1
|
Zhao M, Zhang M, Ni S. Role of ginsenoside Rg1 as a PPAR-γ activator in protecting against manganese-induced hepatotoxicity: Insights into the TLR4/MyD88/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117573. [PMID: 39708455 DOI: 10.1016/j.ecoenv.2024.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study investigates the protective effect of ginsenoside Rg1 against manganese (Mn)-induced hepatotoxicity, highlighting its role as a PPAR-γ activator and its impact on TLR4/MyD88/MAPK pathway. Manganese induces liver damage through mechanisms involving oxidative stress and inflammation. Rg1, a principal bioactive compound of ginseng, significantly alleviates Mn-induced liver injury. Rg1 markedly enhances the activities of SOD, GSH, and CAT, while reducing levels of MDA and ROS, indicating an improvement in antioxidant defense capacity. Furthermore, Rg1 decreases inflammatory markers iNOS, TNF-α, IL-6, IL-12 and NO levels, underscoring its strong anti-inflammatory effects. Importantly, as a PPAR-γ activator, Rg1 upregulates PPAR-γ expression, subsequently inhibiting TLR4/MyD88/MAPK pathway. Additionally, silencing of PPAR-γ diminishes the protective effects of Rg1, while overexpression of PPAR-γ enhances them. The findings conclude that Rg1 exerts significant hepatoprotective effects against manganese-induced damage by activating PPAR-γ and modulating TLR4/MyD88/MAPK pathway, positioning it as a promising candidate for the treatment of Mn-induced hepatotoxicity.
Collapse
Affiliation(s)
- Mengjing Zhao
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, China
| | - Min Zhang
- Department of Physical examination Center, Tongji Hospital Branch Affiliated to Tongji University, China
| | - Shoudong Ni
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, China.
| |
Collapse
|
2
|
Ghemiș L, Goriuc A, Jipu R, Foia LG, Luchian I. The Involvement of Resolvins in Pathological Mechanisms of Periodontal Disease Associated with Type 2 Diabetes: A Narrative Review. Int J Mol Sci 2024; 25:12784. [PMID: 39684494 DOI: 10.3390/ijms252312784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Resolvins are specialized pro-resolving mediators (SPMs) derived from omega-3 fatty acids that play a critical role in resolving inflammation and restoring tissues to a state of health after an immune response. Their role in chronic inflammatory conditions highlights their importance in maintaining a balance between an effective immune response and the resolution of inflammation to prevent tissue damage. Periodontal disease is a chronic inflammatory condition affecting the tissues surrounding the teeth, leading to gum damage and bone loss. Chronic inflammation in periodontal disease can exacerbate systemic inflammation and influence other conditions, such as diabetes. There is a bidirectional relationship between diabetes and periodontal disease, as both are characterized by chronic inflammation and exacerbate systemic and oral health complications. This narrative review aims to synthesize the current knowledge on how resolvins influence inflammatory pathways and the tissue repair mechanism in periodontal disease in patients with type 2 diabetes. Furthermore, this review serves as a foundation for developing targeted therapeutic strategies, addressing the pressing need for effective treatments that consider both systemic and oral health outcomes.
Collapse
Affiliation(s)
- Larisa Ghemiș
- Department of General and Oral Biochemistry, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, 700115 Iași, Romania
| | - Ancuta Goriuc
- Department of General and Oral Biochemistry, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, 700115 Iași, Romania
| | - Raluca Jipu
- Department of Morpho-Functional Sciences, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy Iași, 700115 Iași, Romania
| | - Liliana Georgeta Foia
- Department of General and Oral Biochemistry, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, 700115 Iași, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy Iaşi, 700115 Iași, Romania
| |
Collapse
|
3
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
4
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Hardesty JE, Warner JB, Wilkey DW, Phinney BS, Salemi MR, Merchant ML, McClain CJ, Warner DR, Kirpich IA. Hepatic Proteomic Changes Associated with Liver Injury Caused by Alcohol Consumption in Fpr2-/- Mice. Int J Mol Sci 2024; 25:9807. [PMID: 39337294 PMCID: PMC11432144 DOI: 10.3390/ijms25189807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a prevalent medical problem with limited effective treatment strategies. Although many biological processes contributing to ALD have been elucidated, a complete understanding of the underlying mechanisms is still lacking. The current study employed a proteomic approach to identify hepatic changes resulting from ethanol (EtOH) consumption and the genetic ablation of the formyl peptide receptor 2 (FPR2), a G-protein coupled receptor known to regulate multiple signaling pathways and biological processes, in a mouse model of ALD. Since previous research from our team demonstrated a notable reduction in hepatic FPR2 protein levels in patients with alcohol-associated hepatitis (AH), the proteomic changes in the livers of Fpr2-/- EtOH mice were compared to those observed in patients with AH in order to identify common hepatic proteomic alterations. Several pathways linked to exacerbated ALD in Fpr2-/- EtOH mice, as well as hepatic protein changes resembling those found in patients suffering from AH, were identified. These alterations included decreased levels of coagulation factors F2 and F9, as well as reduced hepatic levels of glutamate-cysteine ligase catalytic subunit (GCLC) and total glutathione in Fpr2-/- EtOH compared to WT EtOH mice. In conclusion, the data suggest that FPR2 may play a regulatory role in hepatic blood coagulation and the antioxidant system, both in a pre-clinical model of ALD and in human AH, however further experiments are required to validate these findings.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Daniel W. Wilkey
- The Proteomics Core, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- The Proteomics Core, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA
- Alcohol Research Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
| | - Irina A. Kirpich
- Alcohol Research Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Liu J, Zheng Y, Yang S, Zhang L, Liu B, Zhang J, Yu X, Wei X, Li S, Wang J, Lv H. Targeting antioxidant factor Nrf2 by raffinose ameliorates lipid dysmetabolism-induced pyroptosis, inflammation and fibrosis in NAFLD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155756. [PMID: 38833791 DOI: 10.1016/j.phymed.2024.155756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a persistent liver condition that affects both human health and animal productive efficiency on a global scale. A number of naturally occurring compounds activate nuclear factor erythroid 2-related factor 2 (Nrf2) as a transcription factor with important protective effects against many liver diseases, including NAFLD. Raffinose (Ra), an oligosaccharide extracted from several plants, exhibits diverse biological functions. However, the uncertainty lies in determining whether the activation of Nrf2 by Ra can provide a preventive effect on liver lipotoxicity. PURPOSE The aim of this study was to shed light on the molecular pathways by which Ra possesses its protective benefits against NAFLD. METHODS Experimental protocols were established using WT and Nrf2-null (Nrf2-/-) mice. Liver samples from each group were collected for Western blot, RT-qPCR, H & E, Sirius red and Oil red O staining. Additionally, serums were processed for ELISA. ALM12 cells were gathered for Western blot and immunofluorescence. Moreover, to elucidate the molecular mechanism of Ra, molecular docking was performed. RESULTS Our results indicated that Ra remarkably alleviated liver lipotoxic in vivo and in vitro. Ra treatment effectively corrected hepatic steatosis, the release of AST, ALT, TG, and TC, as well as the depletion of HDL and LDL. Meanwhile, Ra efficiently prevented inflammation by inhibiting the TLR4-MyD88-NF-κB pathway and pyroptosis. Additionally, these findings implied that Ra reduced the production of fibrosis-related proteins, which enhanced collagen deposition. Molecular docking revealed that Ra possessed the ability to bind specific regions of Nrf2, resulting in the enhancement of Nrf2 activation and nuclear translocation. Ra treatment restored serum redox factors and antioxidant enzymes to normal levels; however, these alterations were clearly reversed in Nrf2-/- mice. CONCLUSION This study reveals novel information on Ra's protective benefits against liver injury caused by abnormal lipid metabolism; these effects are mostly mediated by Nrf2 activation, suggesting a potential new medicine or treatment strategy for NAFLD.
Collapse
Affiliation(s)
- Jiahe Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuwei Zheng
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Songya Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Lihan Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bingxue Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jiexing Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiaoqing Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiangjian Wei
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shize Li
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jianfa Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Hongming Lv
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
7
|
Fu S, Xu M, Li J, Yu M, Wang S, Han L, Li R, Deng F, Peng H, Liu D, Tan Y. HDAC6 inhibitor ACY-1215 protects from nonalcoholic fatty liver disease via inhibiting CD14/TLR4/MyD88/MAPK/NFκB signal pathway. Heliyon 2024; 10:e33740. [PMID: 39055804 PMCID: PMC11269855 DOI: 10.1016/j.heliyon.2024.e33740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Background & aims Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic steatosis, for which there is currently no effective treatment. ACY-1215 is a selective inhibitor of histone deacetylation 6, which has shown therapeutic potential in many tumors, as well as acute liver injury. However, no research about ACY-1215 on NAFLD has been published. Therefore, our study aims to explore the role and mechanism of ACY-1215 in the experimental model of NAFLD, to propose a new treatment strategy for NAFLD. Methods We established cell and animal models of NAFLD and verified the effect of ACY-1215 on NAFLD. The mechanism of ACY-1215 on NAFLD was preliminarily explored through TMT relative quantitative proteomics, and then we verify the mechanism discovered in the experimental model of NAFLD. Results ACY-1215 can reduce lipid aggregation, IL-1β, and TNF α mRNA levels in liver cells in vitro. ACY-1215 can reduce the weight gain and steatosis in the liver of the NAFLD mouse model, alleviate the deterioration of liver function, and reduce IL-1βs and TNF α mRNA levels in hepatocytes. TMT relative quantitative proteomics found that ACY-1215 decreased the expression of CD14 in hepatocytes. It was found that ACY-1215 can inhibit the activation level of CD14/TLR4/MyD88/MAPK/NFκB pathway in the NAFLD experimental model. Conclusions ACY-1215 has a protective effect on the cellular model of NAFLD induced by fatty acids and lipopolysaccharide, as well as the C57BL/6J mouse model induced by a high-fat diet. ACY-1215 may play a protective role by inhibiting CD14/TLR4/MyD88/MAPK/NFκB signal pathway.
Collapse
Affiliation(s)
- Shifeng Fu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Mengmeng Xu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Jianglei Li
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Meihong Yu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Siyi Wang
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Liu Han
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Rong Li
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Feihong Deng
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Hailing Peng
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
- Longshan County People's Hospital, Longshan, 416899, Hunan Province, China
| | - Deliang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Yuyong Tan
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| |
Collapse
|
8
|
Wang S, Chen B, Du R, Zhong M, Zhang C, Jin X, Cui X, Zhou Y, Kang Q, Xu H, Li Y, Wu Q, Tong G, Luo L. An herbal formulation "Shugan Xiaozhi decoction" ameliorates methionine/choline deficiency-induced nonalcoholic steatohepatitis through regulating inflammation and apoptosis-related pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118127. [PMID: 38583728 DOI: 10.1016/j.jep.2024.118127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1β, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1β were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Bohao Chen
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Ruili Du
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Mei Zhong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Chunmei Zhang
- School of Basic Medical Science of Luoyang Polytechnic, No. 6 Keji Avenue, Yibin District, Henan, 471099, China
| | - Xiaoming Jin
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Xiang Cui
- Ankang Traditional Chinese Medicine Hospital, Ankang, 725000, Shaanxi, China
| | - Yuhang Zhou
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Qinyang Kang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Hang Xu
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Yuting Li
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| | - Guangdong Tong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China.
| | - Lidan Luo
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China.
| |
Collapse
|
9
|
Booijink R, Ramachandran P, Bansal R. Implications of innate immune sexual dimorphism for MASLD pathogenesis and treatment. Trends Pharmacol Sci 2024; 45:614-627. [PMID: 38853100 DOI: 10.1016/j.tips.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Growing evidence suggests that metabolic dysfunction-associated steatotic liver disease (MASLD) is significantly higher in men versus women. Increased prevalence is observed in postmenopausal women, suggesting that age and sex (hormones) influence MASLD development and progression. Molecular data further reveal that sex regulates the innate immune responses with an essential role in MASLD progression. To date, there has been limited focus on the role of innate immune sexual dimorphism in MASLD, and differences between men and women are not considered in the current drug discovery landscape. In this review, we summarize the sex disparities and innate immune sexual dimorphism in MASLD pathogenesis. We further highlight the importance of harnessing sexual dimorphism in identifying therapeutic targets, developing pharmacological therapies, and designing (pre-) clinical studies for the personalized treatment for MASLD.
Collapse
Affiliation(s)
- Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, UK
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
10
|
Kim JY, Yang AY, Kim K, Kwon HH, Leem J, Kim YA. Pharmacological inhibition of p300 ameliorates steatosis, inflammation, and fibrosis in mice with non-alcoholic steatohepatitis. Heliyon 2024; 10:e30908. [PMID: 38774067 PMCID: PMC11107220 DOI: 10.1016/j.heliyon.2024.e30908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The histone acetyltransferase p300 plays a pivotal role in regulating gene expression and cellular phenotype through epigenetic mechanisms. It significantly influences lipid metabolism, which is a key factor in the pathogenesis of non-alcoholic steatohepatitis (NASH), by modulating the transcription of genes involved in lipid synthesis and accumulation. This study aimed to investigate the protective potential of inhibiting p300 in NASH. Male C57BL/6J mice were subjected to a methionine- and choline-deficient (MCD) diet for 4 weeks to induce NASH, and during this period, the p300 inhibitor C646 (10 mg/kg) was administered three times a week. C646 treatment reduced the elevation of p300 expression and histone H3 acetylation, leading to a decrease in liver injury markers in the serum and an improvement in the histological abnormalities observed in MCD diet-fed mice. C646 also reduced lipid accumulation by modulating de novo lipogenesis and suppressed inflammation, including cytokine overproduction and macrophage infiltration. Furthermore, C646 mitigated liver fibrosis and myofibroblast accumulation. This protective effect was achieved through the inhibition of apoptosis by reducing p53 and Bax expression and the suppression of ferroptosis by decreasing lipid peroxidation while enhancing antioxidant defenses. Additionally, C646 alleviated endoplasmic reticulum stress, as evidenced by the downregulation of unfolded protein response signaling molecules. These results highlight the potential of p300 as a therapeutic target for NASH.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Kiryeong Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Yun-A Kim
- Department of Family Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Navarro-Corcuera A, Zhu Y, Ma F, Gupta N, Asplund H, Yuan F, Friedman S, Sansbury BE, Huang X, Cai B. Therapeutic Activity of Resolvin D1 (RvD1) in Murine MASH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590633. [PMID: 38712196 PMCID: PMC11071427 DOI: 10.1101/2024.04.22.590633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background and Aims Recent studies have highlighted the beneficial effect of resolvin D1 (RvD1), a DHA-derived specialized pro-resolving mediator, on metabolic dysfunction-associated steatohepatitis (MASH), but the underlying mechanisms are not well understood. Our study aims to determine the mechanism by which RvD1 protects against MASH progression. Methods RvD1 was administered to mice with experimental MASH, followed by bulk and single-cell RNA sequencing analysis. Primary cells including bone marrow-derived macrophages (BMDMs), Kupffer cells, T cells, and primary hepatocytes were isolated to elucidate the effect of RvD1 on inflammation, cell death, and fibrosis regression genes. Results Hepatic tissue levels of RvD1 were decreased in murine and human MASH, likely due to an expansion of pro-inflammatory M1-like macrophages with diminished ability to produce RvD1. Administering RvD1 reduced inflammation, cell death, and liver fibrosis. Mechanistically, RvD1 reduced inflammation by suppressing the Stat1-Cxcl10 signaling pathway in macrophages and prevented hepatocyte death by alleviating ER stress-mediated apoptosis. Moreover, RvD1 induced Mmp2 and decreased Acta2 expression in hepatic stellate cells (HSCs), and promoted Mmp9 and Mmp12 expression in macrophages, leading to fibrosis regression in MASH. Conclusions RvD1 reduces Stat1-mediated inflammation, mitigates ER stress-induced apoptosis, and promotes MMP-mediated fibrosis regression in MASH. This study highlights the therapeutic potential of RvD1 to treat MASH.
Collapse
Affiliation(s)
- Amaia Navarro-Corcuera
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiwei Zhu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanglin Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Neha Gupta
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haley Asplund
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Feifei Yuan
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Scott Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian E. Sansbury
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xin Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Alghamdi W, Mosli M, Alqahtani SA. Gut microbiota in MAFLD: therapeutic and diagnostic implications. Ther Adv Endocrinol Metab 2024; 15:20420188241242937. [PMID: 38628492 PMCID: PMC11020731 DOI: 10.1177/20420188241242937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is becoming a significant contributor to chronic liver disease globally, surpassing other etiologies, such as viral hepatitis. Prevention and early treatment strategies to curb its growing prevalence are urgently required. Recent evidence suggests that targeting the gut microbiota may help treat and alleviate disease progression in patients with MAFLD. This review aims to explore the complex relationship between MAFLD and the gut microbiota in relation to disease pathogenesis. Additionally, it delves into the therapeutic strategies targeting the gut microbiota, such as diet, exercise, antibiotics, probiotics, synbiotics, glucagon-like peptide-1 receptor agonists, and fecal microbiota transplantation, and discusses novel biomarkers, such as microbiota-derived testing and liquid biopsy, for their diagnostic and staging potential. Overall, the review emphasizes the urgent need for preventive and therapeutic strategies to address the devastating consequences of MAFLD at both individual and societal levels and recognizes that further exploration of the gut microbiota may open avenues for managing MAFLD effectively in the future.
Collapse
Affiliation(s)
- Waleed Alghamdi
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
He X, Liang J, Li X, Wang Y, Zhang X, Chen D, Wu L, Wang S. Dahuang zhechong pill ameliorates hepatic fibrosis by regulating gut microbiota and metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117402. [PMID: 37967779 DOI: 10.1016/j.jep.2023.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE DHZCP is a traditional Chinese medicinal formula in "The Synopsis of Prescriptions of the Golden Chamber" that has been often used in the treatment of hepatic disorders, gynecopathy and atherosclerosis. However, its underlying mechanisms in preventing hepatic fibrosis remain incompletely understood. AIM OF THE STUDY This study aims to explore the therapeutic efficacy and potential mechanism of DHZCP in a CCL4-induced experimental hepatic fibrosis rat model. MATERIALS AND METHODS DHZCP was orally administered at doses of 0.168, 0.084 and 0.042 g⋅kg-1⋅d-1 in a CCL4-induced hepatic fibrosis model using SD rats. Histopathology, immunohistochemistry and biochemical analysis, ELISA, Flow cytometry, WB, RT-PCR, 16 S rRNA, and untargeted metabolomic analysis were used to determine the therapeutic effects and mechanisms of DHZCP in the treatment of CCL4-induced hepatic fibrosis. RESULTS Pharmacodynamically, DHZCP inhibited ALT and AST, improved liver function, decreased NF-κB, TNF-α and IL-6 in liver tissue, indicating its role in inhibiting CCL4-induced liver inflammation. Most importantly, it reduces the level of fibrosis in serum and liver tissue. Histological analysis also showed that DHZCP could effectively inhibit inflammatory cytokine infiltration and excessive collagen deposition. Mechanistically, DHZCP regulates gut microbiota, improves the proportion of firmicutes and bacteroidota at the phylum level, and increases the abundance of beneficial bacteria at the genus level, such as muribagulaceae unclassified, prevotella, alloprevotella, closteriales unclassified, lachnospiraceae unclassified and phascolarctobacterium. Instead, it reduced the abundance of two harmful bacteria, desulfovibrio and colidextribacter. Four types of metabolites such as hydrocarbons, organic nitrogen compounds, organic oxygen compounds, and organosulfur compounds were added. Furthermore, DHZCP was found to reduce the damage of intestinal barrier caused by changes in gut microbiota and metabolites. CONCLUSION DHZCP is an effective inhibitor of hepatic fibrosis by regulating gut microbiota and metabolites, improving the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- Xiaoyan He
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Jingtao Liang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610036, PR China
| | - Xin Li
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yao Wang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiaobo Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dayi Chen
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Lijuan Wu
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Shiyu Wang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| |
Collapse
|
14
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
15
|
Yang AY, Kim K, Kwon HH, Leem J, Song JE. 6-Shogaol Ameliorates Liver Inflammation and Fibrosis in Mice on a Methionine- and Choline-Deficient Diet by Inhibiting Oxidative Stress, Cell Death, and Endoplasmic Reticulum Stress. Molecules 2024; 29:419. [PMID: 38257332 PMCID: PMC10818499 DOI: 10.3390/molecules29020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is becoming an increasingly serious global health threat, distinguished by hepatic lipid accumulation, inflammation, and fibrosis. There is a lack of approved pharmaceutical interventions for this disease, highlighting the urgent need for effective treatment. This study explores the hepatoprotective potential of 6-shogaol, a natural compound derived from ginger, in a methionine- and choline-deficient (MCD) dietary mouse model of NASH. Male C57BL/6J mice were subjected to the MCD diet for 4 weeks to induce NASH, with concurrent intraperitoneal administration of 6-shogaol (20 mg/kg) three times a week. While 6-shogaol did not impact body weight, liver weight, or hepatic lipid accumulation, it effectively mitigated liver injury, inflammation, and fibrosis in MCD diet-fed mice. Mechanistically, 6-shogaol inhibited lipid and DNA oxidation, restored hepatic glutathione levels, and regulated the expression of pro-oxidant and antioxidant enzymes. Furthermore, 6-shogaol inhibited apoptosis and necroptosis, as indicated by a decrease in TUNEL-stained cells and downregulation of apoptosis- and necroptosis-associated proteins. Additionally, 6-shogaol alleviated endoplasmic reticulum (ER) stress, as demonstrated by decreased expression of molecules associated with unfolded protein response pathways. These findings underscore the potential of 6-shogaol as a therapeutic intervention for NASH by targeting pathways related to oxidative stress, cell death, and ER stress.
Collapse
Affiliation(s)
- Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (K.K.)
| | - Kiryeong Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (K.K.)
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (K.K.)
| | - Jeong Eun Song
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
16
|
Lu JM, Xu X, Aosai F, Zhang MY, Zhou LL, Piao LX. Protective effect of arctiin against Toxoplasma gondii HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of cytosolic phospholipase A 2 and platelet-activating factor. Int Immunopharmacol 2024; 126:111254. [PMID: 37995571 DOI: 10.1016/j.intimp.2023.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Toxoplasma gondii (T. gondii)-derived heat shock protein 70 (T.g.HSP70) is a toxic protein that downregulates host defense responses against T. gondii infection. T.g.HSP70 was proven to induce fatal anaphylaxis in T. gondii infected mice through cytosolic phospholipase A2 (cPLA2) activated-platelet-activating factor (PAF) production via Toll-like receptor 4 (TLR4)-mediated signaling. In this study, we investigated the effect of arctiin (ARC; a major lignan compound of Fructus arctii) on allergic liver injury using T.g.HSP70-stimulated murine liver cell line (NCTC 1469) and a mouse model of T. gondii infection. Localized surface plasmon resonance, ELISA, western blotting, co-immunoprecipitation, and immunofluorescence were used to investigate the underlying mechanisms of action of ARC on T. gondii-induced allergic acute liver injury. The results showed that ARC suppressed the T.g.HSP70-induced allergic liver injury in a dose-dependent manner. ARC could directly bind to T.g.HSP70 or TLR4, interfering with the interaction between these two factors, and inhibiting activation of the TLR4/mitogen-activated protein kinase/nuclear factor-kappa B signaling, thereby inhibiting the overproduction of cPLA2, PAF, and interferon-γ. This result suggested that ARC ameliorates T.g.HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of inflammatory mediators, providing a theoretical basis for ARC therapy to improve T.g.HSP70-induced allergic liver injury.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Ming-Yue Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lu-Lu Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
17
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
18
|
Fitzgerald H, Bonin JL, Khan S, Eid M, Sadhu S, Rahtes A, Lipscomb M, Biswas N, Decker C, Nabage M, Ramos RB, Duarte GA, Marinello M, Chen A, Aydin HB, Mena HA, Gilliard K, Spite M, DiPersio CM, Adam AP, MacNamara KC, Fredman G. Resolvin D2-G-Protein Coupled Receptor 18 Enhances Bone Marrow Function and Limits Steatosis and Hepatic Collagen Accumulation in Aging. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1953-1968. [PMID: 37717941 PMCID: PMC10699127 DOI: 10.1016/j.ajpath.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
Aging is associated with nonresolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a proresolving ligand that acts through the G-protein-coupled receptor called GPR18. Unbiased RNA sequencing revealed increased Gpr18 expression in macrophages from old mice, and in livers from elderly humans, which was associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lacked GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, increased monocyte-derived macrophages, and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly on the bone marrow to increase monocyte-macrophage progenitors. A transplantation assay further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice. Transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, this study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.
Collapse
Affiliation(s)
- Hannah Fitzgerald
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jesse L Bonin
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Sayeed Khan
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Maya Eid
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Allison Rahtes
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Masharh Lipscomb
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Nirupam Biswas
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Melisande Nabage
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ramon Bossardi Ramos
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Giesse Albeche Duarte
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Michael Marinello
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Anne Chen
- Department of Pathology, Albany Medical College, Albany, New York
| | | | - Hebe Agustina Mena
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kurrim Gilliard
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - C Michael DiPersio
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York; Department of Surgery, Albany Medical College, Albany, New York
| | - Alejandro P Adam
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Katherine C MacNamara
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York.
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York.
| |
Collapse
|
19
|
Zhang J, Chen J, Jiang Q, Feng R, Zhao X, Li H, Yang C, Hua X. Resolvin D1 Attenuates Inflammation and Pelvic Pain Associated with EAP by Inhibiting Oxidative Stress and NLRP3 Inflammasome Activation via the Nrf2/HO-1 Pathway. J Inflamm Res 2023; 16:3365-3379. [PMID: 37576154 PMCID: PMC10422977 DOI: 10.2147/jir.s408111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background Resolvin D1 (RvD1), a member of the specialized pro-resolving lipid mediators family, has a potent anti-inflammatory effect and alleviates tissue damage. The purpose of the current research was to study the effect of RvD1 on CP/CPPS and the underlying mechanisms using a mouse model of experimental autoimmune prostatitis (EAP) mice. Materials and Methods The EAP mouse model was successfully established, and was used to test the therapeutic effect of RvD1. Hematoxylin-eosin staining and dihydroethidium staining were used to evaluate the histological changes and oxidative stress levels of prostate tissues. Chronic pelvic pain was assessed by applying von Frey filaments to the lower abdomen. The superoxide dismutase enzyme and malondialdehyde levels were detected using enzyme-linked immunosorbent assay (ELISA). The levels of inflammation-related cytokines, including IL-1β, IL-6, and TNF-α were detected by ELISA. Results RvD1 treatment ameliorated prostatic inflammation and the pelvic pain of EAP mice. RvD1 treatment could inhibit activation of the NLRP3 inflammasome and oxidative stress. RvD1 treatment could activate Nrf2/HO-1 signaling in mice with EAP. Blockade of Nrf2/HO-1 signaling abolished the RvD1-mediated inhibition of oxidative stress, NLRP3 inflammasome activation and the anti-inflammatory effect of RvD1 in EAP. Conclusion RvD1 treatment can reduce inflammatory cell infiltration in prostate tissue and attenuate pelvic pain associated with EAP by inhibiting oxidative stress and NLRP3 inflammasome activation via the Nrf2/HO-1 pathway. These results provide new insights that RvD1 has the potential as an effective agent in the treatment of EAP.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Juan Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qing Jiang
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohu Zhao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Haolin Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Cheng Yang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoliang Hua
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
20
|
Serrano M, Rico-Barrio I, Grandes P. The effect of omega-3 fatty acids on alcohol-induced damage. Front Nutr 2023; 10:1068343. [PMID: 37090780 PMCID: PMC10113533 DOI: 10.3389/fnut.2023.1068343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Alcohol is the most widely consumed psychoactive substance in the world that has a severe impact on many organs and bodily systems, particularly the liver and nervous system. Alcohol use during pregnancy roots long-lasting changes in the newborns and during adolescence has long-term detrimental effects especially on the brain. The brain contains docosahexaenoic acid (DHA), a major omega-3 (n-3) fatty acid (FA) that makes up cell membranes and influences membrane-associated protein function, cell signaling, gene expression and lipid production. N-3 is beneficial in several brain conditions like neurodegenerative diseases, ameliorating cognitive impairment, oxidative stress, neuronal death and inflammation. Because alcohol decreases the levels of n-3, it is timely to know whether n-3 supplementation positively modifies alcohol-induced injuries. The aim of this review is to summarize the state-of-the-art of the n-3 effects on certain conditions caused by alcohol intake, focusing primarily on brain damage and alcoholic liver disease.
Collapse
Affiliation(s)
- Maitane Serrano
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Irantzu Rico-Barrio
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- *Correspondence: Pedro Grandes,
| |
Collapse
|
21
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
22
|
Formyl peptide receptor 2 is an emerging modulator of inflammation in the liver. Exp Mol Med 2023; 55:325-332. [PMID: 36750693 PMCID: PMC9981720 DOI: 10.1038/s12276-023-00941-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 02/09/2023] Open
Abstract
Formyl peptide receptors (FPRs), which are seven-membrane G-protein coupled receptors, recognize chemotactic signals to protect hosts from pathogenic infections and mediate inflammatory responses in the body. There are three isoforms of FPRs in humans-FPR1, FPR2, and FPR3-and they bind to N-formyl peptides, except FPR3, and to various endogenous agonists. Among FPR family members, FPR2 has a lower affinity for N-formyl peptides than FPR1 and binds with a wide range of endogenous or exogenous agonists. Thus, FPR2 is considered the most ambiguous member. Accumulating evidence has shown that FPR2 is involved in the host's defense against bacterial infection and inflammation in liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, and liver cancer, suggesting the pathophysiological relevance of FPR2 to the liver. However, FPR2 has been shown to promote or suppress inflammation, depending on the type of FPR2-expressing cell and FPR2-bound ligands in the liver. Therefore, it is important to understand FPR2's function per se and to elucidate the mechanism underlying immunomodulation initiated by ligand-activated FPR2 before suggesting FPR2 as a novel therapeutic agent for liver diseases. In this review, up-to-date knowledge of FPR2, with general information on the FPR family, is provided. We shed light on the dual action of FPR2 in the liver and discuss the hepatoprotective roles of FPR2 itself and FPR2 agonists in mediating anti-inflammatory responses.
Collapse
|
23
|
Fitzgerald H, Bonin JL, Sadhu S, Lipscomb M, Biswas N, Decker C, Nabage M, Bossardi R, Marinello M, Mena AH, Gilliard K, Spite M, Adam A, MacNamara KC, Fredman G. The Resolvin D2-GPR18 Axis Enhances Bone Marrow Function and Limits Hepatic Fibrosis in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522881. [PMID: 36711905 PMCID: PMC9881918 DOI: 10.1101/2023.01.05.522881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aging is associated with non-resolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a pro-resolving ligand that acts through the G-protein coupled receptor (GPCR) called GRP18. Using an unbiased screen, we report increased Gpr18 expression in macrophages from old mice and in livers from elderly humans that is associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lack GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, monocyte-derived macrophages and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly upon the bone marrow to increase monocyte-macrophage progenitors. Using a transplantation assay we further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice, and transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, our study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.
Collapse
|
24
|
Hardesty JE, Warner JB, Song YL, Rouchka EC, McClain CJ, Warner DR, Kirpich IA. Resolvin D1 attenuated liver injury caused by chronic ethanol and acute LPS challenge in mice. FASEB J 2023; 37:e22705. [PMID: 36520060 PMCID: PMC9832974 DOI: 10.1096/fj.202200778r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Alcohol-associated liver disease (ALD) is a major health problem with limited effective treatment options. Alcohol-associated hepatitis (AH) is a subset of severe ALD with a high rate of mortality due to infection, severe inflammation, and ultimately multi-organ failure. There is an urgent need for novel therapeutic approaches to alleviate the human suffering associated with this condition. Resolvin D1 (RvD1) promotes the resolution of inflammation and regulates immune responses. The current study aimed to test the therapeutic efficacy and mechanisms of RvD1-mediated effects on liver injury and inflammation in an experimental animal model that mimics severe AH in humans. Our data demonstrated that mice treated with RvD1 had attenuated liver injury and inflammation caused by EtOH and LPS exposure by limiting hepatic neutrophil accumulation and decreasing hepatic levels of pro-inflammatory cytokines. In addition, RvD1 treatment attenuated hepatic pyroptosis, an inflammatory form of cell death, via downregulation of pyroptosis-related genes such as GTPase family member b10 and guanylate binding protein 2, and reducing cleavage of caspase 11 and gasdermin-D. In vitro experiments with primary mouse hepatocytes and bone marrow-derived macrophages confirmed the effectiveness of RvD1 in the attenuation of pyroptosis. In summary, our data demonstrated that RvD1 treatment provided beneficial effects against liver injury and inflammation in an experimental animal model recapitulating features of severe AH in humans. Our results suggest that RvD1 may be a novel adjunct strategy to traditional therapeutic options for AH patients.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Ying L. Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Eric C. Rouchka
- Department of Computer Science and Engineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Robley Rex Veterans Medical Center, Louisville, KY 40206, USA
- University of Louisville Alcohol Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY 40292, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
25
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Khanmohammadi S, Kuchay MS. Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease. Pharmacol Res 2022; 185:106507. [DOI: 10.1016/j.phrs.2022.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
27
|
Wang H, Li Y, Bian Y, Li X, Wang Y, Wu K, Liu C, Liu Y, Wang X. Potential hepatoprotective effects of Cistanche deserticola Y.C. Ma: Integrated phytochemical analysis using UPLC-Q-TOF-MS/MS, target network analysis, and experimental assessment. Front Pharmacol 2022; 13:1018572. [PMID: 36313288 PMCID: PMC9597371 DOI: 10.3389/fphar.2022.1018572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 10/09/2023] Open
Abstract
Cistanche deserticola Y.C. Ma (CD) possesses hepatoprotective activity, while the active ingredients and involved mechanisms have not been fully explored. The objective of this study was to investigate the chemical composition and hepatoprotective mechanisms of CD. We primarily used ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) to identify the phenylethanoid glycoside (PhG) components of CD. Then, network analysis was used to correlate and predict the pharmacology of the identified active components of PhGs with hepatoprotection. Next, the mechanisms of the core components and targets of action were explored by cellular assays and toll-like receptor 4 (TLR4) target competition assays. Finally, its hepatoprotective effects were further validated in in vivo experiments. The results showed that a total of 34 PhGs were identified based on the UPLC-Q-TOF-MS/MS method. Echinacoside (ECH) was identified as the key ingredient, and TLR4 and nuclear factor-kappa B (NF-κB) were speculated as the core targets of the hepatoprotective effect of CD via network analysis. The cellular assays confirmed that PhGs had significant anti-inflammatory activity. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot indicated that ECH notably reduced the levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as the mRNA expression of TLR4, TNF-α, and IL-6, and decreased the high expression of the TLR4 protein, which in turn downregulated the myeloid differentiation factor 88 (MyD88), p-P65 and TNF-α proteins in the inflammatory model. The target competition experiments suggested that ECH and LPS could competitively bind to the TLR4 receptor, thereby reducing the expression of TLR4 downstream proteins. The results of in vivo studies showed that ECH significantly ameliorated LPS-induced hepatic inflammatory infiltration and liver tissue damage and reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice. Moreover, ECH remarkably inhibited the release of inflammatory factors such as TNF-α, IL-6, IL-1β, and MCP-1 in the serum of mice, exerting the hepatoprotective effect by the TLR4/NF-κB signaling pathway. More importantly, ECH could act as a potential inhibitor of TLR4 and deserves further in-depth study. Our results could provide a basis for exploring the hepatoprotective properties of CD.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Li
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yubei Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Resolvin D1 Prevents Epithelial-to-Mesenchymal Transition and Reduces Collagen Deposition by Stimulating Autophagy in Intestinal Fibrosis. Dig Dis Sci 2022; 67:4749-4759. [PMID: 35013877 DOI: 10.1007/s10620-021-07356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intestinal fibrosis is the most common complication of inflammatory bowel disease; nevertheless, specific therapies are still unavailable. Resolvin D1 (RvD1), a typical endogenous ω-3 fatty acid-derived lipid mediator, has attracted wide attention due to its remarkable anti-fibrosis effects. However, the efficacy and mechanisms of RvD1 in intestinal fibrosis remain unclear. AIM To investigate the protective effect of RvD1 in a dextran sulfate sodium (DSS)-induced intestinal fibrosis model and explore the molecular mechanisms underlying its anti-fibrotic effect. METHODS A DSS-induced intestinal fibrosis model and intestinal epithelial-to-mesenchymal transition (EMT) model were used to observe the efficacy of RvD1, and fibroblasts were stimulated with conditioned medium with or without TGF-β1 to investigate the probable mechanisms of RvD1 in intestinal fibrosis disease. RESULTS Intestinal fibrosis was effectively alleviated by RvD1 in a DSS-induced model, both preventively and therapeutically, and autophagy inhibition-induced EMT in intestinal epithelial cells was significantly suppressed in vivo and in vitro. Furthermore, RvD1 reduced epithelial cell EMT paracrine signaling, which promoted the differentiation of local fibroblasts into myofibroblasts. CONCLUSIONS Our results suggested that RvD1 reduces autophagy-induced EMT in intestinal epithelial cells and ameliorates intestinal fibrosis by disrupting epithelial-fibroblast crosstalk.
Collapse
|
29
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
30
|
Deng KQ, Huang X, Lei F, Zhang XJ, Zhang P, She ZG, Cai J, Ji YX, Li H. Role of hepatic lipid species in the progression of nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2022; 323:C630-C639. [PMID: 35759443 DOI: 10.1152/ajpcell.00123.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease due to the global pandemic of metabolic diseases. Dysregulation of hepatic lipid metabolism plays a central role in the initiation and progression of NAFLD. With the advancement of lipidomics, an increasing number of lipid species and underlying mechanisms associating hepatic lipid components have been revealed. Therefore, the focus of this mini-review is to highlight the links between hepatic lipid species and their mechanisms mediating the pathogenesis of NAFLD. We first summarized the interplay between NAFLD and hepatic lipid disturbances. Next, we focused on reviewing the role of saturated fatty acids, cholesterol, oxidized phospholipids, and their respective intermediates in the pathogenesis of NAFLD. The mechanisms by which monounsaturated fatty acids and other pro-resolving mediators exert protective effects are also addressed. Finally, we further discussed the implication of different analysis approaches in lipidomic. Evolving insights into the pathophysiology of NAFLD will provide the opportunity for drug development.
Collapse
Affiliation(s)
- Ke-Qiong Deng
- Department of Cardiology, Center Hospital of Huanggang, Huanggang, China.,Huanggang Institute of Translation Medicine, Huanggang, China.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuewei Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Hongliang Li
- Huanggang Institute of Translation Medicine, Huanggang, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Yang M, Song XQ, Han M, Liu H. The role of Resolvin D1 in liver diseases. Prostaglandins Other Lipid Mediat 2022; 160:106634. [PMID: 35292355 DOI: 10.1016/j.prostaglandins.2022.106634] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
The liver is a parenchymatous organ closely related to immunity, detoxification and metabolism of the three major nutrients. The inflammatory response is a protective mechanism of the body to eliminate harmful stimuli. However, continuous inflammatory stimulation leads to occurrence of many liver diseases and brings great social burden. Resolvin D1, a member of the specialized pro-resolving lipid mediators family, exerts anti-inflammatory, anti-oxidant stress, anti-fibrosis, anti-apoptotic, and anti-tumor effects by binding to ALX/FPR2 or GPR32. RvD1 plays an important role and has great therapeutic potential in liver diseases, which has been validated in multiple models of preclinical disease. This review will provide a detailed summary of the role of RvD1 in different liver diseases, including acute liver injury, liver ischemia/reperfusion injury, non-alcoholic fatty liver disease, liver fibrosis, and liver cancer, so as to help people have a more comprehensive understanding of RvD1 and promote its further research.
Collapse
Affiliation(s)
- Mei Yang
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xian-Qi Song
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mei Han
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Hui Liu
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
32
|
Zhang Y, Du M, Wang J, Liu P. Astragaloside IV Relieves Atherosclerosis and Hepatic Steatosis via MAPK/NF-κB Signaling Pathway in LDLR−/− Mice. Front Pharmacol 2022; 13:828161. [PMID: 35264962 PMCID: PMC8899310 DOI: 10.3389/fphar.2022.828161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 01/22/2023] Open
Abstract
Astragaloside IV (AS-IV) is the main active compound of Astragalus membranaceus. In this study, we investigated whether AS-IV could attenuate atherosclerosis and hepatic steatosis in LDLR−/−mice and its potential mechanisms. After 12 weeks of high fat diet, the LDLR−/−mice were randomly divided into four groups. Then, the mice were administrated with 0.9% saline or AS-IV (10 mg/kg) or atorvastatin (1.3 mg/kg) for 12 weeks. Serum lipid profiles and inflammatory cytokines were detected by ELISA, hepatic TC and TG by colorimetric enzymatic kits, gene expression by RT-qPCR, plaque sizes by H&E staining, Oil Red O, liver pathology by H&E staining, collagen content by Masson, α-SMA, caspase-3 and NF-κB p65 production by immunofluorescence staining. MAPK/NF-κB pathway and inflammation related proteins were detected by Western Blot. The results showed that AS-IV decreased the levels of serum lipids, reduced plaque area and increased plaque stability in HFD-induced LDLR−/− mice. AS-IV also decreased the levels of inflammatory cytokines in the serum, aortas and liver tissue, and NF-κB p65 in aortic roots. The phosphorylation of JNK, ERK1/2, p38 and NF-κB, and inflammatory proteins (iNOS, VCAM-1and IL-6) was inhibited in AS-IV-treated group. In summary, AS-IV inhibited inflammation to attenuate atherosclerosis and hepatic steatosis via MAPK/NF-κB signaling pathway in LDLR−/− mice.
Collapse
|
33
|
Wang L, Choi HS, Su Y, Ju JH, Heo SY, Yi JJ, Oh BR, Jang YS, Seo JW. The docosahexaenoic acid derivatives, diHEP-DPA and TH-DPA, synthesized via recombinant lipoxygenase, ameliorate disturbances in lipid metabolism and liver inflammation in high fat diet-fed mice. Life Sci 2022; 291:120219. [PMID: 35041834 DOI: 10.1016/j.lfs.2021.120219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023]
Abstract
7S,15R-Dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) and 7S,15R,16S,17S-tetrahydroxy-docosapentaenoic acid (TH-DPA) are two novel lipid mediators derived from docosahexaenoic acid (DHA) that we previously synthesized via combined enzymatic and chemical reactions. In the present study, we investigated the effects of these compounds on disturbances in lipid metabolism and liver inflammation induced by a high fat diet (HFD) in mice. Male BALB/c mice were randomly divided into four groups (n = 10/group): controls, HFD only, HFD + diHEP-DPA, and HFD + TH-DPA. Mice in HFD + diHEP-DPA and HFD + TH-DPA groups were orally administered 20 μg/kg of diHEP-DPA or TH-DPA, respectively. Measurements of adipose accumulation and liver inflammation showed that both diHEP-DPA and TH-DPA decreased adipose tissue mass and liver color depth, as well as total cholesterol, triglycerides, and low-density lipoprotein-cholesterol in the serum of HFD-fed mice compared with mice in the HFD-only group, while elevating high-density lipoprotein-cholesterol. Both of them also decreased hepatic expression of genes encoding lipid synthesis-related proteins (PPARγ, SIRT1, SREBP-1c and FASN) and increased the expression of genes encoding proteins involved in lipid degradation (PPARα and CPT-1) in the liver. Western blotting and quantitative RT-PCR confirmed that diHEP-DPA or TH-DPA administration modulated the expression of inflammation-related genes (TNF-α and IL-6) and inhibited activation of the NF-κB signaling pathway in livers of HFD-fed mice. Taken together, our data indicate that diHEP-DPA and TH-DPA ameliorate liver inflammation and inhibit HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Lifang Wang
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, Republic of Korea; Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Yan Su
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, Republic of Korea; Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jung-Hyun Ju
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, Republic of Korea.
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, Republic of Korea.
| | - Jong-Jae Yi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, Republic of Korea.
| | - Back-Rock Oh
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, Republic of Korea.
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, Republic of Korea.
| |
Collapse
|
34
|
Zeng C, Liu X, Zhu S, Xiong D, Zhu L, Hou X, Zou K, Bai T. Resolvin D1 ameliorates hepatic steatosis by remodeling the gut microbiota and restoring the intestinal barrier integrity in DSS-induced chronic colitis. Int Immunopharmacol 2022; 103:108500. [PMID: 34974401 DOI: 10.1016/j.intimp.2021.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The maintenance of intestinalmucosalbarrier function plays an important role in hepatic steatosis. Increasing evidence has shown that resolvin D1 (RVD1) exerts a potential effect on hepatic steatosis. The aims of this study were to explore the mechanisms of RVD1 on hepatic steatosis based on the gut-liver axis and intestinal barrier function. EXPERIMENTAL APPROACH We established a DSS-induced chronic colitis model to evaluate hepatic steatosis. RVD1 was administered i.p. during the last 4 weeks. The colon and liver samples were stained with hematoxylin and eosin for histopathological analysis. The expression levels of intestinal tight junction genes and inflammatory genes were determined by quantitative PCR. The serum levels of glucose, cholesterol, triglycerides and LPS were measured, and the gut microbiota was analyzed by 16S rRNA gene sequencing. KEY RESULTS RVD1 prevented weight loss, histopathological changes, and elevated levels of inflammatory cytokines. Moreover, RVD1 administration attenuated DSS-induced hepatic steatosis and inflammatory responses in mice. In addition, RVD1 improved intestinal barrier function by increasing levels of tight junction molecules and decreasing the plasma LPS levels. The RVD1-treated mice also showed a different gut microbiota composition compared with found in the mice belonging to the DSS group but similar to that in normal chow diet-fed mice. CONCLUSIONS AND IMPLICATIONS RVD1 treatment ameliorates DSS-induced hepatic steatosis by ameliorating gut inflammation, improving intestinal barrier function and modulating intestinal dysbiosis.
Collapse
Affiliation(s)
- Cui Zeng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinghuang Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siran Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danping Xiong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaifang Zou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Li J, Deng X, Wang S, Jiang Q, Xu K. Resolvin D1 attenuates CCl4 Induced Liver Fibrosis by Inhibiting Autophagy-Mediated HSC activation via AKT/mTOR Pathway. Front Pharmacol 2021; 12:792414. [PMID: 34987404 PMCID: PMC8721195 DOI: 10.3389/fphar.2021.792414] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023] Open
Abstract
Resolvin D1 (RvD1) was previously reported to relieve inflammation and liver damage in several liver diseases, but its potential role in liver fibrosis remains elusive. The aim of our study was to investigate the effects and underlying mechanisms of RvD1 in hepatic autophagy in liver fibrosis. In vivo, male C57BL/6 mice were intraperitoneally injected with 20% carbon tetrachloride (CCl4, 5 ml/kg) twice weekly for 6 weeks to establish liver fibrosis model. RvD1 (100 ng or 300 ng/mouse) was added daily in the last 2 weeks of the modeling period. In vitro, lipopolysaccharide (LPS)-activated LX-2 cells were co-treated with increasing concentrations (2.5-10 nM) of RvD1. The degree of liver injury was measured by detecting serum AST and ALT contents and H&E staining. Hepatic fibrosis was assessed by masson's trichrome staining and metavir scoring. The qRT-PCR, western blot, immunohistochemistry, and immunofluorescence were applied to liver tissues or LPS-activated LX-2 cells to explore the protective effects of RvD1 in liver fibrosis. Our findings reported that RvD1 significantly attenuated CCl4 induced liver injury and fibrosis by decreasing plasma AST and ALT levels, reducing collagen I and α-SMA accumulation and other pro-fibrotic genes (CTGF, TIMP-1 and Vimentin) expressions in mouse liver, restoring damaged histological architecture and improving hepatic fibrosis scores. In vitro, RvD1 also repressed the LPS induced LX-2 cells activation and proliferation. These significant improvements mainly attributed to the inhibiting effect of RvD1 on autophagy in the process of hepatic stellate cell (HSC) activation, as demonstrated by decreased ratio of LC3-II/I and elevated p62 after RvD1 treatment. In addition, using AZD5363 (an AKT inhibitor that activates autophagy) and AZD8055 (an mTOR inhibitor, another autophagy activator), we further verified that RvD1 suppressed autophagy-mediated HSC activation and alleviated CCl4 induced liver fibrosis partly through AKT/mTOR pathway. Overall, these results demonstrate that RvD1 treatment is expected to become a novel therapeutic strategy against liver fibrosis.
Collapse
Affiliation(s)
- Jiahuan Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuhan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Videla LA, Valenzuela R. Targeting resolvins in cholestatic liver injury. Hepatobiliary Surg Nutr 2021; 10:689-691. [PMID: 34760975 DOI: 10.21037/hbsn-2021-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
37
|
Foresight regarding drug candidates acting on the succinate-GPR91 signalling pathway for non-alcoholic steatohepatitis (NASH) treatment. Biomed Pharmacother 2021; 144:112298. [PMID: 34649219 DOI: 10.1016/j.biopha.2021.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is a liver manifestation of metabolic syndrome, with a histological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH). NASH can evolve into progressive liver fibrosis and eventually lead to liver cirrhosis. The pathological mechanism of NASH is multifactorial, involving a series of metabolic disorders and changes that trigger low-level inflammation in the liver and other organs. In the pathogenesis of NASH, the signal transduction pathway involving succinate and the succinate receptor (G-protein-coupled receptor 91, GPR91) regulates inflammatory cell activation and liver fibrosis. This review describes the mechanism of the succinate-GPR91 signalling pathway in NASH and summarizes the drugs that act on this pathway, with the aim of providing a new approach to NASH treatment.
Collapse
|
38
|
Han YH, Lee K, Saha A, Han J, Choi H, Noh M, Lee YH, Lee MO. Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders. Biomol Ther (Seoul) 2021; 29:455-464. [PMID: 34162770 PMCID: PMC8411019 DOI: 10.4062/biomolther.2021.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.
Collapse
Affiliation(s)
- Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeongjin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Abhirup Saha
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haena Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
39
|
Xu Z, Lin S, Gong J, Feng P, Cao Y, Li Q, Jiang Y, You Y, Tong Y, Wang P. Exploring the Protective Effects and Mechanism of Crocetin From Saffron Against NAFLD by Network Pharmacology and Experimental Validation. Front Med (Lausanne) 2021; 8:681391. [PMID: 34179049 PMCID: PMC8219931 DOI: 10.3389/fmed.2021.681391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem but no drug has been approved for its treatment. Animal experiments and clinical trials have demonstrated the beneficial of saffron on NAFLD. However, the bioactive ingredients and therapeutic targets of saffron on NAFLD are unclear. Purpose: This study aimed to identify the bioactive ingredients of saffron responsible for its effects on NAFLD and explore its therapy targets through network pharmacology combined with experimental tests. Methods: Various network databases were searched to identify bioactive ingredients of saffron and identify NAFLD-related targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to enrich functions and molecular pathways of common targets and the STRING database was used to establish a protein-protein interaction network (PPI). The effect of crocetin (CCT) on NAFLD was evaluated in a mouse model of NAFLD by measuring the biomarkers of lipid, liver and renal function, oxidative stress, and inflammation. Liver histopathology was performed to evaluate liver injury. Nuclear factor erythroid-related factor (Nrf2) and hemeoxygenase-1 (HO-1) were examined to elucidate underlying mechanism for the protective effect of saffron against NAFLD. Results: A total of nine bioactive ingredients of saffron, including CCT, with 206 common targets showed therapeutic effects on NAFLD. Oxidative stress and diabetes related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effects of the active bioactive ingredients on NAFLD. Treatment with CCT significantly reduced the activities of aspartate aminotransferase (AST), alanine transaminase (ALT), and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), blood urea nitrogen (BUN), creatinine (CR), and uric acid (UA). CCT significantly increased the activities of superoxide dismutase (SOD), and catalase (CAT). Histological analysis showed that CCT suppressed high-fat diet (HFD) induced fat accumulation, steatohepatitis, and renal dysfunctions. Results of ELISA assay showed that CCT decreased the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and increased the expression of HO-1 and Nrf2. Conclusion: This study shows that CCT is a potential bioactive ingredient of saffron that treats NAFLD. Its mechanism of action involves suppressing of oxidative stress, mitigating inflammation, and upregulating Nrf2 and HO-1 expression.
Collapse
Affiliation(s)
- Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Junjie Gong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yifeng Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuli Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Ya You
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yingpeng Tong
- School of Life Sciences, Taizhou University, Taizhou, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
40
|
Duan J, Song Y, Zhang X, Wang C. Effect of ω-3 Polyunsaturated Fatty Acids-Derived Bioactive Lipids on Metabolic Disorders. Front Physiol 2021; 12:646491. [PMID: 34113260 PMCID: PMC8185290 DOI: 10.3389/fphys.2021.646491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Arachidonic acid (ARA) is an important ω-6 polyunsaturated fatty acid (PUFA), and docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and n-3 docosapentaenoic acid (n-3 DPA) are three well-known ω-3 PUFAs. These fatty acids can be metabolized into a number of bioactive lipids. Eicosanoids derived from ARA have drawn great attention because of their important and complex biofunctions. Although EPA, DHA and n-3 DPA have also shown powerful biofunctions, we have fewer studies of metabolites derived from them than those from ARA. Recently, growing research has focused on the bioaction of ω-3 PUFA-derived metabolites, which indicates their great potential for treating metabolic disorders. Most of the functional studies of these bioactive lipids focused on their anti-inflammatory effects. However, several studies elucidated their direct effects on pancreatic β cells, hepatocytes, adipocytes, skeletal muscle cells, and endothelial cells. These researches revealed the importance of studying the functions of metabolites derived from ω-3 polyunsaturated fatty acids other than themselves. The current review summarizes research into the effects of ω-3 PUFA-derived oxylipins on metabolic disorders, including diabetes, non-alcoholic fatty liver disease, adipose tissue dysfunction, and atherosclerosis.
Collapse
Affiliation(s)
- Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yayue Song
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|