1
|
He W, Wang H, Yang G, Zhu L, Liu X. The Role of Chemokines in Obesity and Exercise-Induced Weight Loss. Biomolecules 2024; 14:1121. [PMID: 39334887 PMCID: PMC11430256 DOI: 10.3390/biom14091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, CCL5, CCL7, C-X-C motif chemokine ligand 8 (CXCL8), CXCL9, CXCL10, CXCL14, and XCL1 (lymphotactin). These chemokines exacerbate the symptoms of obesity by either promoting the inflammatory response or by influencing metabolic pathways and recruiting immune cells. Additionally, the research highlights the positive effect of exercise on modulating chemokine expression in the obese state. Notably, it explores the potential effects of both aerobic exercises and combined aerobic and resistance training in lowering levels of inflammatory mediators, reducing insulin resistance, and improving metabolic health. These findings suggest new strategies for obesity intervention through the modulation of chemokine levels by exercise, providing fresh perspectives and directions for the treatment of obesity and future research.
Collapse
Affiliation(s)
- Wenbi He
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Huan Wang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Gaoyuan Yang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Lin Zhu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaoguang Liu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
2
|
Neelab, Zeb A, Jamil M. Milk thistle protects against non-alcoholic fatty liver disease induced by dietary thermally oxidized tallow. Heliyon 2024; 10:e31445. [PMID: 38818175 PMCID: PMC11137523 DOI: 10.1016/j.heliyon.2024.e31445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition caused by several factors including thermally oxidized tallow. Various strategies have been considered to ameliorate NAFLD. However, the role of milk thistle (MT) in ameliorating NAFLD caused by thermally oxidized tallow has not been reported. The purpose of this study was to evaluate the ability of milk thistle to protect rabbits from the toxicity of oxidized tallow (OT). The rabbits were given OT and an extract of MT. The composition of MT was analyzed using HPLC-DAD, and tallow samples were studied using GC-MS. The study also examined liver histology, antioxidant levels, liver-related inflammatory markers, and serum lipid profile. The results showed that the major components of the MT extract were silybin B, formononetin-glucuronic acid, proanthocyanidin B1, silychristin B, silydianin, and isosilybin A. The group given OT showed elevated lipid profiles, lower antioxidant status, higher levels of hepatic inflammatory markers, and lower levels of anti-inflammatory markers. This group also had higher fat storage in the liver compared to the control or treatment groups. However, when MT was supplemented, the pro-inflammatory cytokines (IL-1, IL-4, IL-6, and TNF-α) and antioxidant status (CAT, SOD, GSH-Px, GSH, and TBARS) of the liver returned to normal. This suggests that MT extract is an excellent source of hepatoprotective compounds. It protects the liver by increasing antioxidant enzymes, decreasing pro-inflammatory cytokines, and increasing anti-inflammatory markers.
Collapse
Affiliation(s)
- Neelab
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- The Bioactive Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Muhammad Jamil
- Department of Surgery, Timergara Teaching Hospital, Timergara, Pakistan
| |
Collapse
|
3
|
Lu Z, Ding L, Tian X, Wang Q. Single cell RNA-sequencing data generated from mouse adipose tissue during the development of obesity. Data Brief 2024; 53:110119. [PMID: 38348326 PMCID: PMC10859251 DOI: 10.1016/j.dib.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
In recent years, the number of obesity has increased rapidly around the world, and it has become a major public health problem endangering global health [1]. Obesity is caused by excessive calorie intake over a long period of time, and high-fat diet (HFD) is one of the important predisposing factors [2], [3], [4]. Adipose tissue (AT) is an important immune and endocrine organ in the body, and plays an important role in the body [5]. Obesity leads to AT dysfunction, AT dilation and cell hypertrophy. Dysfunctional fat cells are the main source of pro-inflammatory cytokines, which aggravate low-grade systemic inflammation and further promote the development of obesity-related diseases [6], [7], [8]. However, whether AT releases pro-inflammatory cytokines in the early stages of obesity development remains unknown. The AT microenvironment is composed of a variety of cells, including fat cells, immune cells, fibroblasts, and endothelial cells. The immune microenvironment (TIME) and its metabolic imbalance can lead to the secretion or regulation of related hormones, which causes inflammation AT [9]. TIME is very important for maintaining AT homeostasis, which is crucial for the occurrence of obesity [10,11]. This data use single-cell RNA sequencing (sNuc-Seq) to analyze the characteristics of TIME changes in the mouse epididymal adipose tissue during the development of obesity, and the changes of cell types and genes in the tissue.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | - Ling Ding
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | | | | |
Collapse
|
4
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Li S, Zong X, Zhang L, Li L, Wu J. A chromatin accessibility landscape during early adipogenesis of human adipose-derived stem cells. Adipocyte 2022; 11:239-249. [PMID: 35435105 PMCID: PMC9037556 DOI: 10.1080/21623945.2022.2063015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Obesity has become a serious global public health problem; a deeper understanding of systemic change of chromatin accessibility during human adipogenesis contributes to conquering obesity and its related diseases. Here, we applied the ATAC-seq method to depict a high-quality genome‐wide time-resolved accessible chromatin atlas during adipogenesis of human adipose-derived stem cells (hASCs). Our data indicated that the chromatin accessibility drastic dynamically reformed during the adipogenesis of hASCs and 8 h may be the critical transition node of adipogenesis chromatin states from commitment phase to determination phase. Moreover, upon adipogenesis, we also found that the chromatin accessibility of regions related to anti-apoptotic, angiogenic and immunoregulatory gradually increased, which is beneficial to maintaining the health of adipose tissue (AT). Finally, the chromatin accessibility changed significantly in intronic regions of peroxisome proliferator‐activated receptor γ during adipogenesis, and these regions were rich in transcription factors binding motifs that were exposed for further regulation. Overall, we systematically analysed the complex change of chromatin accessibility occurring in the early stage of adipogenesis and deepened our understanding of human adipogenesis. Furthermore, we also provided a good reference data resource of genome‐wide chromatin accessibility for future studies on human adipogenesis.
Collapse
Affiliation(s)
- Sen Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Zong
- Division of achievements transformation, Development Center for Medical Science & Technology National Health Commission of the People’s Republic of China, Beijing, China
| | - Liheng Zhang
- Shanghai Jiayin Biotechnology Co., Ltd, Shanghai, China
| | - Luya Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Cruz-Ávila J, Hernández-Pérez E, González-González R, Bologna-Molina R, Molina-Frechero N. Periodontal Disease in Obese Patients; Interleukin-6 and C-Reactive Protein Study: A Systematic Review. Dent J (Basel) 2022; 10:225. [PMID: 36547041 PMCID: PMC9777236 DOI: 10.3390/dj10120225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Periodontal disease (PD) and obesity are characterized by a dysregulated inflammatory state. Both conditions trigger inflammatory and immune responses with an increase in proinflammatory cytokines such as Interleukin 6 (IL-6) and the release of inflammatory mediators such as C-reactive protein (CRP). Individuals with a high body mass index (BMI) present a chronic inflammatory state. The aim of the present study was to perform a systematic review of inflammatory markers (IL-6 and CRP) in obese patients with PD and their possible relationship by analyzing the levels of these markers. A digital literature search was performed in three databases-PubMed, SciElo and Medigraphic-through an advanced search for original articles, employing IL-6 and CRP in obese patients with PD, within a publication period from 2010 to 2021. PRISMA guidelines, the JADAD scale and a qualitative analysis of scientific evidence were performed using the Cochrane collaboration method and the RoB 2 assessment tool. Ten articles were included in this analysis with the variables recorded and associated with subjects with obesity and PD. Of the ten articles included, three analyzed IL-6 and CRP, four analyzed IL-6 and three analyzed CRP. In conclusion, and based on the available evidence, the aforementioned markers of inflammation demonstrate that there is a relationship between PD and obesity.
Collapse
Affiliation(s)
- Julieta Cruz-Ávila
- Dental Sciences, Department of Health Care, Universidad Autónoma Metropolitana Xochimilco (UAM-X), Mexico City 04960, Mexico
| | - Elizabeth Hernández-Pérez
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa (UAM-I), Mexico City 09340, Mexico
| | - Rogelio González-González
- Department of Research, School of Dentistry, Juarez University of the Durango State (UJED), Durango 34000, Mexico
| | - Ronell Bologna-Molina
- Molecular Pathology Area, School of Dentistry, University of the Republic (UDELAR), Montevideo 11200, Uruguay
| | - Nelly Molina-Frechero
- Department of Health Care, Universidad Autónoma Metropolitana Xochimilco (UAM-X), Mexico City 04960, Mexico
| |
Collapse
|
7
|
Fonseca PAS, Alonso-García M, Pelayo R, Marina H, Esteban-Blanco C, Mateo J, Gutiérrez-Gil B, Arranz JJ, Suárez-Vega A. Integrated analyses of the methylome and transcriptome to unravel sex differences in the perirenal fat from suckling lambs. Front Genet 2022; 13:1035063. [PMID: 36386829 PMCID: PMC9663842 DOI: 10.3389/fgene.2022.1035063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
In sheep, differences were observed regarding fat accumulation and fatty acid (FA) composition between males and females, which may impact the quality and organoleptic characteristics of the meat. The integration of different omics technologies is a relevant approach for investigating biological and genetic mechanisms associated with complex traits. Here, the perirenal tissue of six male and six female Assaf suckling lambs was evaluated using RNA sequencing and whole-genome bisulfite sequencing (WGBS). A multiomic discriminant analysis using multiblock (s)PLS-DA allowed the identification of 314 genes and 627 differentially methylated regions (within these genes), which perfectly discriminate between males and females. These candidate genes overlapped with previously reported QTLs for carcass fat volume and percentage of different FAs in milk and meat from sheep. Additionally, differentially coexpressed (DcoExp) modules of genes between males (nine) and females (three) were identified that harbour 22 of these selected genes. Interestingly, these DcoExp were significantly correlated with fat percentage in different deposits (renal, pelvic, subcutaneous and intramuscular) and were associated with relevant biological processes for adipogenesis, adipocyte differentiation, fat volume and FA composition. Consequently, these genes may potentially impact adiposity and meat quality traits in a sex-specific manner, such as juiciness, tenderness and flavour.
Collapse
Affiliation(s)
- Pablo A. S. Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocio Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Hector Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Javier Mateo
- Departamento de Higiene y Tecnología de Los Alimentos, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain,*Correspondence: Juan-José Arranz,
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
8
|
Cheng WY, Yeh WJ, Ko J, Huang YL, Yang HY. Consumption of Dehulled Adlay Improved Lipid Metabolism and Inflammation in Overweight and Obese Individuals after a 6-Week Single-Arm Pilot Study. Nutrients 2022; 14:nu14112250. [PMID: 35684050 PMCID: PMC9182814 DOI: 10.3390/nu14112250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a major public health concern worldwide with a rising prevalence. Diets containing whole grains have been demonstrated to benefit body composition and inflammatory conditions in individuals at a high risk of metabolic disorders. This study investigated the effects of dehulled adlay on blood lipids and inflammation in overweight and obese adults. We recruited 21 individuals with abdominal obesity to participate in a 6-week experiment, providing them 60 g of dehulled adlay powder per day as a substitute for their daily staple. Before and after the 6-week intervention, we performed anthropometric analyses and measured blood lipid profiles, adipokines, and markers of inflammation. At the end of the study, the percentage of body fat mass, blood total cholesterol, and triglyceride levels were significantly decreased compared with the baseline. Plasma tumor necrosis factor alpha, interleukin-6, leptin, and malondialdehyde levels were also reduced. In addition, participants with higher basal blood lipid levels exhibited enhanced lipid lowering effects after the dehulled adlay intervention. These results suggest that a dietary pattern containing 60 g of dehulled adlay per day may have a beneficial effect on lipid profiles and inflammatory markers in individuals that are overweight and obese.
Collapse
Affiliation(s)
- Wei-Yi Cheng
- Department of Nutrition, I-Shou University, No. 8 Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan;
| | - Wan-Ju Yeh
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 116059, Taiwan;
| | - Jung Ko
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Ya-Ling Huang
- Department of Laboratory Medicine, E-Da Hospital, No. 1 Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan;
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205, Taiwan
- Correspondence: ; Tel.: +886-2-29053621; Fax: +886-2-29021215
| |
Collapse
|
9
|
PINHO ARYANEC, BURGEIRO ANA, PEREIRA MARIAJOÃO, CARVALHO EUGENIA. Drug-induced metabolic alterations in adipose tissue - with an emphasis in epicardial adipose tissue. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Affiliation(s)
| | | | | | - EUGENIA CARVALHO
- University of Coimbra, Portugal; University of Coimbra, Portugal; APDP-Portuguese Diabetes Association, Portugal
| |
Collapse
|
10
|
Machado H, Bizarra-Rebelo T, Costa-Sequeira M, Trindade S, Carvalho T, Rijo-Ferreira F, Rentroia-Pacheco B, Serre K, Figueiredo LM. Trypanosoma brucei triggers a broad immune response in the adipose tissue. PLoS Pathog 2021; 17:e1009933. [PMID: 34525131 PMCID: PMC8476018 DOI: 10.1371/journal.ppat.1009933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is one of the major reservoirs of Trypanosoma brucei parasites, the causative agent of sleeping sickness, a fatal disease in humans. In mice, the gonadal adipose tissue (AT) typically harbors 2–5 million parasites, while most solid organs show 10 to 100-fold fewer parasites. In this study, we tested whether the AT environment responds immunologically to the presence of the parasite. Transcriptome analysis of T. brucei infected adipose tissue revealed that most upregulated host genes are involved in inflammation and immune cell functions. Histochemistry and flow cytometry confirmed an increasingly higher number of infiltrated macrophages, neutrophils and CD4+ and CD8+ T lymphocytes upon infection. A large proportion of these lymphocytes effectively produce the type 1 effector cytokines, IFN-γ and TNF-α. Additionally, the adipose tissue showed accumulation of antigen-specific IgM and IgG antibodies as infection progressed. Mice lacking T and/or B cells (Rag2-/-, Jht-/-), or the signature cytokine (Ifng-/-) displayed a higher parasite load both in circulation and in the AT, demonstrating the key role of the adaptive immune system in both compartments. Interestingly, infections of C3-/- mice showed that while complement system is dispensable to control parasite load in the blood, it is necessary in the AT and other solid tissues. We conclude that T. brucei infection triggers a broad and robust immune response in the AT, which requires the complement system to locally reduce parasite burden. African trypanosomiasis is a neglected disease with significant socio-economic burden in sub-Saharan Africa. The protozoan parasite Trypanosoma brucei, a causative agent of African trypanosomiasis, can be found in the blood and extra-vascular spaces of the infected host. For an unknown reason, T. brucei accumulates in adipose tissue (AT) in very high numbers. Here we used a multidisciplinary approach to assess whether an immune response was mounted in AT during a T. brucei infection. We found that as infection progresses, a broad variety of immune cells and antibodies accumulate in the AT. We also found that this broad immune response is partially able to control parasite numbers in the AT. Our study provides evidence that T. brucei parasites present in the AT are subjected to immune surveillance. The reason why T. brucei accumulates to such a high extent in AT remains to be elucidated.
Collapse
Affiliation(s)
- Henrique Machado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Bizarra-Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Costa-Sequeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Barbara Rentroia-Pacheco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail: (KS); (LMF)
| | - Luisa M. Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail: (KS); (LMF)
| |
Collapse
|
11
|
Kuchler JC, Siqueira BS, Ceglarek VM, Chasko FV, Moura IC, Sczepanhak BF, Vettorazzi JF, Balbo SL, Grassiolli S. The Vagus Nerve and Spleen: Influence on White Adipose Mass and Histology of Obese and Non-obese Rats. Front Physiol 2021; 12:672027. [PMID: 34248663 PMCID: PMC8269450 DOI: 10.3389/fphys.2021.672027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
The vagus nerve (VN) and spleen represent a complex interface between neural and immunological functions, affecting both energy metabolism and white adipose tissue (WAT) content. Here, we evaluated whether vagal and splenic axis participates in WAT mass regulation in obese and non-obese male Wistar rats. High doses of monosodium glutamate (M; 4 g/Kg) were administered during the neonatal period to induce hypothalamic lesion and obesity (M-Obese rats). Non-obese or Control (CTL) rats received equimolar saline. At 60 days of life, M-Obese and CTL rats were randomly distributed into experimental subgroups according to the following surgical procedures: sham, subdiaphragmatic vagotomy (SV), splenectomy (SPL), and SV + SPL (n = 11 rats/group). At 150 days of life and after 12 h of fasting, rats were euthanized, blood was collected, and the plasma levels of glucose, triglycerides, cholesterol, insulin, and interleukin 10 (IL10) were analyzed. The visceral and subcutaneous WAT depots were excised, weighed, and histologically evaluated for number and size of adipocytes as well as IL10 protein expression. M-Obese rats showed higher adiposity, hyperinsulinemia, hypertriglyceridemia, and insulin resistance when compared with CTL groups (p < 0.05). In CTL and M-Obese rats, SV reduced body weight gain and triglycerides levels, diminishing adipocyte size without changes in IL10 expression in WAT (p< 0.05). The SV procedure resulted in high IL10 plasma levels in CTL rats, but not in the M-Obese group. The splenectomy prevented the SV anti-adiposity effects, as well as blocked the elevation of IL10 levels in plasma of CTL rats. In contrast, neither SV nor SPL surgeries modified the plasma levels of IL10 and IL10 protein expression in WAT from M-Obese rats. In conclusion, vagotomy promotes body weight and adiposity reduction, elevating IL10 plasma levels in non-obese animals, in a spleen-dependent manner. Under hypothalamic obesity conditions, VN ablation also reduces body weight gain and adiposity, improving insulin sensitivity without changes in IL10 protein expression in WAT or IL10 plasma levels, in a spleen-independent manner. Our findings indicate that the vagal-spleen axis influence the WAT mass in a health state, while this mechanism seems to be disturbed in hypothalamic obese animals.
Collapse
Affiliation(s)
- Joice Cristina Kuchler
- Postgraduate Program in Applied Health Sciences, Western Paraná State University, Francisco Beltrão, Brazil
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Bruna Schumaker Siqueira
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Vanessa Marieli Ceglarek
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Biological Sciences, Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Vigilato Chasko
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Isllany Carvalho Moura
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Bruna Fatima Sczepanhak
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | | | - Sandra Lucinei Balbo
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| | - Sabrina Grassiolli
- Postgraduate Program in Applied Health Sciences, Western Paraná State University, Francisco Beltrão, Brazil
- Laboratory of Endocrine and Metabolic Physiology, Postgraduate Program in Biosciences and Health, Western Paraná State University, Cascavel, Brazil
| |
Collapse
|
12
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Nguyen TT, Thanh VV, Quang TL, Minh LB, Pham VH, Ngoc VTN, Kushekhar K, Chu-Dinh T. The Effects of Adipocytes on the Regulation of Breast Cancer in the Tumor Microenvironment: An Update. Cells 2019; 8:E857. [PMID: 31398937 PMCID: PMC6721665 DOI: 10.3390/cells8080857] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity is a global pandemic and it is well evident that obesity is associated with the development of many disorders including many cancer types. Breast cancer is one of that associated with a high mortality rate. Adipocytes, a major cellular component in adipose tissue, are dysfunctional during obesity and also known to promote breast cancer development both in vitro and in vivo. Dysfunctional adipocytes can release metabolic substrates, adipokines, and cytokines, which promote proliferation, progression, invasion, and migration of breast cancer cells. The secretion of adipocytes can alter gene expression profile, induce inflammation and hypoxia, as well as inhibit apoptosis. It is known that excessive free fatty acids, cholesterol, triglycerides, hormones, leptin, interleukins, and chemokines upregulate breast cancer development. Interestingly, adiponectin is the only adipokine that has anti-tumor properties. Moreover, adipocytes are also related to chemotherapeutic resistance, resulting in the poorer outcome of treatment and advanced stages in breast cancer. Evaluation of the adipocyte secretion levels in the circulation can be useful for prognosis and evaluation of the effectiveness of cancer therapy in the patients. Therefore, understanding about functions of adipocytes as well as obesity in breast cancer may reveal novel targets that support the development of new anti-tumor therapy. In this systemic review, we summarize and update the effects of secreted factors by adipocytes on the regulation of breast cancer in the tumor microenvironment.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
- Former address: Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0349 Oslo, Norway.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang-Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Tran-Thuy Nguyen
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Center, E Hospital, Hanoi 100000, Vietnam
- School of Medicine and Pharmacy, Vietnam National University, Hanoi 100000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
13
|
Igata M, Islam MA, Tada A, Takagi M, Kober AKMH, Albarracin L, Aso H, Ikeda-Ohtsubo W, Miyazawa K, Yoda K, He F, Takahashi H, Villena J, Kitazawa H. Transcriptome Modifications in Porcine Adipocytes via Toll-Like Receptors Activation. Front Immunol 2019; 10:1180. [PMID: 31191544 PMCID: PMC6549529 DOI: 10.3389/fimmu.2019.01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Adipocytes are the most important cell type in adipose tissue playing key roles in immunometabolism. We previously reported that nine members of the Toll-like receptor (TLR) family are expressed in an originally established porcine intramuscular pre-adipocyte (PPI) cell line. However, the ability of TLR ligands to modulate immunometabolic transcriptome modifications in porcine adipocytes has not been elucidated. Herein, we characterized the global transcriptome modifications in porcine intramuscular mature adipocytes (pMA), differentiated from PPI, following stimulation with Pam3csk4, Poly(I:C) or LPS which are ligands for TLR2, TLR3, and TLR4, respectively. Analysis of microarray data identified 530 (218 up, 312 down), 520 (245 up, 275 down), and 525 (239 up, 286 down) differentially expressed genes (DEGs) in pMA following the stimulation with Pam3csk4, Poly(I:C), and LPS, respectively. Gene ontology classification revealed that DEGs are involved in several biological processes including those belonging to immune response and lipid metabolism pathways. Functionally annotated genes were organized into two groups for downstream analysis: immune response related genes (cytokines, chemokines, complement factors, adhesion molecules, and signal transduction), and genes involved with metabolic and endocrine functions (hormones and receptors, growth factors, and lipid biosynthesis). Differential expression analysis revealed that EGR1, NOTCH1, NOS2, TNFAIP3, TRAF3IP1, INSR, CXCR4, PPARA, MAPK10, and C3 are the top 10 commonly altered genes of TLRs induced transcriptional modification of pMA. However, the protein-protein interaction network of DEGs identified EPOR, C3, STAR, CCL2, and SAA2 as the major hub genes, which were also exhibited higher centrality estimates in the Gene-Transcription factor interaction network. Our results provide new insights of transcriptome modifications associated with TLRs activation in porcine adipocytes and identified key regulatory genes that could be used as biomarkers for the evaluation of treatments having immunomodularoty and/or metabolic functional beneficial effects in porcine adipocytes.
Collapse
Affiliation(s)
- Manami Igata
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Asuka Tada
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michihiro Takagi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - A K M Humayun Kober
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Chittangong, Bangladesh
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Science and Technology, National University of Tucuman, San Miguel de Tucumán, Argentina
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenji Miyazawa
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Kazutoyo Yoda
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Zhang W, Xu L, Luo T, Zhao B, Wu F, Li X. Immune-related gene expression profiles of hypothermia adipocytes: Implications for Bell's palsy. Oral Dis 2019; 25:1652-1663. [PMID: 31127963 DOI: 10.1111/odi.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify immune-related gene expression profiles of adipocytes under low temperatures with RNA sequencing as a model for Bell's palsy implications. METHODS Adipocytes were harvested from the white adipose tissue of male Sprague-Dawley rats and cultured under different acute-grade cold exposure conditions of 30, 20, and 10°C, and their genomes were sequenced for RNA sequencing analysis. The differentially expressed genes (DEGs) were validated with reverse transcription polymerase chain reaction. RESULTS In total, 55 (35 upregulated and 20 downregulated), 121 (76 upregulated and 45 downregulated), and 92 (64 upregulated and 28 downregulated) DEGs were identified under 30, 20, and 10°C compared with the control, respectively. KEGG and GO analysis revealed that the DEGs were considerably enriched in immune-related pathways (leukocyte transendothelial migration and platelet activation) and infection (bacterial invasion of epithelial cells and Salmonella infection). The levels of key inflammatory chemokines (CSF1, CXCL1, CCL2, and CCL7) were enhanced after cold exposure. CONCLUSION These findings broaden our understanding of the immune responses to cold exposure in adipocytes. The molecular profiles of adipocyte immune function will help clarify the potential mechanism impacting myelin, which might contribute to the development of strategies to control Bell's palsy.
Collapse
Affiliation(s)
- Wenjuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Lei Xu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Tingting Luo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Feng Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Xianqi Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.,Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
15
|
Abstract
Bell’s palsy is the most common condition involving a rapid and unilateral onset of peripheral paresis/paralysis of the seventh cranial nerve. It affects 11.5–53.3 per 100,000 individuals a year across different populations. Bell’s palsy is a health issue causing concern and has an extremely negative effect on both patients and their families. Therefore, diagnosis and prompt cause determination are key for early treatment. However, the etiology of Bell’s palsy is unclear, and this affects its treatment. Thus, it is critical to determine the causes of Bell’s palsy so that targeted treatment approaches can be developed and employed. This article reviews the literature on the diagnosis of Bell’s palsy and examines possible etiologies of the disorder. It also suggests that the diagnosis of idiopathic facial palsy is based on exclusion and is most often made based on five factors including anatomical structure, viral infection, ischemia, inflammation, and cold stimulation responsivity.
Collapse
|
16
|
Tavares CO, Rost FL, Silva RB, Dagnino AP, Adami B, Schirmer H, de Figueiredo JAP, Souto AA, Maito FDM, Campos MM. Cross Talk between Apical Periodontitis and Metabolic Disorders: Experimental Evidence on the Role of Intestinal Adipokines and Akkermansia muciniphila. J Endod 2019; 45:174-180. [DOI: 10.1016/j.joen.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/17/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023]
|
17
|
Xue W, Fan Z, Li L, Lu J, Zhai Y, Zhao J. The chemokine system and its role in obesity. J Cell Physiol 2018; 234:3336-3346. [PMID: 30375006 DOI: 10.1002/jcp.27293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022]
Abstract
The chemokine system is a complex arrangement of molecules that attract leukocytes to the site of injury or inflammation. This chemotactic behavior gives the system the name "Chemokine." The intricate and redundant nature of the chemokine system has made it a subject of ongoing scientific investigation. Obesity is characterized as low-grade systemic or chronic inflammation that is responsible for the release of cytokines, adipokines, and chemokines. Excessive tissue fat expansion triggers the release of chemokines, which in turn attract various leukocytes and activate the resident immune surveillance system, eventually leading to worsening of obesity and other related comorbidities. To date, 50 chemokines and 20 chemokine receptors that belong to the G-protein-coupled receptor family have been discovered, and over the past two decades, the physiological and pathological roles of many of these chemokines and their receptors have been elucidated. The objective of this review is to present an update on the link between chemokines and obesity under the light of recent knowledge.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhirui Fan
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunkai Zhai
- Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Pietrani NT, Ferreira CN, Rodrigues KF, Perucci LO, Carneiro FS, Bosco AA, Oliveira MC, Pereira SS, Teixeira AL, Alvarez-Leite JI, Ferreira AV, Sousa LP, Gomes KB. Proresolving protein Annexin A1: The role in type 2 diabetes mellitus and obesity. Biomed Pharmacother 2018; 103:482-489. [PMID: 29677533 DOI: 10.1016/j.biopha.2018.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Annexin A1 (AnxA1) is a protein involved in inflammation resolution that might be altered in obesity-associated type 2 diabetes mellitus (DM), which is a chronic inflammatory disease. The aim of this study was to evaluate AnxA1 serum levels in individuals with and without DM stratified according to the body mass index (BMI), and the dynamic of AnxA1 expression in adipose tissue from humans with obesity and non-obesity. METHODS Serum samples were obtained from 41 patients with DM (lean, overweight and obese) and 40 controls, and adipose tissue samples were obtained from 16 individuals with obesity (with or without DM), and 15 controls. RESULTS DM patients showed similar AnxA1 serum levels when compared to controls. However, when the individuals were stratified according to BMI, AnxA1 levels were higher in individuals with obesity than lean or overweight, and in overweight compared to lean individuals. Moreover, AnxA1 was correlated positively with IL-6 levels. AnxA1 levels were also positively correlated with BMI, waist circumference and waist-to-hip ratio. Furthermore, higher levels of cleaved AnxA1 were observed in adipose tissue from individuals with obesity, independently of DM status. CONCLUSIONS Enhanced levels of AnxA1 in serum of individuals with obesity suggest an attempt to counter-regulate the systemic inflammation process in this disease. However, the higher levels of cleaved AnxA1 in the adipose tissue of individuals with obesity could compromise its anti-inflammatory and proresolving actions, locally. Considering our data, AnxA1 cleavage in the adipose tissue, despite increased serum levels of this protein, and consequently the failure in inflammation resolution, suggests an important pathophysiological mechanism involved in inflammatory status observed in obesity.
Collapse
Affiliation(s)
- Nathalia T Pietrani
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia N Ferreira
- Colégio Técnico - COLTEC- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kathryna F Rodrigues
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza O Perucci
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda S Carneiro
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana A Bosco
- Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Solange S Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio L Teixeira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jacqueline I Alvarez-Leite
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene V Ferreira
- Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Moysidou M, Karaliota S, Kodela E, Salagianni M, Koutmani Y, Katsouda A, Kodella K, Tsakanikas P, Ourailidou S, Andreakos E, Kostomitsopoulos N, Skokos D, Chatzigeorgiou A, Chung KJ, Bornstein S, Sleeman MW, Chavakis T, Karalis KP. CD8+ T cells in beige adipogenesis and energy homeostasis. JCI Insight 2018. [PMID: 29515042 DOI: 10.1172/jci.insight.95456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although accumulation of lymphocytes in the white adipose tissue (WAT) in obesity is linked to insulin resistance, it remains unclear whether lymphocytes also participate in the regulation of energy homeostasis in the WAT. Here, we demonstrate enhanced energy dissipation in Rag1-/- mice, increased catecholaminergic input to subcutaneous WAT, and significant beige adipogenesis. Adoptive transfer experiments demonstrated that CD8+ T cell deficiency accounts for the enhanced beige adipogenesis in Rag1-/- mice. Consistently, we identified that CD8-/- mice also presented with enhanced beige adipogenesis. The inhibitory effect of CD8+ T cells on beige adipogenesis was reversed by blockade of IFN-γ. All together, our findings identify an effect of CD8+ T cells in regulating energy dissipation in lean WAT, mediated by IFN-γ modulation of the abundance of resident immune cells and of local catecholaminergic activity. Our results provide a plausible explanation for the clinical signs of metabolic dysfunction in diseases characterized by altered CD8+ T cell abundance and suggest targeting of CD8+ T cells as a promising therapeutic approach for obesity and other diseases with altered energy homeostasis.
Collapse
Affiliation(s)
- Maria Moysidou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Sevasti Karaliota
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Elisavet Kodela
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Maria Salagianni
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Yassemi Koutmani
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Katsouda
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Konstantia Kodella
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Panagiotis Tsakanikas
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Styliani Ourailidou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evangelos Andreakos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | | | - Kyoung-Jin Chung
- Technische Universität Dresden, School of Medicine, Dresden, Germany
| | - Stefan Bornstein
- Technische Universität Dresden, School of Medicine, Dresden, Germany
| | - Mark W Sleeman
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | - Katia P Karalis
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Technische Universität Dresden, School of Medicine, Dresden, Germany.,Endocrine Division, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Boyapati R, Chintalapani S, Ramisetti A, Salavadhi SS, Ramachandran R. Evaluation of Serum Leptin and Adiponectin in Obese Individuals with Chronic Periodontitis. Contemp Clin Dent 2018; 9:S210-S214. [PMID: 30294146 PMCID: PMC6169280 DOI: 10.4103/ccd.ccd_1_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objectives Studies have reported changes in leptin and adiponectin levels in the gingival crevicular fluid, saliva, and blood serum of obese patients with periodontal disease. The aim of the study is to evaluate serum leptin and adiponectin levels in obese and nonobese individuals with chronic periodontitis and to deduce a relationship between the clinical parameters and the inflammatory biochemical parameters. Materials and Methods In this case-control study, a total of fifty individuals were selected based on the body mass index (BMI): Group I of obese individuals with chronic periodontitis and Group II of nonobese individuals with chronic periodontitis. Periodontal parameters used in this study were plaque index, gingival index, probing pocket depth, and clinical attachment level. The effects of obesity and periodontal status on serum leptin and adiponectin levels of both groups were statistically analyzed using an independent t- test. Results Statistical analysis showed that the effect of BMI on serum leptin and adiponectin levels was statistically significant (P < 0.01), and the effect of chronic periodontitis on the serum leptin and adiponectin levels was also statistically significant compared to nonobese individuals (P < 0.0001). However, there is no statistically significant correlation between serum leptin and adiponectin, which indicates that both are independent to each other. Conclusions In obese individuals with chronic periodontitis, serum leptin levels were significantly high compared to nonobese individuals and serum adiponectin levels were significantly lower in obese individuals compared to nonobese individuals with periodontitis, though both the parameters were independent of each other.
Collapse
Affiliation(s)
| | | | - Arpita Ramisetti
- Department of Periodontics, Mamata Dental College, Khammam, Telangana, India
| | | | | |
Collapse
|
21
|
Mikirova NA, Kesari S, Ichim TE, Riordan NH. Effect of Infla-Kine supplementation on the gene expression of inflammatory markers in peripheral mononuclear cells and on C-reactive protein in blood. J Transl Med 2017; 15:213. [PMID: 29058588 PMCID: PMC5651612 DOI: 10.1186/s12967-017-1315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022] Open
Abstract
Background Chronic inflammation is a predisposing factor to numerous degenerative diseases including cancer, heart failure and Alzheimer’s disease. Infla-Kine is a natural supplement comprised of a proprietary blend of Lactobacillus fermentum extract, burdock seed (arctigenin), zinc, alpha lipoic acid, papaya enzyme and an enhanced absorption bio-curcumin complex (BCM-95®). Methods Infla-Kine was administered twice daily to 24 health volunteers for 4 weeks. Quantitative RT-PCR was used to assess mRNA transcripts of IL-1b, IL8, IL-6, NF-κB, and TNF-α from peripheral blood mononuclear cells (PBMC). C reactive protein (CRP) was measured from serum. Additionally, quality of life questionnaires were employed to assess general feeling of well-being. Assessments were made before treatment and at conclusion of treatment (4 weeks). Results As compared to pre-treatment, after 4 weeks, a statistically significant reduction of IL8, IL-6, NF-κB, and TNF-α transcripts was observed in PBMC. Furthermore, reduction of IL-1b transcript and serum CRP was observed but did not reach statistical significance. Quality of life improvements were most prevalent in muscle and joint pains. Conclusions Overall, our data demonstrate that twice daily administration of Infla-Kine for 4 weeks reduces inflammatory markers and quality of life in healthy volunteers.
Collapse
Affiliation(s)
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neuro-therapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | | | | |
Collapse
|
22
|
Rotondo F, Romero MDM, Ho-Palma AC, Remesar X, Fernández-López JA, Alemany M. Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures. PeerJ 2016; 4:e2725. [PMID: 27917316 PMCID: PMC5131620 DOI: 10.7717/peerj.2725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND White adipose tissue (WAT) is a complex, diffuse, multifunctional organ which contains adipocytes, and a large proportion of fat, but also other cell types, active in defense, regeneration and signalling functions. Studies with adipocytes often require their isolation from WAT by breaking up the matrix of collagen fibres; however, it is unclear to what extent adipocyte number in primary cultures correlates with their number in intact WAT, since recovery and viability are often unknown. EXPERIMENTAL DESIGN Epididymal WAT of four young adult rats was used to isolate adipocytes with collagenase. Careful recording of lipid content of tissue, and all fraction volumes and weights, allowed us to trace the amount of initial WAT fat remaining in the cell preparation. Functionality was estimated by incubation with glucose and measurement of glucose uptake and lactate, glycerol and NEFA excretion rates up to 48 h. Non-adipocyte cells were also recovered and their sizes (and those of adipocytes) were measured. The presence of non-nucleated cells (erythrocytes) was also estimated. RESULTS Cell numbers and sizes were correlated from all fractions to intact WAT. Tracing the lipid content, the recovery of adipocytes in the final, metabolically active, preparation was in the range of 70-75%. Cells showed even higher metabolic activity in the second than in the first day of incubation. Adipocytes were 7%, erythrocytes 66% and other stromal (nucleated cells) 27% of total WAT cells. However, their overall volumes were 90%, 0.05%, and 0.2% of WAT. Non-fat volume of adipocytes was 1.3% of WAT. CONCLUSIONS The methodology presented here allows for a direct quantitative reference to the original tissue of studies using isolated cells. We have also found that the "live cell mass" of adipose tissue is very small: about 13 µL/g for adipocytes and 2 µL/g stromal, plus about 1 µL/g blood (the rats were killed by exsanguination). These data translate (with respect to the actual "live cytoplasm" size) into an extremely high metabolic activity, which make WAT an even more significant agent in the control of energy metabolism.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - María del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| | - Ana Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| |
Collapse
|
23
|
Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 2016; 33:311-321. [PMID: 27746034 DOI: 10.1016/j.nut.2016.07.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/14/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
Diet may be defined as a complex process that should involve a deeper comprehension of metabolism, energy balance, and the molecular pathways involved in cellular stress response and survival, gut microflora genetics, enzymatic polymorphism within the human population, and the role of plant-derived polyphenols in this context. Metabolic syndrome, encompassing pathologies with a relatively high morbidity, such as type 2 diabetes, obesity, and cardiovascular disease, is a bullet point of the big concern about how daily dietary habits should promote health and prevent metabolic impairments to prevent hospitalization and the need for health care. From a clinical point of view, very few papers deal with this concern, whereas most of the evidence reported focuses on in vitro and animal models, which study the activity of phytochemicals contained in the daily diet. A fundamental issue addressed by dietitians deals with the role exerted by redox-derived reactive species. Most plant polyphenols act as antioxidants, but recent evidence supports the idea that these compounds primarily activate a mild oxidative stress to elicit a positive, beneficial response from cells. How these compounds may act upon the detoxifying system exerting a scavenging role from reactive oxygen or nitrogen species is still a matter of debate; however, it can be argued that their role is even more complex than expected, acting as signaling molecules in the cross-talk mitochondria-endoplasmic reticulum and in enzymatic pathways involved in the energetic balance. In this relationship, a fundamental role is played by the brain-adipose tissue-gut axis. The aim of this review was to elucidate this topic and the state of art about the role of reactive species in cell signaling and the function of metabolism and survival to reappraise the role of plant-derived chemicals.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
24
|
Santos FMM, Telles RW, Lanna CCD, Teixeira AL, Miranda AS, Rocha NP, Ribeiro AL. Adipokines, tumor necrosis factor and its receptors in female patients with systemic lupus erythematosus. Lupus 2016; 26:10-16. [PMID: 27365371 DOI: 10.1177/0961203316646463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To analyze the association of adipokines and tumor necrosis factor α (TNFα) and its receptors with characteristics of systemic lupus erythematosus (SLE) and to investigate the correlation between adipokines and the TNF system. METHODS One hundred and thirty-six SLE women, aged ≥18 years old, were assessed. TNFα, soluble TNFα receptors 1 (sTNFR1) and 2 (sTNFR2) and adipokines were analyzed by ELISA kits. RESULTS The median (IQR) of age was 41.5 (33.0-49.7) years old and of disease duration 11.3 (7.8-15.8) years. The median (IQR) of disease activity was 0 (0-4) and of damage index was 2 (1-3). Higher levels of sTNFR1 and sTNFR2 were associated with nephritis (p < 0.001 for both), and sTNFR1 (p = 0.025) and TNFα (p = 0.014) were positively associated with arthritis. Higher sTNFR1 levels were found in participants that were not using antimalarial drugs (p = 0.04). Independent correlation was found between sTNFR1 (β = 0.253; p = 0.003) and sTNFR2 (β = 0.297; p < 0.001) levels and disease activity and damage index (sTNFR1: β = 0.367; p < 0.001; sTNFR2: β = 0.335; p < 0.001). Higher adiponectin levels were independently associated with nephritis (p = 0.009) and antimalarial drugs use (p = 0.015). There was a positive correlation between leptin and sTNFR2 levels (p = 0.002) and between resistin levels and sTNFR1 (p < 0.001) and sTNFR2 (p < 0.001). CONCLUSION The correlation between adipokines and TNF system allows a better understanding of the role of adipokines in the inflammatory response in SLE patients.
Collapse
Affiliation(s)
- F M M Santos
- Department of Rheumatology, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| | - R W Telles
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| | - C C D Lanna
- Department of Rheumatology, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| | - A L Teixeira
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil.,Interdisciplinary Laboratory for Medical Research, Universidade Federal de Minas Gerais, Brazil
| | - A S Miranda
- Interdisciplinary Laboratory for Medical Research, Universidade Federal de Minas Gerais, Brazil
| | - N P Rocha
- Interdisciplinary Laboratory for Medical Research, Universidade Federal de Minas Gerais, Brazil
| | - A L Ribeiro
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
25
|
Ferreira PS, Spolidorio LC, Manthey JA, Cesar TB. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet. Food Funct 2016; 7:2675-81. [PMID: 27182608 DOI: 10.1039/c5fo01541c] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The flavanones hesperidin, eriocitrin and eriodictyol were investigated for their prevention of the oxidative stress and systemic inflammation caused by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high-fat diet supplemented with hesperidin, eriocitrin or eriodictyol for a period of four weeks. Hesperidin, eriocitrin and eriodictyol increased the serum total antioxidant capacity, and restrained the elevation of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and C-reactive protein (hs-CRP). In addition, the liver TBARS levels and spleen mass (g per kg body weight) were lower for the flavanone-treated mice than in the unsupplemented mice. Eriocitrin and eriodictyol reduced TBARS levels in the blood serum, and hesperidin and eriodictyol also reduced fat accumulation and liver damage. The results showed that hesperidin, eriocitrin and eriodictyol had protective effects against inflammation and oxidative stress caused by high-fat diet in mice, and may therefore prevent metabolic alterations associated with the development of cardiovascular diseases in other animals.
Collapse
Affiliation(s)
- Paula S Ferreira
- Faculdade de Ciências Farmacêuticas, UNESP Univ Estadual Paulista, Campus Araraquara, Departamento de Alimentos e Nutrição, Rodovia Araraquara - Jau, km 1, Araraquara, SP 14802-901, Brazil.
| | | | | | | |
Collapse
|
26
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
27
|
Lamas A, Lopez E, Carrio R, Lopez DM. Adipocyte and leptin accumulation in tumor-induced thymic involution. Int J Mol Med 2015; 37:133-8. [PMID: 26530443 DOI: 10.3892/ijmm.2015.2392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cell-mediated immunity is an important defense mechanism against pathogens and developing tumor cells. The thymus is the main lymphoid organ involved in the formation of the cell-mediated immune response by the maturation and differentiation of lymphocytes that travel from the bone marrow, through the lymphatic ducts, to become T lymphocytes. Thymic involution has been associated with aging; however, other factors such as obesity, viral infection and tumor development have been shown to increase the rate of shrinkage of this organ. The heavy infiltration of adipocyte fat cells has been reported in the involuted thymuses of aged mice. In the present study, the possible accumulation of such cells in the thymus during tumorigenesis was examined by immunohistochemistry. A significant number of adipocytes around and infiltrating the thymuses of tumor-bearing mice was observed. Leptin is a pro-inflammatory adipocytokine that enhances thymopoiesis and modulates T cell immune responses. The levels of leptin and adiponectin, another adipocytokine that has anti-inflammatory properties, were examined by western blot analysis. While no changes were observed in the amounts of adiponectin present in the thymuses of the normal and tumor-bearing mice, significantly higher levels of leptin were detected in the thymocytes of the tumor-bearing mice. This correlated with an increase in the expression of certain cytokines, such as interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF). The co-culture of thymocytes isolated from normal mice with ex vivo isolated adipocytes from tumor-bearing mice yielded similar results. Our findings suggest that the infiltration and accumulation of adipocytes in the thymuses of tumor-bearing mice play an important role in their altered morphology and functions.
Collapse
Affiliation(s)
- Alejandro Lamas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elena Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto Carrio
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diana M Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
28
|
Young MRI, Levingston C, Johnson SD. Cytokine and Adipokine Levels in Patients with Premalignant Oral Lesions or in Patients with Oral Cancer Who Did or Did Not Receive 1α,25-Dihydroxyvitamin D3 Treatment upon Cancer Diagnosis. Cancers (Basel) 2015; 7:1109-24. [PMID: 26120967 PMCID: PMC4586760 DOI: 10.3390/cancers7030827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
Differences in levels of inflammation-modulating cytokines and adipokines in patients with premalignant oral lesions versus in patients that develop squamous cell carcinoma of the head and neck (HNSCC) were assessed. Also assessed was the impact of treating HNSCC patients with the immune regulatory mediator, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], on modulators of inflammation. Compared to healthy controls, patients with premalignant oral lesions had increases in their systemic levels of the inflammatory cytokines IL-6 and IL-17, and increases in the adipokine, leptin. However, levels of these pro-inflammatory cytokines and adipokine were reduced in patients with HNSCC. Treatment of HNSCC patients with 1,25(OH)2D3 increased levels of each of the measured immune mediators. Levels of the anti-inflammatory adipokine, adiponectin, were shifted inversely with the levels of the pro-inflammatory cytokines and with leptin. These studies demonstrate heightened immune reactivity in patients with premalignant lesions, which wanes in patients with HNSCC, but which is restored by treatment with 1,25(OH)2D3.
Collapse
Affiliation(s)
- M Rita I Young
- Medical Research Service (151), Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425, USA.
| | - Corinne Levingston
- Medical Research Service (151), Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
| | - Sara D Johnson
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
29
|
Malodobra-Mazur M, Dziewulska A, Kozinski K, Dobrzyn P, Kolczynska K, Janikiewicz J, Dobrzyn A. Stearoyl-CoA desaturase regulates inflammatory gene expression by changing DNA methylation level in 3T3 adipocytes. Int J Biochem Cell Biol 2014; 55:40-50. [DOI: 10.1016/j.biocel.2014.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
30
|
Kabir SM, Lee ES, Son DS. Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 2014; 3:97-106. [PMID: 24719782 PMCID: PMC3979886 DOI: 10.4161/adip.28110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 01/21/2023] Open
Abstract
Obesity is recognized as a low-grade chronic inflammatory state which involves a chemokine network contributing to a variety of diseases. As a first step toward understanding the roles of the obesity-driven chemokine network, we used a 3T3-L1 cell differentiation model to identify the chemokine profiles elicited during adipogenesis and how this profile is modified by epidermal growth factor (EGF) and tumor necrosis factor-α (TNF) as a growth and proinflammatory factor, respectively. The chemokine network was monitored using PCR arrays and qRT-PCR while main signaling pathways of EGF and TNF were measured using immunoblotting. The dominant chemokines in preadipocytes were CCL5, CCL8, CXCL1, and CXCL16, and in adipocytes CCL6 and CXCL13. The following chemokines were found in both preadipocytes and adipocytes: CCL2, CCL7, CCL25, CCL27, CXCL5, CXCL12, and CX3CL1. Among chemokine receptors, CXCR7 was specific for preadipocytes and CXCR2 for adipocytes. These findings indicate the development of a CXCL12–CXCR7 axis in preadipocytes and a CXCL5–CXCR2 axis in adipocytes. In addition to induction of CCL2 and CCL7 in both preadipocytes and adipocytes, EGF enhanced specifically CXCL1 and CXCL5 in adipocytes, indicating the potentiation of CXCR2-mediated pathway in adipocytes. TNF induced CCL2, CCL7, and CXCL1 in preadipocytes but had no response in adipocytes. EGFR downstream activation was dominant in adipocytes whereas NFκB activation was dominant in preadipocytes. Taken together, the adipocyte-driven chemokine network in the 3T3-L1 cell differentiation model involves CXCR2-mediated signaling which appears more potentiated to growth factors like EGF than proinflammatory factors like TNF.
Collapse
|