of native procyanidins. Interestingly, by first time an A-type trimeric procyanidin (m/z of 863) was observed in coffee pulp. In our study, (-)-epicatechin was the constitutive unit of procyanidins with an aDP of 6.8 (oligomeric native procyanidins) according to the phloroglucinolysis assay. Two oxidation markers useful to characterization of oxidized procyanidins were observed in the procyanidins-rich fraction after thioglycolysis, a dimer A2-ext and a molecule that corresponds to a linkage between an extension and a terminal unit. Coffee pulp procyanidins were presented with only a minor class of oxidized procyanidins. As far as we know, this is the first study about characterization of the oxidized procyanidins from coffee pulp.
Collapse
Affiliation(s)
- Jorge E Wong-Paz
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico; Engineering Department, Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, SLP, Mexico
| | - Sylvain Guyot
- INRA, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), BP 35327, 35653 Le Rheu, France
| | - Pedro Aguilar-Zárate
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico; Engineering Department, Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, SLP, Mexico
| | - Diana B Muñiz-Márquez
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico; Engineering Department, Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, SLP, Mexico
| | - Juan C Contreras-Esquivel
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico
| | - Cristóbal N Aguilar
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico.
| |
Collapse
|
33
|
Ishfaq M, Chen C, Bao J, Zhang W, Wu Z, Wang J, Liu Y, Tian E, Hamid S, Li R, Ding L, Li J. Baicalin ameliorates oxidative stress and apoptosis by restoring mitochondrial dynamics in the spleen of chickens via the opposite modulation of NF-κB and Nrf2/HO-1 signaling pathway during Mycoplasma gallisepticum infection. Poult Sci 2020; 98:6296-6310. [PMID: 31376349 PMCID: PMC8913776 DOI: 10.3382/ps/pez406] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma gallisepticum (MG) infection produces a profound inflammatory response in the respiratory tract and evade birds' immune recognition to establish a chronic infection. Previous reports documented that the flavonoid baicalin possess potent anti-inflammatory, and antioxidant activities. However, whether baicalin prevent immune dysfunction is largely unknown. In the present study, the preventive effects of baicalin were determined on oxidative stress generation and apoptosis in the spleen of chickens infected with MG. Histopathological examination showed abnormal morphological changes including cell hyperplasia, lymphocytes depletion, and the red and white pulp of spleen were not clearly visible in the model group. Oxidative stress-related parameters were significantly (P < 0.05) increased in the model group. However, baicalin treatment significantly (P < 0.05) ameliorated oxidative stress and partially alleviated the abnormal morphological changes in the chicken spleen compared to model group. Terminal deoxynucleotidyl transferase–mediated dUTP nick endlabeling assay results, mRNA, and protein expression levels of mitochondrial apoptosis-related genes showed that baicalin significantly attenuated apoptosis. Moreover, baicalin restored the mRNA expression of mitochondrial dynamics-related genes and maintain the balance between mitochondrial inner and outer membranes. Intriguingly, the protective effects of baicalin were associated with the upregulation of nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) pathway and suppression of nuclear factor-kappa B (NF-κB) pathway in the spleen of chicken. In summary, these findings indicated that baicalin promoted mitochondrial dynamics imbalance and effectively prevents oxidative stress and apoptosis in the splenocytes of chickens infected with MG.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jiaxin Bao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Erjie Tian
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Sattar Hamid
- Department of Animal health, The University of Agriculture, Peshawar 25130, Pakistan
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Liangjun Ding
- College of life Science, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| |
Collapse
|
34
|
Mutamba (Guazuma ulmifolia Lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chem 2020; 310:125857. [DOI: 10.1016/j.foodchem.2019.125857] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/09/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
|
35
|
Tamura Y, Tomiya S, Takegaki J, Kouzaki K, Tsutaki A, Nakazato K. Apple polyphenols induce browning of white adipose tissue. J Nutr Biochem 2020; 77:108299. [DOI: 10.1016/j.jnutbio.2019.108299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
|
36
|
Sobhani M, Farzaei MH, Kiani S, Khodarahmi R. Immunomodulatory; Anti-inflammatory/antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahsa Sobhani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
37
|
Liu S, Yang T, Ming TW, Gaun TKW, Zhou T, Wang S, Ye B. Isosteroid alkaloids with different chemical structures from Fritillariae cirrhosae bulbus alleviate LPS-induced inflammatory response in RAW 264.7 cells by MAPK signaling pathway. Int Immunopharmacol 2019; 78:106047. [PMID: 31816576 DOI: 10.1016/j.intimp.2019.106047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 01/08/2023]
Abstract
Isosteroid alkaloids, natural products from Fritillariae Cirrhosae Bulbus, are well known for its antitussive, expectorant, anti-asthmatic and anti-inflammatory properties. However, the anti-inflammatory effect and its mechanism have not been fully explored. In this study, the anti-inflammatory activitives and the potential mechanisms of five isosteroid alkaloids from F. Cirrhosae Bulbus were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells. The pro-inflammatory mediators and cytokines were measured by Griess reagent, ELISA and qRT-PCR. The expression of MAPKs was investigated by western blotting. Treatment with the five isosteroid alkaloids in appropriate concentrations could reduce the production of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in supernatant, and suppressed the mRNA expressions of TNF-α and IL-6. Meanwhile, the five isosteroid alkaloids significantly inhibited the phosphorylated activation of mitogen activated protein kinase (MAPK) signaling pathways, including extracellular signal-regulated kinase (ERK1/2), p38 MAPK and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). These results demonstrated that isosteroid alkaloids from F. Cirrhosae Bulbus exert anti-inflammatory effects by down-regulating the level of inflammatory mediators via mediation of MAPK phosphorylation in LPS-induced RAW264.7 macrophages, thus could be candidates for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Simei Liu
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu City, Sichuan Province 610041, PR China
| | - Tiechui Yang
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, China
| | - Tse Wai Ming
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, China
| | | | - Ting Zhou
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu City, Sichuan Province 610041, PR China
| | - Shu Wang
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu City, Sichuan Province 610041, PR China
| | - Bengui Ye
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu City, Sichuan Province 610041, PR China.
| |
Collapse
|
38
|
Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, Sureda A. Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases. Curr Med Chem 2019; 26:3225-3241. [PMID: 29756563 DOI: 10.2174/0929867325666180514112124] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 02/07/2023]
Abstract
Inflammation plays a crucial role in the development of many complex diseases and disorders including autoimmune diseases, metabolic syndrome, neurodegenerative diseases, and cardiovascular pathologies. Prostaglandins play a regulatory role in inflammation. Cyclooxygenases are the main mediators of inflammation by catalyzing the initial step of arachidonic acid metabolism and prostaglandin synthesis. The differential expression of the constitutive isoform COX-1 and the inducible isoform COX-2, and the finding that COX-1 is the major form expressed in the gastrointestinal tract, lead to the search for COX-2-selective inhibitors as anti-inflammatory agents that might diminish the gastrointestinal side effects of traditional non-steroidal anti-inflammatory drugs (NSAIDs). COX-2 isoform is expressed predominantly in inflammatory cells and decidedly upregulated in chronic and acute inflammations, becoming a critical target for many pharmacological inhibitors. COX-2 selective inhibitors happen to show equivalent efficacy with that of conventional NSAIDs, but they have reduced gastrointestinal side effects. This review would elucidate the most recent findings on selective COX-2 inhibition and their relevance to human pathology, concretely in inflammatory pathologies characterized by a prolonged pro-inflammatory status, including autoimmune diseases, metabolic syndrome, obesity, atherosclerosis, neurodegenerative diseases, chronic obstructive pulmonary disease, arthritis, chronic inflammatory bowel disease and cardiovascular pathologies.
Collapse
Affiliation(s)
- Miguel D Ferrer
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Busquets-Cortés
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Xavier Capó
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Josep A Tur
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Pons
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Sureda
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Jiang A, Zhang Y, Zhang X, Wu D, Liu Z, Li S, Liu X, Han Z, Wang C, Wang J, Wei Z, Guo C, Yang Z. Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier. Int Immunopharmacol 2019; 78:105972. [PMID: 31711938 DOI: 10.1016/j.intimp.2019.105972] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Mastitis is a common veterinary clinical disease that restricts the development of dairy farming around the world. Morin, extracted from Mulberry Tree and other herbs, has been reported to possess the function of anti-bacteria, anti-oxidant, and anti-inflammatory. However, whether morin could protect lipopolysaccharide (LPS)-induced mouse mastitis in vivo has not well known. This study firstly aims to evaluate the effects of morin on LPS-induced mouse mastitis in vivo, and then try to illustrate the mechanism involved in the process. Before injected with LPS, mice were intraperitoneally pre-injected with different concentrations of morin, and mice of the control and LPS group were injected with the same amount of saline. Pathologic changes of mammary gland were determined by histopathological examination. Myeloperoxidase (MPO) activities of mammary gland were determined by the MPO kits. The mRNA expressions of inflammatory cytokines including TNF-α, IL-1β and IL-6, and those of chemokine factors CCL2 and CXCL2, and those of tight junctions occludin claudin-3 were examined by qRT-PCR analysis. The activities of IκB, p65, ERK, P38, AKT, PI3K, NLPR3, claudin-1, claudin-3 and occludin were determined by western blotting. The results showed that morin alleviated LPS-induced edema, destructed structures and infiltrated inflammatory cells of mammary gland. Morin administration significantly decreased LPS-induced TNF-α, IL-1β, IL-6, CCL2 and CXCL2 mRNA expressions. Furthermore, western blot analysis also showed that morin significantly reduced LPS-induced phosphorylation of p65, IκB, p38 and ERK, and enhanced LPS-induced phosphorylation of AKT and PI3K. It was also found that LPS-decreased claudin-3 and occludin expressions were also inhibited by morin treatment. In summary, above results suggest that morin indeed protect LPS-induced mouse mastitis in vivo, and the mechanism was through inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathways and protecting the integrity of blood-milk barrier by regulating the tight junction proteins expressions.
Collapse
Affiliation(s)
- Aimin Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Yong Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Di Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ziyi Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Shuangqiu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Chaoqun Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University Foshan 528225, Guangdong Province, PR China
| | - Changming Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China; College of Life Sciences and Engineering, Foshan University Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
40
|
Ishfaq M, Zhang W, Hu W, Waqas Ali Shah S, Liu Y, Wang J, Wu Z, Ahmad I, Li J. Antagonistic Effects Of Baicalin On Mycoplasma gallisepticum-Induced Inflammation And Apoptosis By Restoring Energy Metabolism In The Chicken Lungs. Infect Drug Resist 2019; 12:3075-3089. [PMID: 31632098 PMCID: PMC6781171 DOI: 10.2147/idr.s223085] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background Baicalin possesses potential anti-inflammatory, anti-tumor and anti-oxidant activities. In the present study, we attempted to investigate the preventive effects of baicalin against Mycoplasma gallisepticum (MG)-induced inflammation, apoptosis and energy metabolism dysfunction in chicken lungs. Methods Experimental chickens were randomly divided into 1) control group, 2) MG infection group, 3) MG-infected group treated with baicalin at a dose of 450 mg/kg and 4) baicalin alone treated group (450 mg/kg). After 7 days of post-treatment, serum and lung tissues were collected for different experimental analyses. The hallmarks of inflammation, apoptosis and energy metabolism dysfunction were detected by histological and ultrastructural examination, qRT-PCR, Western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) assay. Results The level of serum inflammatory markers were increased with MG infection. Histological and ultrastructural analysis showed excessive inflammatory cells infiltrates, alveolar wall thickening, hemorrhages, mitochondrial and nuclear damage, including mitochondrial swelling and condensation of DNA in the lungs of chickens infected with MG. TUNEL assay positive-stained nuclei were significantly increased in MG infection group. In addition, the mRNA and protein expression level of energy metabolism-related genes and ATPase activities were significantly reduced. Meanwhile, MG-induced morphological and ultrastructural changes were partially disappeared with baicalin-treatment, and the level of serum inflammatory markers were significantly reduced. It has been noted that baicalin significantly attenuated MG-induced inflammation and apoptosis in the chicken lungs through the suppression of nuclear factor-kappa B and reduced extensive positive-stained apoptotic nuclei. More importantly, ATPase activities and mRNA and protein expression level of energy metabolism-related genes were significantly improved with baicalin-treatment in the lungs of chickens infected with MG. Conclusion Conclusively, it has been suggested from these results that baicalin-treatment efficiently prevented MG-induced inflammation, apoptosis and energy metabolism dysfunction in the chicken lungs and provide basis for new therapeutic targets to control MG infection.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wanying Hu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ijaz Ahmad
- The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
41
|
Tian Y, Yang C, Yao Q, Qian L, Liu J, Xie X, Ma W, Nie X, Lai B, Xiao L, Wang N. Procyanidin B2 Activates PPARγ to Induce M2 Polarization in Mouse Macrophages. Front Immunol 2019; 10:1895. [PMID: 31440258 PMCID: PMC6693435 DOI: 10.3389/fimmu.2019.01895] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 11/13/2022] Open
Abstract
Procyanidins, a subclass of flavonoids found in commonly consumed foods, possess potential anti-inflammatory activity. Manipulation of M1/M2 macrophage homeostasis is an effective strategy for the treatment of metabolic inflammatory diseases. The objective of this study was to determine the effect of procyanidins on macrophage polarization. Procyanidin B2 (PCB2), the most widely distributed natural procyanidins, enhanced the expressions of M2 macrophage markers (Arg1, Ym1, and Fizz1). PCB2 activated peroxisome proliferator-activated receptor γ (PPARγ) activity and increased the expressions of PPARγ target genes (CD36 and ABCG1) in macrophages. Inhibition of PPARγ using siRNA or antagonist GW9662 attenuated the PCB2-induced expressions of M2 macrophage markers. In addition, we identified cognate PPAR-responsive elements (PPREs) within the 5'-flanking regions of the mouse Arg1, Ym1, and Fizz1 genes. Furthermore, macrophages isolated from db/db diabetic mice showed lower expressions of M2 markers. PCB2 effectively restored the Arg1, Ym1, and Fizz1 expressions in a PPARγ-dependent manner. These findings support the notion that PCB2 regulated macrophage M2 polarization via the activation of PPARγ. Our results provide a new mechanism by which procyanidins exert their beneficial anti-inflammatory effects.
Collapse
Affiliation(s)
- Ying Tian
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Chunmiao Yang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qinyu Yao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lei Qian
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xinya Xie
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Wen Ma
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xin Nie
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China.,College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
SIRT7 Regulates Lipopolysaccharide-Induced Inflammatory Injury by Suppressing the NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3187972. [PMID: 31285783 PMCID: PMC6594283 DOI: 10.1155/2019/3187972] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 11/18/2022]
Abstract
Mastitis has severely affected the cattle industry worldwide and has resulted in decreased dairy production and cattle reproduction. Although prevention and treatment methods have been implemented for decades, cattle mastitis is still an intractable disease. Sirtuin 7 (SIRT7) is an NAD+-dependent deacetylase that is involved in various biological processes, including ribosomal RNA synthesis and protein synthesis, DNA damage response, metabolism, and tumorigenesis. However, whether SIRT7 participates in inflammation remains unknown. Our results revealed that SIRT7 is downregulated in tissue samples from mastitic cattle. Therefore, we isolated dairy cow mammary epithelial cells (DCMECs) from breast tissues and developed an in vitro model of lipopolysaccharide- (LPS-) induced inflammation to examine SIRT7 function and its potential role in inflammation. We showed that SIRT7 was significantly downregulated in LPS-treated DCMECs. SIRT7 knockdown significantly increased the LPS-stimulated production of inflammatory mediators, like reactive oxygen and nitric oxide, and upregulated TAB1 and TLR4. In addition, SIRT7 knockdown significantly increased the phosphorylation of TAK1 and NF-κBp65 in LPS-treated DCMECs. Moreover, SIRT7 knockdown promoted the translocation of NF-κBp-p65 to the cell nucleus and then increased the secretion of inflammatory cytokines (IL-1β and IL-6). In contrast, SIRT7 overexpression had the opposite effects when compared to SIRT7 knockdown in LPS-treated DCMECs. In addition, SIRT7 overexpression attenuated LPS-induced DCMEC apoptosis. Taken together, our results indicate that SIRT7 can suppress LPS-induced inflammation and apoptosis via the NF-κB signaling pathway. Therefore, SIRT7 may be considered as a potential pharmacological target for clinical mastitis therapy.
Collapse
|
43
|
Jian L, Sun L, Li C, Yu R, Ma Z, Wang X, Zhao J, Liu X. Interleukin‐21 enhances Toll‐like receptor 2/4‐mediated cytokine production via phosphorylation in the STAT3, Akt and p38 MAPK signalling pathways in human monocytic THP‐1 cells. Scand J Immunol 2019; 89:e12761. [PMID: 30977163 DOI: 10.1111/sji.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Leilei Jian
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| | - Lin Sun
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| | - Changhong Li
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| | - Ruohan Yu
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| | - Zhenzhen Ma
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| | - Xinyu Wang
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology Peking University Third Hospital Beijing China
| |
Collapse
|
44
|
Wan P, Xie M, Chen G, Dai Z, Hu B, Zeng X, Sun Y. Anti-inflammatory effects of dicaffeoylquinic acids from Ilex kudingcha on lipopolysaccharide-treated RAW264.7 macrophages and potential mechanisms. Food Chem Toxicol 2019; 126:332-342. [PMID: 30654100 DOI: 10.1016/j.fct.2019.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023]
Abstract
Increasing evidence has shown that dicaffeoylquinic acids (DiCQAs) have anti-inflammatory activity. However, the underlying molecular mechanisms of the anti-inflammatory effects of DiCQAs are still unclear. In the present study, the anti-inflammatory effects of DiCQAs from the leaves of Ilex kudingcha and the potential molecular mechanisms on LPS-induced inflammatory responses in RAW264.7 macrophage cells were investigated. The results showed that pretreatment with DiCQAs could suppress the production of NO, PGE2 and also pro-inflammatory cytokines TNF-α, IL-1β and IL-6, and the mRNA expression of two major inflammatory mediators of COX-2 and iNOS. The phosphorylated IκBα, ERK, JNK and p38 proteins in LPS-treated cells were significantly increased, which could be reversed by pretreatment with DiCQAs in a concentration-dependent manner. Taken together, the results suggest that DiCQAs from I. kudingcha have potent anti-inflammatory effects on LPS-induced inflammatory responses by inhibiting the NF-κB and MAPKs pathways and may be a prophylactic for inflammation.
Collapse
Affiliation(s)
- Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Minhao Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuqing Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Abstract
Wine, and specifically red wine, is a beverage with a great chemical complexity comprising a particular combination of phenolic compounds which are directly associated with its health-promoting properties. Wine polyphenols could induce changes in the composition of intestinal microbiota that would affect the production of physiologically active phenolic metabolites modifying the content and phenolic profile at the systemic level. In addition, in the human population, it seems that different “metabotypes”, or patterns of metabolizing wine polyphenols, exist, which would be reflected in the different biological fluids (i.e., plasma, urine and feces) and tissues of the human body. Moreover, wine polyphenols might change the composition of oral microbiota by an antimicrobial action and/or by inhibition of the adhesion of pathogens to oral cells, thus contributing to the maintenance of oral health. In turn, polyphenols and/or its metabolites could have a direct action on brain function, by positively affecting signaling routes involved in stress-induced neuronal response, as well as by preventing neuroticism-like disorders (i.e., anxiety and depression) through anti-inflammatory and epigenetic mechanisms. All of this would condition the positive effects on health derived from moderate wine consumption. This paper reviews all these topics, which are directly related with the effects of wine polyphenols at both digestive and brain level. Further progresses expected in the coming years in these fields are also discussed.
Collapse
|
46
|
Cary DC, Peterlin BM. Procyanidin trimer C1 reactivates latent HIV as a triple combination therapy with kansui and JQ1. PLoS One 2018; 13:e0208055. [PMID: 30475902 PMCID: PMC6258234 DOI: 10.1371/journal.pone.0208055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023] Open
Abstract
Although anti-retroviral therapies have greatly extended the lives of HIV infected individuals, current treatments are unable to completely eliminate virally infected cells. A number of latency reversing agents have been proposed for use in a "shock and kill" strategy to reactivate latent HIV, thus making it vulnerable to killing mechanisms. Procyanidin trimer C1 (PC1) is a flavonoid found in multiple plant sources including grape, apple, and cacao, which has antioxidant and anti-inflammatory properties. We determined that PC1 reactivates latent HIV in cell line and primary cell models of HIV, through activation of the MAPK pathway. Notably, PC1 reactivates latent HIV without increasing surface markers of T cell activation. Combining several therapeutics, which activate HIV transcription through different mechanisms, is the most efficient approach to clinically reactivate latent reservoirs. We utilized PC1 (MAPK agonist), kansui (PKC agonist), and JQ1 (BET bromodomain inhibitor) in a triple combination approach to reactivate latent HIV in cell line and primary cell models of HIV latency. When used in combination, low concentrations which fail to reactivate HIV as single treatments, are effective. Thus, several mechanisms, using distinct activation pathways, act together to reactivate latent HIV.
Collapse
Affiliation(s)
- Daniele C. Cary
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
47
|
Walana W, Wang JJ, Yabasin IB, Ntim M, Kampo S, Al-Azab M, Elkhider A, Dogkotenge Kuugbee E, Cheng JW, Gordon JR, Li F. IL-8 analogue CXCL8 (3-72) K11R/G31P, modulates LPS-induced inflammation via AKT1-NF-kβ and ERK1/2-AP-1 pathways in THP-1 monocytes. Hum Immunol 2018; 79:809-816. [PMID: 30125599 DOI: 10.1016/j.humimm.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022]
Abstract
IL-8 is elevated during inflammation, and it initiates cascade of down-stream reactions. Its antagonist, CXCL8 (3-72) K11R/G31P (G31P), represses inflammatory reactions via competitive binding to CXC chemokine family, preferentially G protein-couple receptors (GPCRs) CXCR1/2. This study reports the effect of G31P on the transcription profile of lipopolysaccharide (LPS) induced inflammation in THP-1 monocytes ex-vivo. LPS (1 µg/ml) induced elevation of IL-8 was significantly reduced by G31P (20 µg/ml and 30 µg/ml), with relatively increased inhibition of CXCR2 than CXCR1. Transcription of IL-1β, IL-6, and TNF-α were significantly inhibited, while IL-10 remained relatively unchanged. G31P treatment also had repressing effect on the inflammatory associated enzymes COX-2, MMP-2, and MMP-9. Significant restriction of c-Fos, and NF-kβ mRNA expression was observed, while that of c-Jun was marginally elevated. Conversely, SP-1 mRNA expression was seen to increase appreciably by G31P treatment. While the translation of pAKT, pERK1/2, and p65- NF-kβ were down-regulated by the G31P following THP-1 cells stimulation with LPS, reactive oxygen species (ROS) expression was on the positive trajectory. Collectively, the IL-8 analogue, G31P, modulates the inflammatory profile of LPS induced inflammation in THP-1 monocytes via AKT1-NF-kβ and ERK1/2-AP-1 pathways.
Collapse
Affiliation(s)
- Williams Walana
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Jing-Jing Wang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Iddrisu Baba Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116011, Liaoning, PR China
| | - Michael Ntim
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Sylvanus Kampo
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116011, Liaoning, PR China
| | - Mahmoud Al-Azab
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | | | | | - Jya-Wei Cheng
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - John R Gordon
- The Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada.
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
48
|
Yi YS. Regulatory Roles of Flavonoids on Inflammasome Activation during Inflammatory Responses. Mol Nutr Food Res 2018; 62:e1800147. [PMID: 29774640 DOI: 10.1002/mnfr.201800147] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to noxious stimuli to protect the body from pathogens. Inflammatory responses consist of two main steps: priming and triggering. In priming, inflammatory cells increase expressions of inflammatory molecules, while in triggering, inflammasomes are activated, resulting in cell death and pro-inflammatory cytokine secretion. Inflammasomes are protein complexes comprising intracellular pattern recognition receptors (PRRs) (e.g., nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2 (AIM2), and caspases-4/5/11) and pro-caspase-1 with or without a bipartite adaptor molecule ASC. Inflammasome activation induces pyroptosis, inflammatory cell death, and stimulates caspase-1-mediated secretion of interleukin (IL)-1b and IL-18. Flavonoids are secondary metabolites found in various plants and are considered as critical ingredients promoting health and ameliorating various disease symptoms. Anti-inflammatory activity of flavonoids and underlying mechanisms have been widely studied. This review introduces current knowledge on different types of inflammasomes and their activation during inflammatory responses and discusses recent studies regarding anti-inflammatory roles of flavonoids as suppressors of inflammasomes in inflammatory conditions. Understanding the regulatory effects of flavonoids on inflammasome activation will increase our knowledge of flavonoid-mediated anti-inflammatory activity and provide new insights into the development of flavonoid preparations to prevent and treat human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, 28503, Korea
| |
Collapse
|
49
|
Abstract
The study of natural products in biomedical research is not a modern concept. Many of the most successful medical therapeutics are derived from natural products, including those studied in the field of HIV/AIDS. Biomedical research has a rich history of discovery based on screens of medicinal herbs and traditional medicine practices. Compounds derived from natural products, which repress HIV and those that activate latent HIV, have been reported. It is important to remember the tradition in medical research to derive therapies based on these natural products and to overcome the negative perception of natural products as an "alternative medicine."
Collapse
Affiliation(s)
- Daniele C. Cary
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California
| | - B. Matija Peterlin
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
50
|
Chen L, Teng H, Jia Z, Battino M, Miron A, Yu Z, Cao H, Xiao J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit Rev Food Sci Nutr 2017; 58:2908-2924. [PMID: 28682647 DOI: 10.1080/10408398.2017.1345853] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Maurizio Battino
- Center for Nutrition & Health, Universidad Europea del Atlantico, Santander, Spain and Dept. of Clinical Sciences, Universitr Nutrition & Health, Universidad Europea
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania
| | - Zhiling Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|