1
|
Li S, Chen Q, Zhang Y, Wang D, Hu H, Li J, Zhang C, Zhang J. Hyaluronic acid dissolving microneedle patch-assisted acupoint transdermal delivery of triptolide for effective rheumatoid arthritis treatment. Sci Rep 2024; 14:25256. [PMID: 39448702 PMCID: PMC11502756 DOI: 10.1038/s41598-024-76341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Triptolide (TP), a major active component of the herb Tripterygium wilfordii Hook F, has been shown excellent pharmacological effects on rheumatoid arthritis. However, TP is prone to causing severe organ toxicity, which limits its clinical application. In recent years, microneedle technology has provided a new option for the treatment of arthritis due to its advantages of efficient local transdermal drug delivery. In this study, we constructed a microneedle platform to deliver TP locally to the joints, thereby enhancing TP penetration and reducing systemic toxicity. Additionally, we investigated whether acupoint drug delivery can produce a synergistic effect of needles and drugs. First, TP was loaded into microneedles using polyvinylpyrrolidone and hyaluronic acid as matrix materials. Next, we established a rat adjuvant-induced arthritis (AIA) model to evaluate the therapeutic effect of TP-loaded microneedles. The experiments showed that TP-loaded microneedles alleviated the AIA rats' inflammatory response, joint swelling, and bone erosion. However, there was no significant difference in the therapeutic effect observed in the acupoint and non-acupoint administration groups. In conclusion, TP-loaded microneedles have the advantages of safety, convenience, and high efficacy over conventional administration routes, laying a foundation for the transdermal drug delivery system-based treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Quanlong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Yan Q, Xing Q, Liu Z, Zou Y, Liu X, Xia H. The phytochemical and pharmacological profile of dandelion. Biomed Pharmacother 2024; 179:117334. [PMID: 39180794 DOI: 10.1016/j.biopha.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Dandelion (Taraxacum genus), a perennial herb belonging to the Asteraceae family is widely distributed in hillside grasslands, roadsides, fields, and river beaches in middle and low-altitude areas. It has a long history of traditional Chinese medicine usage as a heat-clearing and detoxifying agent, often consumed as tea or vegetable. Multiple pharmacological studies have demonstrated the antiviral, antibacterial, anti-inflammatory, immune-regulating, antioxidant, anti-tumor, and other effects of the Taraxacum genus. Bioactive compounds associated with these effects include triterpenes and their saponins, phenolic acids, sterols and their glycosides, flavonoids, organic acids, volatile oils, and saccharides.
Collapse
Affiliation(s)
- Qingzi Yan
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Yang Zou
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Hong Xia
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Lin W, Gu B, Gu Y, Zhao R, Huang Y, Fan R, Rong W, Liu Z. Taraxasterol protects against acetaminophen-induced hepatotoxicity by reducing liver inflammatory response and ameliorating oxidative stress in mice. Int Immunopharmacol 2024; 138:112580. [PMID: 38943970 DOI: 10.1016/j.intimp.2024.112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Acute liver failure is mainly caused by the overdose of acetaminophen (APAP) globally. The traditional Chinese medicinal (TCM) herb, Taraxacum, contains Taraxasterol (TAX) as one of the active components. It is a pentacyclic-triterpene compound isolated from this herb. Present work aimed to investigate the in vitro and in vivo protection effect of TAX in APAP-induced acute liver injury, and determine the potential regulatory mechamisms. The liver injury caused by APAP is attenuated by TAX, as shown by the alleviated pathological changes of mice liver and the reduced serological indexes. TAX evidently controlled the oxidative stress and liver inflammation in mice liver. In vitro studies found that TAX reversed the decrease in LO2 cell viability induced by APAP, and protected LO2 cells from APAP-induced injury. In addition, TAX reduced the secretion of inflammatory factors in RAW264.7 macrophages as induced via APAP. Besides, TAX inhibited oxidative stress in LO2 cells induced by APAP in vitro. Noteworthy, TAX enhanced protein and mRNA expressions of Nrf2 in vivo, and knockdown of Nrf2 by using adeno-associated virus (AAV)-Nrf2-KO attenuated inhibitory impact of TAX in acute liver injury induced by APAP. Also, AAV-NRF2-KO weakened the inhibitory impact of TAX against APAP-triggered liver inflammation and oxidative stress of mice liver. Moreover, TAX activated the Nrf2 signaling in APAP-induced LO2 cells, as shown by the increased nuclear Nrf2 expression together with downstream HO-1 expression in vitro. Inhibition of Nrf2 by using ML-385, anNrf2inhibitor, weakened the inhibitory effect of TAX against APAP-induced oxidative stress and cell injury in LO2 cells. Moreover, inhibition of Nrf2 attenuated anti-inflammatory effect of TAX for APAP-induced RAW264.7 cells. Collectively, TAX could protect against APAP-triggered hepatotoxicitythrough suppression of liver oxidative stress and inflammatory response in mice.
Collapse
Affiliation(s)
- Weiling Lin
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Bangjie Gu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yuanyuan Gu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Rui Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yumeng Huang
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Rui Fan
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Weihao Rong
- Department of Orthopedics, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu, China.
| | - Zhaoguo Liu
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
4
|
Yuandani, Jantan I, Salim E, Septama AW, Rullah K, Nainu F, Fasihi Mohd Aluwi MF, Emran TB, Roney M, Khairunnisa NA, Nasution HR, Fadhil As'ad M, Shamsudin NF, Abdullah MA, Marwa Rani HL, Al Chaira DM, Aulia N. Mechanistic insights into anti-inflammatory and immunosuppressive effects of plant secondary metabolites and their therapeutic potential for rheumatoid arthritis. Phytother Res 2024; 38:2931-2961. [PMID: 38600726 DOI: 10.1002/ptr.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/12/2024]
Abstract
The anti-inflammatory and immunosuppressive activities of plant secondary metabolites are due to their diverse mechanisms of action against multifarious molecular targets such as modulation of the complex immune system associated with rheumatoid arthritis (RA). This review discussed and critically analyzed the potent anti-inflammatory and immunosuppressive effects of several phytochemicals and their underlying mechanisms in association with RA in experimental studies, including preliminary clinical studies of some of them. A wide range of phytochemicals including phenols, flavonoids, chalcones, xanthones, terpenoids, alkaloids, and glycosides have shown significant immunosuppressive and anti-inflammatory activities in experimental RA models and a few have undergone clinical trials for their efficacy and safety in reducing RA symptoms and improve patient outcomes. These phytochemicals have potential as safer alternatives to the existing drugs in the management of RA, which possess a wide range of serious side effects. Sufficient preclinical studies on safety and efficacy of these phytochemicals must be performed prior to proper clinical studies. Further studies are needed to address the barriers that have so far limited their human use before the therapeutic potential of these plant-based chemicals as anti-arthritic agents in the treatment of RA is fully realized.
Collapse
Affiliation(s)
- Yuandani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Emil Salim
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Indonesia
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Talhah Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, USA
- Legorreta Cancer Center, Brown University, Providence, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Nur Aini Khairunnisa
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Halimah Raina Nasution
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muh Fadhil As'ad
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
- Pelamonia Health Sciences Institute, Makassar, Indonesia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Maryam Aisyah Abdullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Haya Luthfiyyah Marwa Rani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Diany Mahabbah Al Chaira
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nabila Aulia
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
5
|
Wang X, Kong Y, Li Z. Advantages of Chinese herbal medicine in treating rheumatoid arthritis: a focus on its anti-inflammatory and anti-oxidative effects. Front Med (Lausanne) 2024; 11:1371461. [PMID: 38515982 PMCID: PMC10954842 DOI: 10.3389/fmed.2024.1371461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Oxidative stress is a condition characterized by an imbalance between the oxidative and antioxidant processes within the human body. Rheumatoid arthritis (RA) is significantly influenced by the presence of oxidative stress, which acts as a pivotal factor in its pathogenesis. Elevated levels of mitochondrial reactive oxygen species (ROS) and inflammation have been found to be closely associated in the plasma of patients with RA. The clinical treatment strategies for this disease are mainly chemical drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids (GCs) and biological agents, but it is difficult for patients to accept long-term drug treatment and its side effects. In the theory of traditional Chinese medicine (TCM), RA is thought to be caused by the attack of "wind, cold, damp humor," and herbs with the effect of removing wind and dampness are used to relieve pain. Chinese herbal medicine boasts a rich heritage in effectively attenuating the symptoms of RA, and its global recognition continues to ascend. In particular, RA-relevant anti-inflammatory/anti-oxidative effects of TCM herbs/herbal compounds. The main aim of this review is to make a valuable contribution to the expanding pool of evidence that advocates for the incorporation of Chinese herbal medicine in conventional treatment plans for RA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeguang Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Zhang R, Han L, Lin W, Ba X, Yan J, Li T, Yang Y, Huang Y, Huang Y, Qin K, Chen Z, Wang Y, Tu S. Mechanisms of NLRP3 inflammasome in rheumatoid arthritis and osteoarthritis and the effects of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117432. [PMID: 37992880 DOI: 10.1016/j.jep.2023.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tingting Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuyao Yang
- Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kai Qin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhe Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Zhang Y, BinShaari R, Nawi MABA, Bin Hassan A, Cui C. Pharmacological Action and Research Progress of Taraxasterol. Curr Pharm Biotechnol 2024; 25:1767-1777. [PMID: 38178677 DOI: 10.2174/0113892010276692231220103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
Primarily sourced from Asteraceae family herbs such as the Dandelion, Taraxasterol is a pentacyclic triterpenoid lauded for its extensive biological functionalities. Its therapeutic potency is demonstrated in various disease models, encompassing enteritis, arthritis, acute hepatic injury, and pneumonia. Scientific literature underscores its anti-inflammatory, antioxidant, and antineoplastic attributes. The primary aim of this study is to thoroughly explore the diseasemodulating mechanisms and effects of taraxasterol. We endeavor to provide an exhaustive review of the experimental subjects, intervention components, distinct action modalities, contributing factors, and protein pathway expressions associated with taraxasterol, systematically represented via diagrams and tables. Such a schematic representation encourages a continued academic dialogue concerning taraxasterol's pharmacological characteristics. This review is envisioned as a practical guide for the selection of experimental subjects and methodologies in prospective research. It is intended to further illuminate taraxasterol's pharmacodynamics, thereby offering theoretical and empirical justification for its clinical application.
Collapse
Affiliation(s)
- Yu Zhang
- School of dental sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
- Qilu Medical University, Zibo, China
| | - Ramizu BinShaari
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | | | - Akram Bin Hassan
- School of dental sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Caiyun Cui
- Department of Stomatology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| |
Collapse
|
8
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
9
|
Sattar S, Shabbir A, Shahzad M, Akhtar T, Anjum SM, Bourhia M, Nafidi HA, Bin Jardan YA, Dauelbait M, Mobashar A. Evaluation of anti-inflammatory and immunomodulatory potential of Lawsone (2-hydroxy-1,4-naphthoquinone) using pre-clinical rodent model of rheumatoid arthritis. Front Pharmacol 2023; 14:1279215. [PMID: 37900171 PMCID: PMC10603269 DOI: 10.3389/fphar.2023.1279215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Lawsone (2-hydroxy-1,4-naphthoquinone) is naturally present in Lawsonia Inermis and flowers of Eicchornia crassipes. This study assessed the anti-arthritic potential of Lawsone, using FCA-induced Sprague-Dawley rats. Methods: Arthritic progress was analyzed through a macroscopic scoring scale, measurement of paw edema, and histopathological changes. Effects of Lawsone on mRNA expression levels of inflammatory markers were examined using the reverse transcription PCR technique. ELISA technique was used to evaluate the PGE2 levels. Moreover, levels of biochemical and hematological parameters were also analyzed. Results: The research elucidated that Lawsone showed an inhibitory potential towards arthritic progress and ameliorated the paw edema. The histopathological analysis also validated the inhibition in arthritic development. Treatment with Lawosne reduced the expression levels of inflammatory markers in rats i.e., VEGF, TNF-α, MMP-2, MMP-3, NF-κB, IL-1β, and IL-6. PGE2 levels (all p < 0.001) were also found reduced in treatment groups. Lab investigations showed improved results of hematological and hepatic parameters in the treated groups as compared to the positive control. This study found no hepatotoxic or nephrotoxic effects of Lawsone in the test doses. Conclusion: Lawsone possesses an anti-arthritic property which could be ascribed to its immunomodulatory and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sara Sattar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Arham Shabbir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Syed Muneeb Anjum
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaab Dauelbait
- Department of Scientific Translation, Faculty of Translation, University of Bahri, Khartoum, Sudan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
10
|
Sattar S, Shabbir A, Shahzad M, Akhtar T, Ahmad A, Alnasser SM, Riaz B, Karimullah S, Ahmad A. Eichhornia crassipes Ameliorated Rheumatoid Arthritis by Modulating Inflammatory Cytokines and Metalloproteinase Enzymes in a Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1594. [PMID: 37763713 PMCID: PMC10534300 DOI: 10.3390/medicina59091594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: This study was planned to investigate the anti-arthritic property of flowers of E. crassipes in a Sprague-Dawley rat model by administering Freund's Complete Adjuvant (FCA). Materials and Methods: Arthritis was induced at day 0 in all rats except negative controls, while arthritic progress and paw edema were analyzed on specific days (8th, 13th, 18th, and 23rd) via the macroscopic arthritic scale and a digital Vernier caliper, respectively. Histopathological parameters were examined using a Hematoxylin and Eosin (H&E) staining method. Blood samples were withdrawn from rats to investigate the effects of the E. crassipes flower on the mRNA expression values of inflammatory markers, via a reverse transcription PCR technique. Serum samples were used to determine prostaglandin E2 (PGE2) levels using enzyme-linked immunosorbent assay (ELISA). Values of alanine transaminase (ALT), aspartate aminotransferase (AST), creatinine, and urea, besides hematological parameters, i.e., the hemoglobin (Hb) content and complete blood count (CBC), were investigated. Results: The data showed that E. crassipes inhibited the arthritic progress and ameliorated the paw edema. The amelioration of parameters assessed via the histopathological analysis of ankle joints, as well as via hematological analysis, confirmed the diminution of rheumatoid arthritis (RA) in the plant-treated groups. Treatment with E. crassipes inhibited the expression levels of tumor necrosis factor-α (TNF-α), interleukins (IL-1β and IL-6), nuclear factor KappaB (NF-κB), matrix metalloproteinase (MMP-2 and MMP-3), and vascular endothelial growth factor (VEGF). Serum PGE2 levels were also found to be reduced in treatment groups. A biochemical investigation revealed the improvements in hepatic markers in plant-treated groups. The data indicated that the plant has no hepatotoxic or nephrotoxic effects at the studied dose. GC-MS (Gas Chromatography-Mass Spectrometry) analysis displayed the presence of phytochemicals having known anti-inflammatory and antioxidant properties. Conclusions: Therefore, it may be concluded that E. crassipes possesses anti-arthritic characteristics that could be attributed to the modulation of pro-inflammatory cytokines, MMPs, and PGE2 levels.
Collapse
Affiliation(s)
- Sara Sattar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Defence Road Campus, Lahore 54000, Pakistan;
| | - Arham Shabbir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Defence Road Campus, Lahore 54000, Pakistan;
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail-Road, Lahore 54000, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.); (T.A.)
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.); (T.A.)
| | - Arfan Ahmad
- University Diagnostic Laboratory, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Bushra Riaz
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia; (B.R.); (S.K.); (A.A.)
| | - Shaik Karimullah
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia; (B.R.); (S.K.); (A.A.)
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia; (B.R.); (S.K.); (A.A.)
| |
Collapse
|
11
|
Li W, Yu L, Li W, Ge G, Ma Y, Xiao L, Qiao Y, Huang W, Huang W, Wei M, Wang Z, Bai J, Geng D. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: Underlying mechanisms based on cell and molecular targets. Ageing Res Rev 2023; 89:101981. [PMID: 37302756 DOI: 10.1016/j.arr.2023.101981] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Wenli Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
12
|
Faustino C, Pinheiro L, Duarte N. Triterpenes as Potential Drug Candidates for Rheumatoid Arthritis Treatment. Life (Basel) 2023; 13:1514. [PMID: 37511889 PMCID: PMC10381804 DOI: 10.3390/life13071514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by joint inflammation, swelling and pain. Although RA mainly affects the joints, the disease can also have systemic implications. The presence of autoantibodies, such as anti-cyclic citrullinated peptide antibodies and rheumatoid factors, is a hallmark of the disease. RA is a significant cause of disability worldwide associated with advancing age, genetic predisposition, infectious agents, obesity and smoking, among other risk factors. Currently, RA treatment depends on anti-inflammatory and disease-modifying anti-rheumatic drugs intended to reduce joint inflammation and chronic pain, preventing or slowing down joint damage and disease progression. However, these drugs are associated with severe side effects upon long-term use, including immunosuppression and development of opportunistic infections. Natural products, namely triterpenes with anti-inflammatory properties, have shown relevant anti-arthritic activity in several animal models of RA without undesirable side effects. Therefore, this review covers the recent studies (2017-2022) on triterpenes as safe and promising drug candidates for the treatment of RA. These bioactive compounds were able to produce a reduction in several RA activity indices and immunological markers. Celastrol, betulinic acid, nimbolide and some ginsenosides stand out as the most relevant drug candidates for RA treatment.
Collapse
Affiliation(s)
- Célia Faustino
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lídia Pinheiro
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Noélia Duarte
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
13
|
Pulik Ł, Łęgosz P, Motyl G. Matrix metalloproteinases in rheumatoid arthritis and osteoarthritis: a state of the art review. Reumatologia 2023; 61:191-201. [PMID: 37522140 PMCID: PMC10373173 DOI: 10.5114/reum/168503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Although the pathological mechanisms involved in osteoarthritis (OA) and rheumatoid arthritis (RA) are different, the onset and progression of both diseases are associated with several analogous clinical manifestations, inflammation, and immune mechanisms. In both diseases, cartilage destruction is mediated by matrix metalloproteinases (MMPs) synthesized by chondrocytes and synovium fibroblasts. This review aims to summarize recent articles regarding the role of MMPs in OA and RA, as well as the possible methods of targeting MMPs to alleviate the degradation processes taking part in OA and RA. The novel experimental MMP-targeted treatments in OA and RA are MMP inhibitors eg. 3-B2, taraxasterol, and naringin, while other treatments aim to silence miRNAs, lncRNAs, or transcription factors. Additionally, other recent MMP-related developments include gene polymorphism of MMPs, which have been linked to OA susceptibility, and the MMP-generated neoepitope of CRP, which could serve as a biomarker of OA progression.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Gabriela Motyl
- Scientific Association of Reconstructive and Oncological Orthopedics of the Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| |
Collapse
|
14
|
Wu D, Li Y, Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front Immunol 2023; 14:1155606. [PMID: 37426634 PMCID: PMC10324035 DOI: 10.3389/fimmu.2023.1155606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of undefined etiology, with persistent synovial inflammation and destruction of articular cartilage and bone. Current clinical drugs for RA mainly include non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs) and so on, which can relieve patients' joint symptoms. If we want to have a complete cure for RA, there are still some limitations of these drugs. Therefore, we need to explore new mechanisms of RA to prevent and treat RA radically. Pyroptosis is a newly discovered programmed cell death (PCD) in recent years, which is characterized by the appearance of holes in cell membranes, cell swelling and rupture, and the release of intracellular pro-inflammatory factors into the extracellular space, resulting in a strong inflammatory response. The nature of pyroptosis is pro-inflammatory, and whether it is participating in the development of RA has attracted a wide interest among scholars. This review describes the discovery and mechanism of pyroptosis, the main therapeutic strategies for RA, and the role of pyroptosis in the mechanism of RA development. From the perspective of pyroptosis, the study of new mechanisms of RA may provide a potential target for the treatment of RA and the development of new drugs in the clinics.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| | - Yujie Li
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ranxing Xu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| |
Collapse
|
15
|
Qian Y, Fei Z, Nian F. The Association Between Rheumatoid Arthritis and Atrial Fibrillation: Epidemiology, Pathophysiology and Management. Int J Gen Med 2023; 16:1899-1908. [PMID: 37223618 PMCID: PMC10202215 DOI: 10.2147/ijgm.s406926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia with a significant increase in morbidity and mortality worldwide. Rheumatoid arthritis (RA), as a systemic inflammatory disease, affecting 0.5-1.0% of the adult population, is associated with increased incidence of cardiac arrhythmias such as AF. Several epidemiologic studies find that the risk of AF is increased in RA when compared with the general population. Other studies are inconsistent. Considering that inflammation plays an important role in AF, RA may be involved in the occurrence and development of AF. This review summarizes the epidemiology, pathophysiology, and management of AF in patients with RA.
Collapse
Affiliation(s)
- Yezhou Qian
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Zhangli Fei
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Feige Nian
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| |
Collapse
|
16
|
Ge B, Sang R, Wang W, Yan K, Yu Y, Kong L, Yu M, Liu X, Zhang X. Protection of taraxasterol against acetaminophen-induced liver injury elucidated through network pharmacology and in vitro and in vivo experiments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154872. [PMID: 37209606 DOI: 10.1016/j.phymed.2023.154872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is primarily caused by drugs or their metabolites. Acetaminophen (APAP) is an over-the-counter antipyretic analgesic that exhibits high hepatotoxicity when used for long-term or in overdoses. Taraxasterol is a five-ring triterpenoid compound extracted from traditional Chinese medicinal herb Taraxacum officinale. Our previous studies have demonstrated that taraxasterol exerts protective effects on alcoholic and immune liver injuries. However, the effect of taraxasterol on DILI remains unclear. HYPOTHESIS/PURPOSE This study aimed to elucidate the effects and mechanisms of action of taraxasterol on APAP-induced liver injury using network pharmacology and in vitro and in vivo experiments. METHODS Online databases of drug and disease targets were used to screen the targets of taraxasterol and DILI, and a protein-protein interaction network (PPI) was constructed. Core target genes were identified using the tool of Analyze of Cytoscape, gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses were performed. Oxidation, inflammation and apoptosis were evaluated to determine the effect of taraxasterol on APAP-stimulated liver damage in AML12 cells and mice. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to explore the potential mechanisms of taraxasterol against DILI. RESULTS Twenty-four intersection targets for taraxasterol and DILI were identified. Among them, 9 core targets were identified. GO and KEGG analysis showed that core targets are closely related to oxidative stress, apoptosis, and inflammatory response. The in vitro findings showed that taraxasterol alleviated mitochondrial damage in AML12 cells treated with APAP. The in vivo results revealed that taraxasterol alleviated pathological changes in the livers of mice treated with APAP and inhibited the activity of serum transaminases. Taraxasterol increased the activity of antioxidants, inhibited the production of peroxides, and reduced inflammatory response and apoptosis in vitro and in vivo. Taraxasterol promoted Nrf2 and HO-1 expression, suppressed JNK phosphorylation, and decreased the Bax/Bcl-2 ratio and caspase-3 expression in AML12 cells and mice. CONCLUSION By integrating network pharmacology with in vitro and in vivo experiments, this study indicated that taraxasterol inhibits APAP-stimulated oxidative stress, inflammatory response and apoptosis in AML12 cells and mice by regulating the Nrf2/HO-1 pathway, JNK phosphorylation, and apoptosis-related protein expression. This study provides a new evidence for the use of taraxasterol as a hepatoprotective drug.
Collapse
Affiliation(s)
- Bingjie Ge
- College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Wei Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Kexin Yan
- College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Yifan Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Lin Kong
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Minghong Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Xinman Liu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, China.
| |
Collapse
|
17
|
Ying P, Xu Y, Jiang X, Wang K, Xue Y, Wang Q, Ding W, Dai X. Analysis of the regulatory role of miR-34a-5p/PLCD3 in the progression of osteoarthritis. Funct Integr Genomics 2023; 23:131. [PMID: 37079115 DOI: 10.1007/s10142-023-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Osteoarthritis is a heterogeneous disease with a complex etiology. However, there is no effective treatment strategy at present. The purpose of this study was to explore the miRNA‒mRNA regulatory network and molecular mechanism that regulate the progression of osteoarthritis. In this article, we downloaded datasets (GSE55457, GSE82107, GSE143514 and GSE55235) from Gene Expression Omnibus (GEO) to screen differentially expressed mRNAs in osteoarthritis. Then, through weighted gene coexpression network (WGCNA), functional enrichment, protein‒protein interaction (PPI) network, miRNA‒mRNA coexpression network, ROC curve, and immune infiltration analyses and qPCR, the mRNA PLCD3, which was highly expressed in osteoarthritis and had clinical predictive value, was screened. We found that PLCD3 directly targets miR-34a-5p through DIANA and dual-luciferase experiments. The expression levels of PLCD3 and miR-34a-5p were negatively correlated. In addition, CCK-8 and wound healing assays showed that the miR-34a-5p mimic inhibited hFLS-OA cell proliferation and promoted hFLS-OA cell migration. PLCD3 overexpression showed the opposite trend. Western blotting further found that overexpression of miR-34a-5p reduced the protein expression levels of p-PI3K and p-AKT, while overexpression of PLCD3 showed the opposite trend. In addition, combined with the effect of the PI3K/AKT pathway inhibitor BIO (IC50 = 5.95 μM), the results showed that overexpression of miR-34a-5p increased the inhibitory effects of BIO on p-PI3K and p-AKT protein expression, while overexpression of PLCD3 significantly reversed these inhibitory effects. Overall, the miR-34a-5p/PLCD3 axis may mediate the PI3K/AKT pathway in regulating cartilage homeostasis in synovial osteoarthritis. These data indicate that miR-34a-5p/PLCD3 may be a new prognostic factor in the pathology of synovial osteoarthritis.
Collapse
Affiliation(s)
- Pu Ying
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yue Xu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Kejie Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Xue
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Wenge Ding
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoyu Dai
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
18
|
González-Cofrade L, P Green J, Cuadrado I, Amesty Á, Oramas-Royo S, David Brough, Estévez-Braun A, Hortelano S, de Las Heras B. Phenolic and quinone methide nor-triterpenes as selective NLRP3 inflammasome inhibitors. Bioorg Chem 2023; 132:106362. [PMID: 36657273 DOI: 10.1016/j.bioorg.2023.106362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Dysregulated inflammasome activity, particularly of the NLRP3 inflammasome, is associated with the development of several inflammatory diseases. The study of molecules directly targeting NLRP3 is an emerging field in the discovery of new therapeutic compounds for the treatment of inflammatory disorders. Friedelane triterpenes are biologically active phytochemicals having a wide range of activities including anti-inflammatory effects. In this work, we evaluated the potential anti-inflammatory activity of phenolic and quinonemethide nor-triterpenes (1-11) isolated from Maytenus retusa and some semisynthetic derivatives (12-16) through inhibition of the NLRP3 inflammasome in macrophages. Among them, we found that triterpenes 6 and 14 were the most potent, showing markedly reduced caspase-1 activity, IL-1β secretion (IC50 = 1.15 µM and 0.19 µM, respectively), and pyroptosis (IC50 = 2.21 µM and 0.13 µM, respectively). Further characterization confirmed their selective inhibition of NLRP3 inflammasome in both canonical and non-canonical activation pathways with no effects on AIM2 or NLRC4 inflammasome activation.
Collapse
Affiliation(s)
- Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Sandra Oramas-Royo
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de, Enfermedades Raras (IIER), Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain.
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
20
|
Chemical Composition, Antioxidant and Antiproliferative Activities of Taraxacum officinale Essential Oil. Molecules 2022; 27:molecules27196477. [PMID: 36235013 PMCID: PMC9572089 DOI: 10.3390/molecules27196477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Taraxacum officinale (TO) has been historically used for medicinal purposes due to its biological activity against specific disorders. To investigate the antioxidant and the antiproliferativepotential of TO essential oil in vitro and in vivo, the chemical composition of the essential oil was analyzed by GC-MS. The in vivo antioxidant capacity was assessed on liver and kidney homogenate samples from mice subjected to acetaminophen-induced oxidative stress and treated with TO essential oil (600 and 12,000 mg/kg BW) for 14 days. The in vitro scavenging activity was assayed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the reducing power methods. The cytotoxic effects against the HeLa cancer cell line were analyzed. The GC-MS analysis showed the presence of 34 compounds, 8 of which were identified as major constituents. The TO essential oil protected mice’s liver and kidneys from acetaminophen-induced oxidative stress by enhancing antioxidant enzymes (catalase, superoxide dismutase, and glutathione) and lowering malondialdehyde levels. In vitro, the TO essential oil demonstrated low scavenging activity against DPPH (IC50 = 2.00 ± 0.05 mg/mL) and modest reducing power (EC50 = 0.963 ± 0.006 mg/mL). The growth of the HeLa cells was also reduced by the TO essential oil with an inhibition rate of 83.58% at 95 µg/mL. Current results reveal significant antioxidant and antiproliferative effects in a dose-dependent manner and suggest that Taraxacum officinale essential oil could be useful in formulations for cancer therapy.
Collapse
|
21
|
Taraxasterol Inhibits Hyperactivation of Macrophages to Alleviate the Sepsis-induced Inflammatory Response of ARDS Rats. Cell Biochem Biophys 2022; 80:763-770. [PMID: 36070121 DOI: 10.1007/s12013-022-01092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
To explore the effect and mechanism of taraxasterol on sepsis-induced acute respiratory distress syndrome (ARDS). Twenty-four male SD rats were randomly divided into four groups: the control group, model (lipopolysaccharide, LPS) group, lipopolysaccharide+taraxasterol (LPS + TXL) group, and lipopolysaccharide+ulinastatin (LPS + UTI) group. The model of sepsis-induced ARDS was established by intraperitoneal injection of LPS. The lung water content of the rats in each group was determined by the dry/wet ratio. Pathology of rat lung tissue was observed through H&E staining. Wright staining was applied to count the number of neutrophils, macrophages, and total cells. ELISA was utilized to measure the levels of the inflammatory factors TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid (BALF). Biochemical detection was adopted to check the levels of myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) in lung tissue. Western blotting was performed to check the protein expression of IL-12, iNOS, Arg-1, and Mrc1 in lung tissue. Compared with the LPS group, both taraxasterol and ulinastatin significantly decreased lung tissue water content, improved lung tissue injury, reduced the number of neutrophils, macrophages and total cells, and decreased the level of inflammatory factors. In addition, taraxasterol and ulinastatin also reduced the content of MPO and the expression of IL-12 and iNOS and increased the activity of SOD and CAT as well as the protein expression of Arg-1 and Mrc1. Taraxasterol can suppress macrophage M1 polarization to alleviate the inflammatory response and oxidative stress, thereby treating sepsis-induced ARDS.
Collapse
|
22
|
Li W, Luo F, Wu X, Fan B, Yang M, Zhong W, Guan D, Wang F, Wang Q. Anti-Inflammatory Effects and Mechanisms of Dandelion in RAW264.7 Macrophages and Zebrafish Larvae. Front Pharmacol 2022; 13:906927. [PMID: 36091818 PMCID: PMC9454954 DOI: 10.3389/fphar.2022.906927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dandelions (Taraxacum spp.) play an important role in the treatment of inflammatory diseases. In this study, we investigated the anti-inflammatory effects of Dandelion Extract (DE) in LPS-induced RAW264.7 macrophages and copper sulfate (CuSO4)-induced zebrafish larvae. DE was not toxic to RAW264.7 cells at 75 μg/ml as measured by cell viability, and DE inhibited LPS-induced cell morphological changes as measured by inverted microscopy. In survival experiments, DE at 25 μg/ml had no toxicity to zebrafish larvae. By using an enzymatic standard assay, DE reduced the production of nitric oxide (NO) in LPS-induced RAW264.7 cells. Fluorescence microscopy results show that DE reduced LPS-induced ROS production and apoptosis in RAW264.7 cells. DE also inhibited CuSO4-induced ROS production and neutrophil aggregation in zebrafish larvae. The results of flow cytometry show that DE alleviated the LPS-induced cell cycle arrest. In LPS-induced RAW264.7 cells, RT-PCR revealed that DE decreased the expression of M1 phenotypic genes iNOS, IL-6, and IL-1β while increasing the expression of M2 phenotypic genes IL-10 and CD206. Furthermore, in CuSO4-induced zebrafish larvae, DE reduced the expression of iNOS, TNF-α, IL-6, and IL-10. The findings suggest that DE reduces the LPS-induced inflammatory response in RAW264.7 cells by regulating polarization and apoptosis. DE also reduces the CuSO4-induced inflammatory response in zebrafish larvae.
Collapse
Affiliation(s)
- Wenju Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fulong Luo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaohui Wu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingran Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Rehabilitation Hospital, Chengdu, China
| | - Dongyan Guan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Jiao F, Tan Z, Yu Z, Zhou B, Meng L, Shi X. The phytochemical and pharmacological profile of taraxasterol. Front Pharmacol 2022; 13:927365. [PMID: 35991893 PMCID: PMC9386448 DOI: 10.3389/fphar.2022.927365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member of the family Asteraceae. In the animal or cellular models of several ailments, including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and immune system diseases, taraxasterol has been shown to have significant preventive and therapeutic effects. This review aims to evaluate the current state of research and provide an overview of the possible applications of taraxasterol in various diseases. The reported phytochemical properties and pharmacological actions of taraxasterol, including anti-inflammatory, anti-oxidative, and anti-carcinogenic properties, and its potential molecular mechanisms in developing these diseases are highlighted. Finally, we further explored whether taraxasterol has protective effects on neuronal death in neurodegenerative diseases. In addition, more animal and clinical studies are also required on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.
Collapse
Affiliation(s)
- Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
- *Correspondence: Fengjuan Jiao,
| | - Zengyue Tan
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Zhonghua Yu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Bojie Zhou
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Lingyan Meng
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xinyue Shi
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
24
|
Niu X, Song H, Xiao X, Yang Y, Huang Q, Yu J, Yu J, Liu Y, Han T, Zhang D, Li W. Tectoridin ameliorates proliferation and inflammation in TNF-α-induced HFLS-RA cells via suppressing the TLR4/NLRP3/NF-κB signaling pathway. Tissue Cell 2022; 77:101826. [DOI: 10.1016/j.tice.2022.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
|
25
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Low-level laser therapy attenuates arthrogenic contracture induced by anterior cruciate ligament reconstruction surgery in rats. Physiol Res 2022; 71:389-399. [PMID: 35616040 DOI: 10.33549/physiolres.934796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Therapeutic approaches to treat joint contracture after anterior cruciate ligament (ACL) reconstruction have not been established. Arthrofibrosis accompanied by joint inflammation following ACL reconstruction is a major cause of arthrogenic contracture. In this study, we examined whether anti-inflammatory treatment using low-level laser therapy (LLLT) can prevent ACL reconstruction-induced arthrogenic contracture. Rats underwent ACL transection and reconstruction surgery in their right knees. Unoperated left knees were used as controls. After surgery, rats were reared with or without daily LLLT (wavelength: 830 nm; power output: 150 mW; power density: 5 W/cm2; for 120 s/day). We assessed the passive extension range of motion (ROM) after myotomy at one and two weeks post-surgery; the reduction in ROM represents the severity of arthrogenic contracture. ROM was markedly decreased by ACL reconstruction at both time points; however, LLLT partially attenuated the decrease in ROM. One week after ACL reconstruction, the gene expression of the proinflammatory cytokine interleukin-1beta in the joint capsule was significantly upregulated, and this upregulation was significantly attenuated by LLLT. Fibrotic changes in the joint capsule, including upregulation of collagen type I and III genes, shortening of the synovium, and thickening were caused by ACL reconstruction and seen at both time points. LLLT attenuated these fibrotic changes as well. Our results indicate that LLLT after ACL reconstruction could attenuate the formation of arthrogenic contracture through inhibition of inflammation and fibrosis in the joint capsule. Thus, LLLT may become a novel therapeutic approach for ACL reconstruction-induced joint contracture.
Collapse
Affiliation(s)
- A Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | | | |
Collapse
|
26
|
Huang Q, Xiao X, Yu J, Yang Y, Yu J, Liu Y, Song H, Han T, Zhang D, Niu X, Li W. Tectoridin exhibits anti-rheumatoid arthritis activity through the inhibition of the inflammatory response and the MAPK pathway in vivo and in vitro. Arch Biochem Biophys 2022; 727:109328. [PMID: 35750096 DOI: 10.1016/j.abb.2022.109328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by inflammation infiltration of the synovial tissues and the fibroblast-like synoviocytes. Tectoridin is a botanical active ingredient with anti-inflammatory properties. In this study, the anti-arthritic effects of tectoridin and its mechanism of action are examined in TNF-α-induced human fibroblast-like synovial cells (HFLSs cells) and complete Freund's adjuvant (CFA)-stimulated arthritic mice. Arthritis progression was evaluated via bodyweight, hind paw swelling, organ index, and synovial pathology. IL-1β, IL-6 and other pro-inflammatory factors concentrations, and the expression of MAPK pathway proteins in HFLSs cells and arthritic mice were measured using ELISA and western blotting. Results showed that tectoridin significantly decreased the swelling of the paws and joints as well as the increased immune organ index within CFA-induced arthritic mice. Histopathological analysis showed that tectoridin alleviated the lesions of ankle joints and synovial tissues induced by CFA. Secretion of pro-inflammatory cytokines in TNF-α-induced HFLSs cells and CFA-stimulated arthritic mice were also abated by tectoridin. Similarly, the presence of tectoridin significantly inhibited the abnormal phosphorylation levels of ERK, JNK, and p38 in vivo and in vitro. All those results highlighted that tectoridin exhibits anti-arthritis effects by inhibiting MAPK-mediated inflammatory responses.
Collapse
Affiliation(s)
- Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, Shaanxi, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, Shaanxi, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
27
|
ZHANG Y, TANG LD, WANG JY, WANG H, CHEN XY, ZHANG L, YUAN Y. Anti-inflammatory effects of aucubin in cellular and animal models of rheumatoid arthritis. Chin J Nat Med 2022; 20:458-472. [DOI: 10.1016/s1875-5364(22)60182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/03/2022]
|
28
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
29
|
Ren F, Zhang Y, Qin Y, Shang J, Wang Y, Wei P, Guo J, Jia H, Zhao T. Taraxasterol prompted the anti-tumor effect in mice burden hepatocellular carcinoma by regulating T lymphocytes. Cell Death Dis 2022; 8:264. [PMID: 35577774 PMCID: PMC9110731 DOI: 10.1038/s41420-022-01059-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive malignant tumor with high morbidity and mortality worldwide, however, the treatment of HCC and prognosis of patients are not optimistic, finding more effective treatments are imperative. Taraxacum officinale (L.) Weber ex F.H.Wigg is a perennial herb of compositae, and our study has demonstrated that Taraxacum officinale polysaccharide has certain anti-tumor effect on HCC cells. Taraxasterol (TS) is a natural product extracted from Taraxacum officinale with strong physiological, pharmacological and biological activities, but the effect of TS on HCC is yet to be determined. Therefore, the aim of this study is to explore the effect of dandelion sterol on HCC in vivo and in vitro. The results showed that TS significantly inhibited the proliferation, induced apoptosis and blocked cell cycle in HCC cell lines HepG2 and Huh7 cells in vitro. TS inhibited the tumor growth of H22 bearing mice and the expression of Ki67 in vivo. More importantly, TS regulated the immunity of H22 bearing mice by elevating the ratio of CD4+ T cells in spleen, and increasing the number of T cell infiltration in tumor tissue. Except immunomodulation, the mechanism of tumor growth inhibition may be related to the regulation of apoptosis related proteins and IL-6/STAT3 pathway. TS significantly inhibited the growth of HCC cells both in vitro and in vivo. The study would provide a theoretical basis for the new application of TS and the adjuvant treatment of malignant tumor with traditional Chinese medicine. ![]()
Collapse
Affiliation(s)
- Feng Ren
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Yu Zhang
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Yuanhua Qin
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Jingli Shang
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Yanling Wang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Pengkun Wei
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.,Department of Immunology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Jiaming Guo
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China. .,Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.
| | - Tiesuo Zhao
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China. .,Department of Immunology, Xinxiang Medical University, Xinxiang, 453000, Henan, PR China.
| |
Collapse
|
30
|
Ma S, Wang J, He F, Zuo D, Li F, Fan H, Yin Z, Liang H, Li Q. Sodium propionate improves rheumatoid arthritis by inhibiting survivin mediated proliferation of fibroblast like synoviocytes by promoting miR-140-5p. Autoimmunity 2022; 55:378-387. [PMID: 35549788 DOI: 10.1080/08916934.2022.2073589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Increased proliferation and impaired death of fibroblast-like synovial cells play an important role in the development of rheumatoid arthritis (RA). Survivin plays an important role in the prodromal stage and prognosis of RA and has been introduced as a biomarker of joint injury in RA patients. The purpose of this study was to explore whether propionate alleviates RA through miR-140-5p/survivin pathway. METHODS The synovial tissues of RA patients were collected to detect the expression levels of miR-140-5p and survivin; normal human fibroblast-like synovial cells (HLSs) and RA fibroblast-like synovial cells (RA-FLSs) were cultured and treated with 10 mM of sodium propionate (SP), then the expressions of miR-140-5p and survivin, cell viability and apoptosis were detected; collagen induced arthritis (CIA) rat model was constructed and treated with SP, then the tissue inflammation level and the expression levels of miR-140-5p and Survivin were detected. RESULTS The expression of miR-140-5p decreased in synovial tissues of RA patients and RA-FLSs cells, while the expression of survivin increased significantly in RA patients. SP promoted miR-140-5p expression and apoptosis in RA-FLSs cells and inhibited survivin expression and cell viability of RA-FLSs cells. In addition, miR-140-5p plays a protective role by targeting survivin. Importantly, in the CIA rat model, SP reduced joint inflammatory response, and the miR-140-5p inhibitor weakened the protective effect of SP. CONCLUSION SP can alleviate RA by promoting the expression of miR-140-5p and inhibiting the excessive proliferation and death impairment of RA-FLSs cells induced by survivin.
Collapse
Affiliation(s)
- Sha Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Jing Wang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Fang He
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Dachen Zuo
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Fayou Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Hongtao Fan
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Zijing Yin
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Hui Liang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| | - Qin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China.,Department of Rheumatology, the First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
31
|
The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-κB pathway activation. Biomed Pharmacother 2022; 149:112847. [PMID: 35364376 DOI: 10.1016/j.biopha.2022.112847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Cantleyoside (CA) is a kind of iridoid glycosides in Pterocephalus hookeri (C. B. Clarke) Höeck. The purpose of this study was to investigate the effects of CA on human rheumatoid arthritis fibroblast synovial cells (HFLS-RA). METHODS Cell proliferation of HFLS-RA was assessed by CCK-8. ELISA was used to detect cytokines NO, TNF-α, IL-1β/6, MCP-1, MMP-1/3/9 and metabolism-related ATPase activities and ATP levels. JC-1, DCFH-DA, Fluo-3 AM and Calcein AM probes were used to detect mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Ca2+ and mitochondrial permeability conversion pore (MPTP), respectively. Isolated mitochondria assay was used to detect mitochondrial swelling. Oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and real-time ATP production were measured using a Seahorse analyzer. Apoptosis was detected by TUNEL and Hoechst staining. Western blot was used to detect the expressions of AMPK/p-AMPK, Sirt 1, IκBα, NF-κB p65/p-NF-κB p65, Bcl-2 and Bax. Cytoplasmic nuclear isolation was also performed to detect the translocation of NF-κB. RESULTS CA significantly suppressed cell proliferation and the levels of NO, TNF-α, IL-1β/6, MCP-1 and MMP-1/3/9 in HFLS-RA. In addition, CA promoted the apoptosis of HFLS-RA by increasing TUNEL and Hoechst positive cells and the ratio of Bax/Bcl-2. Inhibition of energy metabolism in HFLS-RA by CA reduced OCR, ECAR and real-time ATP generation rate. Importantly, CA promoted p-AMPK and Sirt 1 expression, inhibited IκBα degradation to reduce p-NF-κB and translocation. CONCLUSION The results suggest that CA activates the AMPK/Sirt 1/NF-κB pathway by promoting mitochondrial dysfunction, thereby exerting anti-inflammatory and pro-apoptotic effects.
Collapse
|
32
|
A Four-miRNA-Based Diagnostic Signature for Rheumatoid Arthritis. DISEASE MARKERS 2022; 2022:6693589. [PMID: 35251375 PMCID: PMC8889404 DOI: 10.1155/2022/6693589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
Background As a chronic inflammatory disease, rheumatoid arthritis (RA) usually leads to cartilage and bone damage, even disability. Earlier detection and diagnosis are crucial to improve the therapeutic efficacy, and the aim of our study is to identify a potential diagnostic signature for RA. Methods We downloaded the GSE124373 dataset from the Gene Expression Omnibus (GEO) database. And differential expression analysis of miRNAs was conducted using the limma package of R language. The potential targeted mRNAs of differentially expressed miRNAs were predicted using the MiRTarBase database. The clusterProfiler package in R language was used to conduct functional enrichment analysis (GO term and KEGG pathway). Then, based on the key miRNAs screened by stepwise regression analysis, the logistic regression model was built and it was evaluated using a 5-fold cross-validation method. Results A total of 19 differentially expressed miRNAs in the blood sample of RA patients compared with that of healthy subjects were identified. Nine optimal miRNAs were screened by using stepwise regression analysis, and four key miRNAs hsa-miR-142-5p, hsa-miR-1184, hsa-miR-1246, and hsa-miR-99b-5p were further optimized. Finally, a logistic regression model was built based on the four key miRNAs, which could reliably separate RA patients from healthy subjects. Conclusion Our study established a logistic regression diagnostic model based on four crucial miRNAs, which could separate the sample type reliably.
Collapse
|
33
|
Jiang Q, Wang X, Huang E, Wang Q, Wen C, Yang G, Lu L, Cui D. Inflammasome and Its Therapeutic Targeting in Rheumatoid Arthritis. Front Immunol 2022; 12:816839. [PMID: 35095918 PMCID: PMC8794704 DOI: 10.3389/fimmu.2021.816839] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammasome is a cytoplasmic multiprotein complex that facilitates the clearance of exogenous microorganisms or the recognition of endogenous danger signals, which is critically involved in innate inflammatory response. Excessive or abnormal activation of inflammasomes has been shown to contribute to the development of various diseases including autoimmune diseases, neurodegenerative changes, and cancers. Rheumatoid arthritis (RA) is a chronic and complex autoimmune disease, in which inflammasome activation plays a pivotal role in immune dysregulation and joint inflammation. This review summarizes recent findings on inflammasome activation and its effector mechanisms in the pathogenesis of RA and potential development of therapeutic targeting of inflammasome for the immunotherapy of RA.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xin Wang
- Department of Rheumatology and Immunology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Qiao Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Sharma A, Tirpude NV, Bhardwaj N, Kumar D, Padwad Y. Berberis lycium fruit extract and its phytoconstituents berberine and rutin mitigate collagen-CFA-induced arthritis (CIA) via improving GSK3β/STAT/Akt/MAPKs/NF-κB signaling axis mediated oxi-inflammation and joint articular damage in murine model. Inflammopharmacology 2022; 30:655-666. [PMID: 35254584 DOI: 10.1007/s10787-022-00941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA), a chronic auto-immune disease, is often result of persistent and misdirectional inflammation and cannot be effectually resolved by single-target selective drugs. Present study attempted to uncover anti-arthritic efficacy and governing molecular mechanism of BLFE and its phytoconstituents berberine and rutin, with focus on dysregulated oxi-inflammation and structural integrity during articular damage using Collagen II-CFA-induced RA mice model. NMR-based phytometabolomic analysis revealed presence of phenolics and alkaloids such as berberine and rutin. BLFE, rutin and berberine remarkably mitigated Collagen II-CFA-induced disease severity index, articular damage, immune cells influx and pannus formation. An effective decrease in levels of TNF-α, IL-6, IL-1β, IFN-γ, IL-13, IL-17, MMPs, RORγt, Ob-cadherin, Cox-2, iNOS and enhancement in IL-10, IL-4 and IL-5, BMP-6/7 was observed in BLFE, rutin and berberine treatments. Molecular mechanistic analysis demonstrated reduction in expression of p-STAT-1/3, p-PI3K, p-Akt, p-JNK, p-p38, p-IκB, p-NF-κB and β-catenin via BLFE, rutin and berberine. Furthermore, reduced activation of p-ERK and p-GSK3β and enhanced splenic Tregs was only noticed in BLFE and berberine. Thus, the signifying presence of these phytoconstituents could contribute to the above-mentioned findings. These findings imply that BLFE could be beneficial for assuaging deleterious aspects of RA mediated via perturbed inflammation.
Collapse
Affiliation(s)
- Anamika Sharma
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India
| | - Narendra Vijay Tirpude
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India
| | - Neha Bhardwaj
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
35
|
Yang Y, Liu Y, Yu H, Xie Q, Wang B, Jiang S, Su W, Mao Y, Li B, Peng C, Jian Y, Wang W. Sesquiterpenes from Kadsura coccinea attenuate rheumatoid arthritis-related inflammation by inhibiting the NF-κB and JAK2/STAT3 signal pathways. PHYTOCHEMISTRY 2022; 194:113018. [PMID: 34837762 DOI: 10.1016/j.phytochem.2021.113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The roots of Kadsura coccinea is commonly used in Tujia ethnomedicine, named "heilaohu", having the effect of treating rheumatic arthritis (RA). Chemical investigation on the ethanol extract of heilaohu led to the isolation of one undescribed cuparane sesquiterpenoid, heilaohusesquiterpenoid A, one undescribed carotane sesquiterpenoids, heilaohusesquiterpenoid B, and eighteen sesquiterpene derivatives. Their structures were subsequently determined based on their 1D and 2D-NMR, HR-ESI-MS, and ECD spectroscopic data. Gaultheriadiolide was the most cytotoxic compound against the proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells with an IC50 value of 9.37 μM. In the same line, nine compounds exhibited significant inhibition effects against TNF-α and IL-6 release in the LPS-induced RAW264.7 cells with IC50 values ranging between 1.03 and 10.99 μM. The potential molecular mechanisms of the active compounds against RA were established through pharmacological network analysis based on the initial screening results. Experimental validation showed that gaultheriadiolide suppressed inflammation by inhibiting the NF-kB and JAK2/STAT3 pathways. This study enriches the structural diversity of sesquiterpenes in K. coccinea and lays a foundation for further anti-RA and anti-inflammatory studies.
Collapse
Affiliation(s)
- Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yongbei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Wei Su
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yu Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
36
|
SHAN Z, LI Q, WANG S, QIAN Y, Li H. Taraxasterol inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells through regulating the p38/STAT3 signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zihong SHAN
- The First Affiliated Hospital of Bengbu Medical College, China
| | - Qingqing LI
- The First Affiliated Hospital of Bengbu Medical College, China
| | - Shuying WANG
- The First Affiliated Hospital of Bengbu Medical College, China
| | - Yayun QIAN
- The First Affiliated Hospital of Bengbu Medical College, China
| | - Haibo Li
- The First Affiliated Hospital of Bengbu Medical College, China
| |
Collapse
|
37
|
Pu L, Meng Q, Li S, Liu B, Li F. Icariin arrests cell cycle progression and induces cell apoptosis through the mitochondrial pathway in human fibroblast-like synoviocytes. Eur J Pharmacol 2021; 912:174585. [PMID: 34678240 DOI: 10.1016/j.ejphar.2021.174585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling autoimmune disorder, characterized by the proliferation of Fibroblast-like Synoviocytes (FLSs). Icariin is a prenylated flavonol glycoside extracted from the medical plant Epimedium, which can inhibit the proliferation and migration of FLSs. However, the potential mechanism of icariin to alleviate RA remains unclear. In this study, icariin inhibited the migration and proliferation of FLSs in a concentration-dependent manner, by inducing G2/M phase arrest and apoptosis. Icariin reduced the mitochondrial transmembrane potential, upregulated cytosolic cytochrome c and increased the level of intracellular reactive oxygen species (ROS). In conclusion, icariin inhibited the proliferation of FLSs by interfering with the cell cycle process and inducing cell apoptosis, suggesting its potential use for the treatment of RA.
Collapse
Affiliation(s)
- Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China.
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China; Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China; The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.
| |
Collapse
|
38
|
Chen L, Cao SQ, Lin ZM, He SJ, Zuo JP. NOD-like receptors in autoimmune diseases. Acta Pharmacol Sin 2021; 42:1742-1756. [PMID: 33589796 PMCID: PMC8564530 DOI: 10.1038/s41401-020-00603-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023] Open
Abstract
Autoimmune diseases are chronic immune diseases characterized by dysregulation of immune system, which ultimately results in a disruption in self-antigen tolerance. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) play essential roles in various autoimmune diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, multiple sclerosis (MS), etc. NLR proteins, consisting of a C-terminal leucine-rich repeat (LRR), a central nucleotide-binding domain, and an N-terminal effector domain, form a group of pattern recognition receptors (PRRs) that mediate the immune response by specifically recognizing cellular pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and triggering numerous signaling pathways, including RIP2 kinase, caspase-1, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and so on. Based on their N-terminal domain, NLRs are divided into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX1. In this review, we briefly describe the structures and signaling pathways of NLRs, summarize the recent progress on NLR signaling in the occurrence and development of autoimmune diseases, as well as highlight numerous natural products and synthetic compounds targeting NLRs for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Li Chen
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shi-qi Cao
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ze-min Lin
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Shi-jun He
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jian-ping Zuo
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.412540.60000 0001 2372 7462Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
39
|
Zhang Y, Yang W, Li W, Zhao Y. NLRP3 Inflammasome: Checkpoint Connecting Innate and Adaptive Immunity in Autoimmune Diseases. Front Immunol 2021; 12:732933. [PMID: 34707607 PMCID: PMC8542789 DOI: 10.3389/fimmu.2021.732933] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases are a broad spectrum of human diseases that are characterized by the breakdown of immune tolerance and the production of autoantibodies. Recently, dysfunction of innate and adaptive immunity is considered to be a key step in the initiation and maintenance of autoimmune diseases. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex, which can detect exogenous pathogen irritants and endogenous danger signals. The main function of NLRP3 inflammasome is to promote secretion of interleukin (IL)-1β and IL-18, and pyroptosis mediated by caspase-1. Served as a checkpoint in innate and adaptive immunity, aberrant activation and regulation of NLRP3 inflammasome plays an important role in the pathogenesis of autoimmune diseases. This paper reviewed the roles of NLRP3 inflammasome in autoimmune diseases, which shows NLRP3 inflammasome may be a potential target for autoimmune diseases deserved further study.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenlin Yang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Wang Y, Chen S, Du K, Liang C, Wang S, Owusu Boadi E, Li J, Pang X, He J, Chang YX. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114368. [PMID: 34197960 DOI: 10.1016/j.jep.2021.114368] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by diverse endogenous and exogenous factors. It is characterized by cartilage and bone destruction. The current conventional allopathic therapy is expensive and carries adverse side effects. Recently, there were some ethnopharmacological studies on RA including anti-RA effects and therapeutic targets of distinct dosage forms of traditional herbal medicines (THMs). AIM OF THE REVIEW This review provides a brief overview of the current understanding of the potential pharmacological mechanisms of THMs (active constituents, extracts and prescriptions) in RA. This study is intended to provide comprehensive information and reference for exploring new therapeutic strategies of THMs in the RA treatment. MATERIALS AND METHODS This review captured scientific literatures invivo and vitro experiments on effects of anti-RA THMs published between 2016 and 2021 from journals and electronic databases (e.g. PubMed, Elsevier, Science Direct, Web of Science and Google Scholar). Relevant literatures were searched and analyzed by using keywords such as 'rheumatoid arthritis AND traditional herbal medicines', 'rheumatoid arthritis AND immune cells', 'rheumatoid arthritis AND inflammation', 'rheumatoid arthritis AND miRNA', 'rheumatoid arthritis AND Angiogenesis', 'rheumatoid arthritis AND oxidative stress', 'rheumatoid arthritis AND osteoclasts', 'rheumatoid arthritis AND CIA model', 'rheumatoid arthritis AND AA model' AND 'rheumatoid arthritis herbal prescription'. RESULTS Experiments in vitro and in vivo jointly demonstrated the potential of THMs in the RA treatment. There are plentiful therapeutic targets in RA. THMs and active ingredients could alleviate RA symptoms through different therapeutic targets, such as immunoregulation, inflammation, fibroblast-like synoviocytes (FLSs), microRNAs (miRNAs), angiogenesis, oxidative stress, osteoclasts and multiple targets interaction. Anti-RA THMs, active ingredients and prescriptions through corresponding therapeutic targets were summarized and classified. CONCLUSIONS Flavonoids, phenolic acids, alkaloids and triterpenes of THMs are identified as the main components to ameliorate RA. Regulation of different and multiple related therapeutic targets by THMs and their active ingredients were associated with greater therapeutic benefits, among which inflammation is the main therapeutic target. Nonetheless, further studies are required to unravel the complexities and in-depth mechanisms of THMs in alleviating RA.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Evans Owusu Boadi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoli Pang
- Academy of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
41
|
Oral Gene Therapy of HFD-Obesity via Nonpathogenic Yeast Microcapsules Mediated shRNA Delivery. Pharmaceutics 2021; 13:pharmaceutics13101536. [PMID: 34683827 PMCID: PMC8539367 DOI: 10.3390/pharmaceutics13101536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity is a chronic systemic inflammatory disease, which occurs when energy intake exceeds the energy consumption. Therefore, controlling energy intake or increasing physical consumption can effectively control obesity. However, in reality, it is very difficult for the majority of obese patients to lose weight by autonomously controlling diet. In this study, oral shRNA/yeast microcapsules were constructed with non-virus-mediated IL-1β shRNA interference vectors and non-pathogenic Saccharomyces cerevisiae. Moreover, high-fat diet induced obese mice were established to assess the weight loss effect of IL-1β shRNA/yeast microcapsules via the oral route. After IL-1β shRNA/yeast treatment, body weight and fat weight was reduced. Compared with the control group, higher average food intake but lower energy conversion rate was observed in IL-1β shRNA/yeast group. In addition, lipid metabolism related cytokines and blood glucose concentration in the circulating blood was improved after IL-1β shRNA/yeast treatment. Yeast microcapsules mediated IL-1β shRNA delivery can effectively improve obesity. Noteworthy, this kind of non-diet-controlled weight loss strategy does not need diet control, and shows good biocompatibility. It is good news to obese patients who need to lose weight but cannot control their diet.
Collapse
|
42
|
Zhang J, Gao F, Xie J. LncRNA linc00152/NF-κB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 2021; 9:681-693. [PMID: 34061447 PMCID: PMC8342216 DOI: 10.1002/iid3.417] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Overexpressed inflammatory cytokines are the main factors causing rheumatoid arthritis (RA) tissue damage and pathological deterioration, and lncRNAs has found to beinvolved in some autoinflammatory diseases. METHODS We designed this study to investigate the effect of lncRNA linc00152 on rheumatoid arthritis inflammation and explore its molecular mechanism. RESULT We found that linc00152 was not only up-regulated in rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), but also stimulated by TNF-α/IL-1β in adose- and time-dependent manner in RAFLS and this expression depends on the NF-κB signaling pathway. Conversely, linc00152 promoted TNF-α/IL-1β expression in RAFLS induced by TNF-α/IL-1β. In addition, we found that linc00152 promoted TAK1 expression by targeting inhibition of miR-103a and activated TAK1-mediated NF-κB pathway. NF-kB indirectly promotes linc00152 expression by promoting the transcription activity of YY1, and YY1 directly promotes linc00152 expression by binding the promoter of linc00152. CONCLUSION Our data suggested that the linc00152/NF-κB feedback loop promotes RAFLS inflammation via regulating miR-103a/TAK1 axis and YY1 expression. Thus, linc00152 acts as a switch to control this regulatory circuit and may serve as a diagnostic and therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Rheumatology and ImmunologyWeihai Municipal HospitalWeihaiShandongChina
| | - Fei‐Fei Gao
- Department of Rheumatology and ImmunologyWeihai Municipal HospitalWeihaiShandongChina
| | - Jie Xie
- Department of Out‐PatientWeihai Municipal HospitalWeihaiShandongChina
| |
Collapse
|
43
|
Luo X, Cui J, Long X, Chen Z. TLRs Play Crucial Roles in Regulating RA Synoviocyte. Endocr Metab Immune Disord Drug Targets 2021; 20:1156-1165. [PMID: 32338225 DOI: 10.2174/1871530320666200427115225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease comparing the inflammation of synovium. Macrophage-like synoviocytes and fibroblast-like synoviocytes (synoviocytes) are crucial ingredients of synovium. Therein, a lot of research has focused on synoviocytes. Researches demonstrated that TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 TLR7 and TLR9 are expressed in synoviocyte. Additionally, the expression of TLR2, TLR3, TLR4 and TLR5 is increased in RA synoviocyte. In this paper, we review the exact role of TLR2, TLR3, TLR4 and TLR5 participate in regulating the production of inflammatory factors in RA synoviocyte. Furthermore, we discuss the role of vasoactive intestinal peptide (VIP), MicroRNA, Monome of Chinese herb and other cells (Monocyte and T cell) influence the function of synoviocyte by regulating TLRs. The activation of toll-like receptors (TLRs) in synoviocyte leads to the aggravation of arthritis, comparing with angiogenesis and bone destruction. Above all, TLRs are promising targets for managing RA.
Collapse
Affiliation(s)
- Xuling Luo
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Juncheng Cui
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xin Long
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhiwei Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
44
|
Chen S, Luo Z, Chen X. Hsa_circ_0044235 regulates the pyroptosis of rheumatoid arthritis via MiR-135b-5p-SIRT1 axis. Cell Cycle 2021; 20:1107-1121. [PMID: 34097558 DOI: 10.1080/15384101.2021.1916272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Studies have found that cell pyroptosis is involved in the occurrence and development of rheumatoid arthritis (RA). Hsa_circ_0044235 has been found to be significantly low-expressed in RA patients. The purpose of this research was to reveal the regulatory mechanism of hsa_circ_0044235 in the pyroptosis pathway of RA. Serum expressions of hsa_circ_0044235 and SIRT were detected by RT-qPCR, and the relationship of the two genes was analyzed by Pearson. Next, a collagen-induced arthritis (CIA) mouse model was constructed to examine the effect of hsa_circ_0044235 on knee joint injury. The number of apoptotic cells and the level of inflammatory cytokines in synovial tissue were detected by TUNEL and ELISA. Fibroblast-like synoviocytes (FLSs) were extracted as in vitro study subject. Functional assays including flow cytometry and immunofluorescence staining, molecular experiments including RT-qPCR, Western blot and dual luciferase assay, and bioinformatics analysis were performed to analyze the mechanism of hsa_circ_0044235 in pyroptosis in FLSs. Hsa_circ_0044235 and SIRT1 expressions were suppressed in RA patients and the two were positively correlated. Overexpressed hsa_circ_0044235 attenuated joint inflammation, cell apoptosis, and joint damage, reduced foot pad thickness, clinical case scores, inhibited the NLRP3-mediated pyroptosis pathway but promoted SIRT1 expression in CIA mice. Overexpressed hsa_circ_0044235 inhibited caspase-1 content and the NLRP3-mediated pyroptosis pathway. Moreover, hsa_circ_0044235 promoted SIRT1 expression by sponging miR-135b-5p in FLSs. Additionally, the effect of overexpressed hsa_circ_0044235 on FLSs was reversed by miR-135b-5p mimic and siSIRT1, while the effect of siSIRT1 was reversed by miR-135b-5p inhibitor. Hsa_circ_0044235 regulated NLRP3-mediated pyroptosis through miR-135b-5p-SIRT1 axis to regulate the development of RA.
Collapse
Affiliation(s)
- Shaojian Chen
- Department of Sports Medical, Ganzhou People's Hospital/The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, china
| | - Zhihuan Luo
- Department of Sports Medical, Ganzhou People's Hospital/The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, china
| | - Xiaguang Chen
- Department of Sports Medical, Ganzhou People's Hospital/The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, china
| |
Collapse
|
45
|
Ma S, Wang J, Lin J, Jin S, He F, Mei J, Zhang H, Wang S, Li Q. Survivin promotes rheumatoid arthritis fibroblast-like synoviocyte cell proliferation, and the expression of angiogenesis-related proteins by activating the NOTCH pathway. Int J Rheum Dis 2021; 24:922-929. [PMID: 34096679 DOI: 10.1111/1756-185x.14150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Survivin have been shown to play a crucial role in rheumatoid arthritis (RA); however, the regulatory mechanism of survivin in RA has not been fully elucidated. This study aims to investigate the effect of survivin on the proliferation and apoptosis of human RA fibroblast-like synoviocyte (RA-HFLS) cells in RA and its underlying mechanism through the NOTCH pathway. METHODS The RA synovial tissues of 65 RA patients with partial resection of synovium of knee joint by arthroscopy were collected. The expression of survivin in synovial tissue was detected by immunohistochemistry, and the correlation of survivin expression and clinical-pathological parameters of patients was analyzed. In vitro, the proliferation of HFLS and RA-HFLS were detected by MTT; the apoptosis of HFLS and RA-HFLS were detected by flow cytometry; the expression of survivin proteins, key protein factors (Notch1, Jagged1, Hes1) in the Notch pathway, and angiogenesis-related proteins (vascular endothelial growth factor receptor 1 [VEGFR1], Ang1, Ang2) were determined by western blot. RESULTS We found that survivin was highly expressed in RA synovial tissues and RA-HFLS cells, and was positively correlated with erythrocyte sedimentation rate, cyclic citrullinated peptide, C-reactive protein, Disease Activity Score of 28 joints and other pathological indexes. Knockdown survivin induces RA-HFLS cell apoptosis, suppresses proliferation and the expression of VEGFR1, Ang1, Ang2. In addition, blocking Notch pathway using FLI-06 significantly down-regulated survivin expression. When survivin is up-regulated, it promotes RA-HFLS cell proliferation, the expression of VEGFR1, Ang1, Ang2 and suppresses apoptosis by activating the NOTCH. CONCLUSION This study confirmed that survivin promotes RA-HFLS cell proliferation, the expression of angiogenesis-related proteins and suppresses apoptosis by activating the NOTCH pathway.
Collapse
Affiliation(s)
- Sha Ma
- Medical School, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jing Wang
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jun Lin
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Song Jin
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fang He
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jian Mei
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Shuya Wang
- Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Qin Li
- Medical School, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Department of Rheumatology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
46
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
47
|
Zhang YM, Shen J, Zhao JM, Guan J, Wei XR, Miao DY, Li W, Xie YC, Zhao YQ. Cedrol from Ginger Ameliorates Rheumatoid Arthritis via Reducing Inflammation and Selectively Inhibiting JAK3 Phosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5332-5343. [PMID: 33908779 DOI: 10.1021/acs.jafc.1c00284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ginger, as a food spice, is widely applied due to its extensive effects. Cedrol (CE) found in ginger is a sesquiterpene with anti-inflammatory activity. The objective of this research is to discuss the efficacy of CE on ameliorating rheumatoid arthritis (RA). CE inhibited chronic inflammation and pain in a dose-dependent manner accompanied by rapid onset and long duration. Besides, CE treatment effectively ameliorated the paw edema volume and arthritis score with no significant effect on body weight. Organ index, T-cell and B-cell proliferation, histopathology, and immunohistochemistry demonstrated that CE had immunological enhancement and attenuated RA effects. Remarkably, inhibition of phosphorylated-JAK3 protein, thereby abating the secretion of pro-inflammatory cytokines and inflammation-related mediators, was involved in the potential mechanism of CE efficiency through forming a hydrogen bond with ARG953 and ILE955 in the JAK3 active pocket. At the same time, the pharmacokinetic results showed that the absolute bioavailability of CE at 20, 40, and 80 mg/kg was 30.30, 23.68, and 16.11%, respectively. The current results offered clues for mastering the ameliorated RA of CE and further perfected the effective substance basis on the anti-inflammatory effect of ginger, which was beneficial for further applications.
Collapse
Affiliation(s)
- Yu-Meng Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University, Hangzhou 310000, China
| | - Jun-Ming Zhao
- Liaoning Xinzhong Modern Medicine Company Ltd., Shenyang 110016, China
| | - Jian Guan
- Liaoning Xinzhong Modern Medicine Company Ltd., Shenyang 110016, China
| | - Xin-Rui Wei
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dong-Yu Miao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi-Cheng Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University, Hangzhou 310000, China
| | - Yu-Qing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
48
|
Deligiannidou GE, Gougoula V, Bezirtzoglou E, Kontogiorgis C, Constantinides TK. The Role of Natural Products in Rheumatoid Arthritis: Current Knowledge of Basic In Vitro and In Vivo Research. Antioxidants (Basel) 2021; 10:antiox10040599. [PMID: 33924632 PMCID: PMC8070014 DOI: 10.3390/antiox10040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder affecting a vast variety of the population. The onset of RA as well as the development of systematic immunization is affected by both genetic and environmental risk factors. This review aims to point out the role of natural products in the management of RA, focusing on the reports of basic research (in vitro and animal studies) emphasizing the antioxidant and anti-inflammatory properties considered in the field of RA. A systematic screening of the relevant literature was carried out on PubMed, Google Scholar, and Scopus with the following criteria: publication date, 2015-2020; language, English; study design, in vitro or animal models; and the investigation of one or several natural products in the context of RA, including, when available, the molecular mechanisms implicated. A total of 211 papers were initially obtained and screened. In vitro and animal studies referring to 20 natural products and 15 pure compounds were ultimately included in this review. The outcomes of this work provide an overview of the methods employed in basic research over the past five years, with emphasis on the limitations presented, while demonstrating the potential benefits of utilizing natural products in the management of RA as supported by in vitro and animal studies.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| | - Vasiliki Gougoula
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
- Correspondence:
| | - Theodoros K. Constantinides
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (G.-E.D.); (V.G.); (E.B.); (T.K.C.)
| |
Collapse
|
49
|
Tang CT, Yang J, Liu ZD, Chen Y, Zeng C. Taraxasterol acetate targets RNF31 to inhibit RNF31/p53 axis-driven cell proliferation in colorectal cancer. Cell Death Discov 2021; 7:66. [PMID: 33824292 PMCID: PMC8024285 DOI: 10.1038/s41420-021-00449-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Several studies have suggested that taraxasterol acetate (TA) can inhibit the growth of tumor cells. However, to date, it remains unclear how TA inhibits cell growth and how RNF31 functions as an oncogene. We examined the expression of RNF31 in CRC tissue samples via immunohistochemistry and elucidated the function of RNF31 in CRC cells by constructing a cell model with RNF31 depletion. A cycloheximide (CHX)-chase analysis and immunofluorescence assays were conducted to demonstrate that TA can promote RNF31 degradation by activating autophagy. We used the PharmMapper website to predict targets of TA and identified RNF31. CHX-chase experiments showed that TA could facilitate RNF31 degradation, which was inhibited by the administration of chloroquine. Immunofluorescence assays showed that RNF31 protein was colocalized with LC3I/II and p62, suggesting that TA promoted RNF31 degradation by activating autophagy. We also found that CRC patients with RNF31 overexpression had poorer survival than those with low RNF31 expression. The results of the CHX-chase experiment showed that depletion of RNF31 alleviated p53 degradation, which was inhibited by MG132. A series of co-immunoprecipitation (Co-IP) assays revealed that RNF31 interacts with p53 and promotes p53 ubiquitination and degradation. A Co-IP assay performed with a truncated RNF31 plasmid showed that the PUB domain interacts with p53. Moreover, the PUB domain is the key structure in the induction of p53 ubiquitination. Our findings reveal a key role of RNF31 in CRC cell growth and indicate a mechanism through which TA inhibits cell growth.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Yang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi-De Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Chunyan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
50
|
Zhang L, Peng H, Feng M, Zhang W, Li Y. Yeast microcapsule-mediated oral delivery of IL-1β shRNA for post-traumatic osteoarthritis therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:336-346. [PMID: 33425491 PMCID: PMC7779538 DOI: 10.1016/j.omtn.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Post-traumatic osteoarthritis is a prevalent debilitating joint disease. However, there is no FDA-approved disease-modifying osteoarthritis drug currently. Gene therapy can improve disease progression but lacks an effective delivery system. Here, we constructed an oral drug delivery system by non-virus-mediated interleukin-1β (IL-1β) short hairpin RNA (shRNA) and non-pathogenic yeast to evaluate its effect on osteoarthritis therapy. After recombinant IL-1β shRNA/yeast therapy, yeast microcapsule-mediated oral delivery of IL-1β shRNA greatly reduced the IL-1β expression in intestine macrophage, bone marrow macrophage, and articular cartilage, systematically regulate the inflammatory response. The degeneration of articular cartilage was significantly inhibited in the medial femoral condyle and medial tibial plateau of the knee joint. And the expression of osteoarthritis markers Col X and MMP13 was reduced in the knee joint. Thus, yeast microcapsule-mediated oral delivery of IL-1β shRNA may serve as a novel gene therapy strategy for treating joint degeneration through immunomodulation of the mononuclear phagocyte system from the intestine to subchondral bone marrow and ultimately preserving the articular cartilage joint.
Collapse
Affiliation(s)
- Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, PR China
| | - Hang Peng
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Meng Feng
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wan Zhang
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yankun Li
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|