1
|
Chen Y, Fan Z, Luo Z, Kang X, Wan R, Li F, Lin W, Han Z, Qi B, Lin J, Sun Y, Huang J, Xu Y, Chen S. Impacts of Nutlin-3a and exercise on murine double minute 2-enriched glioma treatment. Neural Regen Res 2025; 20:1135-1152. [PMID: 38989952 PMCID: PMC11438351 DOI: 10.4103/nrr.nrr-d-23-00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/21/2023] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00029/figure1/v/2024-07-06T104127Z/r/image-tiff Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients, with evidence suggesting exercise may reduce mortality risks and aid neural regeneration. The role of the small ubiquitin-like modifier (SUMO) protein, especially post-exercise, in cancer progression, is gaining attention, as are the potential anti-cancer effects of SUMOylation. We used machine learning to create the exercise and SUMO-related gene signature (ESLRS). This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers. We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers, specifically highlighting how murine double minute 2 (MDM2), a component of the ESLRS, can be targeted by nutlin-3. This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation. Using comprehensive CRISPR screening, we validated the effects of specific ESLRS genes on low-grade glioma progression. We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation. Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway. Its efficacy decreased with MDM2 overexpression, and this was reversed by Nutlin-3a or exercise. Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation. Notably, both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells. These results suggest the potential for Nutlin-3a, an MDM2 inhibitor, with physical exercise as a therapeutic approach for glioma management. Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise, natural products, and immune regulation in cancer treatment.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopedic Surgery, Hainan Province Clinical Medical Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, China
| | - Zhiwen Luo
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Department of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renwen Wan
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiebin Huang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shiyi Chen
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Bai K, Long Y, Yuan F, Huang X, Liu P, Hou Y, Zou X, Jiang T, Sun J. Hedyotis diffusa injection modulates the ferroptosis in bladder cancer via CAV1/JUN/VEGFA. Int Immunopharmacol 2025; 147:113925. [PMID: 39765005 DOI: 10.1016/j.intimp.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Hedyotis diffusa Willd. (HDW), a traditional Chinese medicinal plant, exhibits a variety of pharmacological effects and has anticancer potential for a wide range of cancer types; Ferroptosis is a non-apoptosis-regulated cell death induced by iron accumulation and subsequent lipid peroxidation; and there is currently an increasing interest in the therapeutic role of ferroptosis in cancer. However, the effects of HDW on bladder cancer and its underlying molecular mechanisms remain largely unknown. In this study, a combination of in vivo and in vitro experiments, network pharmacology and data mining methods were used to investigate the effects of HDW on BLCA. The results showed that HDW exerted its anticancer activity by inducing ferroptosis in bladder cancer cells. Subsequently, we demonstrated for the first time that HDW induced ferroptosis in vitro and in vivo. To further explore the possible targets of HDW-induced ferroptosis in bladder cancer, we performed network pharmacological analyses, transcriptomic analyses, and single-cell analyses; through integrative analyses, we identified three key pivotal genes associated with iron death, CAV1, VEGFA, and JUN.Mechanistically, we showed that CAV1, VEGFA and JUN are key determinants of HDW-induced ferroptosis in BLCA. Knockdown of target genes altered the anticancer effects of HDW in 5637 and T24 cells. In conclusion, our data show for the first time that HDW exerts its anticancer effects on BLCA through CAV1, VEGFA and JUN gene-induced ferroptosis. This is expected to provide a promising compound for bladder cancer therapy.
Collapse
Affiliation(s)
- Kaiping Bai
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Yanxi Long
- Department of Anesthesiology, International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Fei Yuan
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Xiaoling Huang
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Pengtao Liu
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Tao Jiang
- Department of Andrology and Sexual Medicine, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116000, China.
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| |
Collapse
|
3
|
Wen F, Ling H, Ran R, Li X, Wang H, Liu Q, Li M, Yu T. LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid. Transl Oncol 2025; 52:102256. [PMID: 39733744 PMCID: PMC11743812 DOI: 10.1016/j.tranon.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes ferroptosis through the incorporating polyunsaturated fatty acids into membrane phospholipids, however, its role in serous ovarian cancer remains unclear. Here explored cancer proliferation and metastasis after modulating LPCAP3. METHODS LPCAT3 protein in ovarian cancer tissues was detected using bioinformatic and immunohistoche mical assays. Cell behaviors were observed after up- or down-regulating LPCAT3. Lipid metabolites were determined, and then the pathway enrichment analysis was performed. RESULTS The expression level of LPCAT3 in serous ovarian cancer tissues was lower than that in other types of ovarian cancer, and high expression was associated with a longer survival time. Overexpressing LPCAT3 reduced cell proliferation, migration and invasion via enhancing ferroptosis and decreasing the survival signaling; these behaviors were enhanced in LPCAT3-downknocked cells, where a higher abundance of arachidonic acid was observed followed by up-regulation of the downstream survival signaling. In vivo, up-regulation of LPCAT3 decreased tumor growth, but down-regulation enhanced tumor growth and metastasis. CONCLUSIONS LPCAT3 modulated metabolism of arachidonic acid, thereby regulating ferroptosis and the survival signaling to determine cancer growth and metastasis.
Collapse
Affiliation(s)
- Fang Wen
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongjian Ling
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Ran
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinya Li
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Houmei Wang
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qianfen Liu
- Women and Children's Hospital, Chongqing Medical University (Chongqing Health Center for Women and Children), China
| | - Min Li
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Tinghe Yu
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Huang C, Xiao X, Ai W, Huang H, Xu X, Zhou X, Wang M, Zhang Z, Wang Y, Chunfang G. HPV-16 E6 mutation and viral integration related host DNA methylation implicate the development and progression of cervical cancer. Infect Dis (Lond) 2025; 57:66-80. [PMID: 39154329 DOI: 10.1080/23744235.2024.2391538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND HPV-16 infection and viral-host integration are the most important risk factors for cervical cancer (CC). The aim of this study is to develop a new molecular strategy integrated both the viral and host genome variations identifying and monitoring CC. METHOD A total of 312 methylation and 538 RNA-seq datasets were collected from public databases to identify differentially methylated and expressed genes. HPV associated virus integration sites (VISs) were analysed using the ViMIC database. From September 2020 to August 2021, the 70 HPV-16 positive cases retrospectively collected from multi-centre cohorts were subjected to HPV-16 E6 deep sequencing and PCR-based host gene (ASTN1, DLX1, ITGA4, RXFP3, SOX17, ZNF671) methylation detection. RNAseq and expression validation (NNF671) were performed in C-33A cell line harbouring HPV D32E. Lasso and logistic regression algorithm were used to construct the CC diagnostic model. RESULTS A positive correlation was observed between the average methylation level of CC patients and their pathological features including tumour stage (p = 0.0077) and HPV subtype (p < 0.001). ZNF671 was identified as a CC-specific methylation marker, with an impressive 93% sensitivity. Both HPV-16 D32E mutation and integration of HPV-16 down-regulated the ZNF671 expression. Finally, a CC diagnostic nomogram was developed by integrating ZNF671 methylation level and HPV E6 mutation feature, yielding an exceptional AUC of 0.997 (95% CI: 0.934-1.000). CONCLUSIONS Our study demonstrated HPV viral mutations are closely related to host gene epigenetic alterations in CC. Integration of the viral and host genetic information might be a new promising strategy for CC screening.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenchao Ai
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Honglian Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuewen Xu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zeyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Wang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao Chunfang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Shao C, Xia W, Liu Y. Bioinformatic Analysis and Molecular Docking Identify Isorhamnetin Is a Candidate Compound in the Treatment of Pulmonary Artery Hypertension. Anatol J Cardiol 2024; 29:52-65. [PMID: 39605239 PMCID: PMC11793806 DOI: 10.14744/anatoljcardiol.2024.4723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The current study aims to identify the key pathways and potential therapeutic targets for pulmonary arterial hypertension (PAH) and to further evaluate the anti-PAH effects of isorhamnetin. METHODS The dataset of gene expression profiling for PAH (GSE113439) was downloaded from the gene expression omnibus (GEO) database. Isorhamnetin target genes were extracted from the comparative toxicogenomics database (CTD). Various bioinformatics methods were employed to identify the core pathways associated with PAH and potential intervention targets. Molecular docking was conducted between the interacting target and the candidate compound, isorhamnetin. RESULTS One thousand nine hundred sixty-two upregulated genes and 642 downregulated genes were identified. Molecular complex detection analyses revealed that the significant biological processes associated with upregulated genes included DNA damage response, mitotic cell cycle, and chromosome organization. In contrast, the signifi ant biological processes related to downregulated genes encompassed cellular response to growth factor stimulus, response to growth factor, and blood vessel development. Immune infilt ation analysis indicated that PAH is associated with signifi ant changes in the distribution of immune cells and differential expression of immune checkpoints. Furthermore, 58 isorhamnetin targets were extracted from the CTD, and we identified 1 interacting gene, NFE2L2, among the differentially expressed genes (DEGs), DEGs related to ferroptosis, and isorhamnetin targets. Isorhamnetin demonstrated strong affinities with vascular endothelial growth factor (VEGF) receptors and transcription factors (ATM and ZNF24) associated with VEGFs, as well as the ferroptosis protein NFE2L2. CONCLUSIONS Pulmonary arterial hypertension is characterized by a series of abnormalities in downstream molecular signaling pathways, including DNA damage, immune dysregulation, VEGF signaling deficienc , and the ferroptosis process. These may represent the core pathophysiological mechanisms of PAH. Ferroptosis-related genes, such as NFE2L2 and TF (ATM, ZNF24) associated with VEGFs, are potential therapeutic targets that contribute to the mechanisms mentioned above. Isorhamnetin is a promising candidate compound for the treatment of PAH.
Collapse
Affiliation(s)
- Chen Shao
- Department of Nursing Science, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Wei Xia
- Department of Pharmacology, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Yang Liu
- Department of Internal and Pediatrics, School of Clinical Medicine, Qilu Medical University, Zibo, Shandong, China
| |
Collapse
|
6
|
Veglia Tranchese R, Battista S, Cerchia L, Fedele M. Ferroptosis in Cancer: Epigenetic Control and Therapeutic Opportunities. Biomolecules 2024; 14:1443. [PMID: 39595619 PMCID: PMC11592303 DOI: 10.3390/biom14111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical pathway in cancer biology. This review delves into the epigenetic mechanisms that modulate ferroptosis in cancer cells, focusing on how DNA methylation, histone modifications, and non-coding RNAs influence the expression and function of essential genes involved in this process. By unraveling the complex interplay between these epigenetic mechanisms and ferroptosis, the article sheds light on novel gene targets and functional insights that could pave the way for innovative cancer treatments to enhance therapeutic efficacy and overcome resistance in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council—CNR, 80131 Naples, Italy; (R.V.T.); (S.B.); (L.C.)
| |
Collapse
|
7
|
Song Y, Zhang Q. Development of a Novel Risk Signature for Predicting the Prognosis and Immunotherapeutic Response of Prostate Cancer by Integrating Ferroptosis and Immune-Related Genes. Mol Biotechnol 2024:10.1007/s12033-024-01293-5. [PMID: 39466353 DOI: 10.1007/s12033-024-01293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/09/2024] [Indexed: 10/30/2024]
Abstract
Ferroptosis and immune response correlation studies have not been reported in prostate cancer (PCa), and the main goal of this paper is to identify biomarkers that can be used for early diagnosis of prostate cancer. Data on PCa were retrieved from the TCGA and MSKCC2010 databases. Thereafter, the differentially expressed ferroptosis-related genes (DE-FRGs: ACSF2) and immune-related genes (DE-IRGs: ANGPT1, NPPC, and PTGDS) were identified using the "limma" package. Additionally, we used univariate and multivariate Cox regression analyses to obtain biochemical relapse (BCR)-free survival-related genes and construct a risk signature. Patients with high-risk scores were characterized by poor BCR-free survival, relatively low immune cell abundance, and comparably weak expression of immune checkpoint molecules. Moreover, gene set variation analysis (GSVA) was performed to explore the biological pathways related to the risk signature. Single sample gene set enrichment analysis (ssGESA) was applied to evaluate the status of immune cells in patients with PCa, which demonstrated that the risk score was intimately affiliated with immune response and cancer pathways. Ultimately, the connection between the risk score and response of PCa patients to immunotherapy was appraised using the TIDE algorithm. The TIDE algorithm implied that the high-risk score PCa population might benefit more from immunotherapy regimens. Finally, qRT-PCR were used to evaluate the expression of DE-FRGs and DE-IRGs in PCa cell and normal prostate epithelial cells. The result of qRT-PCR showed that the mRNA expression levels of ACSF2, ANGPT1, NPPC, and PTGDS in normal prostate epithelial cell were higher than that in PCa cells. Therefore, a risk score model was generated based on one DE-FRG and three DE-IRGs, which could predict the BCR-free survival and response of immunotherapy for patients with PCa.
Collapse
Affiliation(s)
- Yang Song
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Qiang Zhang
- Department of Urolithology, Ward 1, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China.
| |
Collapse
|
8
|
Liu N, Wang Q, Zhu P, He G, Li Z, Chen T, Yuan J, La T, Tian H, Li Z. DHX34 as a promising biomarker for prognosis, immunotherapy and chemotherapy in Pan-Cancer: A Comprehensive Analysis and Experimental Validation. J Cancer 2024; 15:6594-6615. [PMID: 39668816 PMCID: PMC11632995 DOI: 10.7150/jca.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background: As a member of the DExD/H-box RNA helicase family, DHX34 has demonstrated a significant correlation with the development of multiple disorders. Nevertheless, a comprehensive investigation between DHX34 and pan-cancer remains unexplored. Methods: We analyzed the value of DHX34 in pan-cancer based on some databases, such as The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and The Human Protein Atlas (HPA) by use the R language as well as some online analysis tools, including STRING, TISIDB, TISCH2. And based on our samples we performed Western blot (WB), qPCR and immunohistochemical staining (IHC) experiments. Results: DHX34 was highly expressed in most tumors, including Liver Hepatocellular Carcinoma (LIHC), compared to corresponding normal tissues. Among cervical cancers, DHX34 mutation frequency was the highest. Intriguingly, a positive correlation was observed between DHX34 expression and Mutational Burden (TMB) across 12 tumor types, and Microsatellite Instability (MSI) across 10 tumor types. Remarkably, DHX34 exhibited a favorable diagnostic value in a multitude of tumors. High expression of DHX34 is associated with poor prognosis in tumors such as adrenocortical carcinoma (ACC), renal papillary cell carcinoma (KIRP), low-grade glioma (LGG), and LIHC. Correlation analysis indicated that DHX34 expression correlated with clinicopathological features in a variety of tumors. The Protein-Protein Interaction (PPI) network and GSCALite database suggested that DHX34 and its ten co-expression genes might promote cancer progression by regulating the cell cycle. Gene Set Enrichment Analysis (GSEA) results further showed that DHX34 was positively correlated with pathways such as cell cycle, mitosis, and gene transcription regulation. The TISIDB database showed that DHX34 expression was closely associated with immune infiltration. Based on the TISCH2 database, we found that DHX34 was expressed in a number of immune cells, with relatively high expression in monocyte macrophages in LIHC. Conclusions: In summary, our study found that DHX34 is highly expressed in pan-cancer and has diagnostic and prognostic value. Targeting DHX34 may improve the therapeutic efficacy of immunotherapy and chemotherapy in a multitude of tumors.
Collapse
Affiliation(s)
- Nanbin Liu
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Wang
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Pengpeng Zhu
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gaixia He
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeyu Li
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Ting Chen
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Jianing Yuan
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Ting La
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Hongwei Tian
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Zhang W, Zheng Z, Wang T, Yang X, Zhao J, Zhong Y, Peng X, Zhou Y. Succinylated Type I Collagen Regulates Ferroptosis to Attenuate Skin Photoaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56744-56761. [PMID: 39392263 DOI: 10.1021/acsami.4c11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
During the process of photoaging in the skin, Succinylated type I collagen has a significant effect on reversing the damage caused by UVB radiation, with the regulation of cellular ferroptosis being one of its important pathophysiological mechanisms. Specifically, Succinylated type I collagen reduces the expression of key cell cycle regulators P16, P21, and P53, as well as the ferroptosis-related factor Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), induced by UVB radiation in cells and tissues. Meanwhile, it increases the expression of key factors Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11), which inhibit ferroptosis. Additionally, our study also reveals the impact of Succinylated type I collagen on the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) in cells and tissues, directly affecting the cells' ability to cope with oxidative stress. This further suggests that Succinylated type I collagen may improve skin photoaging through various pathways, including regulating ferroptosis, antioxidation, promoting collagen synthesis, protecting the skin barrier, reducing pigmentation, and inhibiting inflammatory responses, contributing to maintaining healthy and youthful skin.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Zetai Zheng
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Xiangjie Yang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Guangdong Medical University, Dongguan 523808, China
| | - Yuesong Zhong
- The Second Clinical Medical College of Guangdong Medical University, Dongguan 523808, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
10
|
Ou L, Liu H, Peng C, Zou Y, Jia J, Li H, Feng Z, Zhang G, Yao M. Helicobacter pylori infection facilitates cell migration and potentially impact clinical outcomes in gastric cancer. Heliyon 2024; 10:e37046. [PMID: 39286209 PMCID: PMC11402937 DOI: 10.1016/j.heliyon.2024.e37046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Gastric cancer is a significant health concern worldwide. Helicobacter pylori (HP) infection is associated with gastric cancer risk, but differences between HP-infected and HP-free gastric cancer have not been studied sufficiently. The objective of this study was to investigate the effects of HP infection on the viability and migration of gastric cancer cells and identify potential underlying genetic mechanisms as well as their clinical relevance. Cell counting kit-8, lactate dehydrogenase, wound healing, and transwell assay were applied in the infection model of multiple clones of HP and multiple gastric cancer cell lines. Genes related to HP infection were identified using bioinformatics analysis and subsequently validated using real-time quantitative PCR. The association of these genes with immunity and drug sensitivity of gastric cancer was analyzed. Results showed that HP has no significant impact on viability but increases the migration of gastric cancer cells. We identified 1405 HP-upregulated genes, with their enriched terms relating to cell migration, drug, and immunity. Among these genes, the 82 genes associated with survival showed a significant impact on gastric cancer in consensus clustering and LASSO prognostic model. The top 10 hub HP-associated genes were further identified, and 7 of them were validated in HP-infected cells using real-time quantitative PCR, including ERBB4, DNER, BRINP2, KCTD16, MAPK4, THPO, and VSTM2L. The overexpression experiment showed that KCTD16 medicated the effect of HP on gastric cancer migration. Our findings suggest that HP infection may enhance the migratory potential of gastric cancer cells and these genes might be associated with immunity and drug sensitivity of gastric cancer. In human subjects with gastric cancer, HP presence in tumors may affect migration, immunity, and drug sensitivity.
Collapse
Affiliation(s)
- Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hengrui Liu
- Cancer Institute, Jinan University, Guangzhou, China
- Tianjin Yinuo Biomedical Co., Ltd, Tianjin, China
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junwei Jia
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Hui Li
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
11
|
Jiang A, Liu W, Liu Y, Hu J, Zhu B, Fang Y, Zhao X, Qu L, Lu J, Liu B, Qi L, Cai C, Luo P, Wang L. DCS, a novel classifier system based on disulfidptosis reveals tumor microenvironment heterogeneity and guides frontline therapy for clear cell renal carcinoma. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:263-279. [PMID: 39281723 PMCID: PMC11401502 DOI: 10.1016/j.jncc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Emerging evidence suggests that cell deaths are involved in tumorigenesis and progression, which may be treated as a novel direction of cancers. Recently, a novel type of programmed cell death, disulfidptosis, was discovered. However, the detailed biological and clinical impact of disulfidptosis and related regulators remains largely unknown. Methods In this work, we first enrolled pancancer datasets and performed multi-omics analysis, including gene expression, DNA methylation, copy number variation and single nucleic variation profiles. Then we deciphered the biological implication of disulfidptosis in clear cell renal cell carcinoma (ccRCC) by machine learning. Finally, a novel agent targeting at disulfidptosis in ccRCC was identified and verified. Results We found that disulfidptosis regulators were dysregulated among cancers, which could be explained by aberrant DNA methylation and genomic mutation events. Disulfidptosis scores were depressed among cancers and negatively correlated with epithelial mesenchymal transition. Disulfidptosis regulators could satisfactorily stratify risk subgroups in ccRCC, and a novel subtype, DCS3, owning with disulfidptosis depression, insensitivity to immune therapy and aberrant genome instability were identified and verified. Moreover, treating DCS3 with NU1025 could significantly inhibit ccRCC malignancy. Conclusion This work provided a better understanding of disulfidptosis in cancers and new insights into individual management based on disulfidptosis.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baohua Zhu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xuenan Zhao
- Center for Translational Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Lu
- Vocational Education Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
12
|
Wang L, Wu Z, Wang Y, Chen C, Li Y, Dong H, Yao T, Jin G, Wang Z. TYMS Knockdown Suppresses Cells Proliferation, Promotes Ferroptosis via Inhibits PI3K/Akt/mTOR Signaling Pathway Activation in Triple Negative Breast Cancer. Cell Biochem Biophys 2024; 82:2717-2726. [PMID: 38961034 DOI: 10.1007/s12013-024-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by a grim prognosis and numerous challenges. The objective of our study was to examine the role of thymidylate synthase (TYMS) in TNBC and its impact on ferroptosis. The expression of TYMS was analyzed in databases, along with its prognostic correlation. TYMS positive expression was identified through immunohistochemistry (IHC), while real-time quantitative PCR (qRTPCR) was employed to measure TYMS mRNA levels in various cell lines. Western blotting was utilized to assess protein expression. Cell proliferation, mobility, apoptosis, and reactive oxygen species (ROS) levels were evaluated using CCK8, wound scratch healing assay, transwell assay, and flow cytometry, respectively. Additionally, a tumor xenograft model was established in BALB/c nude mice for further investigation. Tumor volume and weight were measured, and histopathological analysis using hematoxylin and eosin (H&E) staining was conducted to assess tumor tissue changes. IHC staining was employed to detect the expression of Ki67 in tumor tissues. High expression of TYMS was observed in TNBC and was found to be correlated with poor prognosis in patients. Among various cell lines, TYMS expression was highest in BT549 cells. Knockdown of TYMS resulted in suppression of cell proliferation and mobility, as well as promotion of apoptosis. Furthermore, knockdown of TYMS led to increased accumulation of ROS and Fe2+ levels, along with upregulation of ACLS4 expression and downregulation of glutathione peroxidase 4 (GPX4) expression. In vivo studies showed that knockdown of TYMS inhibited tumor growth. Additionally, knockdown of TYMS was associated with inhibition of mTOR, p-PI3K, and p-Akt expression. Our research showed that the knockdown of TYMS suppressed the TNBC progression by inhibited cells proliferation via ferroptosis. Its underlying mechanism is related to the PI3K /Akt pathway. Our study provides a novel sight for the suppression effect of TYMS on TNBC.
Collapse
Affiliation(s)
- Lin Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Zheyi Wu
- Department of General Surgery, Huangshan City People's Hospital, Huangshan, 245000, China
| | - Yanyan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Chunchun Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Yulong Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Huiming Dong
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Tingjing Yao
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Gongsheng Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Zhenjie Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China.
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| |
Collapse
|
13
|
Han F, Chen S, Zhang K, Zhang K, Wang M, Wang P. Targeting Nrf2/PHKG2 axis to enhance radiosensitivity in NSCLC. NPJ Precis Oncol 2024; 8:183. [PMID: 39169204 PMCID: PMC11339382 DOI: 10.1038/s41698-024-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/07/2024] [Indexed: 08/23/2024] Open
Abstract
While ferroptosis shows promise in anti-cancer strategy, the molecular mechanisms behind this process remain poorly understood. Our research aims to highlight the regulation of radiotherapy-induced ferroptosis in non-small cell lung cancer (NSCLC) via the NRF2/PHKG2 axis-mediated mechanism. To identify ferroptosis-associated genes associated with radioresistance in NSCLC, this study employed high-throughput transcriptome sequencing and Lasso risk regression analysis. Clinical samples were analyzed to confirm PHKG2 expression changes before and after radiotherapy. The study further examined ferritinophagy-related factors, intracellular iron levels, mitochondrial function, and ferroptosis in NSCLC cells undergoing radiation exposure to explore the effect of PHKG2 on radiosensitivity or radioresistance. The research also demonstrated the transcriptional inhibition of PHKG2 by NRF2 and created in situ transplantation tumor models of NSCLC to examine the role of NRF2/PHKG2 axis in NSCLC radiosensitivity and resistance in vivo. The Lasso risk regression model that incorporated ferroptosis-associated genes effectively predicted the prognosis of patients with NSCLC. Radiotherapy-sensitive tissues exhibited an increased expression of PHKG2. Overexpression of PHKG2 led to elevated intracellular iron levels by promoting ferritinophagy and increased mitochondrial stress-dependent ferroptosis induced by radiotherapy. PHKG2 transcription repression was achieved through NRF2. The FAGs-Lasso risk regression model can accurately predict the prognosis of NSCLC patients. Targeting Nrf2 upregulates the expression of PHKG2 and reverses radiotherapy resistance in NSCLC by promoting iron autophagy and inducing mitochondrial dysfunction, thereby increasing radiotherapy sensitivity.
Collapse
Affiliation(s)
- Fushi Han
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Kangwei Zhang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China
| | - Kunming Zhang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Meng Wang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
14
|
Wang Z, Huang J, MinYang, Fu L, Liu S, Huang J, Han J, Zhao X. Identification of the ferroptosis-related prognostic gene signature in mesothelioma. Gene 2024; 919:148498. [PMID: 38670397 DOI: 10.1016/j.gene.2024.148498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Mesothelioma, an uncommon yet highly aggressive malignant neoplasm, presents challenges in the effectiveness of current therapeutic approaches. Ferroptosis, a non-apoptotic mechanism of cellular demise, exhibits a substantial association with the progression of diverse cancer forms. It is important to acknowledge that there exists a significant association between ferroptosis and the advancement of various forms of cancer. Nevertheless, the precise role of ferroptosis regulatory factors within the context of mesothelioma remains enigmatic. In our investigation, we initially scrutinized the prognostic significance of 24 ferroptosis regulatory factors in the realm of mesothelioma. Our observations unveiled that heightened expression levels of CARS1, CDKN1A, TFRC, FANCD2, FDFT1, HSPB1, SLC1A5, SLC7A11, coupled with reduced DPP4 expression, were indicative of an unfavorable prognosis. Built upon the nine previously discussed prognostic genes, the ferroptosis prognostic model offers a reliable means to forecast mesothelioma patients' survival with a substantial degree of precision. Furthermore, a notable correlation emerged between these prognostic ferroptosis regulators and parameters such as immune cell infiltration, tumor mutation burden, microsatellite instability, and PD-L1 expression in the context of mesothelioma. Within this cadre of nine ferroptosis regulatory factors with prognostic relevance, FANCD2 exhibited the most pronounced prognostic influence, as elucidated by our analyses. Subsequently, we executed a validation process employing clinical specimens sourced from our institution, thus confirming that heightened FANCD2 expression is a discernible harbinger of an adverse prognosis in the context of mesothelioma. In vitro experiments revealed that knocking down FANCD2 markedly suppressed the proliferation, migration, and ability of mesothelioma cells to attract immune cells. Furthermore, our findings also showed that reducing FANCD2 levels heightened the vulnerability of mesothelioma cells to inducers of ferroptosis. Furthermore, an extensive pan-cancer analysis uncovered a robust association between FANCD2 and the gene expression linked to immune checkpoints, thereby signifying an adverse prognosis across a broad spectrum of cancer types. Additional research is warranted to validate these findings.
Collapse
Affiliation(s)
- Zairui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jialin Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - MinYang
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liren Fu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shijie Liu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianghua Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Jingjing Han
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Xiaohui Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, 516621.
| |
Collapse
|
15
|
Liu S, Zhang P, Wu Y, Zhou H, Wu H, Jin Y, Wu D, Wu G. SLC25A19 is a novel prognostic biomarker related to immune invasion and ferroptosis in HCC. Int Immunopharmacol 2024; 136:112367. [PMID: 38823177 DOI: 10.1016/j.intimp.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
SLC25A19 is a mitochondrial thiamine pyrophosphate (TPP) carrier that mediates TPP entry into the mitochondria. SLC25A19 has been recognized to play a crucial role in many metabolic diseases, but its role in cancer has not been clearly reported. Based on clinical data from The Cancer Genome Atlas (TCGA), the following parameters were analyzed among HCC patients: SLC25A19 expression, enrichment analyses, immune infiltration, ferroptosis and prognosis analyses. In vitro, the SLC25A19 high expression was validated by qRT-PCR and Immunohistochemistry. Subsequently, a series of cell function experiments, including CCK8, EdU, clone formation, trans-well and scratch assays, were conducted to illustrate the effect of SLC25A19 on the growth and metastasis of cancer cells. Meanwhile, indicators related to ferroptosis were also detected. SCL25A19 is highly expressed in HCC and predicts a poor prognosis. Elevated SLC25A19 expression in HCC patients was markedly associated with T stage, pathological status (PS), tumor status (TS), histologic grade (HG), and AFP. Our results indicate that SLC25A19 has a generally good prognosis predictive and diagnostic ability. The results of gene enrichment analyses showed that SLC25A19 is significantly correlated with immune infiltration, fatty acid metabolism, and ferroptosis marker genes. In vitro experiments have confirmed that silencing SLC25A19 can significantly inhibit the proliferation and migration ability of cancer cells and induce ferroptosis in HCC. In conclusion, these findings indicate that SLC25A19 is novel prognostic biomarker related to immune invasion and ferroptosis in HCC, and it is an excellent candidate for therapeutic target against HCC.
Collapse
Affiliation(s)
- Shiqi Liu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Pengjie Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Yubo Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Haonan Zhou
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Haomin Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Yifan Jin
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Di Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Gang Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
16
|
Yang K, Nong J, Xie H, Wan Z, Zhou X, Liu J, Qin C, Luo J, Zhu G, Peng T. DPF2 overexpression correlates with immune infiltration and dismal prognosis in hepatocellular carcinoma. J Cancer 2024; 15:4668-4685. [PMID: 39006087 PMCID: PMC11242344 DOI: 10.7150/jca.97437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Double plant homeodomain finger 2 (DPF2), belonging to the d4 family of structural domains, has been associated with various human malignancies. However, its impact on hepatocellular carcinoma (HCC) remains unclear. The objective of this study is to elucidate the role of DPF2 in the diagnosis and prognosis of HCC. Methods: DPF2 gene expression in HCC and adjacent tissues was analyzed using Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, validated by immunohistochemical staining of Guangxi specimens and data from the Human Protein Atlas (HPA). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to identify DPF2's potential pathways and functions in HCC. DPF2's mutation and methylation statuses were assessed via cBioPortal and MethSurv. The association between DPF2 and immune infiltration was investigated by TIMER. The prognostic value of DPF2 in HCC was established through Kaplan-Meier and Cox regression analyses. Results: DPF2 levels were significantly higher in HCC than normal tissues (p<0.001), correlating with more severe HCC features (p<0.05). Higher DPF2 expression predicted poorer overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). DPF2 involvement was noted in critical signaling pathways including the cell cycle and Wnt. It also correlated with T helper cells, Th2 cells, and immune checkpoints like CTLA-4, PD-1, and PD-L1. Conclusion: High DPF2 expression, associated with poor HCC prognosis, may disrupt tumor immune balance and promote immune evasion. DPF2 could potentially be utilized as a biomarker for diagnosing and prognosticating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jusen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zuyin Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chongjiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianzhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
17
|
Chen F, Xu T, Jin N, Li D, Ying Y, Wang C. Transcription factor NFYA inhibits ferroptosis in lung adenocarcinoma cells by regulating PEBP1. Mutat Res 2024; 829:111873. [PMID: 38996537 DOI: 10.1016/j.mrfmmm.2024.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Ferroptosis is an iron-dependent programmed cell death mediated by lipid peroxidation. The purpose was to explore the molecular mechanism by which phosphatidylethanolamine-binding protein 1 (PEBP1) regulates ferroptosis in lung adenocarcinoma (LUAD), hoping to identify novel therapeutic targets for LUAD. METHODS The expression, enrichment pathways and upstream transcription factors of PEBP1 were analyzed using bioinformatics tools. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) experiments were conducted to validate the interaction and binding relationship between PEBP1 and the upstream transcription factor nuclear transcription factor Y subunit α (NFYA). Quantitative reverse transcription PCR (qRT-PCR) was conducted to measure the expression levels of PEBP1 and NFYA mRNA in LUAD cells. Cell viability was detected by cell counting kit-8 assay. In addition, levels of malondialdehyde (MDA), Fe2+, and lipid reactive oxygen species (ROS) were assessed to evaluate ferroptosis levels in LUAD cells. RESULTS PEBP1 was downregulated and significantly enriched in the ferroptosis signaling pathway in LUAD. Overexpression of PEBP1 suppressed cell viability remarkably, while levels of MDA, Fe2+, and lipid ROS were increased. Conversely, knockdown of PEBP1 produced the opposite effects. The upstream transcription factor NFYA, predicted to be involved in the regulation of PEBP1, was also upregulated in LUAD. Dual-luciferase reporter assay, ChIP, and molecular experiments revealed that NFYA transcriptionally suppressed the expression of PEBP1, and overexpression of NFYA could reverse the effects caused by PEBP1 overexpression. CONCLUSION PEBP1 regulated ferroptosis in LUAD, and the transcription factor NFYA inhibited ferroptosis in LUAD cells by transcriptionally downregulating PEBP1 expression.
Collapse
Affiliation(s)
- Feng Chen
- Department of Respirotory Medicine, Taizhou Municipal Hospital, Taizhou City 318000, China.
| | - Tingting Xu
- Department of Respirotory Medicine, Taizhou Municipal Hospital, Taizhou City 318000, China
| | - Ni Jin
- Department of Respirotory Medicine, Taizhou Municipal Hospital, Taizhou City 318000, China
| | - Digeng Li
- Department of Respirotory Medicine, Taizhou Municipal Hospital, Taizhou City 318000, China
| | - Yanfu Ying
- Department of Respirotory Medicine, Taizhou Municipal Hospital, Taizhou City 318000, China
| | - Chen Wang
- Department of Respirotory Medicine, Taizhou Municipal Hospital, Taizhou City 318000, China
| |
Collapse
|
18
|
Zhou Q, Wu F, Zhang W, Guo Y, Jiang X, Yan X, Ke Y. Machine learning-based identification of a cell death-related signature associated with prognosis and immune infiltration in glioma. J Cell Mol Med 2024; 28:e18463. [PMID: 38847472 PMCID: PMC11157676 DOI: 10.1111/jcmm.18463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.
Collapse
Affiliation(s)
- Quanwei Zhou
- The National Key Clinical Specialty, Department of NeurosurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Fei Wu
- The National Key Clinical Specialty, Department of NeurosurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wenlong Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Youwei Guo
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xingjun Jiang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xuejun Yan
- NHC Key Laboratory of Birth Defect for Research and PreventionHunan Provincial Maternal and Child Health Care HospitalChangshaHunanChina
| | - Yiquan Ke
- The National Key Clinical Specialty, Department of NeurosurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
19
|
Yan B, Liao P, Liu S, Lei P. Comprehensive pan-cancer analysis of inflammatory age-clock-related genes as prognostic and immunity markers based on multi-omics data. Sci Rep 2024; 14:10468. [PMID: 38714870 PMCID: PMC11076581 DOI: 10.1038/s41598-024-61381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Inflammatory age (iAge) is a vital concept for understanding the intricate interplay between chronic inflammation and aging in the context of cancer. However, the importance of iAge-clock-related genes (iAge-CRGs) across cancers remains unexplored. This study aimed to explore the mechanisms and applications of these genes across diverse cancer types. We analyzed profiling data from over 10,000 individuals, covering 33 cancer types, 750 small molecule drugs, and 24 immune cell types. We focused on DCBLD2's function at the single-cell level and computed an iAge-CRG score using GSVA. This score was correlated with cancer pathways, immune infiltration, and survival. A signature was then derived using univariate Cox and LASSO regression, followed by ROC curve analysis, nomogram construction, decision curve analysis, and immunocytochemistry. Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic alterations in iAge-CRGs, especially DCBLD2, leading to abnormal expression. Aberrant DCBLD2 expression strongly correlated with cancer-associated fibroblast infiltration and prognosis in multiple cancers. Based on GSVA results, we developed a risk model using five iAge-CRGs, which proved to be an independent prognostic index for uveal melanoma (UVM) patients. We also systematically evaluated the correlation between the iAge-related signature risk score and immune cell infiltration. iAge-CRGs, particularly DCBLD2, emerge as potential targets for enhancing immunotherapy outcomes. The strong correlation between abnormal DCBLD2 expression, cancer-associated fibroblast infiltration, and patient survival across various cancers underscores their significance. Our five-gene risk signature offers an independent prognostic tool for UVM patients, highlighting the crucial role of these genes in suppressing the immune response in UVM.Kindly check and confirm whether the corresponding affiliation is correctly identified.I identified the affiliation is correctly.thank you.Per style, a structured abstract is not allowed so we have changed the structured abstract to an unstructured abstract. Please check and confirm.I confirm the abstract is correctly ,thank you.
Collapse
Affiliation(s)
- Bo Yan
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Pan Liao
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shan Liu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
20
|
Xue Z, Nuerrula Y, Sitiwaerdi Y, Eli M. Nuclear factor erythroid 2-related factor 2 promotes radioresistance by regulating glutamate-cysteine ligase modifier subunit and its unique immunoinvasive pattern. BIOMOLECULES & BIOMEDICINE 2024; 24:545-559. [PMID: 38340316 PMCID: PMC11088896 DOI: 10.17305/bb.2024.10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The enzyme glutamate-cysteine ligase modifier subunit (GCLM) serves as the initial rate-limiting factor in glutathione (GSH) synthesis. GSH is the preferred substrate for glutathione peroxidase 4 (GPX4), directly impacting its activity and stability. This study aims to elucidate the expression of GCLM and its correlation with the nuclear factor erythroid 2-related factor 2 (NFE2L2), commonly referred to as NRF2, in esophageal squamous cell carcinoma (ESCC) and further investigate the potential signaling axis of radiotherapy resistance caused by NRF2-mediated regulation of ferroptosis in ESCC. The expression of NRF2, GCLM, and GPX4 in ESCC was analyzed by bioinformatics, and their relationship with ferroptosis was verified through cell function experiments. Their role in radioresistance was then investigated through multiple validation steps. Bioinformatics analysis was employed to determine the immune infiltration pattern of NRF2 in ESCC. Furthermore, the effect of NRF2-mediated massive macrophage M2 infiltration on radiotherapy and ferroptosis was validated through in vivo experiments. In vitro assays demonstrated that overactivated NRF2 promotes radioresistance by directly binding to the promoter region of GCLM. The Tumor Immune Estimation Resource (TIMER) and quanTIseq analyses revealed NRF2 enrichment in M2 macrophages with a positive correlation. Co-culturing KYSE450 cells with M2 macrophages demonstrated that a significant infiltration of macrophages M2 can render ESCC cells resistant to radiotherapy but restore their sensitivity to ferroptosis in the process. Our study elucidates a link between the NRF2-GCLM-GSH-GPX4 signaling axis in ESCC, highlighting its potential as a therapeutic target for antagonistic biomarkers of resistance in the future. Additionally, it provides a novel treatment avenue for ESCC metastasis and radioresistance.
Collapse
Affiliation(s)
- Zhaoyuan Xue
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yiliyaer Nuerrula
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yilidana Sitiwaerdi
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mayinur Eli
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol 2024; 17:22. [PMID: 38654314 PMCID: PMC11040947 DOI: 10.1186/s13045-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor is a local tissue hyperplasia resulted from cancerous transformation of normal cells under the action of various physical, chemical and biological factors. The exploration of tumorigenesis mechanism is crucial for early prevention and treatment of tumors. Epigenetic modification is a common and important modification in cells, including DNA methylation, histone modification, non-coding RNA modification and m6A modification. The normal mode of cell death is programmed by cell death-related genes; however, recent researches have revealed some new modes of cell death, including pyroptosis, ferroptosis, cuproptosis and disulfidptosis. Epigenetic regulation of various cell deaths is mainly involved in the regulation of key cell death proteins and affects cell death by up-regulating or down-regulating the expression levels of key proteins. This study aims to investigate the mechanism of epigenetic modifications regulating pyroptosis, ferroptosis, cuproptosis and disulfidptosis of tumor cells, explore possible triggering factors in tumor development from a microscopic point of view, and provide potential targets for tumor therapy and new perspective for the development of antitumor drugs or combination therapies.
Collapse
Affiliation(s)
- Shimeng Zhou
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Junlan Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| |
Collapse
|
22
|
Gao Y, Wu R, Pei Z, Ke C, Zeng D, Li X, Zhang Y. Cell cycle associated protein 1 associates with immune infiltration and ferroptosis in gastrointestinal cancer. Heliyon 2024; 10:e28794. [PMID: 38586390 PMCID: PMC10998105 DOI: 10.1016/j.heliyon.2024.e28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ruimin Wu
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Pei
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changbin Ke
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Daobing Zeng
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaohui Li
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
23
|
Huang Z, Chen X, Wang Y, Yuan J, Li J, Hang W, Meng H. SLC7A11 inhibits ferroptosis and downregulates PD-L1 levels in lung adenocarcinoma. Front Immunol 2024; 15:1372215. [PMID: 38655266 PMCID: PMC11035808 DOI: 10.3389/fimmu.2024.1372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) is a prevalent form of lung cancer originating from lung glandular cells with low survival rates despite recent therapeutic advances due to its diverse and complex nature. Recent evidence suggests a link between ferroptosis and the effectiveness of anti-PD-L1 therapy, with potential synergistic effects. Methods Our study comprehensively analyzed the expression patterns of ferroptosis regulators in LUAD and their association with prognosis and PD-L1 expression. Furthermore, we identified two distinct subtypes of LUAD through consensus clustering of ferroptosis regulators, revealing significant tumor heterogeneity, divergent PD-L1 expression, and varying prognoses between the subtypes. Results Among the selected ferroptosis regulators, SLC7A11 emerged as an independent prognostic marker for LUAD patients and exhibited a negative correlation with PD-L1 expression. Subsequent investigations revealed high expression of SLC7A11 in the LUAD population. In vitro experiments demonstrated that overexpression of SLC7A11 led to reduced PD-L1 expression and inhibited ferroptosis in A549 cells, underscoring the significant role of SLC7A11 in LUAD. Additionally, pan-cancer analyses indicated an association between SLC7A11 and the expression of immune checkpoint genes across multiple cancer types with poor prognoses. Discussion From a clinical standpoint, these findings offer a foundation for identifying and optimizing potential combination strategies to enhance the therapeutic effectiveness of immune checkpoint inhibitors and improve the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Zhenyao Huang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xia Chen
- Department of Respiratory Medicine, Xuyi People’s Hospital, Huai’an, Jiangsu, China
| | - Yun Wang
- Department of Dermatology, the Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai’an, Huai’an, China
| | - Jiali Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wenlu Hang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Meng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Pan W, Liu X, Liu S. ALYREF m5C RNA methylation reader predicts bladder cancer prognosis by regulating the tumor immune microenvironment. Medicine (Baltimore) 2024; 103:e37590. [PMID: 38579085 PMCID: PMC10994465 DOI: 10.1097/md.0000000000037590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND 5-Methylcytidine (m5C) methylation is a recently emerging epigenetic modification that is closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the clinicopathological characteristics and prognostic value of m5C regulators in bladder cancer (BLCA), and their correlation with the tumor immune microenvironment. METHODS Thirteen m5C RNA methylation regulators were analyzed using RNA-sequencing and corresponding clinical information obtained from the TCGA database. The Cluster Profiler package was used to analyze the gene ontology function of potential targets and enriched the Kyoto Encyclopedia of Genes and Genomes pathway. Kaplan-Meier survival analysis was used to compare survival differences using the log-rank test and univariate Cox proportional hazards regression. The correlation between signature prognostic m5C regulators and various immune cells was analyzed. Univariate and multivariate Cox regression analyses identified independence of the ALYREF gene signature. RESULTS Nine out of the 13 m5C RNA methylation regulators were differentially expressed in BLCA and normal samples and were co-expressed. These 9 regulators were associated with clinicopathological tumor characteristics, particularly high or low tumor risk, pT or pTNM stage, and migration. Consensus clustering analysis divides the BLCA samples into 4 clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment annotation and gene ontology function analysis identified 273 upregulated and 594 downregulated genes in BLCA. Notably, only ALYREF was significantly correlated with OS (P < .05). ALYREF exhibited significant infiltration levels in macrophage cells. Therefore, we constructed a nomogram for ALYREF as an independent prognostic factor. Additionally, we observed that both the mRNA and protein levels of ALYREF were upregulated, and immunofluorescence showed that ALYREF was mainly distributed in nuclear speckles. ALYREF overexpression was significantly associated with poor OS. CONCLUSION Our findings demonstrated the potential of ALYREF to predict clinical prognostic risks in BLCA patients and regulate the tumor immune microenvironment. As such, ALYREF may serve as a novel prognostic indicator in BLCA patients.
Collapse
Affiliation(s)
- Wengu Pan
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Liu
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shuangde Liu
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Sun M, Zhao B, Chen T, Yao L, Li X, Hu S, Chen C, Gao X, Tang C. Novel molecular typing reveals the risk of recurrence in patients with early-stage papillary thyroid cancer. Thyroid Res 2024; 17:7. [PMID: 38556856 PMCID: PMC10983671 DOI: 10.1186/s13044-024-00193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is an indolent disease with a favorable prognosis but characterized by a high recurrence rate. We aimed to improve precise stratification of recurrence risk in PTC patients with early stage using multi-gene signatures. PATIENTS AND METHODS The present study was performed using data from The Cancer Genome Atlas (TCGA) and multi-center datasets. Unsupervised consensus clustering was used to obtain the optimal molecular subtypes and least absolute shrinkage and selection operator (LASSO) analysis was performed to identify potential genes for the construction of recurrence signature. Kaplan-Meier survival analysis and the log-rank test was used to detect survival differences. Harrells concordance index (C-index) was used to assess the performance of the DNA damage repair (DDR) recurrence signature. RESULTS Through screening 8 candidate gene sets, the entire cohort was successfully stratified into two recurrence-related molecular subtypes based on DDR genes: DDR-high subtype and DDR-low subtype. The recurrence rate of DDR-high subtype was significantly lower than DDR-low subtype [HR = 0.288 (95%CI, 0.084-0.986), P = 0.047]. Further, a two-gene DDR recurrence signature was constructed, including PER1 and EME2. The high-risk group showed a significantly worse recurrence-free survival (RFS) than the low-risk group [HR = 10.647 (95%CI, 1.363-83.197), P = 0.024]. The multi-center data demonstrated that proportion of patients with low expression of PER1 and EME2 was higher in the recurrence group than those in the non-recurrence group. CONCLUSIONS These findings could help accurately and reliably identify PTC patients with high risk of recurrence so that they could receive more radical and aggressive treatment strategies and more rigorous surveillance practices.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Bingqing Zhao
- Department of Plastic and Reconstructive Surgery, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, 300100, China
| | - Tao Chen
- The Xuzhou Clinical College of Xuzhou Medical University, Jiangsu, 221009, China
| | - Lijun Yao
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Xiaoxin Li
- Department of Pathology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Shaojun Hu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Chengling Chen
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China.
| | - Xinbao Gao
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China.
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China.
| |
Collapse
|
26
|
Liu Y, Zhao J, Huang B, Liang Y, Jiang G, Zhou X, Chen Y, He T, Zheng M, Huang Z. Identification and validation of an immunotherapeutic signature for colon cancer based on the regulatory patterns of ferroptosis and their association with the tumor microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119698. [PMID: 38387508 DOI: 10.1016/j.bbamcr.2024.119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The integrated landscape of ferroptosis regulatory patterns and their association with colon microenvironment have been demonstrated in recent studies. However, the ferroptosis-related immunotherapeutic signature for colon cancer (CC) remains unclear. We comprehensively evaluated 1623 CC samples, identified patterns of ferroptosis modification based on ferroptosis-associated genes, and systematically correlated these patterns with tumor microenvironment (TME) cell infiltration characteristics. In addition, the ferroptosis-regulated gene score (FRG-score) was constructed to quantify the pattern of ferroptosis alterations in individual tumors. Three distinct patterns of ferroptosis modification were identified, including antioxidant defense, iron toxicity, and lipid peroxidation. The characteristics of TME cell infiltration under these three patterns were highly consistent with the three immune phenotypes of tumors, including immune-inflamed, immune-excluded and immune-desert phenotypes. We also demonstrated that evaluation of ferroptosis regulatory patterns within individual tumors can predict tumor inflammatory status, tumor subtype, TME stromal activity, genetic variation, and clinical outcome. Immunotherapy cohorts confirmed that patients with low FRG-scores showed remarkable therapeutic and clinical benefits. Furthermore, the hub gene apolipoprotein L6 (APOL6), a drug-sensitive target associated with cancer cell ferroptosis, was identified through our proposed novel key gene screening process and validated in CC cell lines and scRNA-seq.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, PR China
| | - Baoxiang Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Youcheng Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Guanming Jiang
- Dongguan Institute of Clinical Oncology Research in Dongguan People's Hospital, Dongguan 523018, Guangdong, PR China
| | - Xinglin Zhou
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Yilin Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China
| | - Tao He
- School of Basic Medicine, Guangdong Medical University, Dongguan 523018, Guangdong, PR China
| | - Mingbin Zheng
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong, PR China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, Guangdong, PR China.
| |
Collapse
|
27
|
Guo D, Feng Y, Liu P, Yang S, Zhao W, Li H. Identification and prognostic analysis of ferroptosis‑related gene HSPA5 to predict the progression of lung squamous cell carcinoma. Oncol Lett 2024; 27:186. [PMID: 38464337 PMCID: PMC10921261 DOI: 10.3892/ol.2024.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, is implicated in the development and therapeutic responses of cancer. However, the role of ferroptosis-related gene profiles in lung squamous cell carcinoma (LSCC) remains largely unknown. The present study aimed to identify the prognostic roles of ferroptosis-related genes in LSCC. Sequencing data from the Cancer Genome Atlas were analyzed and ferroptosis-related gene expression between tumor and para-tumor tissue was identified. The prognostic role of these genes was also assessed using Kaplan-Meier analyses and univariate and multivariate Cox proportional hazards regression model analyses. Immunological correlation, tumor stemness, drug sensitivity and the transcriptional differences of heat shock protein (HSP)A5 in LSCC were also analyzed. Thereafter, the expression of HSPA5 in 100 patients with metastatic LSCC was evaluated using immunohistochemistry (IHC) and the clinical significance of these markers with different risk factors was assessed. Of the 22 ferroptosis-related genes, the expression of HSPA5, HSPB1, glutathione peroxidase 4, Fanconi anemia complementation group D2, CDGSH iron sulfur domain 1, farnesyl-diphosphate farnesyltransferase 1, nuclear factor erythroid 2 like 2, solute carrier (SLC)1A5, ribosomal protein L8, nuclear receptor coactivator 4, transferrin receptor and SLC7A11 was significantly increased in LSCC compared with adjacent tissues. However, only high expression of HSPA5 was able to predict progression-free survival (PFS) and disease-free survival in LSCC. Although HSPA5 was also significantly elevated in patients with lung adenocarcinoma, HSPA5 expression did not predict the prognosis of patients with lung adenocarcinoma. Of note, a higher expression of HSPA5 was related to higher responses to chemotherapy but not to immunotherapy. In addition, HSPA5 expression was positively correlated with 'ferroptosis', 'cellular responses to hypoxia', 'tumor proliferation signature', 'G2M checkpoint', 'MYC targets' and 'TGFB'. IHC analysis also demonstrated that a high expression of HSPA5 in patients with metastatic LSCC in the study cohort was associated with shorter PFS and overall survival. In conclusion, the present study demonstrated that the expression of the ferroptosis-related gene HSPA5 may be a negative prognostic marker for LSCC.
Collapse
Affiliation(s)
- Di Guo
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yonghai Feng
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Peijie Liu
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Shanshan Yang
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wenfei Zhao
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
28
|
Zhang P, Yang J, Zhong X, Selistre-de-Araujo HS, Boussios S, Ma Y, Fang H. A novel PD-1/PD-L1 pathway-related seven-gene signature for the development and validation of the prognosis prediction model for breast cancer. Transl Cancer Res 2024; 13:1554-1566. [PMID: 38617520 PMCID: PMC11009795 DOI: 10.21037/tcr-23-2270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024]
Abstract
Background Breast cancer (BC/BRCA) is the most common carcinoma in women. The average 5-year survival rate of BC patients with stage IV disease is 26%. A considerable proportion of patients still do not receive effective therapy. It is an unmet need to identify novel biomarkers for BC patients. Herein, we evaluated whether the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) status is associated with the clinical outcomes of BC, based on data from The Cancer Genome Atlas (TCGA). Methods Clinical and transcriptome data of BC patients were obtained from TCGA dataset, and prognostic genes in BC patients were identified, as well as the PD-1/PD-L1 pathway mainly associating with the BC patients. Following the execution of the consensus clustering algorithm, BC patients were segregated into two clusters, and subsequent investigation of the potential mechanisms between them was carried out. A comparison of ferroptosis and N6-methyladenosine (m6A) was conducted between the two groups with the greatest difference in prognosis. Based on least absolute shrinkage and selection operator (LASSO) analysis, a signature associated with the PD-1/PD-L1 pathway was developed, and the prognosis outcome and the predictive accuracy of the signature model were further assessed. Results Prognostic genes in BC patients were studied using TCGA data and it was found that the PD-1/PD-L1 pathway was most associated with the BC patients. Then, a low-risk (C1) group and a high-risk (C2) group of BC patients were constructed based on a PD-1/PD-L1 pathway-related signature. The functional analyses suggested that the underlying mechanisms between these groups were mainly associated with immune-related pathways. We found that ferroptosis and m6A were significantly different between the two groups. A PD-1/PD-L1 pathway-related gene signature was further developed to predict survival of BC patients, including 7 genes [mitogen-activated protein kinase kinase 6 (MAP2K6), NF-kappa-B inhibitor alpha (NFKBIA), NFKB Inhibitor Epsilon (NFKBIE), Interferon gamma (IFNG), Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), IkappaB kinase (CHUK), and Casein kinase 2 alpha 3 gene (CSNK2A3)]. The receiver operating characteristic (ROC) curves were analyzed to further assess the prognostic values of these 7 genes. The 1-, 3-, and 5-year values of the areas under the curve (AUCs) for overall survival were 0.651, 0.658, and 0.653 in this seven gene signature model, respectively. Conclusions PD-1/PD-L1 pathway-related subtypes of BC were identified, which were closely associated with the immune microenvironment, the ferroptosis status, and m6A in BC patients. The gene signature involved in the PD-1/PD-L1 pathway might help to make a distinction and predict prognosis in BC patients.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Blood Transfusion, The Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Jingjing Yang
- Department of Blood Transfusion, The Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Xiaolong Zhong
- Department of Blood Transfusion, The Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Heloisa Sobreiro Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Kent, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- Kent Medway Medical School, University of Kent, Kent, UK
- AELIA Organization, Thessaloniki, Greece
| | - Yongneng Ma
- Department of Blood Transfusion, The Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Hua Fang
- Department of Blood Transfusion, The Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
29
|
Qin S, Jin H, Li Y, Chen X, He J, Xiao J, Qin Y, Liu C, Mao Y, Zhao L. Comprehensive analysis of IGF2BP3 with expression features, prognosis, immune modulation and stemness in hepatocellular carcinoma and pan-cancer. J Cancer 2024; 15:2845-2865. [PMID: 38577615 PMCID: PMC10988304 DOI: 10.7150/jca.92768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) is a critical m6A reader. It encodes proteins that contain several KH domains, which are important in RNA binding, RNA synthesis and metabolism. Lots of researches have studied the malignant potential of m6A readers in tumors. However, the biological functional analysis of IGF2BP3 in hepatocellular carcinoma (HCC) and pan-cancer is not comprehensive. In this study, we used a bioinformatics approach to comprehensively analyze the significance of IGF2BP3 in HCC through analyzing its expression, mutation, prognosis, protein-protein interaction (PPI) network, functional enrichment, and the correlation with ferroptosis, stemness as well as immune modulation in HCC. IGF2BP3 presented a negative correlation with the ferroptosis molecule NFE2L2, and a positive correlation with the ferroptosis molecule SLC1A5 as well as the immune checkpoint HAVCR2. In addition, we also analyzed IGF2BP3 expression, prognosis and immune modulation in pan-cancer, revealing the prognostic value of IGF2BP3 in a variety of tumors. Finally, we verified the biological functions of IGF2BP3 in HCC through various experiments. The data showed that IGF2BP3 may enhance the proliferation, colony formation and invasion capacities of HCC cells, and IGF2BP3 is mainly positively correlated with the expression level of stemness marker SOX2. In conclusion, IGF2BP3 had a potential to be a new perspective biomarker in forecasting the immune response, ferroptosis, stemness and prognosis of HCC or even pan-cancer.
Collapse
Affiliation(s)
- Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuyi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Xie J, Deng X, Xie Y, Zhu H, Liu P, Deng W, Ning L, Tang Y, Sun Y, Tang H, Cai M, Xie X, Zou Y. Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triple-negative breast cancer. MedComm (Beijing) 2024; 5:e502. [PMID: 38420162 PMCID: PMC10901283 DOI: 10.1002/mco2.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Disruption of disulfide homeostasis during biological processes can have fatal consequences. Excess disulfides induce cell death in a novel manner, termed as "disulfidptosis." However, the specific mechanism of disulfidptosis has not yet been elucidated. To determine the cancer types sensitive to disulfidptosis and outline the corresponding treatment strategies, we firstly investigated the crucial functions of disulfidptosis regulators pan-cancer at multi-omics levels. We found that different tumor types expressed dysregulated levels of disulfidptosis regulators, most of which had an impact on tumor prognosis. Moreover, we calculated the disulfidptosis activity score in tumors and validated it using multiple independent datasets. Additionally, we found that disulfidptosis activity was correlated with classic biological processes and pathways in various cancers. Disulfidptosis activity was also associated with tumor immune characteristics and could predict immunotherapy outcomes. Notably, the disulfidptosis regulator, glycogen synthase 1 (GYS1), was identified as a promising target for triple-negative breast cancer and validated via in vitro and in vivo experiments. In conclusion, our study elucidated the complex molecular phenotypes and clinicopathological correlations of disulfidptosis regulators in tumors, laying a solid foundation for the development of disulfidptosis-targeting strategies for cancer treatment.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yi Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hongbo Zhu
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Peng Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Wei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Li Ning
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuhui Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuying Sun
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Manbo Cai
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| |
Collapse
|
31
|
Cheng B, Lai Y, Huang H, Peng S, Tang C, Chen J, Luo T, Wu J, He H, Wang Q, Huang H. MT1G, an emerging ferroptosis-related gene: A novel prognostic biomarker and indicator of immunotherapy sensitivity in prostate cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:927-941. [PMID: 37972062 DOI: 10.1002/tox.23997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Prostate cancer is a leading cause of cancer-related deaths in men worldwide. Despite advances in treatment strategies, there is still a need for novel therapeutic targets and approaches. Ferroptosis has emerged as a critical process in the development and progression of several cancers, including prostate cancer (PCA). In this study, we investigate the role of MT1G, a gene implicated in immune responses and ferroptosis, in the pathogenesis of PCA. Our objective is to elucidate its prognostic significance and its impact on the tumor microenvironment, while exploring its potential in enhancing the sensitivity to immune checkpoint inhibitor (ICI) therapy. METHODS We utilized a combination of in silico analysis and experimental techniques to investigate the role of MT1G in PCA. First, we analyzed large-scale genomic datasets to assess the expression pattern and prognostic significance of MT1G in PCA patients. Subsequently, we performed functional assays to explore the impact of MT1G in PCA and its potential involvement in modulating immune responses. In addition, we conducted in vivo experiments to evaluate the effect of MT1G on tumor growth and response to ICI therapy. RESULTS Our analysis revealed that MT1G expression is significantly downregulated in PCA tissues compared to normal prostate tissues and is associated with poor prognosis. Furthermore, MT1G overexpression inhibited the growth of PCA cells in vitro and in vivo. Importantly, we found that MT1G regulates the tumor microenvironment by modulating immune cell infiltration and inhibiting immunosuppressive factors. Furthermore, our study reveals a significant correlation between MT1G expression levels and the response to immune checkpoint inhibitor (ICI) therapy in prostate cancer (PCA) patients, as MT1G upregulation leads to an increase in PDL-1 expression. These findings underscore the potential of MT1G as a promising predictive biomarker for ICI therapy response in PCA patients. CONCLUSION Our study elucidates the pivotal role played by MT1G in the pathogenesis of prostate cancer (PCA) and its profound implications for prognosis. Moreover, it raises the intriguing possibility that MT1G could pave the way for novel therapeutic approaches in PCA treatment. This potential arises from its ability to orchestrate immune infiltration within the tumor microenvironment, consequently enhancing sensitivity to immune checkpoint inhibitor (ICI) therapy. Therefore, our findings hold substantial promise for advancing our comprehension of PCA and exploring innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Zhao JW, Zhao WY, Cui XH, Xing L, Shi JC, Yu L. The role of the mitochondrial ribosomal protein family in detecting hepatocellular carcinoma and predicting prognosis, immune features, and drug sensitivity. Clin Transl Oncol 2024; 26:496-514. [PMID: 37407805 DOI: 10.1007/s12094-023-03269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors, with a slow onset, rapid progression, and frequent recurrence. Previous research has implicated mitochondrial ribosomal genes in the development, metastasis, and prognosis of various cancers. However, further research is necessary to establish a link between mitochondrial ribosomal protein (MRP) family expression and HCC diagnosis, prognosis, ferroptosis-related gene (FRG) expression, m6A modification-related gene expression, tumor immunity, and drug sensitivity. METHODS Bioinformatics resources were used to analyze data from patients with HCC retrieved from the TCGA, ICGC, and GTEx databases (GEPIA, UALCAN, Xiantao tool, cBioPortal, STRING, Cytoscape, TISIDB, and GSCALite). RESULTS Among the 82 MRP family members, 14 MRP genes (MRPS21, MRPS23, MRPL9, DAP3, MRPL13, MRPL17, MRPL24, MRPL55, MRPL16, MRPL14, MRPS17, MRPL47, MRPL21, and MRPL15) were significantly upregulated differentially expressed genes (DEGs) in HCC tumor samples in comparison to normal samples. Receiver-operating characteristic curve analysis indicated that all 14 DEGs show good diagnostic performance. Furthermore, TCGA analysis revealed that the mRNA expression of 39 MRPs was associated with overall survival (OS) in HCC. HCC was divided into two molecular subtypes (C1 and C2) with distinct prognoses using clustering analysis. The clusters showed different FRG expression and m6A methylation profiles and immune features, and prognostic models showed that the model integrating 5 MRP genes (MRPS15, MRPL3, MRPL9, MRPL36, and MRPL37) and 2 FRGs (SLC1A5 and SLC5A11) attained a greater clinical net benefit than three other prognostic models. Finally, analysis of the CTRP and GDSC databases revealed several potential drugs that could target prognostic MRP genes. CONCLUSION We identified 14 MRP genes as HCC diagnostic markers. We investigated FRG and m6A modification-related gene expression profiles and immune features in patients with HCC, and developed and validated a model incorporating MRP and FRG expression that accurately and reliably predicts HCC prognosis and may predict disease progression and treatment response.
Collapse
Affiliation(s)
- Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Wei-Yi Zhao
- Medical College of YanBian University, YanBian, 133000, China
| | - Xin-Hua Cui
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Lin Xing
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Jia-Cheng Shi
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Lu Yu
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
33
|
Liu XS, Zhang Y, Ming X, Hu J, Chen XL, Wang YL, Zhang YH, Gao Y, Pei ZJ. SPC25 as a novel therapeutic and prognostic biomarker and its association with glycolysis, ferroptosis and ceRNA in lung adenocarcinoma. Aging (Albany NY) 2024; 16:779-798. [PMID: 38217547 PMCID: PMC10817414 DOI: 10.18632/aging.205418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Spindle pole body component 25 (SPC25) is an important cyclin involved in chromosome segregation and spindle dynamics regulation during mitosis. However, the role of SPC25 in lung adenocarcinoma (LAUD) is unclear. MATERIALS AND METHODS The differential expression of SPC25 in tumor samples and normal samples was analyzed using TIMER, TCGA, GEO databases, and the correlation between its expression and clinicopathological features and prognosis in LUAD patients. Biological pathways that may be enriched by SPC25 were analyzed using GSEA. In vitro cell experiments were used to evaluate the effect of knocking down SPC25 expression on LUAD cells. Correlation analysis and differential analysis were used to assess the association of SPC25 expression with genes related to cell cycle, glycolysis, and ferroptosis. A ceRNA network involving SPC25 was constructed using multiple database analyses. RESULTS SPC25 was highly expressed in LUAD, and its expression level could guide staging and predict prognosis. GSEA found that high expression of SPC25 involved multiple cell cycles and glycolytic pathways. Knocking down SPC25 expression significantly affected the proliferation, migration and apoptosis of LUAD cells. Abnormal SPC25 expression levels can affect cell cycle progression, glycolytic ability and ferroptosis regulation. A ceRNA network containing SPC25, SNHG15/hsa-miR-451a/SPC25, was successfully predicted and constructed. CONCLUSIONS Our findings reveal the association of up-regulation of SPC25 in LUAD and its expression with clinical features, prognosis prediction, proliferation migration, cell cycle, glycolysis, ferroptosis, and ceRNA networks. Our results indicate that SPC25 can be used as a biomarker in LUAD therapy and a target for therapeutic intervention.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yu Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xing Ming
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Hu
- Department of Critical Care Medicine, Danjiangkou First Hospital, Danjiangkou 420381, China
| | - Xuan-Long Chen
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ya-Lan Wang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
34
|
Xie H, Yang K, Qin C, Zhou X, Liu J, Nong J, Luo J, Wei Y, Hua H, Han C, Liao X, Yang C, Su H, Zhu G, Ye X, Peng T. Sarcosine dehydrogenase as an immune infiltration-associated biomarker for the prognosis of hepatocellular carcinoma. J Cancer 2024; 15:149-165. [PMID: 38164283 PMCID: PMC10751682 DOI: 10.7150/jca.89616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 01/03/2024] Open
Abstract
This study was aimed to investigate the prognostic value and clinical significance of sarcosine dehydrogenase (SARDH) in hepatocellular carcinoma (HCC) and to explore the underlying mechanisms. The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), HPA and CPTAC databases were adopted to analyze the expression of SARDH mRNA and protein between normal liver tissue and HCC, and examine their relationship with clinicopathological features. Kaplan-Meier analysis, Cox regression, as well as nomogram were adopted to explore the prognostic value of SARDH in HCC. Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia (KEGG) together with Gene Set Enrichment Analysis (GSEA) were adopted to analyze the molecular mechanisms and biological functions of SARDH in HCC; while MethSurv, STRING, GeneMANIA, TIMER database data and single-sample gene set enrichment analysis (ssGSEA) algorithm were used for other bioinformatic analysis. Furthermore, immunohistochemistry was used to verify the expression of SARDH. Compared to normal liver tissue, SARDH expression was markedly lower in HCC. A lower SARDH expression was linked with Pathologic T stage (T3&T4), pathologic stage (Stage III&IV), and histologic grade (G3&4), which further indicates worse prognosis. Besides, results of bioinformatic analysis proved that SARDH expression was correlated with immune infiltration. In addition, SARDH hypermethylation was related to a poorer prognosis. SARDH expression was related to several key genes in the Ferroptosis pathway.
Collapse
Affiliation(s)
- Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chongjiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jusen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianzhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Huasheng Hua
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
35
|
Žalytė E. Ferroptosis, Metabolic Rewiring, and Endometrial Cancer. Int J Mol Sci 2023; 25:75. [PMID: 38203246 PMCID: PMC10778781 DOI: 10.3390/ijms25010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Ferroptosis is a newly discovered form of regulated cell death. The main feature of ferroptosis is excessive membrane lipid peroxidation caused by iron-mediated chemical and enzymatic reactions. In normal cells, harmful lipid peroxides are neutralized by glutathione peroxidase 4 (GPX4). When GPX4 is inhibited, ferroptosis occurs. In mammalian cells, ferroptosis serves as a tumor suppression mechanism. Not surprisingly, in recent years, ferroptosis induction has gained attention as a potential anticancer strategy, alone or in combination with other conventional therapies. However, sensitivity to ferroptosis inducers depends on the metabolic state of the cell. Endometrial cancer (EC) is the sixth most common cancer in the world, with more than 66,000 new cases diagnosed every year. Out of all gynecological cancers, carcinogenesis of EC is mostly dependent on metabolic abnormalities. Changes in the uptake and catabolism of iron, lipids, glucose, and glutamine affect the redox capacity of EC cells and, consequently, their sensitivity to ferroptosis-inducing agents. In addition to this, in EC cells, ferroptosis-related genes are usually mutated and overexpressed, which makes ferroptosis a promising target for EC prediction, diagnosis, and therapy. However, for a successful application of ferroptosis, the connection between metabolic rewiring and ferroptosis in EC needs to be deciphered, which is the focus of this review.
Collapse
Affiliation(s)
- Eglė Žalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
36
|
Zhang Y, Jiang M, Xiong Y, Zhang L, Xiong A, Wang J, He X, Li G. Integrated analysis of ATAC-seq and RNA-seq unveils the role of ferroptosis in PM2.5-induced asthma exacerbation. Int Immunopharmacol 2023; 125:111209. [PMID: 37976599 DOI: 10.1016/j.intimp.2023.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND PM2.5 exposure increases asthma exacerbation risk and worsens airway inflammation and mucus secretion, but the underlying mechanisms, especially the epigenetic modification changes, are not fully understood. METHODS ATAC-seq was conducted in Beas-2B cells to explore the differential chromatin accessibilities before and after exposure to PM2.5. RNA-seq was applied to screen the differentially expressed genes (DEGs) as well. The integrated analysis of ATAC-seq and RNA-seq was performed. The key up-regulated genes in the ferroptosis signaling pathway were identified by combined analysis with the FerrDb database and then verified. Meanwhile, to access the role of PM2.5-induced ferroptosis in asthma mice, house dust mites (HDM) were employed to conduct an allergic asthma mice model, and the ferroptosis-specific inhibitor (Ferrostatin-1, Fer-1) was used. The H&E staining, PAS staining, airway hyperresponsiveness, and bronchoalveolar lavage fluid (BALF) cell counting were used to investigate the impact of PM2.5-induced ferroptosis in asthma mice. RESULTS A total of 4,921 regions with differential accessibility were identified, encompassing 4,031 unique genes. Among these, 250 regions exhibited increased accessibility while 4,671 regions displayed reduced accessibility. Through the integrated analysis of ATAC-seq and RNA-seq, ferroptosis was determined as the key enriched pathway based on up-regulated DEGs and increased chromatin accessibilities. Furthermore, the decreased cell viability, accelerated lipid peroxide and morphological changes in mitochondria observed upon PM2.5 exposure were rescued by Fer-1, which are indicative of ferroptosis. By overlapping with ferroptosis-related genes from the FerrDb database, FTH1 and FTL were identified as the prominent up-regulated genes with increased chromatin accessibility in ferroptosis pathway. In addition, ChIP-qPCR analysis indicated that histone modification like H3K4me3 and H3K27ac positively regulated FTH1 and FTL expression. Subsequently, in PM2.5-exposed asthmatic mice, inhibition of ferroptosis effectively attenuated airway inflammation and mucus secretion. CONCLUSION These findings shed light on the molecular mechanisms underlying PM2.5-induced asthma exacerbation, with epigenetic modifications playing a pivotal role. Furthermore, it suggests the therapeutic potential of targeting ferroptosis as an intervention strategy.
Collapse
Affiliation(s)
- Yi Zhang
- School of Medicine, Southwest Jiaotong University, Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Manling Jiang
- School of Medicine, Southwest Jiaotong University, Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu 610000, China
| | - Lei Zhang
- School of Medicine, Southwest Jiaotong University, Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Anying Xiong
- School of Medicine, Southwest Jiaotong University, Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Junyi Wang
- School of Medicine, Southwest Jiaotong University, Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Xiang He
- School of Medicine, Southwest Jiaotong University, Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China.
| | - Guoping Li
- School of Medicine, Southwest Jiaotong University, Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China.
| |
Collapse
|
37
|
Sun MT, Zhao HY, Ruan HJ, Yu LH, Guan ML, Fan JJ, Feng CZ, Lou YY. Prognostic Role of Mitochondrial Transcription Termination Factor 3 in Thyroid Carcinoma. Genet Test Mol Biomarkers 2023; 27:362-369. [PMID: 38156906 DOI: 10.1089/gtmb.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Background: Studies have shown that the Mitochondrial Transcription Termination Factor 3 (MTERF3) negatively regulates mitochondrial gene expression and energy metabolism, and plays a significant role in many cancer types. Nevertheless, the expression and prognostic role of MTERF3 in patients with thyroid carcinoma (THCA) is still unclear. Thus, we investigated the expression, clinicopathological significance, and prognostic value of MTERF3 in THCA. Methods: The protein and mRNA expression levels of MTERF3 were, respectively, analyzed using immunohistochemistry (IHC) from THCA tissues and RNA-Seq data downloaded from The Cancer Genome Atlas. In addition, the relationships among the expression of MTERF3, the stemness feature, the extent of immune infiltration, drug sensitivity, the expression of ferroptosis, and N6-methyladenosine (m6A) methylation regulators, were evaluated as prognostic indicators for patients with THCA using the Kaplan-Meier plotter database. Results: The IHC and RNAseq results showed that the protein and mRNA expression levels of MTERF3 in adjacent nontumor tissues were significantly higher than in THCA tissues. The survival analysis indicated that decreased expression of MTERF3 was associated with a poorer prognosis. Furthermore, the expression of MTERF3 not only negatively correlated with the enhancement of the stemness of THCA and the reduction of drug sensitivity but also was implicated in ferroptosis and m6A methylation. Conclusion: The data from this study support the hypothesis that decreased expression of MTERF3 in THCA is associated with a poor prognosis.
Collapse
Affiliation(s)
- Mei-Tao Sun
- Department of Medical Morphology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Heng-Yu Zhao
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hua-Juan Ruan
- Department of Pathology, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Li-Hui Yu
- Department of Pathology, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Ming-Li Guan
- Department of Pathology, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Jun-Jie Fan
- Department of Pathology, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Chen-Zhuo Feng
- Department of Medical Morphology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yang-Yun Lou
- Department of Medical Morphology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
38
|
Gao Y, Tong M, Wong TL, Ng KY, Xie YN, Wang Z, Yu H, Loh JJ, Li M, Ma S. Long Noncoding RNA URB1-Antisense RNA 1 (AS1) Suppresses Sorafenib-Induced Ferroptosis in Hepatocellular Carcinoma by Driving Ferritin Phase Separation. ACS NANO 2023; 17:22240-22258. [PMID: 37966480 DOI: 10.1021/acsnano.3c01199] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Sorafenib, a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), has been shown to be a potent ferroptosis inducer in HCC. However, we found that there was a lower level of ferroptosis in sorafenib-resistant HCC samples than in sorafenib-sensitive HCC samples, suggesting that sorafenib resistance in HCC may be a result of ferroptosis suppression. Recent reports have shown that long noncoding RNAs (lncRNAs) are involved in programmed cell death (PCD), including apoptosis and ferroptosis. This study aimed to investigate the roles and underlying molecular mechanisms of lncRNAs in sorafenib-induced ferroptosis in HCC cells. Using lncRNA sequencing, we identified a ferroptosis-related lncRNA, URB1-antisense RNA 1 (AS1), which was highly expressed in sorafenib-resistant HCC samples and predicted poor survival in HCC. Furthermore, URB1-AS1 mitigates sorafenib-induced ferroptosis by inducing ferritin phase separation and reducing the cellular free iron content. Hypoxia inducible factor (HIF)-1α was identified as a key factor promoting URB1-AS1 expression in sorafenib-resistant HCC cells. Notably, we found that specifically inhibiting the expression of URB1-AS1 with N-acetylgalactosamine (GalNAc)-small interfering (si)URB1-AS1 successfully enhanced the sensitivity of HCC cells to sorafenib in an in vivo tumor model. Our study uncovered a critical role for URB1-AS1 in the repression of ferroptosis, suggesting URB1-AS1 targeting may represent a potential approach to overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Yuan Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710000, China
| | - Man Tong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu-Nong Xie
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710000, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710000, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Mao Y, Wen Y, Liu B, Sun F, Zhu Y, Wang J, Zhang R, Yu Z, Chu L, Zhou A. Flexible wearable intelligent sensing system for wheelchair sports monitoring. iScience 2023; 26:108126. [PMID: 37915601 PMCID: PMC10616312 DOI: 10.1016/j.isci.2023.108126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
The application of wearable intelligent systems toward human-computer interaction has received widespread attention. It is still desirable to conveniently promote health and monitor sports skills for disabled people. Here, a wireless intelligent sensing system (WISS) has been developed, which includes two ports of wearable flexible triboelectric nanogenerator (WF-TENG) sensing and an upper computer digital signal receiving intelligent processing. The WF-TENG sensing port is connected by the WF-TENG sensor and flexible printed circuit (FPC). Due to its flexibility, the WF-TENG sensing port can be freely adhered on the surface of human skin. The WISS can be applied to entertainment reaction training based on human-computer interaction, and to the technical judgment and analysis on wheelchair curling sport. This work provides new application opportunities for wearable devices in the fields of sports skills monitoring, sports assistive devices and health promotion for disabled people.
Collapse
Affiliation(s)
- Yupeng Mao
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Yuzhang Wen
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Bing Liu
- School of Martial Arts and Dance, Shenyang Sport University, Shenyang 110102, China
| | - Fengxin Sun
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Yongsheng Zhu
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Junxiao Wang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Rui Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Zuojun Yu
- China Ice Sports College, Beijing Sport University, Beijing 100084, China
| | - Liang Chu
- Institute of Carbon Neutrality and New Energy & School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Aiguo Zhou
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
40
|
Wang Z, Li H, Cai H, Liang J, Jiang Y, Song F, Hou C, Hou J. FTO Sensitizes Oral Squamous Cell Carcinoma to Ferroptosis via Suppressing ACSL3 and GPX4. Int J Mol Sci 2023; 24:16339. [PMID: 38003537 PMCID: PMC10671523 DOI: 10.3390/ijms242216339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Ferroptosis is a newly established form of regulated cell death characterized by intracellular lipid peroxidation and iron accumulation that may be a promising cancer treatment strategy. However, the function and therapeutic value of ferroptosis in oral squamous cell carcinoma (OSCC) remain inadequately understood. In the present study, we investigated the biological role of the fat mass and obesity-associated gene (FTO) in ferroptosis in the context of OSCC. We found that OSCC had greater potential for ferroptosis, and FTO is associated with ferroptosis. Furthermore, higher FTO expression sensitized OSCC cells to ferroptosis in vitro and in vivo. Mechanistically, FTO suppressed the expression of anti-ferroptotic factors, acyl-CoA synthetase long-chain family member 3 (ACSL3) and glutathione peroxidase 4 (GPX4), by demethylating the m6A modification on the mRNA of ACSL3 and GPX4 and decreasing their stability. Taken together, our findings revealed that FTO promotes ferroptosis through ACSL3 and GPX4 regulation. Thus, ferroptosis activation in OSCC with high FTO levels may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyu Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Song
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (Z.W.); (H.L.); (H.C.); (J.L.); (Y.J.); (F.S.); (C.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
41
|
Xu JZ, Xia QD, Sun JX, Liu CQ, Lu JL, Xu MY, An Y, Xun Y, Liu Z, Hu J, Li C, Wang SG. Establishment of a novel indicator of pyroptosis regulated gene transcription level and its application in pan-cancer. Sci Rep 2023; 13:17911. [PMID: 37863886 PMCID: PMC10589244 DOI: 10.1038/s41598-023-44700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Pyroptosis is a type of programmed cell death and plays a dual role in distinct cancers. It is elusive to evaluate the activation level of pyroptosis and to appraise the involvement of pyroptosis in the occurrence and development of diverse tumors. Accordingly, we herein established an indicator to evaluate pyroptosis related gene transcription levels based on the expression level of genes involved in pyroptosis and tried to elaborated on the association between pyroptosis and tumors across diverse tumor types. We found that pyroptosis related gene transcription levels could predict the prognosis of patients, which could act as either a favorable or a dreadful factor in diverse cancers. According to signaling pathway analyses we observed that pyroptosis played a significant role in immune regulation and tumorigenesis and had strong links with other forms of cell death. We also performed analysis on the crosstalk between pyroptosis and immune status and further investigated the predictive potential of pyroptosis level for the efficacy of immunotherapy. Lastly, we manifested that pyroptosis status could serve as a biomarker to the efficacy of chemotherapy across various cancers. In summary, this study established a quantitative indicator to evaluate pyroptosis related gene transcription levels, systematically explored the role of pyroptosis in pan-cancer. These results could provide potential research directions targeting pyroptosis, and highlighted that pyroptosis may be used to develop a novel strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Qian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Yao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye An
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
42
|
Yan J, Gong H, Han S, Liu J, Wu Z, Wang Z, Wang T. GALNT5 functions as a suppressor of ferroptosis and a predictor of poor prognosis in pancreatic adenocarcinoma. Am J Cancer Res 2023; 13:4579-4596. [PMID: 37970359 PMCID: PMC10636670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
Mucin-type O-glycosylation, a posttranslational modification of membrane and secretory proteins, facilitates metastasis and immune escape in tumor cells. N-acetylgalactosaminyl-transferase 5 (GALNT5), the enzyme initiating mucin-type O-glycosylation, is known to advance the progression of various tumors. Yet, the comprehensive role of GALNT5 in pan-cancer scenarios remains to be elucidated. In this research, we conducted a database-centric pan-cancer expression analysis of GALNT5. We examined its aberrant expression, assessed its prognostic implications, and explored the correlations between GALNT5 expression and factors such as ferroptosis, immune cell infiltration levels, and immune checkpoint gene expression across multiple tumor types. To substantiate GALNT5's role, we analyzed cell proliferation, migration, invasion, and ferroptosis in PAAD cells after GALNT5 knockdown. Additionally, RNA-seq was employed to discern potential downstream pathways influenced by GALNT5. Our findings indicate that GALNT5 expression is heightened in the majority of tumors, correlating with the prognosis of multiple cancers. There's a notable association between GALNT5 levels and ferroptosis-related genes, immune cell infiltration, and immune checkpoint genes. In PAAD specifically, the role of GALNT5 was further probed. Knockdown of GALNT5 curtailed the proliferation, migration, and invasion capacities of PAAD cells, concurrently promoting ferroptosis. Moreover, in vivo studies demonstrated that GALNT5 inhibition stunted PAAD tumor growth. The RNA-seq analysis unveiled inflammation and immune-centric pathways, such as the TNF signaling pathway, as potential downstream conduits of GALNT5. In conclusion, our pan-cancer study underscores GALNT5 as a potential therapeutic target for enhancing PAAD prognosis, given its strong ties with ferroptosis and immune cell infiltration. Our experiments further define GALNT5 as a novel suppressor of ferroptosis.
Collapse
Affiliation(s)
- Jiayi Yan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Haiyi Gong
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Shuai Han
- Department of Orthopedics, Shanghai Pudong New Area People’s HospitalShanghai, China
| | - Jialiang Liu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Ting Wang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| |
Collapse
|
43
|
Niu J, Guo W, Lu A, Han G, Wang G, Peng B, Zhao J. Comparison with gastric cancer-associated genes reveals the role of ferroptosis-related genes in eosinophils of asthma patients: A bioinformatic study. Medicine (Baltimore) 2023; 102:e35002. [PMID: 37832131 PMCID: PMC10578675 DOI: 10.1097/md.0000000000035002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis-inducing agents (FIAs) induced lipid-peroxidation-independent ferroptosis in eosinophils, thus ameliorating airway inflammation in asthmatic mice. Differences in ferroptosis-related genes (FerrGs) between eosinophils and cells in which FIAs induce canonical ferroptosis are supposed to contribute to this noncanonical ferroptosis but remain unclear. This study aims to explore these differences. This study used gastric cancer cells (GCCs) in stomach adenocarcinoma as the representative of cells in which FIAs induce canonical ferroptosis. FerrGs in Ferroptosis Database V2 respectively intersected with differentially expressed genes (DEGs) of eosinophils (E-MTAB-4660 dataset) and GCCs (GEPIA2 Stomach adenocarcinoma dataset) to obtain original ferroptosis DEGs (FerrDEGs). Then, they were subjected to Venn analysis to identify FerrDEGs shared by them and FerrDEGs exclusively expressed in eosinophils or GCCs. Identified genes were subjected to functional enrichment analysis, protein-protein interactions analysis, Hub genes analysis, and construction of the LncRNA-mediated ceRNA network. Sixty-six original FerrDEGs in eosinophils and 110 original FerrDEGs in GCCs were obtained. Venn analysis identified that eosinophils and GCCs shared 19 FerrDEGs that presented opposite expression directions and were involved in the ferroptosis pathway. Four upregulated and 20 downregulated FerrDEGs were exclusively expressed in eosinophils and GCCs, respectively. The former were enriched only in glycerolipid metabolism, while the latter were not enriched in pathways. Forty downregulated and 68 upregulated FerrDEGs were solely expressed in eosinophils and GCCs, respectively. The former was associated with the FoxO signaling pathway; the latter was related to glutathione metabolism and they were all implicated in autophagy. PPI analysis shows that the top 10 Hub genes of 66 original FerrDEGs and 44 exclusive FerrDEGs in eosinophils shared 9 genes (STAT3, NFE2L2, MAPK8, PTEN, MAPK3, TLR4, SIRT1, BECN1, and PTGS2) and they were also involved in the FoxO signaling pathway and autophagy pathway. Among them, PTEN is involved in forming a ceRNA network containing 3 LncRNAs, 3 miRNAs and 3 mRNAs. In contrast to FerrGs in cells in which FIAs induce canonical ferroptosis, the FerrGs in eosinophils differ in expression and in the regulation of ferroptosis, FoxO signaling pathway, and autophagy. It lays the groundwork for targeted induction of eosinophils lipid-peroxidation-independent ferroptosis in asthma.
Collapse
Affiliation(s)
- Jianfei Niu
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei Guo
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Aiyangzi Lu
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guanxiong Han
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Guanqun Wang
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Bihui Peng
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jiping Zhao
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Cai S, Huang S, Zhang W, Xiao H, Yu D, Zhong X, Tao P, Luo Y. Integrated bioinformatic analysis reveals NOS2 as a novel ferroptosis-related biomarker for pre-eclampsia. BMC Pregnancy Childbirth 2023; 23:719. [PMID: 37817070 PMCID: PMC10563238 DOI: 10.1186/s12884-023-06051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Pre-eclampsia (PE) is a common condition in pregnancy; however, methods for early diagnosis and effective treatment options are lacking. Ferroptosis is a newly identified iron-dependent cell death pathway. The aim of this study was to investigate the role of ferroptosis-related genes in PE, the underlying mechanism, and their potential diagnostic value using a bioinformatics approach. METHODS We downloaded the GSE48424 and GSE98224 datasets from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between PE and healthy pregnancy samples were identified in the GSE48424 dataset and subjected to weighted gene co-expression network analysis; the most relevant modules were intersected with known ferroptosis-related genes to distinctly identify the role of ferroptosis in PE. We further searched transcription factors and microRNAs that are predicted to regulate these ferroptosis-related genes, and patients in the GSE48424 dataset were divided into two groups according to high or low expression of the key ferroptosis-related genes associated with PE. To obtain robust key ferroptosis-related genes in PE, we validated their expression levels in the external dataset GSE98224. Finally, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay was utilized to access the expression of these genes in the PE and normal blood samples. RESULTS Six ferroptosis-related genes involved in PE were obtained by overlapping 3661 genes most associated with PE, 565 DEGs between PE and normal samples, and 259 known ferroptosis-related genes. Among these genes, patients with PE displaying lower expression levels of NOS2 and higher expression levels of PTGS2 had a higher ferroptosis potential index. The expression pattern of NOS2 was consistent in the GSE48424 and GSE98224 datasets. RT-qPCR data confirmed that NOS2 expression was more significantly elevated in patients with PE than in those with a normal pregnancy. CONCLUSIONS Our study explored the diagnostic value of ferroptosis-related genes in PE, and identified NOS2 as the key gene linking ferroptosis and PE, suggesting a new candidate biomarker for early PE diagnosis.
Collapse
Affiliation(s)
- Shuangming Cai
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Shan Huang
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Wenni Zhang
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Huanshun Xiao
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Danfeng Yu
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xuan Zhong
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Pei Tao
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yiping Luo
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Huang L, Zhong L, Cheng R, Chang L, Qin M, Liang H, Liao Z. Ferroptosis and WDFY4 as novel targets for immunotherapy of lung adenocarcinoma. Aging (Albany NY) 2023; 15:9676-9694. [PMID: 37728413 PMCID: PMC10564425 DOI: 10.18632/aging.205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Lung cancer exhibits the world's highest mortality rate among malignant cancers worldwide, thereby presenting a significant global challenge in terms of reducing patient mortality. In the field of oncology, targeted immunotherapy has emerged as a novel therapeutic approach for lung cancer. This study aims to explore potential targets for immunotherapy in lung adenocarcinoma (LUAD) through the analysis of Ferroptosis Index (FPI) and Single Cell RNA-Sequencing (scRNA-seq) data. The findings of this research can potentially offer valuable insights for improving LUAD immunotherapy strategies and informing clinical decision-making. METHODS Firstly, the relationship between survival and ferroptosis in LUAD patients was analyzed by FPI. Subsequently, the association between ferroptosis and infiltration and regulation of immune cells was explored by immune infiltration analysis and correlation statistics. Lastly, the relationship between major infiltrating immune cell populations and related pathways and prognosis of LUAD patients was analyzed by GSEA and GSVA. To screen out core genes regulating infiltration of immune cell populations, scRNA-seq data of cancer and para-cancerous tissues of LUAD patients were downloaded, followed by cell clustering analysis, cell identification of core subpopulations, pseudotime analysis, single-cell GSVA and pathway enrichment analysis, and identification and functional analysis of core regulatory genes. Moreover, the expression levels of core functional genes in LUAD tissue microarray were detected by immunohistochemistry, and its relationship with the prognosis of LUAD patients was verified. Finally, we used lentivirus with WDFY4 to transfect LUAD A549 cells. CCK-8, flow cytometry apoptosis detection, Scratch wound healing assay, Transwell migration assay, Xenograft nude mice model, immunohistochemical analysis and other experimental methods were used to explore the biological effects of WDFY4 on LUAD in vitro and in vivo. RESULTS Survival analysis of FPI values in LUAD patients revealed a positive correlation between smaller FPI values and longer overall survival. Immuno-infiltration analysis and its correlation with FPI values revealed that B cells were most strongly associated with ferroptosis. Ferroptosis of cancer cells could promote infiltration and activation of B cell populations, and LUAD patients with more infiltration of B cell populations had longer long-term survival. scRNA-seq data analysis indicated that the B cell population is one of the major cell populations infiltrated by immune cells in LUAD. During the later phases of B cell differentiation in LUAD, there was a decrease in the expression levels of ACAP1, LINC00926, TLR10, MS4A1, WDFY4, and TRIM22 genes, whereas the expression levels of TMEM59, TP53INP1, and METTL7A genes were elevated. The protein-protein interaction (PPI) network analysis indicated that WDFY4 plays a crucial role in regulating B cell differentiation in LUAD. Immunohistochemical analysis of LUAD tissue microarray revealed a significant downregulation of WDFY4 expression, which was closely related to the occurrence sites of LUAD. Moreover, LUAD patients with a low WDFY4 expression exhibited a poorer prognosis. Additionally, experimental findings demonstrated that the overexpression of WDFY4 could inhibit the proliferation and metastasis of A549 cells while promoting apoptosis. It was also confirmed that WDFY4 could inhibit cancer growth in vivo. CONCLUSIONS The results indicate that promoting infiltration and activation of B cell populations could improve the long-term survival of LUAD patients, thereby offering a potential novel immunotherapeutic approach for LUAD. Besides, the promotion of cancer cell ferroptosis and upregulation of WDFY4 expression have been shown to induce the infiltration and activation of B cell populations. Furthermore, the overexpression of WDFY4 can significantly inhibit the growth of lung adenocarcinoma in vitro and in vivo, highlighting its potential as a target for immunotherapy in LUAD.
Collapse
Affiliation(s)
- Ling Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Medical Products Administration, Haikou, China
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Lifan Zhong
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Ruxin Cheng
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan, China
| | - Limei Chang
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Medical Products Administration, Haikou, China
| | - Mingyan Qin
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Medical Products Administration, Haikou, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhongkai Liao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
46
|
Zhang WD, Hu DM, Shi ZE, Wang QX, Zhang MY, Liu JY, Ji XL, Qu YQ. STARD12/14 are diagnostic and prognostic biomarkers of lung adenocarcinoma associated with epigenetic regulation, immune infiltration and ferroptosis. Int J Med Sci 2023; 20:1427-1447. [PMID: 37790851 PMCID: PMC10542189 DOI: 10.7150/ijms.84566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/21/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Metabolic reprogramming plays an important role in tumor progression and antitumor immunity. START domain-containing proteins (STARDs) are responsible for lipid metabolism. However, the underlying functions of STARDs in lung adenocarcinoma (LUAD) have not been clarified yet. Methods: Oncomine, UALCAN, TCGA and CPTAC were used to explore the expression landscape and clinicopathological characteristics of STARDs in LUAD. Diagnostic and prognostic values were assessed by Kaplan-Meier Plotter, Cox regression analysis, and ROC curve. GeneMANIA, GO, KEGG and GSEA were applied for exploring the potential biological functions. Epigenetic process, including mutation and m6A modification were analyzed by cBioPortal and TCGA. TIMER, TISIDB and TCGA cohort provided an immune signature. The correlation between STARDs expression and ferroptosis was analyzed by TCGA. Finally, the STARDs expression were confirmed by RT-qPCR and western blot. Results: STARD5/10/14 were overexpressed in LUAD compared with normal, while STARD4/7/8/11/12/13 were relatively low. STARD5/12/14 levels were positively related to clinical and lymph node stage. Survival analysis showed high STARD12 expression was associated with favorable overall survival, disease special survival as well as disease free survival, while STARD14 showed the opposite. GSEA analysis found STARD12 and STARD14 were associated with glycolysis, oxidative phosphorylation and tumor related signaling pathways. STARD12 co-expressed genes participated in cell cycle and DNA replication, and STARD14 were enriched in ECM-receptor interaction. Both STARD12 and STARD14 were corelated with epigenetic regulation, especially TP53 mutation and m6A modification. STARD12 expression was positively correlated with TMB level. The level of STARD12 was significantly associated with the abundance of infiltrating immune cells, including B cells, CD8+T cells, macrophages, dendritic cells, and chemokine, receptor, MHC, immunostimulatory related genes. STARD14 was negatively associated with the infiltration of CD8+T cells, while positively with CCL28 and immune checkpoints, including CTLA4 as well as PD-L2. In addition, STARD12/14 could regulate the ferroptosis related genes. Conclusion: STARD12 and STARD14 were expected to be potential biomarkers for LUAD, which were associated with epigenetic regulation, immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Wen-Di Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of infectious respiratory diseases, Jinan, China
| | - Dong-Mei Hu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of infectious respiratory diseases, Jinan, China
| | - Zhuang-E Shi
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of infectious respiratory diseases, Jinan, China
| | - Qing-Xiang Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of infectious respiratory diseases, Jinan, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of infectious respiratory diseases, Jinan, China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of infectious respiratory diseases, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of infectious respiratory diseases, Jinan, China
| |
Collapse
|
47
|
Ma W, Zhang X, Lu J, Lv S, Zhang Z, Ma H, Chen Q, Cao W, Zhang X. Transmembrane protein 147, as a potential Sorafenib target, could expedite cell cycle process and confer adverse prognosis in hepatocellular carcinoma. Mol Carcinog 2023; 62:1295-1311. [PMID: 37212496 DOI: 10.1002/mc.23564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
TMEM147 was identified as a core component of ribosome-bound translocon complex at ER/NE. So far, sparse studies reported its expression profiling and oncological implications in hepatocellular carcinoma (HCC) patients. Here we inspected TMEM147 expression levels in HCC cohorts from public databases and tumor tissues. TMEM147 was augmented at transcriptional levels (p < 0.001) and protein levels in HCC patients. A series of bioinformatics tools implemented in R studio were orchestrated in TCGA-LIHC to evaluate the prognostic significance, compile relevant gene clusters, and explore the oncological functions and therapy responses. It is suggested that TMEM147 could predict poor clinical outcomes effectively and independently (p < 0.001, HR = 2.231 for overall survival (OS) vs. p = 0.04, HR = 2.296 for disease-specific survival), and was related to risk factors including advanced histologic tumor grade (p < 0.001), AFP level (p < 0.001) and vascular invasion (p = 0.007). Functional enrichment analyses indicated that TMEM147 was involved in cell cycle, WNT/MAPK signaling pathways and ferroptosis. Expression profiling in HCC cell lines, mouse model, and a clinical trial revealed that TMEM147 was a considerable target and marker for adjuvant therapy in vitro and in vivo. Subsequentially, in vitro wet-lab experimentation authenticated that TMEM147 would be downregulated by Sorafenib administration in hepatoma cells. Lentivirus-mediated overexpression of TMEM147 could promote cell cycle progression from S phase into G2/M phase, and enhance cell proliferation, thus attenuating drug efficacy and sensitivity of Sorafenib. Further explorations into TMEM147 may inspire a fresh perspective to predict clinical outcomes and improve therapeutic efficacy for HCC patients.
Collapse
Affiliation(s)
- Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Nephrotic, The Fifth People's Hospital of Jinan, Jinan, Shandong, China
| | - Jing Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Shiyu Lv
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Zhenyu Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hongxin Ma
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qianqian Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Wenjing Cao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xiaoning Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
48
|
Tang F, Wang N. Identification and validation of ferroptosis-related prognostic risk model and immune landscape in hepatocellular carcinoma. Immunobiology 2023; 228:152723. [PMID: 37517112 DOI: 10.1016/j.imbio.2023.152723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Ferroptosis has been paid much more attention on account of the correlation withtumorigenesis and development. However, the molecular characteristics and immune landscape of ferroptosis regulators in hepatocellular carcinoma (HCC) have not been fully elucidated. METHODS RNA-sequencing data and matched clinical data were collected from The Cancer Genome Atlas (TCGA) database, then underwent gene expression, genetic variations, prognostic risk model, and immune characterization analyses. An independent cohort from Gene Expression Omnibus (GEO) database was utilized to validate ferroptosis-related prognostic risk model. RESULTS We first identified the differentially expressed ferroptosis regulators between the tumor tissues and normal controls in HCC. Furthermore, the prognostic risk model based on ferroptosis regulators was constructed, of which the high risk group presented poor clinical outcomes compared to the low risk group. Importantly, the ferroptosis-related prognostic risk model consistently presented excellent prediction ability in recognizing the high and low risk patients according to the validation from an independent cohort. Subsequently, immune landscape analysis uncovered that most of ferroptosis regulatory genes were significantly associated with the infiltration of multiple immune cells and the expression of immune checkpoints in HCC. Moreover, the correlations of risk score with immune cells infiltration and immune checkpoints were determined in HCC. CONCLUSION Our study developed a prognostic risk model based on ferroptosis regulatory genes, which could accurately predict the patients' prognosis. Immune characteristics analysisrevealed that ferroptosis regulatory genes were associated with immune cells infiltration and immune checkpoints in HCC.
Collapse
Affiliation(s)
- Fei Tang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Ning Wang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China.
| |
Collapse
|
49
|
Yang Z, Su W, Wei X, Qu S, Zhao D, Zhou J, Wang Y, Guan Q, Qin C, Xiang J, Zen K, Yao B. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1. Cell Rep 2023; 42:112945. [PMID: 37542723 DOI: 10.1016/j.celrep.2023.112945] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Solid tumors have developed robust ferroptosis resistance. The mechanism underlying ferroptosis resistance regulation in solid tumors, however, remains elusive. Here, we report that the hypoxic tumor microenvironment potently promotes ferroptosis resistance in solid tumors in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner. In combination with HIF-2α, which promotes tumor ferroptosis under hypoxia, HIF-1α is the main driver of hypoxia-induced ferroptosis resistance. Mechanistically, HIF-1α-induced lactate contributes to ferroptosis resistance in a pH-dependent manner that is parallel to the classical SLC7A11 and FSP1 systems. In addition, HIF-1α also enhances transcription of SLC1A1, an important glutamate transporter, and promotes cystine uptake to promote ferroptosis resistance. In support of the role of hypoxia in ferroptosis resistance, silencing HIF-1α sensitizes mouse solid tumors to ferroptosis inducers. In conclusion, our results reveal a mechanism by which hypoxia drives ferroptosis resistance and identify the combination of hypoxia alleviation and ferroptosis induction as a promising therapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- Zhou Yang
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Su
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dan Zhao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwan Zhou
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qin
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.
| | - Bing Yao
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Yang Y, Liang J, Zhao J, Wang X, Feng D, Xu H, Shen Y, Zhang Y, Dai J, Wang Z, Wei Q, Liu Z. The multi-omics analyses of acsl1 reveal its translational significance as a tumor microenvironmental and prognostic biomarker in clear cell renal cell carcinoma. Diagn Pathol 2023; 18:96. [PMID: 37608295 PMCID: PMC10463412 DOI: 10.1186/s13000-023-01384-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the dominant subtype of kidney cancer. Dysregulation of long-chain acyl-CoA synthetase 1 (ACSL1) is strongly implicated in undesirable results in varieties of cancers. Nevertheless, the dysregulation and associated multi-omics characteristics of ACSL1 in ccRCC remain elusive. METHODS We probed the mRNA and protein profiles of ACSL1 in RCC using data from the Cancer Genome Atlas, Gene Expression Omnibus, the Human Protein Atlas (HPA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort and RCC cell lines. Correlations between ACSL1 expression and clinicopathological features, epigenetic modification and immune microenvironment characteristics were analyzed to reveal the multi-omics profile associated with ACSL1. RESULTS ACSL1 was down-regulated in ccRCC tissues compared to adjacent normal tissues. Lower expression of ACSL1 was linked to unfavorable pathological parameters and prognosis. The dysregulation of ACSL1 was greatly ascribed to CpG island-associated methylation modification. The ACSL1 high-expression subgroup had enriched fatty acid metabolism-related pathways and high expression of ferroptosis-related genes. In contrast, the ACSL1 low-expression subgroup exhibited higher immune and microenvironment scores, elevated expression of immune checkpoints PDCD1, CTLA4, LAG3, and TIGIT, and higher TIDE scores. Using data from the GDSC database, we corroborated that down-regulation of ACSL1 was associated with higher sensitivity towards Erlotinib, Pazopanib, and PI3K-Akt-mTOR-targeted therapeutic strategies. CONCLUSION Taken together, our findings point to ACSL1 as a biomarker for prognostic prediction of ccRCC, identifying the tumor microenvironment (TME) phenotype, and even contributing to treatment decision-making in ccRCC patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, No. 48, Taling South Road, Xunyang District, Jiujiang City, 332000, Jiangxi Province, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- , No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, PR China.
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- , No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, PR China.
| |
Collapse
|