1
|
Zhou T, Hou X, Yan J, Li L, Xie Y, Bai W, Jiang W, Zou Y, Li X, Liu Z, Zhang Z, Xu B, Mao G, Wang Y, Gao S, Wang X, Zhao T, Wang H, Sun H, Zhang X, Yu J, Huang C, Liu J, Hao J. CD64 + fibroblast-targeted vilanterol and a STING agonist augment CLDN18.2 BiTEs efficacy against pancreatic cancer by reducing desmoplasia and enriching stem-like CD8 + T cells. Gut 2024; 73:1984-1998. [PMID: 39187291 DOI: 10.1136/gutjnl-2024-332371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The objective of this study is to improve the efficacy of CLDN18.2/CD3 bispecific T-cell engagers (BiTEs) as a promising immunotherapy against pancreatic ductal adenocarcinoma (PDAC). DESIGN Humanised hCD34+/hCD3e+, Trp53R172HKrasG12DPdx1-Cre (KPC), pancreas-specific Cldn18.2 knockout (KO), fibroblast-specific Fcgr1 KO and patient-derived xenograft/organoid mouse models were constructed. Flow cytometry, Masson staining, Cell Titer Glo assay, virtual drug screening, molecular docking and chromatin immunoprecipitation were conducted. RESULTS CLDN18.2 BiTEs effectively inhibited early tumour growth, but late-stage efficacy was significantly diminished. Mechanically, the Fc fragment of BiTEs interacted with CD64+ cancer-associated fibroblasts (CAFs) via activation of the SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A-α-SMA/collagen-I pathway, which enhanced desmoplasia and limited late-stage infiltration of T cells. Molecular docking analysis found that vilanterol suppressed BiTEs-induced phosphorylation of VAV2 (Y172) in CD64+ CAFs and weakened desmoplasia. Additionally, decreased cyclic guanosine-adenosine monophosphate synthase/stimulator of interferon genes (STING) activity reduced proliferation of TCF-1+PD-1+ stem-like CD8+ T cells, which limited late-stage effects of BiTEs. Finally, vilanterol and the STING agonist synergistically boosted the efficacy of BiTEs by inhibiting the activation of CD64+ CAFs and enriching proliferation of stem-like CD8+ T cells, resulting in sustained anti-tumour activity. CONCLUSION Vilanterol plus the STING agonist sensitised PDAC to CLDN18.2 BiTEs and augmented efficacy as a potential novel strategy.
Collapse
Affiliation(s)
- Tianxing Zhou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xupeng Hou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jingrui Yan
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Lin Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yongjie Xie
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Weiwei Bai
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yiping Zou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xueyang Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Ziyun Liu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Zhaoyu Zhang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Bohang Xu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Guohua Mao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yifei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Song Gao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xiuchao Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Tiansuo Zhao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongwei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongxia Sun
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jun Yu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chongbiao Huang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Jing Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jihui Hao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Lind MCH, Naimi WA, Chiarelli TJ, Sparrer T, Ghosh M, Shapiro L, Carlyon JA. Anaplasma phagocytophilum invasin AipA interacts with CD13 to elicit Src kinase signaling that promotes infection. mBio 2024; 15:e0156124. [PMID: 39324816 PMCID: PMC11481542 DOI: 10.1128/mbio.01561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Host-microbe interactions that facilitate entry into mammalian cells are essential for obligate intracellular bacterial survival and pathogenesis. Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause granulocytic anaplasmosis. The invasin-receptor pairs and signaling events that induce Anaplasma uptake are inadequately defined. A. phagocytophilum invasion protein A orchestrates entry via residues 9-21 (AipA9-21) engaging an unknown receptor. Yeast two-hybrid screening suggested that AipA binds within C-terminal amino acids 851-967 of CD13 (aminopeptidase N), a multifunctional protein that, when crosslinked, initiates Src kinase and Syk signaling that culminates in endocytosis. Co-immunoprecipitation validated the interaction and confirmed that it requires the AipA N-terminus. CD13 ectopic expression on non-phagocytic cells increased susceptibility to A. phagocytophilum infection. Antibody blocking and enzymatic inhibition experiments found that the microbe exploits CD13 but not its ectopeptidase activity to infect myeloid cells. A. phagocytophilum induces Src and Syk phosphorylation during invasion. Inhibitor treatment established that Src is key for A. phagocytophilum infection, while Syk is dispensable and oriented the pathogen-invoked signaling pathway by showing that Src is activated before Syk. Disrupting the AipA-CD13 interaction with AipA9-21 or CD13781-967 antibody inhibited Src and Syk phosphorylation and also infection. CD13 crosslinking antibody that induces Src and Syk signaling restored infectivity of anti-AipA9-21-treated A. phagocytophilum. The bacterium poorly infected CD13 knockout mice, providing the first demonstration that CD13 is important for microbial infection in vivo. Overall, A. phagocytophilum AipA9-21 binds CD13 to induce Src signaling that mediates uptake into host cells, and CD13 is critical for infection in vivo. IMPORTANCE Diverse microbes engage CD13 to infect host cells. Yet invasin-CD13 interactions, the signaling they invoke for pathogen entry, and the relevance of CD13 to infection in vivo are underexplored. Dissecting these concepts would advance fundamental understanding of a convergently evolved infection strategy and could have translational benefits. Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging disease for which there is no vaccine and few therapeutic options. We found that A. phagocytophilum uses its surface protein and recently identified protective immunogen, AipA, to bind CD13 to elicit Src kinase signaling, which is critical for infection. We elucidated the AipA CD13 binding domain, which CD13 region AipA engages, and established that CD13 is key for A. phagocytophilum infection in vivo. Disrupting the AipA-CD13 interaction could be utilized to prevent granulocytic anaplasmosis and offers a model that could be applied to protect against multiple infectious diseases.
Collapse
Affiliation(s)
- Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Waheeda A. Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Tavis Sparrer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Linda Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
3
|
Tran UT, Kitami T. Chemical screens for particle-induced macrophage death identifies kinase inhibitors of phagocytosis as targets for toxicity. J Nanobiotechnology 2024; 22:621. [PMID: 39396993 PMCID: PMC11472441 DOI: 10.1186/s12951-024-02885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Nanoparticles are increasingly being used in medicine, cosmetics, food, and manufacturing. However, potential toxicity may limit the use of newly engineered nanoparticles. Prior studies have identified particle characteristics that are predictive of toxicity, although the mechanisms responsible for toxicity remain largely unknown. Nanoparticle treatment in cell culture, combined with high-throughput chemical screen allows for systematic perturbations of thousands of molecular targets against potential pathways of toxicity. The resulting data matrix, called chemical compendium, can provide insights into the mechanism of toxicity as well as help classify nanoparticles based on toxicity pathway. RESULTS We performed unbiased screens of 1280 bioactive chemicals against a panel of four particles, searching for inhibitors of macrophage toxicity. Our hit compounds clustered upon inhibitors of kinases involved in phagocytosis, including focal adhesion kinase (FAK), with varying specificity depending on particles. Interestingly, known inhibitors of cell death including NLRP3 inflammasome inhibitor were unable to suppress particle-induced macrophage death for many of the particles. By searching for upstream receptors of kinases, we identified Cd11b as one of the receptors involved in recognizing a subset of particles. We subsequently used these hit compounds and antibodies to further characterize a larger panel of particles and identified hydrodynamic size as an important particle characteristic in Cd11b-mediated particle uptake and toxicity. CONCLUSIONS Our chemical compendium and workflow can be expanded across cell types and assays to characterize the toxicity mechanism of newly engineered nanoparticles. The data in their current form can also be analyzed to help design future high-throughput screening for nanoparticle toxicity.
Collapse
Affiliation(s)
- Uyen Thi Tran
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Cell and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Toshimori Kitami
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| |
Collapse
|
4
|
Bermejo-Jambrina M, van der Donk LE, van Hamme JL, Wilflingseder D, de Bree G, Prins M, de Jong M, Nieuwkerk P, van Gils MJ, Kootstra NA, Geijtenbeek TB. Control of complement-induced inflammatory responses to SARS-CoV-2 infection by anti-SARS-CoV-2 antibodies. EMBO J 2024; 43:1135-1163. [PMID: 38418557 PMCID: PMC10987522 DOI: 10.1038/s44318-024-00061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here, we uncover the role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lieve Eh van der Donk
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Godelieve de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
| | - Menno de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Pythia Nieuwkerk
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
- Department of Medical Psychology (J3-2019-1), Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Teunis Bh Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Uribe-Querol E, Rosales C. Phagocytosis. Methods Mol Biol 2024; 2813:39-64. [PMID: 38888769 DOI: 10.1007/978-1-0716-3890-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Shadab M, Slavin SA, Mahamed Z, Millar MW, Najar RA, Leonard A, Pietropaoli A, Dean DA, Fazal F, Rahman A. Spleen Tyrosine Kinase phosphorylates VE-cadherin to cause endothelial barrier disruption in acute lung injury. J Biol Chem 2023; 299:105408. [PMID: 38229397 PMCID: PMC10731244 DOI: 10.1016/j.jbc.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 01/18/2024] Open
Abstract
Increased endothelial cell (EC) permeability is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Tyrosine phosphorylation of VE-cadherin is a key determinant of EC barrier disruption. However, the identity and role of tyrosine kinases in this context are incompletely understood. Here we report that Spleen Tyrosine Kinase (Syk) is a key mediator of EC barrier disruption and lung vascular leak in sepsis. Inhibition of Syk by pharmacological or genetic approaches, each reduced thrombin-induced EC permeability. Mechanistically, Syk associates with and phosphorylates VE-cadherin to cause EC permeability. To study the causal role of endothelial Syk in sepsis-induced ALI, we used a remarkably efficient and cost-effective approach based on gene transfer to generate EC-ablated Syk mice. These mice were protected against sepsis-induced loss of VE-cadherin and inflammatory lung injury. Notably, the administration of Syk inhibitor R788 (fostamatinib); currently in phase II clinical trial for the treatment of COVID-19, mitigated lung injury and mortality in mice with sepsis. These data identify Syk as a novel kinase for VE-cadherin and a druggable target against ALI in sepsis.
Collapse
Affiliation(s)
- Mohammad Shadab
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zahra Mahamed
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Michelle W Millar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rauf A Najar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Anthony Pietropaoli
- Department of Medicine, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - David A Dean
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
7
|
Carroll JA, Striebel JF, Baune C, Chesebro B, Race B. CD11c is not required by microglia to convey neuroprotection after prion infection. PLoS One 2023; 18:e0293301. [PMID: 37910561 PMCID: PMC10619787 DOI: 10.1371/journal.pone.0293301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Prion diseases are caused by the misfolding of a normal host protein that leads to gliosis, neuroinflammation, neurodegeneration, and death. Microglia have been shown to be critical for neuroprotection during prion infection of the central nervous system (CNS), and their presence extends survival in mice. How microglia impart these benefits to the infected host are unknown. Previous transcriptomics and bioinformatics studies suggested that signaling through the heterodimeric integrin receptor CD11c/CD18, expressed by microglia in the brain, might be important to microglial function during prion disease. Herein, we intracerebrally challenged CD11c-/- mice with prion strain RML and compared them to similarly infected C57BL/6 mice as controls. We initially assessed changes in the brain that are associated with disease such as astrogliosis, microgliosis, prion accumulation, and survival. Targeted qRT-PCR arrays were used to determine alterations in transcription in mice in response to prion infection. We demonstrate that expression of Itgax (CD11c) and Itgb2 (CD18) increases in the CNS in correlation with advancing prion infection. Gliosis, neuropathology, prion deposition, and disease progression in prion infected CD11c deficient mice were comparable to infected C57BL/6 mice. Additionally, both CD11c deficient and C57BL/6 prion-infected mouse cohorts had a similar consortium of inflammatory- and phagocytosis-associated genes that increased as disease progressed to clinical stages. Ingenuity Pathway Analysis of upregulated genes in infected C57BL/6 mice suggested numerous cell-surface transmembrane receptors signal through Spleen Tyrosine Kinase, a potential key regulator of phagocytosis and innate immune activation in the prion infected brain. Ultimately, the deletion of CD11c did not influence prion pathogenesis in mice and CD11c signaling is not involved in the neuroprotection provided by microglia, but our analysis identified a conspicuous phagocytosis pathway in the CNS of infected mice that appeared to be activated during prion pathogenesis.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chase Baune
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
8
|
Futosi K, Németh T, Horváth ÁI, Abram CL, Tusnády S, Lowell CA, Helyes Z, Mócsai A. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J Exp Med 2023; 220:e20221010. [PMID: 37074415 PMCID: PMC10120404 DOI: 10.1084/jem.20221010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Ádám I. Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Clare L. Abram
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Tusnády
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Rohila D, Park IH, Pham TV, Jones R, Tapia E, Liu KX, Tamayo P, Yu A, Sharabi AB, Joshi S. Targeting macrophage Syk enhances responses to immune checkpoint blockade and radiotherapy in high-risk neuroblastoma. Front Immunol 2023; 14:1148317. [PMID: 37350973 PMCID: PMC10283071 DOI: 10.3389/fimmu.2023.1148317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Background Neuroblastoma (NB) is considered an immunologically cold tumor and is usually less responsive to immune checkpoint blockade (ICB). Tumor-associated macrophages (TAMs) are highly infiltrated in NB tumors and promote immune escape and resistance to ICB. Hence therapeutic strategies targeting immunosuppressive TAMs can improve responses to ICB in NB. We recently discovered that spleen tyrosine kinase (Syk) reprograms TAMs toward an immunostimulatory phenotype and enhances T-cell responses in the lung adenocarcinoma model. Here we investigated if Syk is an immune-oncology target in NB and tested whether a novel immunotherapeutic approach utilizing Syk inhibitor together with radiation and ICB could provide a durable anti-tumor immune response in an MYCN amplified murine model of NB. Methods Myeloid Syk KO mice and syngeneic MYCN-amplified cell lines were used to elucidate the effect of myeloid Syk on the NB tumor microenvironment (TME). In addition, the effect of Syk inhibitor, R788, on anti-tumor immunity alone or in combination with anti-PDL1 mAb and radiation was also determined in murine NB models. The underlying mechanism of action of this novel therapeutic combination was also investigated. Results Herein, we report that Syk is a marker of NB-associated macrophages and plays a crucial role in promoting immunosuppression in the NB TME. We found that the blockade of Syk in NB-bearing mice markedly impairs tumor growth. This effect is facilitated by macrophages that become immunogenic in the absence of Syk, skewing the suppressive TME towards immunostimulation and activating anti-tumor immune responses. Moreover, combining FDA-approved Syk inhibitor, R788 (fostamatinib) along with anti-PDL1 mAb provides a synergistic effect leading to complete tumor regression and durable anti-tumor immunity in mice bearing small tumors (50 mm3) but not larger tumors (250 mm3). However, combining radiation to R788 and anti-PDL1 mAb prolongs the survival of mice bearing large NB9464 tumors. Conclusion Collectively, our findings demonstrate the central role of macrophage Syk in NB progression and demonstrate that Syk blockade can "reeducate" TAMs towards immunostimulatory phenotype, leading to enhanced T cell responses. These findings further support the clinical evaluation of fostamatinib alone or with radiation and ICB, as a novel therapeutic intervention in neuroblastoma.
Collapse
Affiliation(s)
- Deepak Rohila
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - In Hwan Park
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Timothy V. Pham
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Riley Jones
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Elisabette Tapia
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Kevin X. Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Alice Yu
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Andrew B. Sharabi
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
S100A8/S100A9 Integrates F-Actin and Microtubule Dynamics to Prevent Uncontrolled Extravasation of Leukocytes. Biomedicines 2023; 11:biomedicines11030835. [PMID: 36979814 PMCID: PMC10045313 DOI: 10.3390/biomedicines11030835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Immune reactions are characterized by the rapid immigration of phagocytes into sites of inflammation. Meticulous regulation of these migratory processes is crucial for preventing uncontrolled and harmful phagocyte extravasation. S100A8/S100A9 is the major calcium-binding protein complex expressed in phagocytes. After release, this complex acts as a proinflammatory alarmin in the extracellular space, but the intracellular functions of these highly abundant proteins are less clear. Results of this study reveal an important role of S100A8/S100A9 in coordinated cytoskeleton rearrangement during migration. We found that S100A8/S100A9 was able to cross-link F-actin and microtubules in a calcium- and phosphorylation-dependent manner. Cells deficient in S100A8/S100A9 showed abnormalities in cell adhesion and motility. Missing cytoskeletal interactions of S100A8/S100A9 caused differences in the surface expression and activation of β1-integrins as well as in the regulation of Src/Syk kinase family members. Loss of S100A8/S100A9 led to dysregulated integrin-mediated adhesion and migration, resulting in an overall higher dynamic activity of non-activated S100A8/S100A9-deficient phagocytes. Our data suggest that intracellular S100A8/S100A9 is part of a novel regulatory mechanism that ensures the precise control necessary to facilitate the change between the quiescent and activated state of phagocytes.
Collapse
|
11
|
Cho S, Jang E, Yoon T, Hwang H, Youn J. A novel selective spleen tyrosine kinase inhibitor SKI-O-703 (cevidoplenib) ameliorates lupus nephritis and serum-induced arthritis in murine models. Clin Exp Immunol 2023; 211:31-45. [PMID: 36346114 PMCID: PMC9993459 DOI: 10.1093/cei/uxac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Spleen tyrosine kinase (Syk) plays a pivotal role in the activation of B cells and innate inflammatory cells by transducing immune receptor-triggered signals. Dysregulated activity of Syk is implicated in the development of antibody-mediated autoimmune diseases including systemic lupus erythematosus (SLE) and rheumatoid arthritis, but the effect of Syk inhibition on such diseases remains to be fully evaluated. We have developed a novel selective Syk inhibitor, SKI-O-592, and its orally bioavailable salt form, SKI-O-703 (cevidoplenib). To examine the efficacy of SKI-O-703 on the progression of SLE, New Zealand black/white mice at the autoimmunity-established phase were administrated orally with SKI-O-703 for 16 weeks. Levels of IgG autoantibody, proteinuria, and glomerulonephritis fell significantly, and this was associated with hypoactivation of follicular B cells via the germinal center. In a model of serum-transferred arthritis, SKI-O-703 significantly ameliorated synovitis, with fewer neutrophils and macrophages infiltrated into the synovial tissue. This effect was recapitulated when mice otherwise refractory to anti-TNF therapy were treated by TNF blockade combined with a suboptimal dose of SKI-O-703. These results demonstrate that the novel selective Syk inhibitor SKI-O-703 attenuates the progression of autoantibody-mediated autoimmune diseases by inhibiting both autoantibody-producing and autoantibody-sensing cells.
Collapse
Affiliation(s)
- Somi Cho
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Eunkyeong Jang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Taeyoung Yoon
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Haejun Hwang
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Jeehee Youn
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
12
|
Wang J, Zhang J, Wang Q, Zhang Q, Thiam M, Zhu B, Ying F, Elsharkawy MS, Zheng M, Wen J, Li Q, Zhao G. A heterophil/lymphocyte-selected population reveals the phosphatase PTPRJ is associated with immune defense in chickens. Commun Biol 2023; 6:196. [PMID: 36807561 PMCID: PMC9938895 DOI: 10.1038/s42003-023-04559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Quantification of leukocyte profiles is among the simplest measures of animal immune function. However, the relationship between H/L ratio and innate immunity and the measure's utility as an index for heterophil function remains to be analyzed. Variants associated with H/L ratio were fine-mapped based on the resequencing of 249 chickens of different generations and an F2 segregating population generated by crossing selection and control lines. H/L ratio in the selection line was associated with a selective sweep of mutations in protein tyrosine phosphatase, receptor type J (PTPRJ), which affects proliferation and differentiation of heterophils through its downstream regulatory genes. The SNP downstream of PTPRJ (rs736799474) have a universal effect on H/L, with CC homozygotes exhibiting improved heterophil function because of downregulated PTPRJ expression. In short, we systematically elucidated the genetic basis of the change in heterophil function resulting from H/L selection by identifying the regulatory gene (PTPRJ) and causative SNP.
Collapse
Affiliation(s)
- Jie Wang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China ,grid.452757.60000 0004 0644 6150Poultry Institute, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 P. R. China
| | - Jin Zhang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qiao Wang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qi Zhang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Mamadou Thiam
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Bo Zhu
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Fan Ying
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Mohamed Shafey Elsharkawy
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Maiqing Zheng
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Jie Wen
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
13
|
Wu J, Nie Y, Wang J, Feng G, Hao L, Ma Y, Li Y, Liu Z. Fcγ receptor-mediated phagocytosis pathway was involved in phagocytosis of mIgM + B lymphocytes from largemouth bass (Micropterus salmoides). JOURNAL OF FISH BIOLOGY 2023; 102:128-140. [PMID: 36222291 DOI: 10.1111/jfb.15246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The potential for phagocytosis has been proven in teleost B cells, but the research on the regulatory mechanism of phagocytosis remains lacking. In this study, three largemouth bass (Micropterus salmoides) (15 ± 5 g) were injected intraperitoneally with Nocardia seriolae (105 CFU/100 μl/fish) in vivo, and their spleen was collected at 72 h post-infection for mRNA-seq. After the de novo assembly of the paired-end reads, 73,622 unigenes were obtained. Gene expression profiling revealed that 2043 unigenes were differentially expressed after N. seriolae infection, comprising 1285 upregulated and 758 downregulated unigenes (q-value <0.05, log2FC > |2|) of which 181 genes were involved in phagocytosis. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis demonstrated that 12 differentially expressed genes (DEG) associated with phagocytosis were enriched in the Fcγ receptor-mediated phagocytosis signalling pathway. In vitro, the phagocytic ability of mIgM+ B lymphocytes was validated using indirect immunofluorescence assay (IIFA) and fluorescence activating cell sorter (FACS), and the phagocytosis rates of the mIgM+ B lymphocytes incubated with a Lyn inhibitor had decreased from 18.533 ± 6.00% to 11.610 ± 4.236% compared with the unblocked group. These results suggested that the Fcγ receptor-mediated phagocytosis signalling pathway had participated in the phagocytosis of B cells and provide further insight into the role of B cells in innate immunology.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Nie
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guoqing Feng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| |
Collapse
|
14
|
Liu X, Lu Y, Huang J, Xing Y, Dai H, Zhu L, Li S, Feng J, Zhou B, Li J, Xia Q, Li J, Huang M, Gu Y, Su S. CD16 + fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition. Cancer Cell 2022; 40:1341-1357.e13. [PMID: 36379207 DOI: 10.1016/j.ccell.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
The leukocyte Fcγ receptor (FcγR)-mediated response is important for the efficacy of therapeutic antibodies; however, little is known about the role of FcγRs in other cell types. Here we identify a subset of fibroblasts in human breast cancer that express CD16 (FcγRIII). An abundance of these cells in HER2+ breast cancer patients is associated with poor prognosis and response to trastuzumab. Functionally, upon trastuzumab stimulation, CD16+ fibroblasts reduce drug delivery by enhancing extracellular matrix stiffness. Interaction between trastuzumab and CD16 activates the intracellular SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A pathway, leading to elevated contractile force and matrix production. Targeting of a Rho family guanine nucleotide exchange factor, VAV2, which is indispensable for the function of CD16 in fibroblasts rather than leukocytes, reverses desmoplasia provoked by CD16+ fibroblasts. Collectively, our study reveals a role for the fibroblast FcγR in drug resistance, and suggests that VAV2 is an attractive target to augment the effects of antibody treatments.
Collapse
Affiliation(s)
- Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huiqi Dai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Wu J, Ma Y, Nie Y, Wang J, Feng G, Hao L, Huang W, Li Y, Liu Z. Functional Characterization of Largemouth Bass ( Micropterus salmoides) Soluble FcγR Homolog in Response to Bacterial Infection. Int J Mol Sci 2022; 23:ijms232213788. [PMID: 36430268 PMCID: PMC9699129 DOI: 10.3390/ijms232213788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Fc receptors (FcRs) are key players in antibody-dependent cellular phagocytosis (ADCP) with their specific recognition of the Fc portion of an immunoglobulin. Despite reports of FcγR-mediated phagocytosis in mammals, little is known about the effects of soluble FcγRs on the immune response. In this study, FcγRIα was cloned from the largemouth bass (Micropterus salmoides) (MsFcγRIα). Without a transmembrane segment or a cytoplasmic tail, MsFcγRIα was identified as a soluble form protein and widely distributed in the spleen, head kidney, and intestine. The native MsFcγRIα was detected in the serum of Nocardia seriolae-infected largemouth bass and the supernatants of transfected HEK293 cells. Additionally, it was verified that the transfected cells' surface secreted MsFcRIα could bind to largemouth bass IgM. Moreover, the expression changes of MsFcγRIα, Syk, and Lyn indicated that MsFcγRIα was engaged in the acute phase response to bacteria, and the FcγR-mediated phagocytosis pathway was activated by Nocardia seriolae stimulation. Furthermore, recombinant MsFcγRIα could enhance both reactive oxygen species (ROS) and phagocytosis to Nocardia seriolae of leukocytes, presumably through the interaction of MsFcγRIα with a complement receptor. In conclusion, these findings provided a better understanding of the function of soluble FcγRs in the immune response and further shed light on the mechanism of phagocytosis in teleosts.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yifan Nie
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Feng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wen Huang
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (Z.L.)
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (Y.L.); (Z.L.)
| |
Collapse
|
16
|
Dib K, El Banna A, Radulescu C, Lopez Campos G, Sheehan G, Kavanagh K. Histamine Produced by Gram-Negative Bacteria Impairs Neutrophil's Antimicrobial Response by Engaging the Histamine 2 Receptor. J Innate Immun 2022; 15:153-173. [PMID: 35858582 PMCID: PMC10643892 DOI: 10.1159/000525536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
We found that histamine (10-9 M) did not have any effect on the in vitro capture of Escherichia coli by neutrophils but accelerated its intracellular killing. In contrast, histamine (10-6 M) delayed the capture of Escherichia coli by neutrophils and reduced the amounts of pHrodo zymosan particles inside acidic mature phagosomes. Histamine acted through the H4R and the H2R, which are coupled to the Src family tyrosine kinases or the cAMP/protein kinase A pathway, respectively. The protein kinase A inhibitor H-89 abrogated the delay in bacterial capture induced by histamine (10-6 M) and the Src family tyrosine kinase inhibitor PP2 blocked histamine (10-9 M) induced acceleration of bacterial intracellular killing and tyrosine phosphorylation of proteins. To investigate the role of histamine in pathogenicity, we designed an Acinetobacter baumannii strain deficient in histamine production (hdc::TOPO). Galleria mellonella larvae inoculated with the wild-type Acinetobacter baumannii ATCC 17978 strain (1.1 × 105 CFU) died rapidly (100% death within 40 h) but not when inoculated with the Acinetobacter baumannii hdc::TOPO mutant (10% mortality). The concentration of histamine rose in the larval haemolymph upon inoculation of the wild type but not the Acinetobacter baumannii hdc::TOPO mutant, such concentration of histamine blocks the ability of hemocytes from Galleria mellonella to capture Candida albicans in vitro. Thus, bacteria-producing histamine, by maintaining high levels of histamine, may impair neutrophil phagocytosis by hijacking the H2R.
Collapse
Affiliation(s)
- Karim Dib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amal El Banna
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Clara Radulescu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
17
|
The transmembrane adapter SCIMP recruits tyrosine kinase Syk to phosphorylate Toll-like receptors to mediate selective inflammatory outputs. J Biol Chem 2022; 298:101857. [PMID: 35337798 PMCID: PMC9052152 DOI: 10.1016/j.jbc.2022.101857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.
Collapse
|
18
|
Wan J, Zhao X, Liu J, Chen K, Li C. Src kinase mediates coelomocytes phagocytosis via interacting with focal adhesion kinase in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:411-420. [PMID: 35462003 DOI: 10.1016/j.fsi.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Immune cells have many efficient ways to participate in the host immunity, including phagocytosis, which is an important pathway to eliminate pathogens. Only β-integrin-mediated phagocytosis pathways have been confirmed in Apostichopus japonicus. The Src family kinases (SFKs), a class of non-receptor tyrosine kinases plays an important role in the regulation of phagocytic signals in invertebrates. However, the SFK-mediated phagocytic mechanism is largely unknown in A. japonicus. In this study, a novel SFK homologue (AjSrc) with a conservative SH3 domain, an SH2 domain, and a tyrosine kinase domain was identified from A. japonicus. Both gene and protein expression of AjSrc and phosphorylation levels increased under Vibrio splendidus challenged, reaching the highest level at 24 h. Knock-down of AjSrc could depress coelomocytes' phagocytosis by 25% compared to the control group. To better understand the mechanism of AjSrc-mediated phagocytosis, focal adhesion kinase (FAK) was identified by a Co-immunoprecipitation experiment to be verified as an interactive protein of AjSrc. The phagocytosis rates of coelomocytes were decreased by 33% and 37% in AjFAK and AjSrc + AjFAK interference groups compared with the control group, respectively. Furthermore, the phosphorylation level of AjFAK was increased and reached the maximum level at 24 h post V. splendidus infection, as the same as that of AjSrc. Our results suggested that AjSrc could mediate V. splendidus-induced coelomocytes' phagocytosis via interacting with AjFAK and co-phosphorylation. This study enriched the mechanism of phagocytosis in echinoderm and provided the new theoretical foundation for disease control of sea cucumber.
Collapse
Affiliation(s)
- Junjie Wan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
19
|
Hao Y, Tang X, Xing J, Sheng X, Chi H, Zhan W. Regulatory Role of Fc Receptor in mIgM + B Lymphocyte Phagocytosis in Flounder ( Paralichthys olivaceus). Front Immunol 2022; 12:804244. [PMID: 34975918 PMCID: PMC8718553 DOI: 10.3389/fimmu.2021.804244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Fc receptor (FcR) is an important opsonin receptor on the surface of immune cells, playing an important role in antibody-dependent cell-mediated immunity. Our previous work found that the FcR of flounder showed a marked expression response in phagocytizing IgM+ B cell, which suggested that FcR might participate in regulating Ig-opsonized phagocytosis. In this paper, in order to elucidate the potential role of FcR in mediating phagocytosis of IgM+ B cell, flounder anti-E. tarda serum was prepared and complement-inactivated for the use of E. tarda opsonization, and the sera of healthy flounder were used as control. Flow cytometric analysis showed that the phagocytosis rates of antiserum-opsonized E. tarda in peripheral blood mIgM+ B lymphocytes were significantly higher than the control group, and higher phagocytosis rates of mIgM+ B lymphocyte could be detected with an increasing incubation time ranging from 1 to 5 h. The phagocytosis rates of antiserum-opsonized E. tarda by mIgM+ B lymphocyte for an incubation time of 1, 3 or 5 h were 51.1, 63.0, and 77.5% respectively, which were significantly higher than the phagocytosis rates in the control groups with 40.2, 50.9, and 63.8%, respectively. While the Fc fragment of IgM on the surface of opsonized E. tarda was blocked by rabbit anti-flounder IgM polyclonal antibodies, phagocytosis rates of mIgM+ B lymphocyte decreased significantly compared with the unblocked group. Moreover, the proportion of mIgM+ B lymphocytes with higher intracellular reactive oxygen species (ROS) levels rose to 32.1% from the control level of 23.0% after phagocytosis of antiserum-opsonized E. tarda. FcγRII and Syk were found to be significantly upregulated, while FcγRIII was significantly downregulated in the mIgM+ B lymphocytes post phagocytosis. Furthermore, when FcγRII of mIgM+ B lymphocytes was blocked by the prepared antibodies, their phagocytosis rate of antiserum-opsonized E. tarda was 39.0%, which was significantly lower than the unblocked group of 54.0%. These results demonstrate that FcR plays a critical role in mediating phagocytosis and bactericidal activity of mIgM+ B lymphocytes, which would facilitate an improved understanding of the regulatory roles of FcR in phagocytosis of teleost B lymphocytes.
Collapse
Affiliation(s)
- Yanbo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Host Genome-Wide Association Study of Infant Susceptibility to Shigella-Associated Diarrhea. Infect Immun 2021; 89:IAI.00012-21. [PMID: 33649051 PMCID: PMC8316060 DOI: 10.1128/iai.00012-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Shigella is a leading cause of moderate-to-severe diarrhea globally and the causative agent of shigellosis and bacillary dysentery. Associated with 80 to 165 million cases of diarrhea and >13% of diarrheal deaths, in many regions, Shigella exposure is ubiquitous while infection is heterogenous. To characterize host-genetic susceptibility to Shigella-associated diarrhea, we performed two independent genome-wide association studies (GWAS) including Bangladeshi infants from the PROVIDE and CBC birth cohorts in Dhaka, Bangladesh. Cases were infants with Shigella-associated diarrhea (n = 143) and controls were infants with no Shigella-associated diarrhea in the first 13 months of life (n = 446). Shigella-associated diarrhea was identified via quantitative PCR (qPCR) threshold cycle (CT ) distributions for the ipaH gene, carried by all four Shigella species and enteroinvasive Escherichia coli Host GWAS were performed under an additive genetic model. A joint analysis identified protective loci on chromosomes 11 (rs582240, within the KRT18P59 pseudogene; P = 6.40 × 10-8; odds ratio [OR], 0.43) and 8 (rs12550437, within the lincRNA RP11-115J16.1; P = 1.49 × 10-7; OR, 0.48). Conditional analyses identified two previously suggestive loci, a protective locus on chromosome 7 (rs10266841, within the 3' untranslated region [UTR] of CYTH3; P conditional = 1.48 × 10-7; OR, 0.44) and a risk-associated locus on chromosome 10 (rs2801847, an intronic variant within MPP7; P conditional = 8.37 × 10-8; OR, 5.51). These loci have all been indirectly linked to bacterial type 3 secretion system (T3SS) activity, its components, and bacterial effectors delivered into host cells. Host genetic factors that may affect bacterial T3SS activity and are associated with the host response to Shigella-associated diarrhea may provide insight into vaccine and drug development efforts for Shigella-associated diarrheal disease.
Collapse
|
21
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
22
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
23
|
Magno L, Bunney TD, Mead E, Svensson F, Bictash MN. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol Neurodegener 2021; 16:22. [PMID: 33823896 PMCID: PMC8022522 DOI: 10.1186/s13024-021-00436-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products – TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) – in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.
Collapse
Affiliation(s)
- Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Emma Mead
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7FZ, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Magda N Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
24
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Slingsby MHL, Vijey P, Tsai IT, Roweth H, Couldwell G, Wilkie AR, Gaus H, Goolsby JM, Okazaki R, Terkovich BE, Semple JW, Thon JN, Henry SP, Narayanan P, Italiano JE. Sequence-specific 2'-O-methoxyethyl antisense oligonucleotides activate human platelets through glycoprotein VI, triggering formation of platelet-leukocyte aggregates. Haematologica 2021; 107:519-531. [PMID: 33567808 PMCID: PMC8804562 DOI: 10.3324/haematol.2020.260059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
Antisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2’MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count. Phenotype 2 is rare, severe thrombocytopenia. This article focuses on the underlying cause of the more common phenotype 1, investigating the effects of ASO on platelet production and platelet function. Five phosphorothioate ASO were studied: three 2’MOE sequences; 487660 (no effects on platelet count), 104838 (associated with phenotype 1), and 501861 (effects unknown) and two CpG sequences; 120704 and ODN 2395 (known to activate platelets). Human cord bloodderived megakaryocytes were treated with these ASO to study their effects on proplatelet production. Platelet activation (determined by surface P-selectin) and platelet-leukocyte aggregates were analyzed in ASO-treated blood from healthy human volunteers. None of the ASO inhibited proplatelet production by human megakaryocytes. All the ASO were shown to bind to the platelet receptor glycoprotein VI (KD ~0.2-1.5 μM). CpG ASO had the highest affinity to glycoprotein VI, the most potent platelet-activating effects and led to the greatest formation of platelet-leukocyte aggregates. 2’MOE ASO 487660 had no detectable platelet effects, while 2’MOE ASOs 104838 and 501861 triggered moderate platelet activation and SYKdependent formation of platelet-leukocyte aggregates. Donors with higher platelet glycoprotein VI levels had greater ASO-induced platelet activation. Sequence-dependent ASO-induced platelet activation and platelet-leukocyte aggregates may explain phenotype 1 (moderate drops in platelet count). Platelet glycoprotein VI levels could be useful as a screening tool to identify patients at higher risk of ASO-induced platelet side effects.
Collapse
Affiliation(s)
- Martina H Lundberg Slingsby
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Prakrith Vijey
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - I-Ting Tsai
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Harvey Roweth
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Genevieve Couldwell
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Adrian R Wilkie
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans Gaus
- Nonclinical Development, Ionis Pharmaceuticals Inc., Carlsbad, CA
| | - Jazana M Goolsby
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ross Okazaki
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Brooke E Terkovich
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - John W Semple
- Departments of Pharmacology and Medicine, University of Toronto, Toronto, Canada; Division of Hematology and Transfusion Medicine, Lund University, Lund
| | - Jonathan N Thon
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Scott P Henry
- Nonclinical Development, Ionis Pharmaceuticals Inc., Carlsbad, CA
| | | | - Joseph E Italiano
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Cai X, Li Y, Zheng X, Hu R, Li Y, Xiao L, Wang Z. Propofol suppresses microglial phagocytosis through the downregulation of MFG-E8. J Neuroinflammation 2021; 18:18. [PMID: 33422097 PMCID: PMC7796553 DOI: 10.1186/s12974-020-02061-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/16/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Microglia are highly motile phagocytic cells in the healthy brain with surveillance and clearance functions. Although microglia have been shown to engulf cellular debris following brain insult, less is known about their phagocytic function in the absence of injury. Propofol can inhibit microglial activity, including phagocytosis. Milk fat globule epidermal growth factor 8 (MFG-E8), as a regulator of microglia, plays an essential role in the phagocytic process. However, whether MFG-E8 affects the alteration of phagocytosis by propofol remains unknown. METHODS Microglial BV2 cells were treated with propofol, with or without MFG-E8. Phagocytosis of latex beads was evaluated by flow cytometry and immunofluorescence. MFG-E8, p-AMPK, AMPK, p-Src, and Src levels were assessed by western blot analysis. Compound C (AMPK inhibitor) and dasatinib (Src inhibitor) were applied to determine the roles of AMPK and Src in microglial phagocytosis under propofol treatment. RESULTS The phagocytic ability of microglia was significantly decreased after propofol treatment for 4 h (P < 0.05). MFG-E8 production was inhibited by propofol in a concentration- and time-dependent manner (P < 0.05). Preadministration of MFG-E8 dose-dependently (from 10 to 100 ng/ml) reversed the suppression of phagocytosis by propofol (P < 0.05). Furthermore, the decline in p-AMPK and p-Src levels induced by propofol intervention was reversed by MFG-E8 activation (P < 0.05). Administration of compound C (AMPK inhibitor) and dasatinib (Src inhibitor) to microglia blocked the trend of enhanced phagocytosis induced by MFG-E8 (P < 0.05). CONCLUSIONS These findings reveal the intermediate role of MFG-E8 between propofol and microglial phagocytic activity. Moreover, MFG-E8 may reverse the suppression of phagocytosis induced by propofol through the regulation of the AMPK and Src signaling pathways.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ying Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaoyang Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Rong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Liangcan Xiao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Walbaum S, Ambrosy B, Schütz P, Bachg AC, Horsthemke M, Leusen JHW, Mócsai A, Hanley PJ. Complement receptor 3 mediates both sinking phagocytosis and phagocytic cup formation via distinct mechanisms. J Biol Chem 2021; 296:100256. [PMID: 33839682 PMCID: PMC7948798 DOI: 10.1016/j.jbc.2021.100256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
A long-standing hypothesis is that complement receptors (CRs), especially CR3, mediate sinking phagocytosis, but evidence is lacking. Alternatively, CRs have been reported to induce membrane ruffles or phagocytic cups, akin to those induced by Fcγ receptors (FcγRs), but the details of these events are unclear. Here we used real-time 3D imaging and KO mouse models to clarify how particles (human red blood cells) are internalized by resident peritoneal F4/80+ cells (macrophages) via CRs and/or FcγRs. We first show that FcγRs mediate highly efficient, rapid (2-3 min) phagocytic cup formation, which is completely abolished by deletion or mutation of the FcR γ chain or conditional deletion of the signal transducer Syk. FcγR-mediated phagocytic cups robustly arise from any point of cell-particle contact, including filopodia. In the absence of CR3, FcγR-mediated phagocytic cups exhibit delayed closure and become aberrantly elongated. Independent of FcγRs, CR3 mediates sporadic ingestion of complement-opsonized particles by rapid phagocytic cup-like structures, typically emanating from membrane ruffles and largely prevented by deletion of the immunoreceptor tyrosine-based activation motif (ITAM) adaptors FcR γ chain and DAP12 or Syk. Deletion of ITAM adaptors or Syk clearly revealed that there is a slow (10-25 min) sinking mode of phagocytosis via a restricted orifice. In summary, we show that (1) CR3 indeed mediates a slow sinking mode of phagocytosis, which is accentuated by deletion of ITAM adaptors or Syk, (2) CR3 induces phagocytic cup-like structures, driven by ITAM adaptors and Syk, and (3) CR3 is involved in forming and closing FcγR-mediated phagocytic cups.
Collapse
Affiliation(s)
- Stefan Walbaum
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Benjamin Ambrosy
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Paula Schütz
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Anne C Bachg
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany; Department of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
28
|
Biphasic Force-Regulated Phosphorylation Site Exposure and Unligation of ERM Bound with PSGL-1: A Novel Insight into PSGL-1 Signaling via Steered Molecular Dynamics Simulations. Int J Mol Sci 2020; 21:ijms21197064. [PMID: 32992803 PMCID: PMC7583015 DOI: 10.3390/ijms21197064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The PSGL-1-actin cytoskeleton linker proteins ezrin/radixin/moesin (ERM), an adaptor between P-selectin glycoprotein ligand-1 (PSGL-1) and spleen tyrosine kinase (Syk), is a key player in PSGL-1 signal, which mediates the adhesion and recruitment of leukocytes to the activated endothelial cells in flow. Binding of PSGL-1 to ERM initials intracellular signaling through inducing phosphorylation of Syk, but effects of tensile force on unligation and phosphorylation site exposure of ERM bound with PSGL-1 remains unclear. To answer this question, we performed a series of so-called “ramp-clamp” steered molecular dynamics (SMD) simulations on the radixin protein FERM domain of ERM bound with intracellular juxtamembrane PSGL-1 peptide. The results showed that, the rupture force of complex pulled with constant velocity was over 250 pN, which prevented the complex from breaking in front of pull-induced exposure of phosphorylation site on immunoreceptor tyrosine activation motif (ITAM)-like motif of ERM; the stretched complex structure under constant tensile forces <100 pN maintained on a stable quasi-equilibrium state, showing a high mechano-stabilization of the clamped complex; and, in consistent with the force-induced allostery at clamped stage, increasing tensile force (<50 pN) would decrease the complex dissociation probability but facilitate the phosphorylation site exposure, suggesting a force-enhanced biophysical connectivity of PSGL-1 signaling. These force-enhanced characters in both phosphorylation and unligation of ERM bound with PSGL-1 should be mediated by a catch-slip bond transition mechanism, in which four residue interactions on binding site were involved. This study might provide a novel insight into the transmembrane PSGL-1 signal, its biophysical connectivity and molecular structural basis for cellular immune responses in mechano-microenvironment, and showed a rational SMD-based computer strategy for predicting structure-function relation of protein under loads.
Collapse
|
29
|
Syk Inhibitors: New Computational Insights into Their Intraerythrocytic Action in Plasmodium falciparum Malaria. Int J Mol Sci 2020; 21:ijms21197009. [PMID: 32977621 PMCID: PMC7582821 DOI: 10.3390/ijms21197009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimalarial drugs has spread rapidly over the past few decades. The WHO recommends artemisinin-based combination therapies for the treatment of uncomplicated malaria, but unfortunately these approaches are losing their efficacy in large areas of Southeast Asia. In 2016, artemisinin resistance was confirmed in 5 countries of the Greater Mekong subregion. We focused our study on Syk inhibitors as antimalarial drugs. The Syk protein is present in human erythrocytes, and the membrane of protein band 3 is its major target following activation by oxidant stress. Tyr phosphorylation of band 3 occurs during P. falciparum growth, leading to the release of microparticles containing hemicromes and structural weakening of the host cell membrane, simplifying merozoite reinfection. Syk inhibitors block these events by interacting with the Syk protein’s catalytic site. We performed in vitro proteomics and in silico studies and compared the results. In vitro studies were based on treatment of the parasite’s cellular cultures with different concentrations of Syk inhibitors, while proteomics studies were focused on the Tyr phosphorylation of band 3 by Syk protein with the same concentrations of drugs. In silico studies were based on different molecular modeling approaches in order to analyze and optimize the ligand–protein interactions and obtain the highest efficacy in vitro. In the presence of Syk inhibitors, we observed a marked decrease of band 3 Tyr phosphorylation according to the increase of the drug’s concentration. Our studies could be useful for the structural optimization of these compounds and for the design of novel Syk inhibitors in the future.
Collapse
|
30
|
CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun 2020; 11:4765. [PMID: 32958780 PMCID: PMC7505845 DOI: 10.1038/s41467-020-18565-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023] Open
Abstract
Fatty acids (FAs) are essential nutrients, but how they are transported into cells remains unclear. Here, we show that FAs trigger caveolae-dependent CD36 internalization, which in turn delivers FAs into adipocytes. During the process, binding of FAs to CD36 activates its downstream kinase LYN, which phosphorylates DHHC5, the palmitoyl acyltransferase of CD36, at Tyr91 and inactivates it. CD36 then gets depalmitoylated by APT1 and recruits another tyrosine kinase SYK to phosphorylate JNK and VAVs to initiate endocytic uptake of FAs. Blocking CD36 internalization by inhibiting APT1, LYN or SYK abolishes CD36-dependent FA uptake. Restricting CD36 at either palmitoylated or depalmitoylated state eliminates its FA uptake activity, indicating an essential role of dynamic palmitoylation of CD36. Furthermore, blocking endocytosis by targeting LYN or SYK inhibits CD36-dependent lipid droplet growth in adipocytes and high-fat-diet induced weight gain in mice. Our study has uncovered a dynamic palmitoylation-regulated endocytic pathway to take up FAs.
Collapse
|
31
|
Genome-Wide Association Study and Pathway Analysis for Heterophil/Lymphocyte (H/L) Ratio in Chicken. Genes (Basel) 2020; 11:genes11091005. [PMID: 32867375 PMCID: PMC7563235 DOI: 10.3390/genes11091005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Disease control and prevention have been critical factors in the dramatic growth of the poultry industry. Disease resistance in chickens can be improved through genetic selection for immunocompetence. The heterophil/lymphocyte ratio (H/L) in the blood reflects the immune system status of chickens. Our objective was to conduct a genome-wide association study (GWAS) and pathway analysis to identify possible biological mechanisms involved in H/L traits. In this study, GWAS for H/L was performed in 1317 Cobb broilers to identify significant single-nucleotide polymorphisms (SNPs) associated with H/L. Eight SNPs (p < 1/8068) reached a significant level of association. The significant SNP on GGA 19 (chicken chromosome 19) was in the gene for complement C1q binding protein (C1QBP). The wild-type and mutant individuals showed significant differences in H/L at five identified SNPs (p < 0.05). According to the results of pathway analysis, nine associated pathways (p < 0.05) were identified. By combining GWAS with pathway analysis, we found that all SNPs after QC explained 12.4% of the phenotypic variation in H/L, and 52 SNPs associated with H/L explained as much as 9.7% of the phenotypic variation in H/L. Our findings contribute to understanding of the genetic regulation of H/L and provide theoretical support.
Collapse
|
32
|
A Fish Leukocyte Immune-Type Receptor Uses a Novel Intracytoplasmic Tail Networking Mechanism to Cross-Inhibit the Phagocytic Response. Int J Mol Sci 2020; 21:ijms21145146. [PMID: 32708174 PMCID: PMC7404264 DOI: 10.3390/ijms21145146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023] Open
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins shown to regulate several innate immune cell effector responses, including phagocytosis. The precise mechanisms of IpLITR-mediated regulation of the phagocytic process are not entirely understood, but we have previously shown that different IpLITR-types use classical as well as novel pathways for controlling immune cell-mediated target engulfment. To date, all functional assessments of IpLITR-mediated regulatory actions have focused on the independent characterization of select IpLITR-types in transfected cells. As members of the immunoglobulin superfamily, many IpLITRs share similar extracellular Ig-like domains, thus it is possible that various IpLITR actions are influenced by cross-talk mechanisms between different IpLITR-types; analogous to the paired innate receptor paradigm in mammals. Here, we describe in detail the co-expression of different IpLITR-types in the human embryonic AD293 cell line and examination of their receptor cross-talk mechanisms during the regulation of the phagocytic response using imaging flow cytometry, confocal microscopy, and immunoprecipitation protocols. Overall, our data provides interesting new insights into the integrated control of phagocytosis via the antagonistic networking of independent IpLITR-types that requires the selective recruitment of inhibitory signaling molecules for the initiation and sustained cross-inhibition of phagocytosis.
Collapse
|
33
|
Sámano-Sánchez H, Gibson TJ. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem Sci 2020; 45:526-544. [PMID: 32413327 DOI: 10.1016/j.tibs.2020.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
34
|
Joshi S, Liu KX, Zulcic M, Singh AR, Skola D, Glass CK, Sanders PD, Sharabi AB, Pham TV, Tamayo P, Shiang D, Dinh HQ, Hedrick CC, Morales GA, Garlich JR, Durden DL. Macrophage Syk-PI3Kγ Inhibits Antitumor Immunity: SRX3207, a Novel Dual Syk-PI3K Inhibitory Chemotype Relieves Tumor Immunosuppression. Mol Cancer Ther 2020; 19:755-764. [PMID: 31974273 PMCID: PMC7450492 DOI: 10.1158/1535-7163.mct-19-0947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Macrophages (MΦ) play a critical role in tumor growth, immunosuppression, and inhibition of adaptive immune responses in cancer. Hence, targeting signaling pathways in MΦs that promote tumor immunosuppression will provide therapeutic benefit. PI3Kγ has been recently established by our group and others as a novel immuno-oncology target. Herein, we report that an MΦ Syk-PI3K axis drives polarization of immunosuppressive MΦs that establish an immunosuppressive tumor microenvironment in in vivo syngeneic tumor models. Genetic or pharmacologic inhibition of Syk and/or PI3Kγ in MΦs promotes a proinflammatory MΦ phenotype, restores CD8+ T-cell activity, destabilizes HIF under hypoxia, and stimulates an antitumor immune response. Assay for transposase-accessible Chromatin using Sequencing (ATAC-seq) analyses on the bone marrow-derived macrophages (BMDM) show that inhibition of Syk kinase promotes activation and binding of NF-κB motif in SykMC-KO BMDMs, thus stimulating immunostimulatory transcriptional programming in MΦs to suppress tumor growth. Finally, we have developed in silico the "first-in-class" dual Syk/PI3K inhibitor, SRX3207, for the combinatorial inhibition of Syk and PI3K in one small molecule. This chemotype demonstrates efficacy in multiple tumor models and represents a novel combinatorial approach to activate antitumor immunity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/enzymology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Cell Proliferation
- Class Ib Phosphatidylinositol 3-Kinase/chemistry
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/enzymology
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Cytokines/metabolism
- Humans
- Immune Tolerance
- Immunosuppression Therapy
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
- Signal Transduction
- Syk Kinase/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California.
| | - Kevin X Liu
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Alok R Singh
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Dylan Skola
- UCSD School of Medicine, University of California, San Diego, San Diego, California
| | - Christopher K Glass
- UCSD School of Medicine, University of California, San Diego, San Diego, California
| | - P Dominick Sanders
- Moores Cancer Center, Department of Radiation Medicine and Applied Sciences, University of California, San Diego, San Diego, California
| | - Andrew B Sharabi
- Moores Cancer Center, Department of Radiation Medicine and Applied Sciences, University of California, San Diego, San Diego, California
| | - Timothy V Pham
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
- Office of Cancer Genomics, University of California, San Diego, San Diego, California
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California, San Diego, San Diego, California
| | - Daniel Shiang
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California
| | - Huy Q Dinh
- La Jolla Institute of Allergy and Immunology, La Jolla, California
| | | | | | | | - Donald L Durden
- UCSD Department of Pediatrics, University of California, San Diego, San Diego, California.
- SignalRx Pharmaceuticals, Omaha, Nebraska
| |
Collapse
|
35
|
El-Hashim AZ, Khajah MA, Babyson RS, Renno WM, Ezeamuzie CI, Benter IF, Akhtar S. Ang-(1-7)/ MAS1 receptor axis inhibits allergic airway inflammation via blockade of Src-mediated EGFR transactivation in a murine model of asthma. PLoS One 2019; 14:e0224163. [PMID: 31675376 PMCID: PMC6824568 DOI: 10.1371/journal.pone.0224163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
The angiotensin-(1–7) [Ang-(1–7)]/MAS1 receptor signaling axis is a key endogenous anti-inflammatory signaling pathway. However, the mechanisms by which its mediates the anti-inflammatory effects are not completely understood. Using an allergic murine model of asthma, we investigated whether Ang-1(1–7)/MAS1 receptor axis a): inhibits allergic inflammation via modulation of Src-dependent transactivation of the epidermal growth factor receptor (EGFR) and downstream signaling effectors such as ERK1/2, and b): directly inhibits neutrophil and/or eosinophil chemotaxis ex vivo. Ovalbumin (OVA)-induced allergic inflammation resulted in increased phosphorylation of Src kinase, EGFR, and ERK1/2. In addition, OVA challenge increased airway cellular influx, perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyperresponsiveness (AHR). Treatment with Ang-(1–7) inhibited phosphorylation of Src kinase, EGFR, ERK1/2, the cellular and histopathological changes and AHR. Ang-(1–7) treatment also inhibited neutrophil and eosinophil chemotaxis ex vivo. These changes were reversed following pre-treatment with A779. These data show that the anti-inflammatory actions of Ang-(1–7)/ MAS1 receptor axis are mediated, at least in part, via inhibition of Src-dependent transactivation of EGFR and downstream signaling molecules such as ERK1/2. This study therefore shows that inhibition of the Src/EGRF/ERK1/2 dependent signaling pathway is one of the mechanisms by which the Ang-(1–7)/ MAS1 receptor axis mediates it anti-inflammatory effects in diseases such as asthma.
Collapse
Affiliation(s)
- Ahmed Z El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Maitham A Khajah
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Rhema S Babyson
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Charles I Ezeamuzie
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | | |
Collapse
|
36
|
Silva JC, Rodrigues NC, Thompson‐Souza GA, Muniz VDS, Neves JS, Figueiredo RT. Mac‐1 triggers neutrophil DNA extracellular trap formation to
Aspergillus fumigatus
independently of PAD4 histone citrullination. J Leukoc Biol 2019; 107:69-83. [DOI: 10.1002/jlb.4a0119-009rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Juliana C. Silva
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Najara C. Rodrigues
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | - Valdirene de S. Muniz
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Josiane S. Neves
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Rodrigo T. Figueiredo
- Campus de Duque de CaxiasUniversidade Federal do Rio de Janeiro Duque de Caxias Brazil
| |
Collapse
|
37
|
Szilveszter KP, Németh T, Mócsai A. Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Front Immunol 2019; 10:1862. [PMID: 31447854 PMCID: PMC6697022 DOI: 10.3389/fimmu.2019.01862] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinases relay signals from diverse leukocyte antigen receptors, innate immune receptors, and cytokine receptors, and therefore mediate the recruitment and activation of various leukocyte populations. Non-receptor tyrosine kinases of the Jak, Src, Syk, and Btk families play major roles in various immune-mediated disorders, and small-molecule tyrosine kinase inhibitors are emerging novel therapeutics in a number of those diseases. Autoimmune and inflammatory skin diseases represent a broad spectrum of immune-mediated diseases. Genetic and pharmacological studies in humans and mice support the role of tyrosine kinases in several inflammatory skin diseases. Atopic dermatitis and psoriasis are characterized by an inflammatory microenvironment which activates cytokine receptors coupled to the Jak-Stat signaling pathway. Jak kinases are also implicated in alopecia areata and vitiligo, skin disorders mediated by cytotoxic T lymphocytes. Genetic studies indicate a critical role for Src-family kinases and Syk in animal models of autoantibody-mediated blistering skin diseases. Here, we review the various tyrosine kinase signaling pathways and their role in various autoimmune and inflammatory skin diseases. Special emphasis will be placed on identification of potential therapeutic targets, as well as on ongoing preclinical and clinical studies for the treatment of inflammatory skin diseases by small-molecule tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
38
|
Csete D, Simon E, Alatshan A, Aradi P, Dobó-Nagy C, Jakus Z, Benkő S, Győri DS, Mócsai A. Hematopoietic or Osteoclast-Specific Deletion of Syk Leads to Increased Bone Mass in Experimental Mice. Front Immunol 2019; 10:937. [PMID: 31134061 PMCID: PMC6524727 DOI: 10.3389/fimmu.2019.00937] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Syk is a non-receptor tyrosine kinase critically involved in signaling by various immunoreceptors including B-cell-receptors and activating Fc-receptors. We have previously shown that Syk also mediates immunoreceptor-like signals required for the in vitro development and function of osteoclasts. However, the perinatal lethality of Syk -/- mice precluded the analysis of the role of Syk in in vivo bone metabolism. To overcome that problem, we generated mice with osteoclast-specific (Syk ΔOC ) or hematopoietic (Syk ΔHaemo ) Syk deficiency by conditional deletion of Syk using Cre recombinase expressed under the control of the Ctsk or Vav1 promoter, respectively. Micro-CT analysis revealed increased bone trabecular density in both Syk ΔOC and Syk ΔHaemo mice, although hematopoietic Syk deficiency caused a more severe phenotype than osteoclast-specific Syk deficiency. Osteoclast-specific Syk deficiency reduced, whereas hematopoietic Syk deficiency completely blocked in vitro development of osteoclasts. Both interventions inhibited the resorptive activity of osteoclasts and osteoclast-specific gene expression. Kinetic analysis of Syk protein levels, Cre expression and the genomic deletion of the Syk flox allele revealed complete and early deletion of Syk from Syk ΔHaemo osteoclasts whereas Syk was incompletely deleted at a later stage of osteoclast development from Syk ΔOC cultures. Those results provide an explanation for the in vivo and in vitro difference between the Syk ΔOC and Syk ΔHaemo mutant strains and suggest late activation of, and incomplete target gene deletion upon, osteoclast-specific Cre expression driven by the Ctsk promoter. Taken together, our results indicate that Syk plays an indispensable role in osteoclast-mediated in vivo bone resorption and suggest that Syk-specific inhibitors may provide therapeutic benefit in inflammatory and other diseases characterized by excessive osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Dániel Csete
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Ahmad Alatshan
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Semmelweis University School of Dentistry, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid S Győri
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
39
|
Kiser JN, Cornmesser MA, Gavin K, Hoffman A, Moore DA, Neibergs HL. Rapid Communication: Genome-wide association analyses identify loci associated with colostrum production in Jersey cattle1. J Anim Sci 2019; 97:1117-1123. [PMID: 30576450 DOI: 10.1093/jas/sky482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
Consumption of an adequate volume of high-quality colostrum soon after birth is critical for a calf's health. Few studies have focused on the genetics associated with colostrum production, even though several dairy herds in the United States have reported incidents of low to no colostrum production during the fall and winter seasons. The objectives of this study were to identify loci associated with quantity and quality of colostrum production in a herd of Jersey cattle (n = 345) and to identify potential positional candidate genes and/or transcription factor binding site motifs located near associated loci. Cattle that freshened between the months of October and December of 2016 at a single dairy were enrolled in the study and produced on average 3.03 kg of colostrum at their first milking. This study included 112 cattle genotyped with the GeneSeek GGP50k BeadChip and another 233 cattle previously genotyped with various other arrays. The 233 cattle genotyped at lower densities were imputed to the GGP50k BeadChip density using BEAGLE 4.1.1, and 2 genome-wide association analyses (GWAA) were conducted using an additive efficient mixed-model association expedited method with a genomic relationship matrix (EMMAX-GRM). The first GWAA investigated loci associated with colostrum quantity and identified 7 loci: 6 that were moderately associated (5 × 10-07 > P < 1 × 10-05) and 1 that was strongly associated (P < 5 × 10-07). The second GWAA investigated colostrum quality and identified 1 moderately (5 × 10-07 > P < 1 × 10-05) associated locus. Five loci harbored positional candidate genes which had functional relevance to colostrum production, and 1 locus located on BTA10 contained a transcription factor binding site motif for TFAP2A which has previously been linked to mammary gland development. Pseudoheritability estimates were moderate for colostrum quality (0.19 ± 0.06) and high for colostrum quantity (0.76 ± 0.11), suggesting that genomic selection for these traits would be possible. Diminished colostrum quantity or quality can have a significant impact on herd health and herd economics. The identification of loci, positional candidate genes, and transcription factor binding site motifs associated with colostrum production could be used in genomic selection to allow producers to select for cattle with good colostrum production, improving calf health, and reducing economic losses to the herd.
Collapse
Affiliation(s)
| | - Macy A Cornmesser
- Department of Animal Sciences, Washington State University, Pullman, WA
| | - Kevin Gavin
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA
| | | | - Dale A Moore
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|
40
|
Wen X, Xu X, Sun W, Chen K, Pan M, Wang JM, Bolland SM, Jin T. G-protein-coupled formyl peptide receptors play a dual role in neutrophil chemotaxis and bacterial phagocytosis. Mol Biol Cell 2018; 30:346-356. [PMID: 30540534 PMCID: PMC6589574 DOI: 10.1091/mbc.e18-06-0358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A dogma of innate immunity is that neutrophils use G-protein–coupled receptors (GPCRs) for chemoattractant to chase bacteria through chemotaxis and then use phagocytic receptors coupled with tyrosine kinases to destroy opsonized bacteria via phagocytosis. Our current work showed that G-protein–coupled formyl peptide receptors (FPRs) directly mediate neutrophil phagocytosis. Mouse neutrophils lacking formyl peptide receptors (Fpr1/2–/–) are defective in the phagocytosis of Escherichia coli and the chemoattractant N-formyl-Met-Leu-Phe (fMLP)-coated beads. fMLP immobilized onto the surface of a bead interacts with FPRs, which trigger a Ca2+ response and induce actin polymerization to form a phagocytic cup for engulfment of the bead. This chemoattractant GPCR/Gi signaling works independently of phagocytic receptor/tyrosine kinase signaling to promote phagocytosis. Thus, in addition to phagocytic receptor-mediated phagocytosis, neutrophils also utilize the chemoattractant GPCR/Gi signaling to mediate phagocytosis to fight against invading bacteria.
Collapse
Affiliation(s)
- Xi Wen
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Xuehua Xu
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Wenxiang Sun
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Research Institute at Frederick, Frederick, MD 21702-1201
| | - Miao Pan
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Research Institute at Frederick, Frederick, MD 21702-1201
| | - Silvia M Bolland
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Tian Jin
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| |
Collapse
|
41
|
Fang X, Zaman MH, Guo X, Ding H, Xie C, Zhang X, Deng GM. Role of Hepatic Deposited Immunoglobulin G in the Pathogenesis of Liver Damage in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1457. [PMID: 29988500 PMCID: PMC6026631 DOI: 10.3389/fimmu.2018.01457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
The onset of hepatic disorders in patients with systemic lupus erythematosus (SLE) is frequent; however, the etiology and liver pathogenesis of SLE remain unknown. In the present study, the role of hepatic deposited immunoglobulin G (IgG) in SLE-derived liver damage was investigated. From a retrospective analysis of the medical records of 404 patients with lupus and from experimental studies on mice models, we found that liver dysfunction is common in SLE and liver damage with IgG deposition spontaneously develops in lupus-prone mice. Liver injury was recreated in mice by injecting IgG from lupus serum intrahepatically. The inflammation intensity in the liver decreased with IgG depletion and the lupus IgG-induced liver inflammation in FcγRIII-deficient mice was comparatively low; while, inflammation was increased in FcγRIIb-deficient mice. Macrophages, Kupffer cells, natural killer cells, and their products, but not lymphocytes, are required for the initiation of SLE-associated liver inflammation. Blocking IgG signaling using a spleen tyrosine kinase (Syk) inhibitor suppressed the liver damage. Our findings provided evidence of spontaneously established liver damage in SLE. They also suggested that hepatic-deposited lupus IgG is an important pathological factor in the development of liver injury and that hepatic inflammation is regulated by the Syk signaling pathway. Thus, Syk inhibition might promote the development of a therapeutic strategy to control liver damage in patients with SLE.
Collapse
Affiliation(s)
- Xiang Fang
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Muhammad Haidar Zaman
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Xuanxuan Guo
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Huimin Ding
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Changhao Xie
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Xiaojun Zhang
- First affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Min Deng
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China.,First affiliated Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Gonçalves-de-Albuquerque CF, Rohwedder I, Silva AR, Ferreira AS, Kurz ARM, Cougoule C, Klapproth S, Eggersmann T, Silva JD, de Oliveira GP, Capelozzi VL, Schlesinger GG, Costa ER, Estrela Marins RDCE, Mócsai A, Maridonneau-Parini I, Walzog B, Macedo Rocco PR, Sperandio M, de Castro-Faria-Neto HC. The Yin and Yang of Tyrosine Kinase Inhibition During Experimental Polymicrobial Sepsis. Front Immunol 2018; 9:901. [PMID: 29760707 PMCID: PMC5936983 DOI: 10.3389/fimmu.2018.00901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are the first cells of our immune system to arrive at the site of inflammation. They release cytokines, e.g., chemokines, to attract further immune cells, but also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly regulated host defense mechanism can become uncontrolled and hyperactive resulting in severe organ damage. Currently, no effective therapy is available to fight sepsis; therefore, novel treatment targets that could prevent excessive inflammatory responses are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have been shown to play a major role in regulating immune cell recruitment and host defense. Leukocytes with SFK depletion display severe spreading and migration defects along with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyrosine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflammation and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed diminished leukocyte adhesion and extravasation in tumor necrosis factor-α-stimulated cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ damage, and clinical outcome improved in a dose-dependent fashion pointing toward an optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib treatment may, therefore, provide a balanced immune response by preventing an overshooting inflammatory reaction on the one side and bacterial overgrowth on the other side.
Collapse
Affiliation(s)
- Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany.,Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ina Rohwedder
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Angela R M Kurz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Klapproth
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Tanja Eggersmann
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Pena de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Laboratório de Genômica Pulmonar, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edlaine Rijo Costa
- Laboratorio de Farmacologia, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita de Cassia Elias Estrela Marins
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Attila Mócsai
- MTA-SE "Lendület" Inflammation Physiology Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Walzog
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Markus Sperandio
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | | |
Collapse
|
43
|
Pollard DJ, Berger CN, So EC, Yu L, Hadavizadeh K, Jennings P, Tate EW, Choudhary JS, Frankel G. Broad-Spectrum Regulation of Nonreceptor Tyrosine Kinases by the Bacterial ADP-Ribosyltransferase EspJ. mBio 2018; 9:e00170-18. [PMID: 29636436 PMCID: PMC5893879 DOI: 10.1128/mbio.00170-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Tyrosine phosphorylation is key for signal transduction from exogenous stimuli, including the defense against pathogens. Conversely, pathogens can subvert protein phosphorylation to control host immune responses and facilitate invasion and dissemination. The bacterial effectors EspJ and SeoC are injected into host cells through a type III secretion system by enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), Citrobacter rodentium, and Salmonella enterica, where they inhibit Src kinase by coupled amidation and ADP-ribosylation. C. rodentium, which is used to model EPEC and EHEC infections in humans, is a mouse pathogen triggering colonic crypt hyperplasia (CCH) and colitis. Enumeration of bacterial shedding and CCH confirmed that EspJ affects neither tolerance nor resistance to infection. However, comparison of the proteomes of intestinal epithelial cells isolated from mice infected with wild-type C. rodentium or C. rodentium encoding catalytically inactive EspJ revealed that EspJ-induced ADP-ribosylation regulates multiple nonreceptor tyrosine kinases in vivo Investigation of the substrate repertoire of EspJ revealed that in HeLa and A549 cells, Src and Csk were significantly targeted; in polarized Caco2 cells, EspJ targeted Src and Csk and the Src family kinase (SFK) Yes1, while in differentiated Thp1 cells, EspJ modified Csk, the SFKs Hck and Lyn, the Tec family kinases Tec and Btk, and the adapter tyrosine kinase Syk. Furthermore, Abl (HeLa and Caco2) and Lyn (Caco2) were enriched specifically in the EspJ-containing samples. Biochemical assays revealed that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, controls immune responses and the Src/Csk signaling axis.IMPORTANCE Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) strains cause significant mortality and morbidity worldwide. Citrobacter rodentium is a mouse pathogen used to model EPEC and EHEC pathogenesis in vivo Diarrheal disease is triggered following injection of bacterial effectors, via a type III secretion system (T3SS), into intestinal epithelial cells (IECs). While insights into the role of the effectors were historically obtained from pathological, immunologic, or cell culture phenotypes, subtle roles of individual effectors in vivo are often masked. The aim of this study was to elucidate the role and specificity of the ADP-ribosyltransferase effector EspJ. For the first time, we show that the in vivo processes affected by a T3SS effector can be studied by comparing the proteomes of IECs extracted from mice infected with wild-type C. rodentium or an espJ catalytic mutant. We show that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, regulates the host immune response in vivo.
Collapse
Affiliation(s)
- Dominic J Pollard
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Cedric N Berger
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Ernest C So
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Lu Yu
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Kate Hadavizadeh
- Department of Chemistry, Imperial College, London United Kingdom, London, United Kingdom
| | | | - Edward W Tate
- Department of Chemistry, Imperial College, London United Kingdom, London, United Kingdom
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| |
Collapse
|
44
|
Gouw M, Michael S, Sámano-Sánchez H, Kumar M, Zeke A, Lang B, Bely B, Chemes LB, Davey NE, Deng Z, Diella F, Gürth CM, Huber AK, Kleinsorg S, Schlegel LS, Palopoli N, Roey KV, Altenberg B, Reményi A, Dinkel H, Gibson TJ. The eukaryotic linear motif resource - 2018 update. Nucleic Acids Res 2018; 46:D428-D434. [PMID: 29136216 PMCID: PMC5753338 DOI: 10.1093/nar/gkx1077] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 11/14/2022] Open
Abstract
Short linear motifs (SLiMs) are protein binding modules that play major roles in almost all cellular processes. SLiMs are short, often highly degenerate, difficult to characterize and hard to detect. The eukaryotic linear motif (ELM) resource (elm.eu.org) is dedicated to SLiMs, consisting of a manually curated database of over 275 motif classes and over 3000 motif instances, and a pipeline to discover candidate SLiMs in protein sequences. For 15 years, ELM has been one of the major resources for motif research. In this database update, we present the latest additions to the database including 32 new motif classes, and new features including Uniprot and Reactome integration. Finally, to help provide cellular context, we present some biological insights about SLiMs in the cell cycle, as targets for bacterial pathogenicity and their functionality in the human kinome.
Collapse
Affiliation(s)
- Marc Gouw
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Benjamin Lang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Benoit Bely
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires CP 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires CP 2160, Argentina
- Instituto de Investigaciones Biotecnoltógicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín, Buenos Aires CP 1650, Argentina
| | - Norman E Davey
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ziqi Deng
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | | | | | | | - Nicolás Palopoli
- Department of Science and Technology, Universidad Nacional de Quilmes, CONICET, Bernal B1876BXD, Buenos Aires, Argentina
| | - Kim V Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Brigitte Altenberg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Attila Reményi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Holger Dinkel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Leibniz-Institute on Aging, Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
45
|
Syk - GTP RAC-1 mediated immune-stimulatory effect of Cuscuta epithymum, Ipomoea batata and Euphorbia hirta plant extracts. Biomed Pharmacother 2017; 96:742-749. [PMID: 29049977 DOI: 10.1016/j.biopha.2017.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 02/02/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNn) are the pivotal mediators of phagocytosis. In addition to neutropenia, impaired neutrophilic function is associated with pathological conditions and immuno-deficiencies. Henceforth, Immuno-stimulatory strategies targeting neutrophilic function are indeed powerful tools in combating obstinate infections. In appreciation towards the usefulness of herbal medicines in therapeutic scenario, the present study was carried out to analyse the immuno-stimulatory effect of Cuscuta epithymum, Ipomoea batata and Euphorbia hirta using in-vitro and in-vivo rodent experimental models. Throughout the experimentation, phagocytosis was studied and expressed as phagocytotic index and percentage phagocytosis. Different extracts of these plants were initially screened for their potency to induce phagocytosis in PMNn and the methanolic fractions, which are effective, were considered for further experimentation.The phagocytosis stimulation by the methanolic extracts was compared with the standard Granulocyte Macrophage - Colony Stimulating Factor (GM-CSF) at a dose of 65ng/ml. Immunoblotting analysis shown that the methanolic extracts induce the phosphorylation of Syk which in turn phosphorylates GDP-RAC-1, hinting the possible mechanism of action. Following these in vitro investigations, the potency of methanolic extracts was assessed using rat model by performing carbon clearance assay, Delayed Type Hypersensitivity and antibody titre.The phosphorylation status of Syk and GDP-RAC-1 was also assessed in the edematous fluid collected from the right hind paw. In vivo findings were in agreement with the in vitro findings by presenting an improved immune response and increased phosphorylation of Syk and GDP-RAC-1. Conclusively, this study provides the initial insights into the therapeutic implications of the tropical plants in inducing phagocytosis.
Collapse
|
46
|
Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR. LC3-Associated Phagocytosis and Inflammation. J Mol Biol 2017; 429:3561-3576. [PMID: 28847720 DOI: 10.1016/j.jmb.2017.08.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
LC3-associated phagocytosis (LAP) is a novel form of non-canonical autophagy where LC3 (microtubule-associated protein 1A/1B-light chain 3) is conjugated to phagosome membranes using a portion of the canonical autophagy machinery. The impact of LAP to immune regulation is best characterized in professional phagocytes, in particular macrophages, where LAP has instrumental roles in the clearance of extracellular particles including apoptotic cells and pathogens. Binding of dead cells via receptors present on the macrophage surface results in the translocation of the autophagy machinery to the phagosome and ultimately LC3 conjugation. These events promote a rapid form of phagocytosis that produces an "immunologically silent" clearance of the apoptotic cells. Consequences of LAP deficiency include a decreased capacity to clear dying cells and the establishment of a lupus-like autoimmune disease in mice. The ability of LAP to attenuate autoimmunity likely occurs through the dampening of pro-inflammatory signals upon engulfment of dying cells and prevention of autoantigen presentation to other immune cells. However, it remains unclear how LAP shapes both the activation and outcome of the immune response at the molecular level. Herein, we provide a detailed review of LAP and its known roles in the immune response and provide further speculation on the putative mechanisms by which LAP may regulate immune function, perhaps through the metabolic reprogramming and polarization of macrophages.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Larissa D Cunha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Joelle Magne
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
47
|
Chen CL, Chien SC, Leu TH, Harn HIC, Tang MJ, Hor LI. Vibrio vulnificus MARTX cytotoxin causes inactivation of phagocytosis-related signaling molecules in macrophages. J Biomed Sci 2017; 24:58. [PMID: 28822352 PMCID: PMC5563386 DOI: 10.1186/s12929-017-0368-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio vulnificus is a marine bacterial species that causes opportunistic infections manifested by serious skin lesions and fulminant septicemia in humans. We have previously shown that the multifunctional autoprocessing repeats in toxin (MARTXVv1) of a biotype 1 V. vulnificus strain promotes survival of this organism in the host by preventing it from engulfment by the phagocytes. The purpose of this study was to further explore how MARTXVv1 inhibits phagocytosis of this microorganism by the macrophage. Methods We compared between a wild-type V. vulnificus strain and its MARTXVv1-deficient mutant for a variety of phagocytosis-related responses, including morphological change and activation of signaling molecules, they induced in the macrophage. We also characterized a set of MARTXVv1 domain-deletion mutants to define the regions associated with antiphagocytosis activity. Results The RAW 264.7 cells and mouse peritoneal exudate macrophages underwent cell rounding accompanied by F-actin disorganization in the presence of MARTXVv1. In addition, phosphorylation of some F-actin rearrangement-associated signaling molecules, including Lyn, Fgr and Hck of the Src family kinases (SFKs), focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), phosphoinositide 3-kinase (PI3K) and Akt, but not p38, was decreased. By using specific inhibitors, we found that these kinases were all involved in the phagocytosis of MARTXVv1-deficient mutant in an order of SFKs-FAK/Pyk2-PI3K-Akt. Deletion of the effector domains in the central region of MARTXVv1 could lead to reduced cytotoxicity, depending on the region and size of deletion, but did not affect the antiphagocytosis activity and ability to cause rounding of macrophage. Reduced phosphorylation of Akt was closely associated with inhibition of phagocytosis by the wild-type strain and MARTXVv1 domain-deletion mutants, and expression of the constitutively active Akt, myr-Akt, enhanced the engulfment of these strains by macrophage. Conclusions MARTXVv1 could inactivate the SFKs-FAK/Pyk2-PI3K-Akt signaling pathway in the macrophages. This might lead to impaired phagocytosis of the V. vulnificus-infected macrophage. The majority of the central region of MARTXVv1 is not associated with the antiphagocytosis activity. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0368-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Chun Chien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzeng-Horng Leu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Pharmacology College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
48
|
Németh T, Virtic O, Sitaru C, Mócsai A. The Syk Tyrosine Kinase Is Required for Skin Inflammation in an In Vivo Mouse Model of Epidermolysis Bullosa Acquisita. J Invest Dermatol 2017; 137:2131-2139. [PMID: 28576735 PMCID: PMC5624865 DOI: 10.1016/j.jid.2017.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/09/2017] [Accepted: 05/21/2017] [Indexed: 01/10/2023]
Abstract
The inflammatory form of epidermolysis bullosa acquisita is caused by autoantibodies against type VII collagen (C7), a component of the dermal-epidermal junction. We have previously shown that myeloid Src family kinases mediate skin inflammation triggered by anti-C7 antibodies. Here we identify the Syk tyrosine kinase as a critical component of autoantibody-induced skin inflammation downstream of Src family kinases. Immobilized C7–anti-C7 immune complexes triggered neutrophil activation and Syk phosphorylation in a Src family kinase-dependent manner. Bone marrow chimeric mice lacking Syk in their hematopoietic compartment were completely protected from skin inflammation triggered by anti-C7 antibodies despite normal circulating anti-C7 levels. Syk deficiency abrogated the accumulation of CXCL2, IL-1β, and leukotriene B4 at the site of inflammation and resulted in defective in vivo neutrophil recruitment. Syk–/– neutrophils had a normal intrinsic migratory capacity but failed to release CXCL2 or leukotriene B4 upon activation by immobilized C7–anti-C7 immune complexes, indicating a role for Syk in the amplification of the inflammation process. These results identify Syk as a critical component of skin inflammation in a mouse model of epidermolysis bullosa acquisita and as a potential therapeutic target in epidermolysis bullosa acquisita and other mechanistically related inflammatory skin diseases such as bullous pemphigoid.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Oana Virtic
- Department of Dermatology, University Hospital Freiburg, Freiburg, Germany
| | - Cassian Sitaru
- Department of Dermatology, University Hospital Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
49
|
van Leeuwen MA, Costes LMM, van Berkel LA, Simons-Oosterhuis Y, du Pré MF, Kozijn AE, Raatgeep HC, Lindenbergh-Kortleve DJ, van Rooijen N, Koning F, Samsom JN. Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-γ-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance. Mucosal Immunol 2017; 10:635-649. [PMID: 27579860 DOI: 10.1038/mi.2016.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/12/2016] [Indexed: 02/04/2023]
Abstract
Celiac disease is caused by inflammatory T-cell responses against the insoluble dietary protein gliadin. We have shown that, in humanized mice, oral tolerance to deamidated chymotrypsin-digested gliadin (CT-TG2-gliadin) is driven by tolerogenic interferon (IFN)-γ- and interleukin (IL)-10-secreting type 1 regulatory T-like cells (Tr1-like cells) generated in the spleen but not in the mesenteric lymph nodes. We aimed to uncover the mechanisms underlying gliadin-specific Tr1-like-cell differentiation and hypothesized that proteolytic gliadin degradation by splenic macrophages is a decisive step in this process. In vivo depletion of macrophages caused reduced differentiation of splenic IFN-γ- and IL-10-producing Tr1-like cells after CT-TG2-gliadin but not gliadin peptide feed. Splenic macrophages, rather than dendritic cells, constitutively expressed increased mRNA levels of the endopeptidase Cathepsin D; macrophage depletion significantly reduced splenic Cathepsin D expression in vivo and Cathepsin D efficiently degraded recombinant γ-gliadin in vitro. In response to CT-TG2-gliadin uptake, macrophages enhanced the expression of Il27p28, a cytokine that favored differentiation of gliadin-specific Tr1-like cells in vitro, and was previously reported to increase Cathepsin D activity. Conversely, IL-27 neutralization in vivo inhibited splenic IFN-γ- and IL-10-secreting Tr1-like-cell differentiation after CT-TG2-gliadin feed. Our data infer that endopeptidase mediated gliadin degradation by macrophages and concomitant IL-27 production drive differentiation of splenic gliadin-specific Tr1-like cells.
Collapse
Affiliation(s)
- M A van Leeuwen
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - L M M Costes
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - L A van Berkel
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Y Simons-Oosterhuis
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M F du Pré
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.,Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | - A E Kozijn
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - H C Raatgeep
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - D J Lindenbergh-Kortleve
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - N van Rooijen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - F Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - J N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Castillo LM, Guerrero CA, Acosta O. Expression of typical osteoclast markers by PBMCs after PEG-induced fusion as a model for studying osteoclast differentiation. J Mol Histol 2017; 48:169-185. [PMID: 28343338 DOI: 10.1007/s10735-017-9717-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 01/27/2023]
Abstract
Bone is a metabolically active organ subjected to continuous remodeling process that involves resorption by osteoclast and subsequent formation by osteoblasts. Osteoclast involvement in this physiological event is regulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). Fusion of mono-nuclear pre-osteoclasts is a critical event for osteoclast differentiation and for bone resorption. Here we show that PBMCs can be successfully fused with polyethylenglicol (PEG) in order to generated viable osteoclast-like cells that exhibit tartrate-resistant acid phosphatase (TRAP) and bone resorptive activities. PEG-fused PBMCs expressed additional markers compatible with osteoclastogenic differentiation such as carbonic anhydrase II (CAII), calcitonin receptor (CR), cathepsin K (Cat K), vacuolar ATPase (V-ATPase) subunit C1 (V-ATPase), integrin β3, RANK and cell surface aminopeptidase N/CD13. Actin redistribution in PEG-fused cells was found to be affected by cell cycle synchronization at G0/G1 or G2/M phases. PEG-induced fusion also led to expression of tyrosine kinases c-Src and Syk in their phosphorylated state. Scanning electron microscopy images showed morphological features typical of osteoclast-like cells. The results here shown allow concluding that PEG-induced fusion of PBMCs provides a suitable model system for understanding the mechanisms involved in osteoclastogenesis and for assaying new therapeutic strategies.
Collapse
Affiliation(s)
- Luz M Castillo
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Orlando Acosta
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|