1
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
2
|
Liang Q, Zhang C, Lv P, Huang Y, Zhao H, Jiang S, Xu W. The important role of the Wnt/β-catenin signaling pathway in small molecules mediated gingival mesenchymal stem cells transdifferentiate into neuron-like cells. Arch Oral Biol 2024; 169:106115. [PMID: 39488928 DOI: 10.1016/j.archoralbio.2024.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Given their neural crest origin, gingival mesenchymal stem cells (GMSCs) possess high neurogenic potential, which makes them suitable for cell replacement therapy against neurodegenerative diseases. This study investigated whether GMSCs can be transdifferentiated into neurons in vitro using a protocol involving small molecules VCRFY (VPA, CHIR99021, Repsox, Forskolin, and Y-27632). The regulatory mechanisms of key signaling pathways were also investigated. METHODS Neuronal induction of GMSCs was conducted using a small molecules-based protocol over 7 days, which included the evaluation of cell morphology, proliferation, expressions of neurogenic markers, and intracellular calcium oscillation. The activation of canonical the Wnt signaling pathway was assessed by examining the protein content and subcellular localization of β-catenin. RESULTS Small molecules-treated GMSCs displayed neuronal morphology and increased expression of neurogenic markers, including class III beta-tubulin (TUJ1), neuron-specific enolase (NSE), microtube-associated protein 2 (MAP2), and neurofilament medium (NFM), verified through RT-qPCR, western blotting, and immunocytochemistry. Based on the results of Fluo-4 AM calcium flux assay, small molecules-treated GMSCs exhibited enhanced electrophysiological activity. GMSC proliferation halted after 2 days of treatment. Among the small molecules, CHIR99021 exhibited the highest neuronal induction efficiency. Furthermore, activation of the Wnt/β-catenin signaling pathway augmented neuronal differentiation. CONCLUSIONS Small molecule-based cellular reprogramming can efficiently generate neurons from GMSCs, with Wnt/β-catenin signaling to play a critical role in neuronal induction.
Collapse
Affiliation(s)
- Qiuying Liang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Chuhan Zhang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Peiyi Lv
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Yongmao Huang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Hang Zhao
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China
| | - Shan Jiang
- Department of Periodontics and Oral Medicine, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
| | - Wenan Xu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
| |
Collapse
|
3
|
Liu M, Wu A, Liu J, Huang HW, Li Y, Shi Q, Huang Q, Wang H. Arched microfluidic channel for the promotion of axonal growth performance. iScience 2024; 27:110885. [PMID: 39319262 PMCID: PMC11419798 DOI: 10.1016/j.isci.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Uniformly distributed fluid shear stress can promote axonal growth, aiding in the efficient construction of functional neural interfaces. However, challenges remain in the construction of the micro-scale environment with a uniform fluidic stress distribution. In this study, we designed and fabricated a microfluidic chip with arched-section microfluidic channels (AMCs) to increase primary cortical neuron growth rate and terminal number by constructing a uniform-stress-distributed environment. Inspired by the three-dimensional (3D) microenvironment where cerebrospinal-fluid-contacting neurons are located, the surface curvature of the traditional rectangular-section microfluidic channel (RMC) was adjusted to construct structures with 3D curved surfaces. Compared with those on the RMC chips, the average growth rate of the axons on the AMC chips increased by 8.9% within 19 days, and the average number of terminals increased by 14.9%. This platform provides a structure that can effectively promote neuron growth and has potential in constructing more complex functional neural interfaces.
Collapse
Affiliation(s)
- Menghua Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Anping Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaxin Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hen-Wei Huang
- Laboratory for Translational Engineering, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yang Li
- Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
4
|
Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci 2024; 350:122750. [PMID: 38801982 DOI: 10.1016/j.lfs.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.
Collapse
Affiliation(s)
- Rubén D Castro-Torres
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, 08028 Barcelona, Catalonia, Spain; Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Av. 5 Poniente 1670, 3460000 Talca, Chile
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Jesús Ureña
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miren Ettcheto
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ester Verdaguer
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carme Auladell
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Ahmad S, Attisano L. Wnt5a Promotes Axon Elongation in Coordination with the Wnt-Planar Cell Polarity Pathway. Cells 2024; 13:1268. [PMID: 39120298 PMCID: PMC11312420 DOI: 10.3390/cells13151268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.
Collapse
Affiliation(s)
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| |
Collapse
|
6
|
Xu Z, Angstmann CN, Wu Y, Stefen H, Parić E, Fath T, Curmi PM. Location of the axon initial segment assembly can be predicted from neuronal shape. iScience 2024; 27:109264. [PMID: 38450155 PMCID: PMC10915628 DOI: 10.1016/j.isci.2024.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.
Collapse
Affiliation(s)
- Zhuang Xu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher N. Angstmann
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuhuang Wu
- Infection Analytics Program, Kirby Institute for Infection and Immunity, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Holly Stefen
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Esmeralda Parić
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Thomas Fath
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M.G. Curmi
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Swilley C, Lin Y, Zheng Y, Xu X, Liu M, Jarome T, Hodes GE, Xie H. Sex linked behavioral and hippocampal transcriptomic changes in mice with cell-type specific Egr1 loss. Front Neurosci 2023; 17:1240209. [PMID: 37928724 PMCID: PMC10623684 DOI: 10.3389/fnins.2023.1240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The transcription factor EGR1 is instrumental in numerous neurological processes, encompassing learning and memory as well as the reaction to stress. Egr1 complete knockout mice demonstrate decreased depressive or anxiety-like behavior and impaired performance in spatial learning and memory. Nevertheless, the specific functions of Egr1 in distinct cell types have been largely underexplored. In this study, we cataloged the behavioral and transcriptomic character of Nestin-Cre mediated Egr1 conditional knockout (Egr1cKO) mice together with their controls. Although the conditional knockout did not change nociceptive or anxiety responses, it triggered changes in female exploratory activity during anxiety testing. Hippocampus-dependent spatial learning in the object location task was unaffected, but female Egr1cKO mice did exhibit poorer retention during testing on a contextual fear conditioning task compared to males. RNA-seq data analyses revealed that the presence of the floxed Egr1 cassette or Nestin-Cre driver alone exerts a subtle influence on hippocampal gene expression. The sex-related differences were amplified in Nestin-Cre mediated Egr1 conditional knockout mice and female mice are more sensitive to the loss of Egr1 gene. Differentially expressed genes resulted from the loss of Egr1 in neuronal cell lineage were significantly associated with the regulation of Wnt signaling pathway, extracellular matrix, and axon guidance. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in neuronal cell lineage have distinct impacts on hippocampal gene expression in a sex-specific manner.
Collapse
Affiliation(s)
- Cody Swilley
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
| | - Yuze Zheng
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Min Liu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Timothy Jarome
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Deng S, Shu S, Zhai L, Xia S, Cao X, Li H, Bao X, Liu P, Xu Y. Optogenetic Stimulation of mPFC Alleviates White Matter Injury-Related Cognitive Decline after Chronic Ischemia through Adaptive Myelination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202976. [PMID: 36529961 PMCID: PMC9929132 DOI: 10.1002/advs.202202976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Indexed: 06/07/2023]
Abstract
White matter injury (WMI), which reflects myelin loss, contributes to cognitive decline or dementia caused by cerebral vascular diseases. However, because pharmacological agents specifically for WMI are lacking, novel therapeutic strategies need to be explored. It is recently found that adaptive myelination is required for homeostatic control of brain functions. In this study, adaptive myelination-related strategies are applied to explore the treatment for ischemic WMI-related cognitive dysfunction. Here, bilateral carotid artery stenosis (BCAS) is used to model ischemic WMI-related cognitive impairment and uncover that optogenetic and chemogenetic activation of glutamatergic neurons in the medial prefrontal cortex (mPFC) promote the differentiation of oligodendrocyte precursor cells (OPCs) in the corpus callosum, leading to improvements in myelin repair and working memory. Mechanistically, these neuromodulatory techniques exert a therapeutic effect by inducing the secretion of Wnt2 from activated neuronal axons, which acts on oligodendrocyte precursor cells and drives oligodendrogenesis and myelination. Thus, this study suggests that neuromodulation is a promising strategy for directing myelin repair and cognitive recovery through adaptive myelination in the context of ischemic WMI.
Collapse
Affiliation(s)
- Shiji Deng
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Shu Shu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Lili Zhai
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Shengnan Xia
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Xiang Cao
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Huiya Li
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Xinyu Bao
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Pinyi Liu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Yun Xu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjing210008China
- Jiangsu Provincial Key Discipline of NeurologyNanjing210008China
- Nanjing Neurology Medical CenterNanjing210008China
| |
Collapse
|
9
|
Ros O, Nicol X. Axon pathfinding and targeting: (R)evolution of insights from in vitro assays. Neuroscience 2023; 508:110-122. [PMID: 36096337 DOI: 10.1016/j.neuroscience.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/17/2023]
Abstract
Investigating axonal behaviors while neurons are connecting with each other has been a challenge since the early studies on nervous system development. While molecule-driven axon pathfinding has been theorized by observing neurons at different developmental stages in vivo, direct observation and measurements of axon guidance behaviors required the invention of in vitro systems enabling to test the impact of molecules or cellular extracts on axons growing in vitro. With time, the development of novel in vivo approaches has confirmed the mechanisms highlighted in culture and has led in vitro systems to be adapted for cellular processes that are still inaccessible in intact organisms. We here review the evolution of these in vitro assays, which started with crucial contributions from the Bonhoeffer lab.
Collapse
Affiliation(s)
- Oriol Ros
- Universitat de Barcelona, Department of Cell Biology, Physiology and Immunology, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Xavier Nicol
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
10
|
Khan TA, Guo A, Martin J, Te Chien C, Liu T, Szczurkowska J, Shelly M. Directed mechanisms for apical dendrite development during neuronal polarization. Dev Biol 2022; 490:110-116. [PMID: 35809631 DOI: 10.1016/j.ydbio.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/18/2022]
Abstract
The development of the dendrite and the axon during neuronal polarization underlies the directed flow of information in the brain. Seminal studies on axon development have dominated the mechanistic analysis of neuronal polarization. These studies, many originating from examinations in cultured hippocampal and cortical neurons in vitro, have established a prevalent view that axon formation precedes and is necessary for neuronal polarization. There is also in vivo evidence supporting this view. Nevertheless, the establishment of bipolar polarity and the leading edge, and apical dendrite development in pyramidal neurons in vivo occur when axon formation is prevented. Furthermore, recent mounting evidence suggest that directed mechanisms might mediate bipolar polarity/leading process and subsequent apical dendrite development. In the presence of spatially directed extracellular cues in the developing brain, these events may operate independently of axon forming events. In this perspective we summarize evidence in support of these evolving views in neuronal polarization and highlight recent findings on dedicated mechanisms acting in apical dendrite development.
Collapse
Affiliation(s)
- Tamor A Khan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Alan Guo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Jacqueline Martin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Chia Te Chien
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Tianrui Liu
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Joanna Szczurkowska
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Maya Shelly
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
11
|
McNaughton R, Huo Y, Li G, Ioschpe ADV, Yan L, Man HY, Zhang X. Regulatory Effects of Gradient Microtopographies on Synapse Formation and Neurite Growth in Hippocampal Neurons. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2022; 32:075005. [PMID: 35814808 PMCID: PMC9262107 DOI: 10.1088/1361-6439/ac73d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among approaches aiming toward functional nervous system restoration, those implementing microfabrication techniques allow the manufacture of platforms with distinct geometry where neurons can develop and be guided to form patterned connections in vitro. The interplay between neuronal development and the microenvironment, shaped by the physical limitations, remains largely unknown. Therefore, it is crucial to have an efficient way to quantify neuronal morphological changes induced by physical or contact guidance of the microenvironment. In this study, we first devise and assess a method to prepare anisotropic, gradient poly(dimethylsiloxane) micro-ridge/groove arrays featuring variable local pattern width. We then demonstrate the ability of this single substrate to simultaneously profile the morphologcial and synaptic connectivity changes of primary cultured hippocampal neurons reacting to variable physical conditons, throughout neurodevelopment, in vitro. The gradient microtopography enhanced adhesion within microgrooves, increasing soma density with decreasing pattern width. Decreasing pattern width also reduced dendritic arborization and increased preferential axon growth. Finally, decreasing pattern geometry inhibited presynaptic puncta architecture. Collectively, a method to examine structural development and connectivity in response to physical stimuli is established, and potentially provides insight into microfabricated geometries which promote neural regeneration and repair.
Collapse
Affiliation(s)
- Ryan McNaughton
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Yuda Huo
- Department of Biology, Boston University, Boston, MA, USA
| | - Guicai Li
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | | | - Lei Yan
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Xin Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Čada Š, Bryja V. Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin Cell Dev Biol 2021; 125:26-36. [PMID: 34896020 DOI: 10.1016/j.semcdb.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.
Collapse
Affiliation(s)
- Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
13
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
14
|
Li J, Sun Z, Lv Z, Jiang H, Liu A, Wang M, Tan G, Guo H, Sun H, Wu R, Xu X, Yan W, Jiang Q, Ikegawa S, Shi D. Microtubule Stabilization Enhances the Chondrogenesis of Synovial Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:748804. [PMID: 34746145 PMCID: PMC8564364 DOI: 10.3389/fcell.2021.748804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their multi-directional differentiation potential and are widely applied in cartilage and bone disease. Synovial mesenchymal stem cells (SMSCs) exhibit a high proliferation rate, low immunogenicity, and greater chondrogenic differentiation potential. Microtubule (MT) plays a key role in various cellular processes. Perturbation of MT stability and their associated proteins is an underlying cause for diseases. Little is known about the role of MT stabilization in the differentiation and homeostasis of SMSCs. In this study, we demonstrated that MT stabilization via docetaxel treatment had a significant effect on enhancing the chondrogenic differentiation of SMSCs. MT stabilization inhibited the expression of Yes-associated proteins (YAP) and the formation of primary cilia in SMSCs to drive chondrogenesis. This finding suggested that MT stabilization might be a promising therapeutic target of cartilage regeneration.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiming Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Anlong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Maochun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Heng Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiro Ikegawa
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo, Japan
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
15
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
16
|
El Khouri E, Ghoumid J, Haye D, Giuliano F, Drevillon L, Briand-Suleau A, De La Grange P, Nau V, Gaillon T, Bienvenu T, Jacquemin-Sablon H, Goossens M, Amselem S, Giurgea I. Wnt/β-catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and autism spectrum disorders. Mol Psychiatry 2021; 26:3572-3585. [PMID: 33867523 DOI: 10.1038/s41380-021-01072-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Among the genetic factors playing a key role in the etiology of intellectual disabilities (IDs) and autism spectrum disorders (ASDs), several encode RNA-binding proteins (RBPs). In this study, we deciphered the molecular and cellular bases of ID-ASD in a patient followed from birth to the age of 21, in whom we identified a de novo CSDE1 (Cold Shock Domain-containing E1) nonsense variation. CSDE1 encodes an RBP that regulates multiple cellular pathways by monitoring the translation and abundance of target transcripts. Analyses performed on the patient's primary fibroblasts showed that the identified CSDE1 variation leads to haploinsufficiency. We identified through RNA-seq assays the Wnt/β-catenin signaling and cellular adhesion as two major deregulated pathways. These results were further confirmed by functional studies involving Wnt-specific luciferase and substrate adhesion assays. Additional data support a disease model involving APC Down-Regulated-1 (APCDD1) and cadherin-2 (CDH2), two components of the Wnt/β-catenin pathway, CDH2 being also pivotal for cellular adhesion. Our study, which relies on both the deep phenotyping and long-term follow-up of a patient with CSDE1 haploinsufficiency and on ex vivo studies, sheds new light on the CSDE1-dependent deregulated pathways in ID-ASD.
Collapse
Affiliation(s)
- E El Khouri
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - J Ghoumid
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - D Haye
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - F Giuliano
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - L Drevillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,CHU Caen Normandie, Caen, France
| | - A Briand-Suleau
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | | | - V Nau
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - T Gaillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - T Bienvenu
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | - H Jacquemin-Sablon
- INSERM UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - M Goossens
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - S Amselem
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - I Giurgea
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France. .,Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.
| |
Collapse
|
17
|
Puri D, Ponniah K, Biswas K, Basu A, Dey S, Lundquist EA, Ghosh-Roy A. Wnt signaling establishes the microtubule polarity in neurons through regulation of Kinesin-13. J Cell Biol 2021; 220:212396. [PMID: 34137792 DOI: 10.1083/jcb.202005080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Keerthana Ponniah
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Kasturi Biswas
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| |
Collapse
|
18
|
Canonical Wnt Signaling Pathway on Polarity Formation of Utricle Hair Cells. Neural Plast 2021; 2021:9950533. [PMID: 34122536 PMCID: PMC8166501 DOI: 10.1155/2021/9950533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
As part of the inner ear, the vestibular system is responsible for sense of balance, which consists of three semicircular canals, the utricle, and the saccule. Increasing evidence has indicated that the noncanonical Wnt/PCP signaling pathway plays a significant role in the development of the polarity of the inner ear. However, the role of canonical Wnt signaling in the polarity of the vestibule is still not completely clear. In this study, we found that canonical Wnt pathway-related genes are expressed in the early stage of development of the utricle and change dynamically. We conditionally knocked out β-catenin, a canonical Wnt signaling core protein, and found that the cilia orientation of hair cells was disordered with reduced number of hair cells in the utricle. Moreover, regulating the canonical Wnt pathway (Licl and IWP2) in vitro also affected hair cell polarity and indicated that Axin2 may be important in this process. In conclusion, our results not only confirm that the regulation of canonical Wnt signaling affects the number of hair cells in the utricle but also provide evidence for its role in polarity development.
Collapse
|
19
|
Cheng J, Tsuda M, Okolotowicz K, Dwyer M, Bushway PJ, Colas AR, Lancman JJ, Schade D, Perea-Gil I, Bruyneel AAN, Lee J, Vadgama N, Quach J, McKeithan WL, Biechele TL, Wu JC, Moon RT, Si Dong PD, Karakikes I, Cashman JR, Mercola M. Small-molecule probe reveals a kinase cascade that links stress signaling to TCF/LEF and Wnt responsiveness. Cell Chem Biol 2021; 28:625-635.e5. [PMID: 33503403 PMCID: PMC8140986 DOI: 10.1016/j.chembiol.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/02/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Wnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through β-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal. We used a recently described class of small molecules that binds tubulin to reveal a molecular cascade linking stress signaling through ATM, HIPK2, and p53 to the regulation of TCF/LEF transcriptional activity. These data suggest a mechanism by which mitotic and genotoxic stress can indirectly modulate Wnt responsiveness to exert coherent control over cell shape and renewal. These findings have implications for understanding tissue morphogenesis and small-molecule anticancer therapeutics.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Masanao Tsuda
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Mary Dwyer
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Paul J Bushway
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; University of California, San Diego, San Diego, CA 92093, USA
| | - Alexandre R Colas
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph J Lancman
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dennis Schade
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA; Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, Kiel, Germany
| | - Isaac Perea-Gil
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Jaechol Lee
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Nirmal Vadgama
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Justine Quach
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Wesley L McKeithan
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Travis L Biechele
- Department of Pharmacology, University of Washington, Seattle, WA 98105, USA
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Randall T Moon
- Department of Pharmacology, University of Washington, Seattle, WA 98105, USA
| | - P Duc Si Dong
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - John R Cashman
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark Mercola
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; University of California, San Diego, San Diego, CA 92093, USA; Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
20
|
Ni Y, Liu B, Wu X, Liu J, Ba R, Zhao C. FOXG1 Directly Suppresses Wnt5a During the Development of the Hippocampus. Neurosci Bull 2021; 37:298-310. [PMID: 33389683 PMCID: PMC7954983 DOI: 10.1007/s12264-020-00618-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays key roles in various developmental processes. Wnt5a, which activates the non-canonical pathway, has been shown to be particularly important for axon guidance and outgrowth as well as dendrite morphogenesis. However, the mechanism underlying the regulation of Wnt5a remains unclear. Here, through conditional disruption of Foxg1 in hippocampal progenitors and postmitotic neurons achieved by crossing Foxg1fl/fl with Emx1-Cre and Nex-Cre, respectively, we found that Wnt5a rather than Wnt3a/Wnt2b was markedly upregulated. Overexpression of Foxg1 had the opposite effects along with decreased dendritic complexity and reduced mossy fibers in the hippocampus. We further demonstrated that FOXG1 directly repressed Wnt5a by binding to its promoter and one enhancer site. These results expand our knowledge of the interaction between Foxg1 and Wnt signaling and help elucidate the mechanisms underlying hippocampal development.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Advances in defining signaling networks for the establishment of neuronal polarity. Curr Opin Cell Biol 2020; 63:76-87. [DOI: 10.1016/j.ceb.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
|
22
|
Sonn I, Nakamura M, Renault-Mihara F, Okano H. Polarization of Reactive Astrocytes in Response to Spinal Cord Injury is Enhanced by M2 Macrophage-Mediated Activation of Wnt/β-Catenin Pathway. Mol Neurobiol 2019; 57:1847-1862. [PMID: 31845093 DOI: 10.1007/s12035-019-01851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Understanding the mechanisms of glial scar formation by reactive astrocytes is crucial for elaborating a therapeutic strategy to brain and spinal cord injury. However, the extrinsic mechanisms that drive the polarization of reactive astrocytes, the first step in glial scar formation, remain poorly understood. Here, using an in vitro chemotaxis assay as an experimental model for polarization, we observed that Il4-M2 macrophages are stronger inducers of reactive astrocytes' polarization, compared to naive or M1 macrophages. Then, we showed that both β1-integrin and Wnt/β-catenin pathways in astrocytes are required for this polarization in vitro and in vivo after spinal cord crush injury in mice. These findings provide molecular targets for manipulating the polarization of reactive astrocytes in order to potentially enhance the healing of SCI lesions.
Collapse
Affiliation(s)
- Iki Sonn
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Francois Renault-Mihara
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
23
|
The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem Sci 2019; 45:96-107. [PMID: 31812462 DOI: 10.1016/j.tibs.2019.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
During interphase, filamentous actin, microtubules, and intermediate filaments regulate cell shape, motility, transport, and interactions with the environment. These activities rely on signaling events that control cytoskeleton properties. Recent studies uncovered mechanisms that go far beyond this one-directional flow of information. Thus, the three branches of the cytoskeleton impinge on signaling pathways to determine their activities. We propose that this regulatory role of the cytoskeleton provides sophisticated mechanisms to control the spatiotemporal output and the intensity of signaling events. Specific examples emphasize these emerging contributions of the cytoskeleton to cell physiology. In our opinion, further exploration of these pathways will uncover new concepts of cellular communication that originate from the cytoskeleton.
Collapse
|
24
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019; 593:1654-1674. [PMID: 31218672 PMCID: PMC6772062 DOI: 10.1002/1873-3468.13502] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New TechnologiesUniversity of WarsawPoland
| | - Nikola Brożko
- Centre of New TechnologiesUniversity of WarsawPoland
| | | | | | | | | | | | | |
Collapse
|
25
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019. [PMID: 31218672 DOI: 10.1002/1873−3468.13502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New Technologies, University of Warsaw, Poland
| | - Nikola Brożko
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | - Kamil Koziński
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | | |
Collapse
|