1
|
Duarte LH, Peixoto HA, Cardoso EM, Esgalhado AJ, Arosa FA. IL-10 and TGF-β, but Not IL-17A or IFN-γ, Potentiate the IL-15-Induced Proliferation of Human T Cells: Association with a Decrease in the Expression of β2m-Free HLA Class I Molecules Induced by IL-15. Int J Mol Sci 2024; 25:9376. [PMID: 39273322 PMCID: PMC11394758 DOI: 10.3390/ijms25179376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
IL-15 is a homeostatic cytokine for human T and NK cells. However, whether other cytokines influence the effect of IL-15 is not known. We studied the impact that IL-10, TGF-β, IL-17A, and IFN-γ have on the IL-15-induced proliferation of human T cells and the expression of HLA class I (HLA-I) molecules. Peripheral blood lymphocytes (PBLs) were labeled with CFSE and stimulated for 12 days with IL-15 in the absence or presence of the other cytokines. The proportion of proliferating T cells and the expression of cell surface HLA-I molecules were analyzed using flow cytometry. The IL-15-induced proliferation of T cells was paralleled by an increase in the expression of HC-10-reactive HLA-I molecules, namely on T cells that underwent ≥5-6 cycles of cell division. It is noteworthy that the IL-15-induced proliferation of T cells was potentiated by IL-10 and TGF-β but not by IL-17 or IFN-γ and was associated with a decrease in the expression of HC-10-reactive molecules. The cytokines IL-10 and TGF-β potentiate the proliferative capacity that IL-15 has on human T cells in vitro, an effect that is associated with a reduction in the amount of HC-10 reactive HLA class I molecules induced by IL-15.
Collapse
Affiliation(s)
- Leila H. Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (L.H.D.); (H.A.P.); (E.M.C.); (A.J.E.)
| | - Hugo A. Peixoto
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (L.H.D.); (H.A.P.); (E.M.C.); (A.J.E.)
| | - Elsa M. Cardoso
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (L.H.D.); (H.A.P.); (E.M.C.); (A.J.E.)
- ESS-IPG, School of Health Sciences, Polytechnic of Guarda, 6300-559 Guarda, Portugal
| | - André J. Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (L.H.D.); (H.A.P.); (E.M.C.); (A.J.E.)
| | - Fernando A. Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (L.H.D.); (H.A.P.); (E.M.C.); (A.J.E.)
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Karyu H, Niki T, Sorimachi Y, Hata S, Shimabukuro-Demoto S, Hirabayashi T, Mukai K, Kasahara K, Takubo K, Goda N, Honke K, Taguchi T, Sorimachi H, Toyama-Sorimachi N. Collaboration between a cis-interacting natural killer cell receptor and membrane sphingolipid is critical for the phagocyte function. Front Immunol 2024; 15:1401294. [PMID: 38720899 PMCID: PMC11076679 DOI: 10.3389/fimmu.2024.1401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.
Collapse
Affiliation(s)
- Hitomi Karyu
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Takahiro Niki
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuriko Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shoji Hata
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kojiro Mukai
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Honke
- Department of Biochemistry and Kochi System Glycobiology Center, Kochi University Medical School, Kochi, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
3
|
Cardoso EM, Lourenço-Gomes V, Esgalhado AJ, Reste-Ferreira D, Oliveira N, Amaral AS, Martinho A, Gama JMR, Verde I, Lourenço O, Fonseca AM, Buchli R, Arosa FA. HLA-A23/HLA-A24 serotypes and dementia interaction in the elderly: Association with increased soluble HLA class I molecules in plasma. HLA 2023; 102:660-670. [PMID: 37400938 DOI: 10.1111/tan.15149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
MHC class I molecules regulate brain development and plasticity in mice and HLA class I molecules are associated with brain disorders in humans. We investigated the relationship between plasma-derived soluble human HLA class I molecules (sHLA class I), HLA class I serotypes and dementia. A cohort of HLA class I serotyped elderly subjects with no dementia/pre-dementia (NpD, n = 28), or with dementia (D, n = 28) was studied. Multivariate analysis was used to examine the influence of dementia and HLA class I serotype on sHLA class I levels, and to compare sHLA class I within four groups according to the presence or absence of HLA-A23/A24 and dementia. HLA-A23/A24 and dementia, but not age, significantly influenced the level of sHLA class I. Importantly, the concurrent presence of HLA-A23/A24 and dementia was associated with higher levels of sHLA class I (p < 0.001). This study has shown that the simultaneous presence of HLA-A23/HLA-A24 and dementia is associated with high levels of serum sHLA class I molecules. Thus, sHLA class I could be considered a biomarker of neurodegeneration in certain HLA class I carriers.
Collapse
Affiliation(s)
- Elsa M Cardoso
- ESS-IPG, School of Health Sciences, Polytechnic of Guarda, Guarda, Portugal
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | | | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Débora Reste-Ferreira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Nádia Oliveira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Saraiva Amaral
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - António Martinho
- Molecular Genetics Laboratory, Coimbra Blood and Transplantation Center, Coimbra, Portugal
| | - Jorge M R Gama
- Centre of Mathematics and Applications, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ignácio Verde
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Centre of Mathematics and Applications, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Olga Lourenço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana M Fonseca
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, Oklahoma, USA
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
5
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
6
|
Ravindranath MH, Ravindranath NM, Amato-Menker CJ, El Hilali F, Selvan SR, Filippone EJ, Morales-Buenrostro LE. Antibodies for β2-Microglobulin and the Heavy Chains of HLA-E, HLA-F, and HLA-G Reflect the HLA-Variants on Activated Immune Cells and Phases of Disease Progression in Rheumatoid Arthritis Patients under Treatment. Antibodies (Basel) 2023; 12:antib12020026. [PMID: 37092447 PMCID: PMC10123671 DOI: 10.3390/antib12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory, autoimmune, symmetrical polyarticular arthritis. It is characterized by synovial infiltration and activation of several types of immune cells, culminating in their apoptosis and antibody generation against “altered” autoantigens. β2-microglobulin (β2m)-associated heavy chains (HCs) of HLA antigens, also known as closed conformers (Face-1), undergo “alteration” during activation of immune cells, resulting in β2m-free structural variants, including monomeric open conformers (Face-2) that are capable of dimerizing as either homodimers (Face-3) or as heterodimers (Face-4). β2m-free HCs uncover the cryptic epitopes that can elicit antibodies (Abs). We report here the levels of IgM and IgG Abs against both β2m and HCs of HLA-E, HLA-F, and HLA-G in 74 RA patients receiving immunosuppressive drugs. Anti-β2m IgM was present in 20 of 74 patients, whereas anti-β2m IgG was found in only 8 patients. Abs against β2m would be expected if Abs were generated against β2m-associated HLA HCs. The majority of patients were devoid of either anti-β2m IgM or IgG but had Abs against HCs of different HLA-Ib molecules. The paucity of anti-β2m Abs in this cohort of patients suggests that Abs were developed against β2m-free HLA HCs, such as Face-2, Face-3, and Face-4. While 63 of 68 patients had IgG Abs against anti-HLA-F HCs, 36 and 50 patients showed IgG Ab reactivity against HLA-E and anti-HLA-G HCs, respectively. Evidently, anti-HLA-F HC Abs are the most predominant anti-HLA-Ib HC IgG Abs in RA patients. The incidence and intensity of Abs against HLA-E, HLA-F, and HLA-G in the normal control group were much higher than those observed in RA patients. Evidently, the lower level of Abs in RA patients points to the impact of the immunosuppressive drugs on these patients. These results underscore the need for further studies to unravel the nature of HLA-F variants on activated immune cells and synoviocytes of RA patients.
Collapse
|
7
|
Ravindranath MH, El Hilali F, Amato-Menker CJ, El Hilali H, Selvan SR, Filippone EJ. Role of HLA-I Structural Variants and the Polyreactive Antibodies They Generate in Immune Homeostasis. Antibodies (Basel) 2022; 11:antib11030058. [PMID: 36134954 PMCID: PMC9495617 DOI: 10.3390/antib11030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-surface HLA-I molecules consisting of β2-microglobulin (β2m) associated heavy chains (HCs), referred to as Face-1, primarily present peptides to CD8+ T-cells. HCs consist of three α-domains, with selected amino acid sequences shared by all alleles of all six isoforms. The cell-surface HLA undergoes changes upon activation by pathological conditions with the expression of β2m-free HCs (Face-2) resulting in exposure of β2m-masked sequences shared by almost all alleles and the generation of HLA-polyreactive antibodies (Abs) against them. Face-2 may homodimerize or heterodimerize with the same (Face-3) or different alleles (Face-4) preventing exposure of shared epitopes. Non-allo immunized males naturally carry HLA-polyreactive Abs. The therapeutic intravenous immunoglobulin (IVIg) purified from plasma of thousands of donors contains HLA-polyreactive Abs, admixed with non-HLA Abs. Purified HLA-polyreactive monoclonal Abs (TFL-006/007) generated in mice after immunizing with Face-2 are documented to be immunoregulatory by suppressing or activating different human lymphocytes, much better than IVIg. Our objectives are (a) to elucidate the complexity of the HLA-I structural variants, and their Abs that bind to both shared and uncommon epitopes on different variants, and (b) to examine the roles of those Abs against HLA-variants in maintaining immune homeostasis. These may enable the development of personalized therapeutic strategies for various pathological conditions.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist, Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Hajar El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA
| |
Collapse
|
8
|
Dirscherl C, Löchte S, Hein Z, Kopicki JD, Harders AR, Linden N, Karner A, Preiner J, Weghuber J, Garcia-Alai M, Uetrecht C, Zacharias M, Piehler J, Lanzerstorfer P, Springer S. Dissociation of β2m from MHC class I Triggers formation of Noncovalent, transient heavy chain dimers. J Cell Sci 2022; 135:274997. [PMID: 35393611 DOI: 10.1242/jcs.259498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022] Open
Abstract
At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (β2m), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single molecule co-tracking. We identify non-covalent MHC-I FHC dimers mediated by the α3 domain as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single molecule co-localization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to the β2m light chain.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Sara Löchte
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Noemi Linden
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany.,Centre for Structural Systems Biology, Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,European XFEL, Schenefeld, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, Garching, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | | | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| |
Collapse
|
9
|
Ramifications of the HLA-I Allelic Reactivity of Anti-HLA-E*01:01 and Anti-HLA-E*01:03 Heavy Chain Monoclonal Antibodies in Comparison with Anti-HLA-I IgG Reactivity in Non-Alloimmunized Males, Melanoma-Vaccine Recipients, and End-Stage Renal Disease Patients. Antibodies (Basel) 2022; 11:antib11010018. [PMID: 35323192 PMCID: PMC8944535 DOI: 10.3390/antib11010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 01/19/2023] Open
Abstract
Serum anti-HLA-I IgG are present in non-alloimmunized males, cancer patients, and transplant recipients. Anti-HLA-I antibodies are also present in intravenous immunoglobulin (IVIg), prepared from the plasma of thousands of healthy donors. However, the HLA-Ia reactivity of IVIg diminishes markedly after passing through HLA-E HC-affinity columns, suggesting that the HLA-I reactivity is due to antibodies formed against HLA-E. Hence, we examined whether anti-HLA-E antibodies can react to HLA-I alleles. Monoclonal IgG antibodies (mAbs) against HCs of two HLA-E alleles were generated in Balb/C mice. The antibodies were analyzed using multiplex bead assays on a Luminex platform for HLA-I reactivity. Beads coated with an array of HLA heterodimers admixed with HCs (LABScreen) were used to examine the binding of IgG to different HLA-Ia (31-HLA-A, 50-HLA-B, and 16-HLA-C) and Ib (2-HLA-E, one each of HLA-F and HLA-G) alleles. A striking diversity in the HLA-Ia and/or HLA-Ib reactivity of mAbs was observed. The number of the mAbs reactive to (1) only HLA-E (n = 25); (2) all HLA-Ib isomers (n = 8); (3) HLA-E and HLA-B (n = 5); (4) HLA-E, HLA-B, and HLA-C (n = 30); (5) HLA-E, HLA-A*1101, HLA-B, and HLA-C (n = 83); (6) HLA-E, HLA-A, HLA-B, and HLA-C (n = 54); and (7) HLA-Ib and HLA-Ia (n = 8), in addition to four other minor groups. Monospecificity and polyreactivity were corroborated by HLA-E monospecific and HLA-I shared sequences. The diverse HLA-I reactivity of the mAbs are compared with the pattern of HLA-I reactivity of serum-IgG in non-alloimmunized males, cancer patients, and ESKD patients. The findings unravel the diagnostic potential of the HLA-E monospecific-mAbs and immunomodulatory potentials of IVIg highly mimicking HLA-I polyreactive-mAbs.
Collapse
|
10
|
Ravindranath MH, Ravindranath NM, Selvan SR, Filippone EJ, Amato-Menker CJ, El Hilali F. Four Faces of Cell-Surface HLA Class-I: Their Antigenic and Immunogenic Divergence Generating Novel Targets for Vaccines. Vaccines (Basel) 2022; 10:vaccines10020339. [PMID: 35214796 PMCID: PMC8878457 DOI: 10.3390/vaccines10020339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Leukocyte cell-surface HLA-I molecules, involved in antigen presentation of peptides to CD8+ T-cells, consist of a heavy chain (HC) non-covalently linked to β2-microglobulin (β2m) (Face-1). The HC amino acid composition varies across all six isoforms of HLA-I, while that of β2m remains the same. Each HLA-allele differs in one or more amino acid sequences on the HC α1 and α2 helices, while several sequences among the three helices are conserved. HCs without β2m (Face-2) are also observed on human cells activated by malignancy, viral transformation, and cytokine or chemokine-mediated inflammation. In the absence of β2m, the monomeric Face-2 exposes immunogenic cryptic sequences on these cells as confirmed by HLA-I monoclonal antibodies (LA45, L31, TFL-006, and TFL-007). Furthermore, such exposure enables dimerization between two Face-2 molecules by SH-linkage, salt linkage, H-bonding, and van der Waal forces. In HLA-B27, the linkage between two heavy chains with cysteines at position of 67 of the amino acid residues was documented. Similarly, several alleles of HLA-A, B, C, E, F and G express cysteine at 67, 101, and 164, and additionally, HLA-G expresses cysteine at position 42. Thus, the monomeric HC (Face-2) can dimerize with another HC of its own allele, as homodimers (Face-3), or with a different HC-allele, as heterodimers (Face-4). The presence of Face-4 is well documented in HLA-F. The post-translational HLA-variants devoid of β2m may expose several cryptic linear and non-linear conformationally altered sequences to generate novel epitopes. The objective of this review, while unequivocally confirming the post-translational variants of HLA-I, is to highlight the scientific and clinical importance of the four faces of HLA and to prompt further research to elucidate their functions and their interaction with non-HLA molecules during inflammation, infection, malignancy and transplantation. Indeed, these HLA faces may constitute novel targets for passive and active specific immunotherapy and vaccines.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist at Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Fatiha El Hilali
- The Faculty of Medicine and Pharmacy of Laayoune, Ibn Zohr University, Agadir 70000, Morocco;
| |
Collapse
|
11
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:435-454. [DOI: 10.1093/humupd/dmac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Indexed: 11/13/2022] Open
|
12
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Arosa FA, Esgalhado AJ, Reste-Ferreira D, Cardoso EM. Open MHC Class I Conformers: A Look through the Looking Glass. Int J Mol Sci 2021; 22:ijms22189738. [PMID: 34575902 PMCID: PMC8470049 DOI: 10.3390/ijms22189738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Studies carried out during the last few decades have consistently shown that cell surface MHC class I (MHC-I) molecules are endowed with functions unrelated with antigen presentation. These include cis–trans-interactions with inhibitory and activating KIR and LILR, and cis-interactions with receptors for hormones, growth factors, cytokines, and neurotransmitters. The mounting body of evidence indicates that these non-immunological MHC-I functions impact clinical and biomedical settings, including autoimmune responses, tumor escape, transplantation, and neuronal development. Notably, most of these functions appear to rely on the presence in hematopoietic and non-hematopoietic cells of heavy chains not associated with β2m and the peptide at the plasma membrane; these are known as open MHC-I conformers. Nowadays, open conformers are viewed as functional cis-trans structures capable of establishing physical associations with themselves, with other surface receptors, and being shed into the extracellular milieu. We review past and recent developments, strengthening the view that open conformers are multifunctional structures capable of fine-tuning cell signaling, growth, differentiation, and cell communication.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elsa M Cardoso
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Health School, Guarda Polytechnic Institute, 6300-749 Guarda, Portugal
| |
Collapse
|
14
|
Ravindranath MH, Hilali FE, Filippone EJ. Therapeutic Potential of HLA-I Polyreactive mAbs Mimicking the HLA-I Polyreactivity and Immunoregulatory Functions of IVIg. Vaccines (Basel) 2021; 9:680. [PMID: 34205517 PMCID: PMC8235337 DOI: 10.3390/vaccines9060680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
HLA class-I (HLA-I) polyreactive monoclonal antibodies (mAbs) reacting to all HLA-I alleles were developed by immunizing mice with HLA-E monomeric, α-heavy chain (αHC) open conformers (OCs). Two mAbs (TFL-006 and TFL-007) were bound to the αHC's coated on a solid matrix. The binding was inhibited by the peptide 117AYDGKDY123, present in all alleles of the six HLA-I isoforms but masked by β2-microglobulin (β2-m) in intact HLA-I trimers (closed conformers, CCs). IVIg preparations administered to lower anti-HLA Abs in pre-and post-transplant patients have also shown HLA-I polyreactivity. We hypothesized that the mAbs that mimic IVIg HLA-I polyreactivity might also possess the immunomodulatory capabilities of IVIg. We tested the relative binding affinities of the mAbs and IVIg for both OCs and CCs and compared their effects on (a) the phytohemagglutinin (PHA)-activation T-cells; (b) the production of anti-HLA-II antibody (Ab) by B-memory cells and anti-HLA-I Ab by immortalized B-cells; and (c) the upregulation of CD4+, CD25+, and Fox P3+ T-regs. The mAbs bound only to OC, whereas IVIg bound to both CC and OC. The mAbs suppressed blastogenesis and proliferation of PHA-activated T-cells and anti-HLA Ab production by B-cells and expanded T-regs better than IVIg. We conclude that a humanized version of the TFL-mAbs could be an ideal, therapeutic IVIg-mimetic.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist at Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson Univsity, Philadelphia, PA 19145, USA;
| |
Collapse
|
15
|
Tang F, Zhao YH, Zhang Q, Wei W, Tian SF, Li C, Yao J, Wang ZF, Li ZQ. Impact of beta-2 microglobulin expression on the survival of glioma patients via modulating the tumor immune microenvironment. CNS Neurosci Ther 2021; 27:951-962. [PMID: 33960680 PMCID: PMC8265948 DOI: 10.1111/cns.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
Aims High immune cell infiltration in gliomas establishes an immunosuppressive tumor microenvironment, which in turn promotes resistance to immunotherapy. Hence, it is important to identify novel targets associated with high immune cell infiltration in gliomas. Our previous study showed that serum levels of beta‐2 microglobulin (B2M) in lower‐grade glioma patients were lower than those in glioblastoma patients. In the present study, we focused on exploring the roles of B2M in glioma immune infiltration. Methods A large cohort of patients with gliomas from the TCGA, CGGA, and Gravendeel databases was included to explore differential expression patterns and potential roles of B2M in gliomas. A total of 103 glioma tissue samples were collected to determine the distributions of B2M protein levels by immunofluorescent assays. Kaplan‐Meier survival analysis and meta‐analysis were used for survival analysis. GO(Gene‐ontology) enrichment analysis, co‐expression analysis, KEGG(Kyoto Encyclopedia of Genes and Genomes) pathway analysis, and immune infiltration analysis were performed to explore roles and related mechanisms of B2M in glioma. Results We found that both B2M mRNA and protein levels were abnormally upregulated in glioma samples compared with those from normal brain tissue. B2M expression was correlated with tumor grade and was downregulated in IDH1 mutant samples. Furthermore, B2M was a moderately sensitive indicator for predicting the mesenchymal molecular subtype of gliomas. Interestingly, glioma patients with lower B2M expression had remarkably longer survival times than those with higher B2M expression. Moreover, meta‐analysis showed that B2M was an independent predictive marker in glioma patients. The results of GO enrichment analysis revealed that B2M contributed to immune cell infiltration in glioma patients. In addition, results of KEGG pathway analysis and co‐expression analysis suggested that B2M may mediate glioma immune infiltration via chemokines. Conclusions We conclude that B2M levels are critical for the survival times of glioma patients, at least in part due to mediating high immune infiltration.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu-Hang Zhao
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Zhang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Zhi-Qiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Esgalhado AJ, Reste-Ferreira D, Albino SE, Sousa A, Amaral AP, Martinho A, Oliveira IT, Verde I, Lourenço O, Fonseca AM, Cardoso EM, Arosa FA. CD45RA, CD8β, and IFNγ Are Potential Immune Biomarkers of Human Cognitive Function. Front Immunol 2020; 11:592656. [PMID: 33324408 PMCID: PMC7723833 DOI: 10.3389/fimmu.2020.592656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Abstract
There is increasing evidence that in humans the adaptive immunological system can influence cognitive functions of the brain. We have undertaken a comprehensive immunological analysis of lymphocyte and monocyte populations as well as of HLA molecules expression in a cohort of elderly volunteers (age range, 64–101) differing in their cognitive status. Hereby, we report on the identification of a novel signature in cognitively impaired elderly characterized by: (1) elevated percentages of CD8+ T effector-memory cells expressing high levels of the CD45RA phosphate receptor (Temrahi); (2) high percentages of CD8+ T cells expressing high levels of the CD8β chain (CD8βhi); (3) augmented production of IFNγ by in vitro activated CD4+ T cells. Noteworthy, CD3+CD8+ Temrahi and CD3+CD8βhi cells were associated with impaired cognition. Cytomegalovirus seroprevalence showed that all volunteers studied but one were CMV positive. Finally, we show that some of these phenotypic and functional features are associated with an increased frequency of the HLA-B8 serotype, which belongs to the ancestral haplotype HLA-A1, Cw7, B8, DR3, DQ2, among cognitively impaired volunteers. To our knowledge, this is the first proof in humans linking the amount of cell surface CD45RA and CD8β chain expressed by CD8+ Temra cells, and the amount of IFNγ produced by in vitro activated CD4+ T cells, with impaired cognitive function in the elderly.
Collapse
Affiliation(s)
- André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Débora Reste-Ferreira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Stephanie E Albino
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Adriana Sousa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Paula Amaral
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - António Martinho
- Molecular Genetics Laboratory, Coimbra Blood and Transplantation Center, Coimbra, Portugal
| | - Isabel T Oliveira
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, Covilhã, Portugal
| | - Ignacio Verde
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Olga Lourenço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana M Fonseca
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elsa M Cardoso
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,IPG, Guarda Polytechnic Institute, Guarda, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
17
|
Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:605958. [PMID: 33384693 PMCID: PMC7770133 DOI: 10.3389/fimmu.2020.605958] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells, for example dendritic cells (DCs) and T cells, or immune cells and their targets, such as T cells and virus-infected or tumor cells. However, much less appreciated is the fact that MHC molecules can also act as signaling receptors. In this process, here referred to as reverse MHC class I (MHC-I) signaling, ligation of MHC molecules can lead to signal-transduction and cell regulatory effects in the antigen presenting cell. In the case of MHC-I, reverse signaling can have several outcomes, including apoptosis, migration, induced or reduced proliferation and cytotoxicity towards target cells. Here, we provide an overview of studies showing the signaling pathways and cell outcomes upon MHC-I stimulation in various immune and non-immune cells. Signaling molecules like RAC-alpha serine/threonine-protein kinase (Akt1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB) were common signaling molecules activated upon MHC-I ligation in multiple cell types. For endothelial and smooth muscle cells, the in vivo relevance of reverse MHC-I signaling has been established, namely in the context of adverse effects after tissue transplantation. For other cell types, the role of reverse MHC-I signaling is less clear, since aspects like the in vivo relevance, natural MHC-I ligands and the extended downstream pathways are not fully known.The existing evidence, however, suggests that reverse MHC-I signaling is involved in the regulation of the defense against bacterial and viral infections and against malignancies. Thereby, reverse MHC-I signaling is a potential target for therapies against viral and bacterial infections, cancer immunotherapies and management of organ transplantation outcomes.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luca D Meesters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Microbiology and Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
18
|
Cruz FM, Colbert JD, Rock KL. The GTPase Rab39a promotes phagosome maturation into MHC-I antigen-presenting compartments. EMBO J 2020; 39:e102020. [PMID: 31821587 PMCID: PMC6960445 DOI: 10.15252/embj.2019102020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
For CD8 T lymphocytes to mount responses to cancer and virally-infected cells, dendritic cells must capture antigens present in tissues and display them as peptides bound to MHC-I molecules. This is most often accomplished through a pathway called antigen cross-presentation (XPT). Here, we report that the vesicular trafficking protein Rab39a is needed for optimal cross-presentation by dendritic cells in vitro and cross-priming of CD8 T cells in vivo. Without Rab39a, MHC-I presentation of intraphagosomal peptides is inhibited, indicating that Rab39a converts phagosomes into peptide-loading compartments. In this process, Rab39a promotes the delivery of MHC-I molecules from the endoplasmic reticulum (ER) to phagosomes, and increases the levels of peptide-empty MHC-I conformers that can be loaded with peptide in this compartment. Rab39a also increases the levels of Sec22b and NOX2, previously recognized to participate in cross-presentation, on phagosomes, thereby filling in a missing link into how phagosomes mature into cross-presenting vesicles.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Jeff D Colbert
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kenneth L Rock
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
19
|
Siegel RJ, Bridges SL, Ahmed S. HLA-C: An Accomplice in Rheumatic Diseases. ACR Open Rheumatol 2019; 1:571-579. [PMID: 31777841 PMCID: PMC6858028 DOI: 10.1002/acr2.11065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Human leukocyte antigen c (HLA-C) is a polymorphic membrane protein encoded by the HLA-C gene in the class I major histocompatibility complex. HLA-C plays an essential role in protection against cancer and viruses but has also been implicated in allograft rejection, preeclampsia, and autoimmune disease. This review summarizes reports and proposed mechanisms for the accessory role of HLA-C in rheumatic diseases. Historically, contributions of HLA-C to rheumatic diseases were eclipsed by the stronger association with HLA-DRB1 alleles containing the "shared epitope" with rheumatoid arthritis. Larger genetic association studies and more powerful analytical approaches have revealed independent associations of HLA-C with rheumatic disease-associated phenotypes, including development of anticitrullinated peptide antibodies. HLA-C functions by presenting antigens to T cells and by binding activatory and inhibitory receptors on natural killer (NK) cells, but the exact mechanisms by which the HLA-C locus contributes to autoimmunity are largely undefined. Studies have suggested that HLA-C and NK cell receptor polymorphisms may predict responsiveness to pharmacotherapy. Understanding the mechanisms of the role of HLA-C in rheumatic disease could uncover therapeutic targets or guide precision pharmacologic treatments.
Collapse
Affiliation(s)
- Ruby J. Siegel
- Department of Pharmaceutical SciencesWashington State University College of Pharmacy and Pharmaceutical SciencesSpokaneWashington
| | - S. Louis Bridges
- Division of Clinical Immunology and RheumatologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Salahuddin Ahmed
- Department of Pharmaceutical SciencesWashington State University College of Pharmacy and Pharmaceutical SciencesSpokaneWashington
- Division of RheumatologyUniversity of Washington School of MedicineSeattleWashington
| |
Collapse
|
20
|
Bernson E, Christenson K, Pesce S, Pasanen M, Marcenaro E, Sivori S, Thorén FB. Downregulation of HLA Class I Renders Inflammatory Neutrophils More Susceptible to NK Cell-Induced Apoptosis. Front Immunol 2019; 10:2444. [PMID: 31681321 PMCID: PMC6803460 DOI: 10.3389/fimmu.2019.02444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Neutrophils are potent effector cells and contain a battery of harmful substances and degrading enzymes. A silent neutrophil death, i.e., apoptosis, is therefore of importance to avoid damage to the surrounding tissue and to enable termination of the acute inflammatory process. There is a pile of evidence supporting the role for pro-inflammatory cytokines in extending the life-span of neutrophils, but relatively few studies have been devoted to mechanisms actively driving apoptosis induction in neutrophils. We have previously demonstrated that natural killer (NK) cells can promote apoptosis in healthy neutrophils. In this study, we set out to investigate how neutrophil sensitivity to NK cell-mediated cytotoxicity is regulated under inflammatory conditions. Using in vitro-activated neutrophils and a human skin chamber model that allowed collection of in vivo-transmigrated neutrophils, we performed a comprehensive characterization of neutrophil expression of ligands to NK cell receptors. These studies revealed a dramatic downregulation of HLA class I molecules in inflammatory neutrophils, which was associated with an enhanced susceptibility to NK cell cytotoxicity. Collectively, our data shed light on the complex regulation of interactions between NK cells and neutrophils during an inflammatory response and provide further support for a role of NK cells in the resolution phase of inflammation.
Collapse
Affiliation(s)
- Elin Bernson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Silvia Pesce
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Malin Pasanen
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
MHC Class I Molecules Exacerbate Viral Infection by Disrupting Type I Interferon Signaling. J Immunol Res 2019; 2019:5370706. [PMID: 31583257 PMCID: PMC6754968 DOI: 10.1155/2019/5370706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 01/26/2023] Open
Abstract
MHC class I molecules are key in the presentation of antigen and initiation of adaptive CD8+ T cell responses. In addition to its classical activity, MHC I may possess nonclassical functions. We have previously identified a regulatory role of MHC I in TLR signaling and antibacterial immunity. However, its role in innate antiviral immunity remains unknown. In this study, we found a reduced viral load in MHC I-deficient macrophages that was independent of type I IFN production. Mechanically, MHC I mediated viral suppression by inhibiting the type I IFN signaling pathway, which depends on SHP2. Cross-linking MHC I at the membrane increased SHP2 activation and further suppressed STAT1 phosphorylation. Therefore, our data revealed an inhibitory role of MHC I in type I IFN response to viral infection and expanded our understanding of MHC I and antigen presentation.
Collapse
|
22
|
Lin A, Yan WH. The Emerging Roles of Human Leukocyte Antigen-F in Immune Modulation and Viral Infection. Front Immunol 2019; 10:964. [PMID: 31134067 PMCID: PMC6524545 DOI: 10.3389/fimmu.2019.00964] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022] Open
Abstract
Human leukocyte antigens (HLAs) play various critical roles in both innate and adaptive immunity through processes such as presenting antigens to T cells and serving as ligands for receptors expressed on natural killer (NK) cells. Among the HLA class I family, the clinical significance and biological function of HLA-F have been the least investigated and have remained elusive for a long period of time. Previous studies have revealed that HLA-F expression might be involved in various physiological and pathological processes, such as pregnancy, viral infection, cancer, transplantation, and autoimmune diseases. However, recent data have shown that, akin to other HLA family members, HLA-F molecules can interact with both activating and inhibitory receptors on immune cells, such as NK cells, and can present a diverse panel of peptides. These important findings pave new avenues for investigations regarding the functions of HLA-F as an important immune regulatory molecule. In the present review, we summarize the studies on the role of HLA-F in immune modulation, with a special emphasis placed on the roles of HLA-F and KIR3DS1 interactions in viral infection.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
23
|
Dirscherl C, Hein Z, Ramnarayan VR, Jacob-Dolan C, Springer S. A two-hybrid antibody micropattern assay reveals specific in cis interactions of MHC I heavy chains at the cell surface. eLife 2018; 7:e34150. [PMID: 30180933 PMCID: PMC6125123 DOI: 10.7554/elife.34150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the in cis interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic in cis interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I in cis interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | - Zeynep Hein
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | | | | | | |
Collapse
|
24
|
Cardoso EM, Esgalhado AJ, Patrão L, Santos M, Neves VP, Martinez J, Patto MAV, Silva H, Arosa FA. Distinctive CD8 + T cell and MHC class I signatures in polycythemia vera patients. Ann Hematol 2018; 97:1563-1575. [PMID: 29789880 DOI: 10.1007/s00277-018-3332-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative neoplasm characterized by overproduction of red blood cells. We have performed a comprehensive characterization of blood immune cells for expression of naïve and memory receptors as well as β2m-associated and β2m-free MHC class I heavy chains, also known as closed and open conformers, respectively, in PV patients and age-matched controls (CTR). We show that the peripheral CD3+CD8+ T cell pool in PV patients is clearly divided into two discrete populations, a more granular CD3+CD8high T cell population enriched in effector-memory CD45RA+ T cells (CD8+ TEMRA) when compared to CTR (P < 0.001), and a less granular CD3+CD8int T cell population that is completely absent in the CTR group (78 vs. 0%, P < 0.001) and is a mixture of naïve (CD8+ TN) and CD8+ TEMRA cells expressing intermediate levels of CD28, i.e., CD3+CD8intCD28int. While the percentage of CD3+CD8int TN cells correlated positively with the number of erythrocytes, the percentage of CD3+CD8int TEMRA correlated negatively with the number of platelets. Finally, we report that PV patients' lymphocytes and monocytes display lower levels of closed (W6/32+) MHC-I conformers at the cell surface while exhibiting increased amounts of open (HC-10+) MHC-I conformers. The implications of this distinctive immune signature are discussed.
Collapse
Affiliation(s)
- Elsa M Cardoso
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,IPG-Instituto Politécnico da Guarda, Guarda, Portugal
| | - André J Esgalhado
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Luís Patrão
- FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Mónica Santos
- CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | | | - Jorge Martinez
- FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CHCB-Centro Hospitalar Cova da Beira, Covilhã, Portugal
| | - Maria Assunção Vaz Patto
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,ULSG-Unidade Local de Saúde, Guarda, Portugal
| | - Helena Silva
- CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Fernando A Arosa
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal. .,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
25
|
|
26
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Ravindranath MH, Jucaud V, Ferrone S. Monitoring native HLA-I trimer specific antibodies in Luminex multiplex single antigen bead assay: Evaluation of beadsets from different manufacturers. J Immunol Methods 2017; 450:73-80. [PMID: 28782523 PMCID: PMC8715512 DOI: 10.1016/j.jim.2017.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 02/01/2023]
Abstract
Luminex single antigen bead (SAB) assay utilizes beadsets coated with a set of cloned and purified HLA molecules, for monitoring serum anti-HLA antibodies. Particularly, the level of serum IgG against native HLA-I trimers (heavy chain (HC) and β2-microglobulin (β2m) with a peptide), expressed in allograft tissues is correlated with graft failure. In addition to native trimeric HLAI, the beadsets may carry HC only or the dimeric variants, peptide-free HC with β2m and β2m-free HC with or without peptides. Currently, three different HLA-I coated beadsets have been produced commercially. The HLA antigen density on one beadset was reported to be approximately 50% of that present on another beadset as evidenced by the binding of an anti-HLA-I mAb W6/32. To date, no efforts have been made to compare the relative distribution of HLA-I variants in these three beadsets. In this study, using monoclonal antibodies (W6/32, HC-10 and TFL-006) that can distinguish the structural variants based on their epitope specificities, the nature of the variants in the three beadsets were comparatively evaluated. One beadset (Beadset A, see Materials and methods for Brand and Manufacturer's names) (W6/32+/HC-10+/TFL-006+) carried at least three variants, while beadset B (W6/32+/HC-10+/TFL-006-) carried two (peptide-associated and peptide-free β2m-HC) and the beadset C (W6/32+/HC-10-/TFL-006-) carried exclusively the HLA-I trimer suggesting its usefulness for specific monitoring native HLA-I trimer antibodies. Because of the salient differences in the variants coated on the different beadsets, it would be warranted to investigate, if these differences are clinically relevant for monitoring serum anti-HLA antibodies in sensitized patients waiting for donor organs and in allograft recipients (274).
Collapse
Affiliation(s)
| | - Vadim Jucaud
- Terasaki Foundation Laboratory, Los Angeles, CA, United States
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Abstract
Cross-presentation of internalized antigens by dendritic cells requires efficient delivery of Major Histocompatibility Complex (MHC) class I molecules to peptide-loading compartments. Strong evidence suggests that such loading can occur outside of the endoplasmic reticulum; however, the trafficking pathways and sources of class I molecules involved are poorly understood. Examination of non-professional, non-phagocytic cells has revealed a clathrin-independent, Arf6-dependent recycling pathway likely traveled by internalized optimally loaded (closed) class I molecules. Some closed and all open MHC class I molecules travel to late endosomes to be degraded but might also partly be re-loaded with peptides and recycled. Studies of viral interference revealed pathways in which class I molecules are directed to degradation in lysosomes upon ubiquitination at the surface, or upon AP-1 and HIV-nef-dependent misrouting from the Golgi network to lysosomes. While many observations made in non-professional cells remain to be re-examined in dendritic cells, available evidence suggests that both recycling and neo-synthesized class I molecules can be loaded with cross-presented peptides. Recycling molecules can be recruited to phagosomes triggered by innate signals such as TLR4 ligands, and may therefore specialize in loading with phagocytosed antigens. In contrast, AP-1-dependent accumulation at, or trafficking through, a Golgi compartment of newly synthesized molecules appears to be important for cross-presentation of soluble proteins and possibly of long peptides that are processed in the so-called vacuolar pathway. However, significant cell biological work will be required to confirm this or any other model and to integrate knowledge on MHC class I biochemistry and trafficking in models of CD8(+) T-cell priming by dendritic cells.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre National de la Recherche Scientifique, Unité 8253, Paris, France
| |
Collapse
|
29
|
Mocsár G, Volkó J, Rönnlund D, Widengren J, Nagy P, Szöllősi J, Tóth K, Goldman CK, Damjanovich S, Waldmann TA, Bodnár A, Vámosi G. MHC I Expression Regulates Co-clustering and Mobility of Interleukin-2 and -15 Receptors in T Cells. Biophys J 2017; 111:100-12. [PMID: 27410738 DOI: 10.1016/j.bpj.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
MHC glycoproteins form supramolecular clusters with interleukin-2 and -15 receptors in lipid rafts of T cells. The role of highly expressed MHC I in maintaining these clusters is unknown. We knocked down MHC I in FT7.10 human T cells, and studied protein clustering at two hierarchic levels: molecular aggregations and mobility by Förster resonance energy transfer and fluorescence correlation spectroscopy; and segregation into larger domains or superclusters by superresolution stimulated emission depletion microscopy. Fluorescence correlation spectroscopy-based molecular brightness analysis revealed that the studied molecules diffused as tight aggregates of several proteins of a kind. Knockdown reduced the number of MHC I containing molecular aggregates and their average MHC I content, and decreased the heteroassociation of MHC I with IL-2Rα/IL-15Rα. The mobility of not only MHC I but also that of IL-2Rα/IL-15Rα increased, corroborating the general size decrease of tight aggregates. A multifaceted analysis of stimulated emission depletion images revealed that the diameter of MHC I superclusters diminished from 400-600 to 200-300 nm, whereas those of IL-2Rα/IL-15Rα hardly changed. MHC I and IL-2Rα/IL-15Rα colocalized with GM1 ganglioside-rich lipid rafts, but MHC I clusters retracted to smaller subsets of GM1- and IL-2Rα/IL-15Rα-rich areas upon knockdown. Our results prove that changes in expression level may significantly alter the organization and mobility of interacting membrane proteins.
Collapse
Affiliation(s)
- Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Rönnlund
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Jerker Widengren
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences and the University of Debrecen, Debrecen, Hungary
| | - Katalin Tóth
- German Cancer Research Center, Biophysics of Macromolecules, Heidelberg, Germany
| | - Carolyn K Goldman
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sándor Damjanovich
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
30
|
Ravindranath MH. HLA Class Ia and Ib Polyreactive Anti-HLA-E IgG2a Monoclonal Antibodies (TFL-006 and TFL-007) Suppress Anti-HLA IgG Production by CD19+ B Cells and Proliferation of CD4+ T Cells While Upregulating Tregs. J Immunol Res 2017; 2017:3475926. [PMID: 28634589 PMCID: PMC5467321 DOI: 10.1155/2017/3475926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022] Open
Abstract
The anti-HLA-E IgG2a mAbs, TFL-006 and TFL-007, reacted with all HLA-I antigens, similar to the therapeutic preparations of IVIg. Indeed, IVIg lost its HLA reactivity, when its HLA-E reactivity was adsorbed out. US-FDA approved IVIg to reduce antibodies in autoimmune diseases. But the mechanism underlying IVIg-mediated antibody reduction could not be ascertained due to the presence of other polyclonal antibodies. In spite of it, the cost prohibitive high or low IVIg is administered to patients waiting for donor organ and for allograft recipients for lowering antiallograft antibodies. A mAb that could mimic IVIg in lowering Abs, with defined mechanism of action, would be highly beneficial for patients. Demonstrably, the anti-HLA-E mAbs mimicked several functions of IVIg relevant to suppressing the antiallograft Abs. The mAbs suppressed activated T cells and anti-HLA antibody production by activated B cells, which were dose-wise superior to IVIg. The anti-HLA-E mAb expanded CD4+, CD25+, and Foxp3+ Tregs, which are known to suppress T and B cells involved in antibody production. These defined functions of the anti-HLA-E IgG2a mAbs at a level superior to IVIg encourage developing their humanized version to lower antibodies in allograft recipients, to promote graft survival, and to control autoimmune diseases.
Collapse
|
31
|
Thiruchelvam-Kyle L, Hoelsbrekken SE, Saether PC, Bjørnsen EG, Pende D, Fossum S, Daws MR, Dissen E. The Activating Human NK Cell Receptor KIR2DS2 Recognizes a β 2-Microglobulin-Independent Ligand on Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2556-2567. [PMID: 28202613 DOI: 10.4049/jimmunol.1600930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023]
Abstract
The functions of activating members of the killer cell Ig-like receptor (KIR) family are not fully understood, as the ligands for these receptors are largely unidentified. In this study, we report that KIR2DS2 reporter cells recognize a ligand expressed by cancer cell lines. All cancer targets recognized by KIR2DS2 were also recognized by KIR2DL2 and KIR2DL3 reporters. Trogocytosis of membrane proteins from the cancer targets was observed with responding reporter cells, indicating the formation of KIR2DS2 ligand-specific immunological synapses. HLA-C typing of target cells showed that KIR2DS2 recognition was independent of the HLA C1 or C2 group, whereas targets cells that were only recognized by KIR2DL3 expressed C1 group alleles. Anti-HLA class I Abs blocked KIR2DL3 responses toward C1-expressing targets, but they did not block KIR2DS2 recognition of cancer cells. Small interfering RNA knockdown of β2-microglobulin reduced the expression of class I H chain on the cancer targets by >97%, but it did not reduce the KIR2DS2 reporter responses, indicating a β2-microglobulin-independent ligand for KIR2DS2. Importantly, KIR2DL3 responses toward some KIR2DS2 ligand-expressing cells were also undiminished after β2-microglobulin knockdown, and they were not blocked by anti-HLA class I Abs, suggesting that KIR2DL3, in addition to the traditional HLA-C ligands, can bind to the same β2-microglobulin-independent ligand as KIR2DS2. These observations indicate the existence of a novel, presently uncharacterized ligand for the activating NK cell receptor KIR2DS2. Molecular identification of this ligand may lead to improved KIR-HLA mismatching in hematopoietic stem cell transplantation therapy for leukemia and new, more specific NK cell-based cancer therapies.
Collapse
Affiliation(s)
- Lavanya Thiruchelvam-Kyle
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Sigurd E Hoelsbrekken
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Per C Saether
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Elisabeth Gyllensten Bjørnsen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Daniela Pende
- Laboratorio Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Sigbjørn Fossum
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Michael R Daws
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Erik Dissen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| |
Collapse
|
32
|
Hackmon R, Pinnaduwage L, Zhang J, Lye SJ, Geraghty DE, Dunk CE. Definitive class I human leukocyte antigen expression in gestational placentation: HLA-F, HLA-E, HLA-C, and HLA-G in extravillous trophoblast invasion on placentation, pregnancy, and parturition. Am J Reprod Immunol 2017; 77. [DOI: 10.1111/aji.12643] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Rinat Hackmon
- Department of Obstetrics and Gynecology; University of Toronto, Mount Sinai Hospital; Toronto ON Canada
- Clinical Research Division; Fred Hutchinson Cancer Research Center; Seattle WA USA
- Division of MFM Obstetrics and Gynecology; OHSU; Portland Oregon USA
| | | | - Jianhong Zhang
- Lunenfeld Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
| | - Stephen J. Lye
- Department of Obstetrics and Gynecology; University of Toronto, Mount Sinai Hospital; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
| | - Daniel E. Geraghty
- Clinical Research Division; Fred Hutchinson Cancer Research Center; Seattle WA USA
| | - Caroline E. Dunk
- Department of Obstetrics and Gynecology; University of Toronto, Mount Sinai Hospital; Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
| |
Collapse
|
33
|
Serena M, Parolini F, Biswas P, Sironi F, Blanco Miranda A, Zoratti E, Scupoli MT, Ziglio S, Valenzuela-Fernandez A, Gibellini D, Romanelli MG, Siccardi A, Malnati M, Beretta A, Zipeto D. HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity. Sci Rep 2017; 7:40037. [PMID: 28051183 PMCID: PMC5209703 DOI: 10.1038/srep40037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
HLA-C has been demonstrated to associate with HIV-1 envelope glycoprotein (Env). Virions lacking HLA-C have reduced infectivity and increased susceptibility to neutralizing antibodies. Like all others MHC-I molecules, HLA-C requires β2-microglobulin (β2m) for appropriate folding and expression on the cell membrane but this association is weaker, thus generating HLA-C free-chains on the cell surface. In this study, we deepen the understanding of HLA-C and Env association by showing that HIV-1 specifically increases the amount of HLA-C free chains, not bound to β2m, on the membrane of infected cells. The association between Env and HLA-C takes place at the cell membrane requiring β2m to occur. We report that the enhanced infectivity conferred to HIV-1 by HLA-C specifically involves HLA-C free chain molecules that have been correctly assembled with β2m. HIV-1 Env-pseudotyped viruses produced in the absence of β2m are less infectious than those produced in the presence of β2m. We hypothesize that the conformation and surface expression of HLA-C molecules could be a discriminant for the association with Env. Binding stability to β2m may confer to HLA-C the ability to preferentially act either as a conventional immune-competent molecule or as an accessory molecule involved in HIV-1 infectivity.
Collapse
Affiliation(s)
- Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Priscilla Biswas
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Francesca Sironi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Almudena Blanco Miranda
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Elisa Zoratti
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Serena Ziglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Agustin Valenzuela-Fernandez
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Antonio Siccardi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Mauro Malnati
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Alberto Beretta
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
34
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
35
|
The Humoral Theory of Transplantation: Epitope Analysis and the Pathogenicity of HLA Antibodies. J Immunol Res 2016; 2016:5197396. [PMID: 28070526 PMCID: PMC5192322 DOI: 10.1155/2016/5197396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/17/2016] [Indexed: 01/30/2023] Open
Abstract
Central to the humoral theory of transplantation is production of antibodies by the recipient against mismatched HLA antigens in the donor organ. Not all mismatches result in antibody production, however, and not all antibodies are pathogenic. Serologic HLA matching has been the standard for solid organ allocation algorithms in current use. Antibodies do not recognize whole HLA molecules but rather polymorphic residues on the surface, called epitopes, which may be shared by multiple serologic HLA antigens. Data are accumulating that epitope analysis may be a better way to determine organ compatibility as well as the potential immunogenicity of given HLA mismatches. Determination of the pathogenicity of alloantibodies is evolving. Potential features include antibody strength (as assessed by antibody titer or, more commonly and inappropriately, mean fluorescence intensity) and ability to fix complement (in vitro by C1q or C3d assay or by IgG subclass analysis). Technical issues with the use of solid phase assays are also of prime importance, such as denaturation of HLA antigens and manufacturing and laboratory variability. Questions and controversies remain, and here we review new relevant data.
Collapse
|
36
|
Garcia-Beltran WF, Hölzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, Rucevic M, Lamothe-Molina PA, Pertel T, Kim TE, Dugan H, Alter G, Dechanet-Merville J, Jost S, Carrington M, Altfeld M. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol 2016; 17:1067-74. [PMID: 27455421 PMCID: PMC4992421 DOI: 10.1038/ni.3513] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.
Collapse
Affiliation(s)
| | - Angelique Hölzemer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Centre Eppendorf, Hamburg, Germany
| | - Gloria Martrus
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Yovana Pacheco
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nuestra Señora del Rosario, Bogotá, Colombia
| | | | | | | | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tae-Eun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Haley Dugan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | | | | | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
37
|
Mahmutefendić H, Blagojević Zagorac G, Grabušić K, Karleuša L, Maćešić S, Momburg F, Lučin P. Late Endosomal Recycling of Open MHC-I Conformers. J Cell Physiol 2016; 232:872-887. [DOI: 10.1002/jcp.25495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Hana Mahmutefendić
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | | | | | - Ljerka Karleuša
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | - Senka Maćešić
- Faculty of Engineering, Department of Mathematics, Physics, Foreign Languages and Kinesiology; University of Rijeka; Rijeka Croatia
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity; German Cancer Research Center; Heidelberg Germany
| | - Pero Lučin
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| |
Collapse
|
38
|
HLA-F coding and regulatory segments variability determined by massively parallel sequencing procedures in a Brazilian population sample. Hum Immunol 2016; 77:841-853. [PMID: 27448841 DOI: 10.1016/j.humimm.2016.07.231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Human Leucocyte Antigen F (HLA-F) is a non-classical HLA class I gene distinguished from its classical counterparts by low allelic polymorphism and distinctive expression patterns. Its exact function remains unknown. It is believed that HLA-F has tolerogenic and immune modulatory properties. Currently, there is little information regarding the HLA-F allelic variation among human populations and the available studies have evaluated only a fraction of the HLA-F gene segment and/or have searched for known alleles only. Here we present a strategy to evaluate the complete HLA-F variability including its 5' upstream, coding and 3' downstream segments by using massively parallel sequencing procedures. HLA-F variability was surveyed on 196 individuals from the Brazilian Southeast. The results indicate that the HLA-F gene is indeed conserved at the protein level, where thirty coding haplotypes or coding alleles were detected, encoding only four different HLA-F full-length protein molecules. Moreover, a same protein molecule is encoded by 82.45% of all coding alleles detected in this Brazilian population sample. However, the HLA-F nucleotide and haplotype variability is much higher than our current knowledge both in Brazilians and considering the 1000 Genomes Project data. This protein conservation is probably a consequence of the key role of HLA-F in the immune system physiology.
Collapse
|
39
|
Mangold CA, Masser DR, Stanford DR, Bixler GV, Pisupati A, Giles CB, Wren JD, Ford MM, Sonntag WE, Freeman WM. CNS-wide Sexually Dimorphic Induction of the Major Histocompatibility Complex 1 Pathway With Aging. J Gerontol A Biol Sci Med Sci 2016; 72:16-29. [PMID: 26786204 DOI: 10.1093/gerona/glv232] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
The major histocompatibility complex I (MHCI) pathway, which canonically functions in innate immune viral antigen presentation and detection, is functionally pleiotropic in the central nervous system (CNS). Alternative roles include developmental synapse pruning, regulation of synaptic plasticity, and inhibition of neuronal insulin signaling; all processes altered during brain aging. Upregulation of MHCI components with aging has been reported; however, no systematic examination of MHCI cellular localization, expression, and regulation across CNS regions, life span, and sexes has been reported. In the mouse, MHCI is expressed by neurons and microglia, and MHCI components and receptors (H2-K1, H2-D1, β2M, Lilrb3, Klra2, CD247) display markedly different expression profiles across the hippocampus, cortex, cerebellum, brainstem, and retina. MHCI components, receptors, associated inflammatory transcripts (IL1α, IL1β, IL6, TNFα), and TAP (transporter associated with antigen processing) components are induced with aging and to a greater degree in female than male mice across CNS regions. H2-K1 and H2-D1 expression is associated with differential CG and non-CG promoter methylation across CNS regions, ages, and between sexes, and concomitant increased expression of proinflammatory genes. Meta-analysis of human brain aging data also demonstrates age-related increases in MHCI. Induction of MHCI signaling could contribute to altered synapse regulation and impaired synaptic plasticity with aging.
Collapse
Affiliation(s)
- Colleen A Mangold
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey
| | - Dustin R Masser
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey.,Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - David R Stanford
- Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Georgina V Bixler
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey
| | - Aditya Pisupati
- MD/PhD Program, College of Medicine, Pennsylvania State University, Hershey
| | - Cory B Giles
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Willard M Freeman
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey. .,Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| |
Collapse
|
40
|
Ravindranath MH, Jucaud V, Maehara CY, Terasaki PI. Significance of the differences in the prevalence of anti-HLA antibodies in matched pairs of mother's and cord blood. Immunol Lett 2016; 170:68-79. [PMID: 26721232 DOI: 10.1016/j.imlet.2015.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/15/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
Abstract
The presence of IgG against pathogens in the cord blood (CB) of vaccinated mothers is attributed to transplacental transfer. However, previous studies using lymphocytotoxicity assay showed anti-HLA IgG in mother's blood (MB) but not in CB, perhaps due to non-transfer of anti-HLA IgG or assay limitations in detecting anti-HLA IgG. Anti-HLA IgG of native and purified sera of 16 MB and CB pairs were measured using an array of microbeads coated with HLA-I/-II molecules on a Luminex platform. Two cases showed no anti-HLA-I IgG in either MB or CB; four MB cases displayed polyallelic HLA-reactive IgG, with negligible or no reactivity by the corresponding CB sera. Notably, anti-HLA-I reactivity in cases 3-6/11/12 and anti-HLA-II reactivity in cases 1/3/4/6/8/11-13 were restricted to CB, with lower or no HLA-reactivity in MB. Mothers' HLA typing is done for HLA-A*, HLA-B* and DRB1* alleles. The mother in case 14 carried DRB1*11:01, the allele-reactive IgG is seen in both native and the purified fraction of sera of MB but not in CB. Also in cases 15 (DRB1*01:01) and 16 (B*49:01 and DBR1*07:01), the allele-reactive IgGs are seen in both native and purified fractions of MB but not in CB confirming the earlier reports on the absence of materno-fetal transfer of anti-HLA IgG. However, the mother of case 6 is homozygous for DRB1*03:01 and the allele-reactive IgG occurred in both MB and CB, confirming the presence of anti-HLA autoantibodies. In Case 13, the mother (HLA-A*24 and HLA-A*52) and CB carried allele-reactive IgG in both native and purified sera, indicating the possible occurrence of transplacental transfer of the IgG. Further confirmation is restricted by the paucity of detailed molecular HLA typing for both the parents and fetuses. While 37.5% of the native IgG in CB and 18.8% in MB showed DRB3*03:01 reactivity, 100% of purified IgG from both CB and MB showed anti-DRB3*03:01 and anti-DPA1*02:01\ DPB1*23:01 antibodies. Several CB cases showed high-prevalence IgG reacting to a single allele of HLA-I and/or HLA-II with minimal or no cross-reactive IgG in CB or in the MB, suggesting the presence of de novo antibodies, possibly against non-inherited maternal HLA or inherited parental HLA haplotypes by the fetus.
Collapse
Affiliation(s)
| | - Vadim Jucaud
- Terasaki Foundation Laboratory, Los Angeles, CA, United States
| | | | - Paul I Terasaki
- Terasaki Foundation Laboratory, Los Angeles, CA, United States
| |
Collapse
|
41
|
|
42
|
Arase N, Arase H. Cellular misfolded proteins rescued from degradation by MHC class II molecules are possible targets for autoimmune diseases. J Biochem 2015; 158:367-72. [DOI: 10.1093/jb/mvv093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
|
43
|
Liu J, Shen Y, Li M, Lv D, Zhang A, Peng Y, Miao F, Zhang J. Spatial-Temporal Expression of Non-classical MHC Class I Molecules in the C57 Mouse Brain. Neurochem Res 2015; 40:1487-96. [PMID: 26040564 DOI: 10.1007/s11064-015-1620-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Recent studies clearly demonstrate major histocompatibility complex (MHC) class I expression in the brain plays an important functional role in neural development and plasticity. A previous study from our laboratory demonstrated the temporal and spatial expression patterns of classical MHC class I molecules in the brain of C57 mice. Studies regarding non-classical MHC class I molecules remain limited. Here we examine the expression of non-classical MHC class I molecules in mouse central nervous system (CNS) during embryonic and postnatal developmental stages using in situ hybridization and immunofluorescence. We find non-classical MHC class I molecules, M3/T22/Q1, are expressed in the cerebral cortex, neuroepithelium of the lateral ventricle, neuroepithelium of aquaeductus and developing cerebellum during embryonic developmental stages. During the postnatal period from P0 to adult, non-classical MHC class I mRNAs are detected in olfactory bulb, hippocampus, cerebellum and some nerve nuclei. Overall, the expression patterns of non-classical MHC class I molecules are similar to those of classical MHC class I molecules in the developing mouse brain. In addition, non-classical MHC class I molecules are present in the H2-K(b) and H2-D(b) double knock-out mice where their expression levels are greatly increased within the same locations as compared to wild type mice. The elucidation and discovery of the expression profile of MHC class I molecules during development is important for supporting an enhanced understanding of their physiological and potential pathological roles within the CNS.
Collapse
Affiliation(s)
- Jiane Liu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Filippone EJ, Farber JL. Humoral Immune Response and Allograft Function in Kidney Transplantation. Am J Kidney Dis 2015; 66:337-47. [PMID: 25987262 DOI: 10.1053/j.ajkd.2015.03.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/22/2015] [Indexed: 12/22/2022]
Abstract
HLA antibodies can damage a kidney transplant. In January 2013, consensus guidelines from The Transplantation Society were published regarding technical aspects of HLA antibody determination, as well as their potential significance in the pre- and posttransplantation periods. During the past 2 years, new studies have been reported, but controversies remain. In this article, these new data related to HLA antibodies in kidney transplantation are reviewed and compared to relevant prior research. Pretransplantation sensitization issues are discussed, including the new more sensitive assays (flow cytometry and solid-phase immunoassays such as Luminex single-antigen bead assays). A positive complement-dependent cytotoxicity crossmatch remains an absolute contraindication to transplantation, although a positive flow cytometry crossmatch is only a relative contraindication. Positivity only by solid-phase assays increases the risk for acute rejection and transplant loss, but acceptable cutoffs are not defined. The sensitizing effect of red blood cell transfusions is substantiated. Following allograft failure, continued immunosuppression decreases the risk of sensitization, whereas overall, the effect of nephrectomy remains uncertain. Regarding the posttransplantation period, new data are available concerning the timing and significance of donor-specific antibodies (DSA). Whereas some centers report DSA appearance after years, others detect DSA within months. The prominence of class II DSA, especially DQ, in the posttransplantation period is noted. The relevance of non-HLA antibodies is discussed, including anti-endothelial cell antibodies, major histocompatibility complex class I chain-related protein A antibodies, and angiotensin II type 1 receptor autoantibodies.
Collapse
Affiliation(s)
- Edward J Filippone
- Division of Nephrology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA.
| | - John L Farber
- Department of Pathology, Thomas Jefferson University Hospital, Philadelphia, PA
| |
Collapse
|
45
|
Djurisic S, Hviid TVF. HLA Class Ib Molecules and Immune Cells in Pregnancy and Preeclampsia. Front Immunol 2014; 5:652. [PMID: 25566263 PMCID: PMC4274990 DOI: 10.3389/fimmu.2014.00652] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
Despite decades of research, the highly prevalent pregnancy complication preeclampsia, “the disease of theories,” has remained an enigma. Indeed, the etiology of preeclampsia is largely unknown. A compiling amount of studies indicates that the pathological basis involves a complex array of genetic predisposition and immunological maladaptation, and that a contribution from the mother, the father, and the fetus is likely to be important. The Human Leukocyte Antigen (HLA)-G is an increasing focus of research in relation to preeclampsia. The HLA-G molecule is primarily expressed by the extravillous trophoblast cells lining the placenta together with the two other HLA class Ib molecules, HLA-E and HLA-F. Soluble isoforms of HLA-G have been detected in the early endometrium, the matured cumulus–oocyte complex, maternal blood of pregnant women, in umbilical cord blood, and lately, in seminal plasma. HLA-G is believed to be involved in modulating immune responses in the context of vascular remodeling during pregnancy as well as in dampening potential harmful immune attacks raised against the semi-allogeneic fetus. In addition, HLA-G genetic variants are associated with both membrane-bound and soluble forms of HLA-G, and, in some studies, with preeclampsia. In this review, a genetic contribution from the mother, the father, and the fetus, together with the presence and function of various immune cells of relevance in pregnancy are reviewed in relation to HLA-G and preeclampsia.
Collapse
Affiliation(s)
- Snezana Djurisic
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| |
Collapse
|
46
|
Ravindranath MH, Terasaki PI, Pham T, Jucaud V, Kawakita S. Suppression of blastogenesis and proliferation of activated CD4(+) T cells: intravenous immunoglobulin (IVIg) versus novel anti-human leucocyte antigen (HLA)-E monoclonal antibodies mimicking HLA-I reactivity of IVIg. Clin Exp Immunol 2014; 178:154-77. [PMID: 24889882 PMCID: PMC4360205 DOI: 10.1111/cei.12391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 01/08/2023] Open
Abstract
Activated CD4(+) T cells undergo blastogenesis and proliferation and they express several surface receptors, including β2-microglobulin-free human leucocyte antigen (HLA) heavy chains (open conformers). Intravenous immunoglobulin (IVIg) suppresses activated T cells, but the mechanism is unclear. IVIg reacts with HLA-Ia/Ib antigens but its reactivity is lost when the anti-HLA-E Ab is adsorbed out. Anti-HLA-E antibodies may bind to the peptides shared by HLA-E and the HLA-I alleles. These shared peptides are cryptic in intact HLA, but exposed in open conformers. The hypothesis that anti-HLA-E monoclonal antibodies (mAbs) that mimic HLA-I reactivity of IVIg may suppress activated T cells by binding to the shared peptides of the open conformers on the T cell surface was tested by examining the relative binding affinity of those mAbs for open conformers coated on regular beads and for intact HLA coated on iBeads, and by comparing the effects on the suppression of phytohaemagglutinin (PHA)-activated T cells of three entities: IVIg, anti-HLA-E mAbs that mimic IVIg [Terasaki Foundation Laboratory (TFL)-006 and (TFL)-007]; and anti-HLA-E antibodies that do not mimic IVIg (TFL-033 and TFL-037). Suppression of blastogenesis and proliferation of those T cells by both IVIg and the anti-HLA-E mAbs was dose-dependent, the dose required with mAbs 50-150-fold lower than with IVIg. TFL-006 and TFL-007 significantly suppressed blastogenesis and proliferation of activated CD4(+) T cells, but neither the non-IVIg-mimicking mAbs nor control antibodies did so. The suppression may be mediated by Fab-binding of TFL-006/TFL-007 to the exposed shared peptides. The mAb binding to the open conformer may signal T cell deactivation because the open conformers have an elongated cytoplasmic tail with phosphorylation sites (tryosine(320)/serine(335)).
Collapse
|
47
|
Corral-San Miguel R, Hernández-Caselles T, Ruiz Alcaraz AJ, Martínez-Esparza M, García-Peñarrubia P. MHC-I molecules selectively inhibit cell-mediated cytotoxicity triggered by ITAM-coupled activating receptors and 2B4. PLoS One 2014; 9:e107054. [PMID: 25226085 PMCID: PMC4166474 DOI: 10.1371/journal.pone.0107054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/13/2014] [Indexed: 01/23/2023] Open
Abstract
NK cell effector functions are controlled by a combination of inhibitory receptors, which modulate NK cell activation initiated by stimulatory receptors. Most of the canonical NK cell inhibitory receptors recognize allelic forms of classical and non-classical MHC class I molecules. Furthermore, high expression of MHC-I molecules on effector immune cells is also associated with reverse signaling, giving rise to several immune-regulatory functions. Consequently, the inhibitory function of MHC class I expressed on a human NKL cell line and activated primary NK and T cells on different activating receptors are analyzed in this paper. Our results reveal that MHC-I molecules display specific patterns of “selective” inhibition over cytotoxicity and cytokine production induced by ITAM-dependent receptors and 2B4, but not on NKG2D. This contrasts with the best known “canonical” inhibitory receptors, which constitutively inhibit both functions, regardless of the activating receptor involved. Our results support the existence of a new fine-tuner inhibitory function for MHC-I molecules expressed on cytotoxic effector cells that could be involved in establishing self-tolerance in mature activated NK cells, and could also be important in tumor and infected cell recognition.
Collapse
Affiliation(s)
- Rubén Corral-San Miguel
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Campus of International Excellence “Campus Mare Nostrum” and IMIB (Instituto Murciano de Investigaciones Biosanitarias)-Arrixaca, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Campus of International Excellence “Campus Mare Nostrum” and IMIB (Instituto Murciano de Investigaciones Biosanitarias)-Arrixaca, Murcia, Spain
| | - Antonio José Ruiz Alcaraz
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Campus of International Excellence “Campus Mare Nostrum” and IMIB (Instituto Murciano de Investigaciones Biosanitarias)-Arrixaca, Murcia, Spain
| | - María Martínez-Esparza
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Campus of International Excellence “Campus Mare Nostrum” and IMIB (Instituto Murciano de Investigaciones Biosanitarias)-Arrixaca, Murcia, Spain
| | - Pilar García-Peñarrubia
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Campus of International Excellence “Campus Mare Nostrum” and IMIB (Instituto Murciano de Investigaciones Biosanitarias)-Arrixaca, Murcia, Spain
- * E-mail:
| |
Collapse
|
48
|
Zhu D, Ravindranath MH, Terasaki PI, Miyazaki T, Pham T, Jucaud V. Suppression of allo-human leucocyte antigen (HLA) antibodies secreted by B memory cells in vitro: intravenous immunoglobulin (IVIg) versus a monoclonal anti-HLA-E IgG that mimics HLA-I reactivities of IVIg. Clin Exp Immunol 2014; 177:464-77. [PMID: 24611451 PMCID: PMC4226597 DOI: 10.1111/cei.12307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 12/20/2022] Open
Abstract
B memory cells remain in circulation and secrete alloantibodies without antigen exposure > 20 years after alloimmunization postpartum or by transplantation. These long-lived B cells are resistant to cytostatic drugs. Therapeutically, intravenous immunoglobulin (IVIg) is administered to reduce allo-human leucocyte antigen (HLA) antibodies pre- and post-transplantation, but the mechanism of reduction remains unclear. Recently, we reported that IVIg reacts with several HLA-I alleles and the HLA reactivity of IVIg is lost after its HLA-E reactivity is adsorbed out. Therefore, we have generated an anti-HLA-E monoclonal antibody that mimics the HLA-reactivity of IVIg to investigate whether this antibody suppresses IgG secretion, as does IVIg. B cells were purified from the blood of a woman in whose blood the B memory cells remained without antigen exposure > 20 years after postpartum alloimmunization. The B cells were stimulated with cytokines using a well-defined culture system. The anti-HLA-E monoclonal antibody (mAb) significantly suppressed the allo-HLA class-II IgG produced by the B cells, and that this suppression was far superior to that by IVIg. These findings were confirmed with HLA-I antibody secreted by the immortalized B cell line, developed from the blood of another alloimmunized woman. The binding affinity of the anti-HLA-E mAb for peptide sequences shared (i.e. shared epitopes) between HLA-E and other β2-microglobulin-free HLA heavy chains (open conformers) on the cell surface of B cells may act as a ligand and signal suppression of IgG production of activated B memory cells. We propose that anti-HLA-E monoclonal antibody may also be useful to suppress allo-HLA IgG production in vivo.
Collapse
Affiliation(s)
- D Zhu
- Terasaki Foundation Laboratory, Los Angeles, CA, USA; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
A splice variant of HLA-A with a deletion of exon 3 expressed as nonmature cell-surface glycoproteins forms a heterodimeric structure with full-length HLA-A. Hum Immunol 2014; 75:234-8. [DOI: 10.1016/j.humimm.2013.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/08/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
|
50
|
Lv D, Shi Q, Liu J, Zhang A, Miao F, He Y, Shen Y, Zhang J. The similar expression pattern of MHC class I molecules in human and mouse cerebellar cortex. Neurochem Res 2013; 39:180-6. [PMID: 24272393 DOI: 10.1007/s11064-013-1204-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/22/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) class I molecules are considered to be important in the immune system. However, the results reported in the past decade indicate that they also play important roles in the central nervous system. Here we examined the expression of MHC I and β2-microglobulin (β2m) in human and mouse cerebellar cortex. The results show that MHC I molecules are expressed both in human and mouse cerebellar cortex during brain development. The expression of H-2K(b)/D(b) is gradually increased with the development of mouse cerebellar cortex, but finally decreased to a very low level. Similarly, the expression of HLA-B/C genes is increased in developing human cerebellar cortex, but decreased after birth. The spatial and temporal expression of β2m overlaps mostly with that of HLA-B/C molecules, and they are co-expressed in Purkinje cells. Our findings provide a fundamental basis to reveal the functions of neuronal MHC class I molecules in the development of human cerebellum.
Collapse
Affiliation(s)
- Dan Lv
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|