1
|
Wang Y, Tian W, Li R, Zhou D, Ding K, Feng S, Ge Y, Luo Y, Chen Z, Hou H. Platelet FcRγ inhibits tumor metastasis by preventing the colonization of circulating tumor cells. Eur J Pharmacol 2025; 990:177286. [PMID: 39848529 DOI: 10.1016/j.ejphar.2025.177286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Fc receptor γ subunit (FcRγ) activation plays a crucial role in cancer carcinogenesis. Here, we aimed to uncover the impact of FcRγ on circulating tumor cells (CTC) colonization and the underlying mechanism. FcRγ deficient (FcRγ-/-) mice were used to investigate the functional effects of FcRγ in cancer metastasis, and the results demonstrated that FcRγ deficiency significantly promotes metastasis. The tumor metastasis effect, antiplatelet, platelet or neutrophil infusion experiments were conducted with FcRγ deficient (FcRγ-/-) mice and wild type mice (WT), bearing B16F10 or LCC tumor cells. Blood routine test, flow cytometry, immunofluorescent staining and in vivo image were applied for analysis. Platelet adhesion and neutrophil chemotaxis were analyzed by flow cytometry and ELISA in vitro. Platelet adoptive model was used for mimicing early colonization stage. Our results indicated FcRγ deficiency significantly promoted tumor metastasis accompanied with increased number of platelet and neutrophil in the lung. Further investigation showed that FcRγ-/- platelet infusion, rather than FcRγ-/- neutrophils, promoted CTC colonization. While platelet inhibitor Aspirin abrogated the platelet-mediated infiltration of neutrophil in the lung. Mechanistically, platelet FcRγ deficiency facilitated the adhesion of platelets and cancer cells and increased secretion of CXCL5 and CXCL7 which triggered the platelet-induced neutrophil recruitment. In sum, our study indicates that FcRγ is a restrainer in controlling cancer metastasis through regulating the adhesion of platelets and cancer cells and recruiting more neutrophils, which provides a potential target for anti-metastatic therapies. The level of FcRγ expression in platelets could act as a novel biomarker for cancer metastasis.
Collapse
MESH Headings
- Animals
- Neoplastic Cells, Circulating/pathology
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/metabolism
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Receptors, IgG/metabolism
- Mice
- Mice, Inbred C57BL
- Melanoma, Experimental/pathology
- Neutrophils/drug effects
- Neutrophils/metabolism
- Cell Line, Tumor
- Neoplasm Metastasis
- Platelet Adhesiveness/drug effects
- Mice, Knockout
- Chemokines, CXC/metabolism
- Chemokines, CXC/genetics
- Neutrophil Infiltration/drug effects
- Aspirin/pharmacology
- Lung Neoplasms/secondary
- Lung Neoplasms/pathology
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Wei Tian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Rui Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Dewang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Kaiqiang Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Shuang Feng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yao Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yan Luo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Zhen Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Hui Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
2
|
Lopez-Perez M, Viwami F, Ampomah P, Šuštić T, Larsen MD, Wuhrer M, Vidarsson G, Ofori MF, Tuikue Ndam N, Hviid L. Fc-Afucosylation of VAR2CSA-Specific Immunoglobulin G and Clinical Immunity to Placental Plasmodium falciparum Malaria. J Infect Dis 2024:jiae529. [PMID: 39585195 DOI: 10.1093/infdis/jiae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Acquired immunity to Plasmodium falciparum malaria is mainly mediated by immunoglobulin G (IgG) targeting erythrocyte membrane protein 1 (PfEMP1). These adhesins mediate infected erythrocyte (IE) sequestration, protecting IEs from splenic destruction. PfEMP1-specific IgG is therefore thought to protect mainly by inhibiting IE sequestration. VAR2CSA-type PfEMP1 mediates placental IE sequestration, putting pregnant women exposed to P falciparum parasites at risk of placental malaria (PM). METHODS Levels and Fc-afucosylation of VAR2CSA-specific plasma IgG were measured by a modified enzyme-linked immunosorbent assay (FEASI). We also measured the ability of the IgG to inhibit IE adhesion and to induce natural killer (NK) cell degranulation. The results were related to parity and clinical pregnancy outcomes. RESULTS Parity was positively correlated with levels and Fc-afucosylation of VAR2CSA-specific IgG, and with birth weight and plasma IgG inhibition of IE adhesion in vitro. Fc-afucosylation of VAR2CSA-specific IgG increased NK-cell degranulation. Women with Fc-afucosylated VAR2CSA-specific IgG had a reduced risk of delivering a low birth weight (LBW) baby, but not of PM or anemia. CONCLUSIONS Fc-afucosylated VAR2CSA-specific IgG effectively induced NK-cell degranulation and was associated with protection against LBW, independent of IgG levels. Our study has implications for the development of VAR2CSA-based subunit vaccines, which exclusively induce Fc-fucosylated IgG.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Firmine Viwami
- Institut de Recherche Clinique du Benin, Abomey Calavi, Benin
- Mère et Enfant en Milieu Tropical, Institut de Recherche pour le Développement, Université de Paris, France
| | - Paulina Ampomah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Ghana
| | - Tonći Šuštić
- Immunoglobulin Research Laboratory, Sanquin Research, Amsterdam
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Sanquin Research, Amsterdam
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Sanquin Research, Amsterdam
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra
| | - Nicaise Tuikue Ndam
- Institut de Recherche Clinique du Benin, Abomey Calavi, Benin
- Mère et Enfant en Milieu Tropical, Institut de Recherche pour le Développement, Université de Paris, France
| | - Lars Hviid
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Bootz A, Reuter N, Nimmerjahn F, Britt WJ, Mach M, Winkler TH. Functional Fc receptors are crucial in antibody-mediated protection against cytomegalovirus. Eur J Immunol 2024; 54:e2451044. [PMID: 39014923 DOI: 10.1002/eji.202451044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG-/- mice than serum from animals immunized with purified virus. The protective activity of immune serum was strictly dependent on functional Fcγ receptors (FcγR). Deletion of individual FcγRs or combined deletion of FcγRI and FcγRIV had little impact on the protection afforded by serum. Adoptive transfer of CD115-positive cells from noninfected donors demonstrated that monocytes represent important cellular mediators of the protective activity provided by immune serum. Our studies suggest that Fc-FcγR interactions and monocytic cells are critical for antibody-mediated protection against MCMV infection in vivo. These findings may provide new avenues for the development of novel strategies for more effective CMV vaccines or antiviral immunotherapies.
Collapse
Affiliation(s)
- Anna Bootz
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reuter
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Michael Mach
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Olafsdottir TA, Thorleifsson G, Lopez de Lapuente Portilla A, Jonsson S, Stefansdottir L, Niroula A, Jonasdottir A, Eggertsson HP, Halldorsson GH, Thorlacius GE, Arnthorsson AO, Bjornsdottir US, Asselbergs FW, Bentlage AEH, Eyjolfsson GI, Gudmundsdottir S, Gunnarsdottir K, Halldorsson BV, Holm H, Ludviksson BR, Melsted P, Norddahl GL, Olafsson I, Saevarsdottir S, Sigurdardottir O, Sigurdsson A, Temming R, Önundarson PT, Thorsteinsdottir U, Vidarsson G, Sulem P, Gudbjartsson DF, Jonsdottir I, Nilsson B, Stefansson K. Sequence variants influencing the regulation of serum IgG subclass levels. Nat Commun 2024; 15:8054. [PMID: 39277589 PMCID: PMC11401918 DOI: 10.1038/s41467-024-52470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Immunoglobulin G (IgG) is the main isotype of antibody in human blood. IgG consists of four subclasses (IgG1 to IgG4), encoded by separate constant region genes within the Ig heavy chain locus (IGH). Here, we report a genome-wide association study on blood IgG subclass levels. Across 4334 adults and 4571 individuals under 18 years, we discover ten new and identify four known variants at five loci influencing IgG subclass levels. These variants also affect the risk of asthma, autoimmune diseases, and blood traits. Seven variants map to the IGH locus, three to the Fcγ receptor (FCGR) locus, and two to the human leukocyte antigen (HLA) region, affecting the levels of all IgG subclasses. The most significant associations are observed between the G1m (f), G2m(n) and G3m(b*) allotypes, and IgG1, IgG2 and IgG3, respectively. Additionally, we describe selective associations with IgG4 at 16p11.2 (ITGAX) and 17q21.1 (IKZF3, ZPBP2, GSDMB, ORMDL3). Interestingly, the latter coincides with a highly pleiotropic signal where the allele associated with lower IgG4 levels protects against childhood asthma but predisposes to inflammatory bowel disease. Our results provide insight into the regulation of antibody-mediated immunity that can potentially be useful in the development of antibody based therapeutics.
Collapse
Affiliation(s)
- Thorunn A Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | | | - Aitzkoa Lopez de Lapuente Portilla
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stefan Jonsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Alvotech, Sæmundargötu 15-19, Reykjavík, Iceland
| | | | - Abhishek Niroula
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Broad Institute, Cambridge, MA, USA
| | | | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Unnur S Bjornsdottir
- Department of Respiratory Medicine and Sleep, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Folkert W Asselbergs
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland
| | | | - Robin Temming
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- The Laboratory in Mjodd, Reykjavik, Iceland
| | - Pall T Önundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gestur Vidarsson
- Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
- Broad Institute, Cambridge, MA, USA.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
5
|
Wlodarczyk M, Torun A, Zerrouqi A, Pyrzynska B. NK Cell Degranulation Triggered by Rituximab Identifies Potential Markers of Subpopulations with Enhanced Cytotoxicity toward Malignant B Cells. Int J Mol Sci 2024; 25:8980. [PMID: 39201666 PMCID: PMC11354239 DOI: 10.3390/ijms25168980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
A promising strategy in cancer immunotherapy is to restore or enhance the cytotoxicity of NK cells, among others, by activating the mechanism of antibody-dependent cellular cytotoxicity (ADCC). Monoclonal antibodies targeting tumor antigens, such as rituximab (targeting CD20), induce NK cell-mediated ADCC and have been used to treat B cell malignancies, such as non-Hodgkin lymphoma, but not always successfully. The aim of this study was to analyze the gene expression profile of the NK cells involved in the cytolytic response stimulated by rituximab. NK cells were co-cultured with rituximab-opsonized Raji cells. Sorting into responder and non-responder groups was based on the presence of CD107a, which is a degranulation marker. RNA-seq results showed that the KIT and TNFSF4 genes were strongly down-regulated in the degranulating population of NK cells (responders); this was further confirmed by qRT-PCR. Both genes encode surface proteins with cellular signaling abilities, namely c-KIT and the OX40 ligand. Consistent with our findings, c-KIT was previously reported to correlate inversely with cytokine production by activated NK cells. The significance of these findings for cancer immunotherapy seems essential, as the pharmacological inhibition of c-KIT and OX40L, or gene ablation, could be further tested for the enhancement of the anti-tumor activity of NK cells in response to rituximab.
Collapse
Affiliation(s)
- Marta Wlodarczyk
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.W.); (A.T.); (A.Z.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Torun
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.W.); (A.T.); (A.Z.)
- Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Abdessamad Zerrouqi
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.W.); (A.T.); (A.Z.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.W.); (A.T.); (A.Z.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Yan Y, Xing T, Huang X, Peng W, Wang S, Li N. Affinity-Resolved Size Exclusion Chromatography Coupled to Mass Spectrometry: A Novel Tool to Study the Attribute-and-Function Relationship in Therapeutic Monoclonal Antibodies. Anal Chem 2024; 96:11716-11724. [PMID: 38986034 PMCID: PMC11270518 DOI: 10.1021/acs.analchem.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Assessment of critical quality attributes (CQAs) is an important aspect during the development of therapeutic monoclonal antibodies (mAbs). Attributes that affect either the target binding or Fc receptor engagement may have direct impacts on the drug safety and efficacy and thus are considered as CQAs. Native size exclusion chromatography (SEC)-based competitive binding assay has recently been reported and demonstrated significant benefits compared to conventional approaches for CQA identification, owing to its faster turn-around and higher multiplexity. Expanding on the similar concept, we report the development of a novel affinity-resolved size exclusion chromatography-mass spectrometry (AR-SEC-MS) method for rapid CQA evaluation in therapeutic mAbs. This method features wide applicability, fast turn-around, high multiplexity, and easy implementation. Using the well-studied Fc gamma receptor III-A (FcγRIIIa) and Fc interaction as a model system, the effectiveness of this method in studying the attribute-and-function relationship was demonstrated. Further, two case studies were detailed to showcase the application of this method in assessing CQAs related to antibody target binding, which included unusual N-linked glycosylation in a bispecific antibody and Met oxidation in a monospecific antibody, both occurring within the complementarity-determining regions (CDRs).
Collapse
Affiliation(s)
- Yuetian Yan
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tao Xing
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaoxiao Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Wenjing Peng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
7
|
Wagner JT, Müller-Schmucker SM, Wang W, Arnold P, Uhlig N, Issmail L, Eberlein V, Damm D, Roshanbinfar K, Ensser A, Oltmanns F, Peter AS, Temchura V, Schrödel S, Engel FB, Thirion C, Grunwald T, Wuhrer M, Grimm D, Überla K. Influence of AAV vector tropism on long-term expression and Fc-γ receptor binding of an antibody targeting SARS-CoV-2. Commun Biol 2024; 7:865. [PMID: 39009807 PMCID: PMC11250830 DOI: 10.1038/s42003-024-06529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Long-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.
Collapse
Affiliation(s)
- Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sandra M Müller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, University of Heidelberg; BioQuant Center, BQ0030, University of Heidelberg; German Center for Infection Research (DZIF), German Center for Cardiovascular Research (DZHK), partner site, Heidelberg, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
8
|
Zeng Y, Kai D, Niu Z, Nie Z, Wang Y, Shao Y, Ma L, Zhang F, Liu G, Chen J. Coffee Ring Effect Enhanced Surface Plasmon Resonance Imaging Biosensor via 2-λ Fitting Detection Method. BIOSENSORS 2024; 14:195. [PMID: 38667188 PMCID: PMC11047821 DOI: 10.3390/bios14040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
SPR biosensors have been extensively used for investigating protein-protein interactions. However, in conventional surface plasmon resonance (SPR) biosensors, detection is limited by the Brownian-motion-governed diffusion process of sample molecules in the sensor chip, which makes it challenging to detect biomolecule interactions at ultra-low concentrations. Here, we propose a highly sensitive SPR imaging biosensor which exploits the coffee ring effect (CRE) for in situ enrichment of molecules on the sensing surface. In addition, we designed a wavelength modulation system utilizing two LEDs to reduce the system cost and enhance the detection speed. Furthermore, a detection limit of 213 fM is achieved, which amounts to an approximately 365 times improvement compared to traditional SPR biosensors. With further development, we believe that this SPR imaging system with high sensitivity, less sample consumption, and faster detection speed can be readily applied to ultra-low-concentration molecular detection and interaction analysis.
Collapse
Affiliation(s)
- Youjun Zeng
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (D.K.); (Z.N.); (Z.N.); (L.M.); (F.Z.); (G.L.)
| | - Dongyun Kai
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (D.K.); (Z.N.); (Z.N.); (L.M.); (F.Z.); (G.L.)
| | - Zhenxiao Niu
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (D.K.); (Z.N.); (Z.N.); (L.M.); (F.Z.); (G.L.)
| | - Zhaogang Nie
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (D.K.); (Z.N.); (Z.N.); (L.M.); (F.Z.); (G.L.)
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Yuye Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.W.); (Y.S.)
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.W.); (Y.S.)
| | - Lin Ma
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (D.K.); (Z.N.); (Z.N.); (L.M.); (F.Z.); (G.L.)
| | - Fangteng Zhang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (D.K.); (Z.N.); (Z.N.); (L.M.); (F.Z.); (G.L.)
| | - Guanyu Liu
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (D.K.); (Z.N.); (Z.N.); (L.M.); (F.Z.); (G.L.)
| | - Jiajie Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.W.); (Y.S.)
| |
Collapse
|
9
|
Yu L, Wan Q, Liu Q, Fan Y, Zhou Q, Skowronski AA, Wang S, Shao Z, Liao CY, Ding L, Kennedy BK, Zha S, Que J, LeDuc CA, Sun L, Wang L, Qiang L. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab 2024; 36:793-807.e5. [PMID: 38378001 PMCID: PMC11070064 DOI: 10.1016/j.cmet.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Aging is underpinned by pronounced metabolic decline; however, the drivers remain obscure. Here, we report that IgG accumulates during aging, particularly in white adipose tissue (WAT), to impair adipose tissue function and metabolic health. Caloric restriction (CR) decreases IgG accumulation in WAT, whereas replenishing IgG counteracts CR's metabolic benefits. IgG activates macrophages via Ras signaling and consequently induces fibrosis in WAT through the TGF-β/SMAD pathway. Consistently, B cell null mice are protected from aging-associated WAT fibrosis, inflammation, and insulin resistance, unless exposed to IgG. Conditional ablation of the IgG recycling receptor, neonatal Fc receptor (FcRn), in macrophages prevents IgG accumulation in aging, resulting in prolonged healthspan and lifespan. Further, targeting FcRn by antisense oligonucleotide restores WAT integrity and metabolic health in aged mice. These findings pinpoint IgG as a hidden culprit in aging and enlighten a novel strategy to rejuvenate metabolic health.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qianfen Wan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiongming Liu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yong Fan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Alicja A Skowronski
- Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Summer Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Lei Ding
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Healthy Longevity Translational Research Programme, Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Health Longevity, National University Health System, Singapore, Singapore
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Charles A LeDuc
- Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Liheng Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Medicine, Division of Endocrinology, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Li Qiang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Naomi Berrie Diabetes Center, Department of Medicine, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, Moon EK, Georgiou G, Valerius T, Albelda SM, Eruslanov EB. Human Tumor-Associated Macrophages and Neutrophils Regulate Antitumor Antibody Efficacy through Lethal and Sublethal Trogocytosis. Cancer Res 2024; 84:1029-1047. [PMID: 38270915 PMCID: PMC10982649 DOI: 10.1158/0008-5472.can-23-2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.
Collapse
Affiliation(s)
- Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhishek S. Rao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Stadanlick
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bruns
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres Bermudez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Honig-Frand
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Krouse
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sachinthani Arambepola
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Guo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund K. Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Thomas Valerius
- Department of Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B. Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Abstract
Human immune system mice, also referred to as humanized mice, are a major research tool for the in vivo study of human immune system function. Upon reconstitution with human hematopoietic stem cells, all major human leukocyte populations develop in immunodeficient mice and can be detected in peripheral blood as well as in lymphatic and nonlymphatic tissue. This includes human macrophages that are intrinsically difficult to study from humans due to their organ-resident nature. In the following chapter, we provide a detailed protocol for generation of human immune system mice. We suggest that these mice are a suitable model to study human macrophage function in vivo.
Collapse
Affiliation(s)
- Leonie Voss
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carmen Reitinger
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Kara S, Nimmerjahn F. Analyzing Fcγ-Receptor Interactions on Monocytes with the Proximity Ligation Assay (PLA). Methods Mol Biol 2024; 2713:377-388. [PMID: 37639137 DOI: 10.1007/978-1-0716-3437-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Proximity ligation assays (PLA) enable the detection and characterization of protein interactions independent of protein abundance or genetic modifications. This technique exploits both antibody and DNA-binding features, providing high selectivity and sensitivity for protein recognition and visualization of single-protein molecules with high spatial accuracy. Here, we describe the general procedure for a direct PLA on splenic monocytes to analyze FcγRIIb homodimerization. However, this method can be applied to other cells and receptors of interest.
Collapse
Affiliation(s)
- Sibel Kara
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
13
|
Kalailingam P, Mohd‐Kahliab K, Ngan SC, Iyappan R, Melekh E, Lu T, Zien GW, Sharma B, Guo T, MacNeil AJ, MacPherson REK, Tsiani EL, O'Leary DD, Lim KL, Su IH, Gao Y, Richards AM, Kalaria RN, Chen CP, McCarthy NE, Sze SK. Immunotherapy targeting isoDGR-protein damage extends lifespan in a mouse model of protein deamidation. EMBO Mol Med 2023; 15:e18526. [PMID: 37971164 PMCID: PMC10701600 DOI: 10.15252/emmm.202318526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Aging results from the accumulation of molecular damage that impairs normal biochemical processes. We previously reported that age-linked damage to amino acid sequence NGR (Asn-Gly-Arg) results in "gain-of-function" conformational switching to isoDGR (isoAsp-Gly-Arg). This integrin-binding motif activates leukocytes and promotes chronic inflammation, which are characteristic features of age-linked cardiovascular disorders. We now report that anti-isoDGR immunotherapy mitigates lifespan reduction of Pcmt1-/- mouse. We observed extensive accumulation of isoDGR and inflammatory cytokine expression in multiple tissues from Pcmt1-/- and naturally aged WT animals, which could also be induced via injection of isoDGR-modified plasma proteins or synthetic peptides into young WT animals. However, weekly injection of anti-isoDGR mAb (1 mg/kg) was sufficient to significantly reduce isoDGR-protein levels in body tissues, decreased pro-inflammatory cytokine concentrations in blood plasma, improved cognition/coordination metrics, and extended the average lifespan of Pcmt1-/- mice. Mechanistically, isoDGR-mAb mediated immune clearance of damaged isoDGR-proteins via antibody-dependent cellular phagocytosis (ADCP). These results indicate that immunotherapy targeting age-linked protein damage may represent an effective intervention strategy in a range of human degenerative disorders.
Collapse
Affiliation(s)
| | | | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evelin Melekh
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Tian Lu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Gan Wei Zien
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Bhargy Sharma
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Tiannan Guo
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Rebecca EK MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evangelia Litsa Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Kah Leong Lim
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - I Hsin Su
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yong‐Gui Gao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - A Mark Richards
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Department of CardiologyUniversity of OtagoChristchurchNew Zealand
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Christopher P Chen
- Memory, Aging and Cognition CentreNational University Health SystemSingaporeSingapore
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| |
Collapse
|
14
|
Du R, An C, Yao X, Wang Y, Wang G, Gao F, Bian L, Hu Y, Liu S, Zhao Q, Mao Q, Liang Z. Non-neutralizing monoclonal antibody targeting VP2 EF loop of Coxsackievirus A16 can protect mice from lethal attack via Fc-dependent effector mechanism. Emerg Microbes Infect 2023; 12:2149352. [PMID: 36395069 PMCID: PMC9788719 DOI: 10.1080/22221751.2022.2149352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Coxsackievirus A16 (CA16), a main causative agent of hand, foot, and mouth disease (HFMD), has become a serious public health concern in the Asia-Pacific region. Here, we generated an anti-CA16 monoclonal antibody, DMA2017, derived from an epidemic strain CA16. Surprisingly, although DMA2017 could not neutralize the original and circulating CA16 strains in vitro, the passive transfer of DMA2017 (10 μg/g) could protect suckling mice from a lethal challenge with CA16 in vivo. Then, we confirmed the protective effect of DMA2017 relies on the Fc-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC). The linear epitope of DMA2017 was mapped by phage display technique to a conserved patch spanning residues 143-148 (NSHPPY) of the VP2 EF-loop of CA16. DMA2017 could inhibit the binding of the antibodies present in the sera of naturally infected children to CA16, indicating that the epitope of DMA2017 is immunodominant for CA16. Our results confirm, for the first time, that a potential preventive and therapeutic effect could be mediated by a non-neutralizing antibody elicited against CA16. These findings bring a hitherto understudied protective role of non-neutralizing antibodies during viral infections into the spotlight and provide a new perspective on the design and evaluation of CA16 vaccines.
Collapse
Affiliation(s)
- Ruixiao Du
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Chaoqiang An
- Beijing minhai Biotechnology Co. Ltd, Beijing, People’s Republic of China
| | - Xin Yao
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yiping Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Ge Wang
- Autobio Diagnostics Co. Ltd, Zhengzhou, People’s Republic of China
| | - Fan Gao
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Lianlian Bian
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yalin Hu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Siyuan Liu
- Beijing minhai Biotechnology Co. Ltd, Beijing, People’s Republic of China
| | - Qiaohui Zhao
- Autobio Diagnostics Co. Ltd, Zhengzhou, People’s Republic of China
| | - Qunying Mao
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Zhenglun Liang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Cruz Amaya J, Walcheck B, Smith-Gagen J, Lombardi VC, Hudig D. Detection of Antibody-Dependent Cell-Mediated Cytotoxicity-Supporting Antibodies by NK-92-CD16A Cell Externalization of CD107a: Recognition of Antibody Afucosylation and Assay Optimization. Antibodies (Basel) 2023; 12:44. [PMID: 37489366 PMCID: PMC10366760 DOI: 10.3390/antib12030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) lymphocytes eliminates cells infected with viruses. Anti-viral ADCC requires three components: (1) antibody; (2) effector lymphocytes with the Fc-IgG receptor CD16A; and (3) viral proteins in infected cell membranes. Fc-afucosylated antibodies bind with greater affinity to CD16A than fucosylated antibodies; individuals' variation in afucosylation contributes to differences in ADCC. Current assays for afucosylated antibodies involve expensive methods. We report an improved bioassay for antibodies that supports ADCC, which encompasses afucosylation. This assay utilizes the externalization of CD107a by NK-92-CD16A cells after antibody recognition. We used anti-CD20 monoclonal antibodies, GA101 WT or glycoengineered (GE), 10% or ~50% afucosylated, and CD20-positive Raji target cells. CD107a increased detection 7-fold compared to flow cytometry to detect Raji-bound antibodies. WT and GE antibody effective concentrations (EC50s) for CD107a externalization differed by 20-fold, with afucosylated GA101-GE more detectable. The EC50s for CD107a externalization vs. 51Cr cell death were similar for NK-92-CD16A and blood NK cells. Notably, the % CD107a-positive cells were negatively correlated with dead Raji cells and were nearly undetectable at high NK:Raji ratios required for cytotoxicity. This bioassay is very sensitive and adaptable to assess anti-viral antibodies but unsuitable as a surrogate assay to monitor cell death after ADCC.
Collapse
Affiliation(s)
- Judith Cruz Amaya
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Bruce Walcheck
- Department of Veterinary and Biological Sciences, Center for Immunology and Masonic Cancer Center, University of Minnesota, 295J AS/VM Building, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Dorothy Hudig
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
16
|
Typiak M, Trzonkowski P, Skotarczak M, Dubaniewicz A. Comparative Analysis of Fcγ and Complement Receptors Presence on Monocytes in Pulmonary Sarcoidosis and Tuberculosis. Int J Mol Sci 2023; 24:ijms24119713. [PMID: 37298666 DOI: 10.3390/ijms24119713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcoidosis (SA) is a granulomatous disorder, which mostly affects the lungs. Its clinical characteristics resemble tuberculosis (TB), but its treatment is different. The etiology of SA is unknown; however, mycobacterial antigens were proposed as environmental factors in its development. Due to previously revealed immunocomplexemia with mycobacterial antigens in the blood of our SA but not TB patients, and in the search for biomarkers for differential diagnosis of the two disorders, we studied the phagocytic activity of monocytes from both patients' groups with flow cytometry. With the use of this method, we also analyzed the occurrence of receptors for IgG (FcγR) and complement components (CR) at the surface of these monocytes, responsible for phagocytosis of immunocomplexes. We revealed a higher phagocytic activity of monocytes in both disorders, but an increased frequency of monocytes with FcγRIII (CD16) and decreased with CR1 (CD35) receptor in the blood of SA vs. TB patients. With regard to our other genetic study on FcγRIII variants in SA and TB, this may account for the decreased clearance of immunocomplexes and different immune responses in the two diseases. Thus, the presented analysis not only sheds light on the pathomechanisms of SA and TB but may also support their differential diagnosis.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St., 80-308 Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Debinki 7 St., 80-211 Gdansk, Poland
| | - Monika Skotarczak
- 1st Department of Radiology, Medical University of Gdansk, Mariana Smoluchowskiego 17 St., 80-214 Gdansk, Poland
| | - Anna Dubaniewicz
- Department of Pulmonology, Medical University of Gdansk, Mariana Smoluchowskiego 17 St., 80-214 Gdansk, Poland
| |
Collapse
|
17
|
Noorani I, Sidlauskas K, Pellow S, Savage R, Norman JL, Chatelet DS, Fabian M, Grundy P, Ching J, Nicoll JAR, Boche D. Clinical impact of anti-inflammatory microglia and macrophage phenotypes at glioblastoma margins. Brain Commun 2023; 5:fcad176. [PMID: 37324244 PMCID: PMC10265726 DOI: 10.1093/braincomms/fcad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma is a devastating brain cancer for which effective treatments are required. Tumour-associated microglia and macrophages promote glioblastoma growth in an immune-suppressed microenvironment. Most recurrences occur at the invasive margin of the surrounding brain, yet the relationships between microglia/macrophage phenotypes, T cells and programmed death-ligand 1 (an immune checkpoint) across human glioblastoma regions are understudied. In this study, we performed a quantitative immunohistochemical analysis of 15 markers of microglia/macrophage phenotypes (including anti-inflammatory markers triggering receptor expressed on myeloid cells 2 and CD163, and the low-affinity-activating receptor CD32a), T cells, natural killer cells and programmed death-ligand 1, in 59 human IDH1-wild-type glioblastoma multi-regional samples (n = 177; 1 sample at tumour core, 2 samples at the margins: the infiltrating zone and leading edge). Assessment was made for the prognostic value of markers; the results were validated in an independent cohort. Microglia/macrophage motility and activation (Iba1, CD68), programmed death-ligand 1 and CD4+ T cells were reduced, and homeostatic microglia (P2RY12) were increased in the invasive margins compared with the tumour core. There were significant positive correlations between microglia/macrophage markers CD68 (phagocytic)/triggering receptor expressed on myeloid cells 2 (anti-inflammatory) and CD8+ T cells in the invasive margins but not in the tumour core (P < 0.01). Programmed death-ligand 1 expression was associated with microglia/macrophage markers (including anti-inflammatory) CD68, CD163, CD32a and triggering receptor expressed on myeloid cells 2, only in the leading edge of glioblastomas (P < 0.01). Similarly, there was a positive correlation between programmed death-ligand 1 expression and CD8+ T-cell infiltration in the leading edge (P < 0.001). There was no relationship between CD64 (a receptor for autoreactive T-cell responses) and CD8+/CD4+ T cells, or between the microglia/macrophage antigen presentation marker HLA-DR and microglial motility (Iba1) in the tumour margins. Natural killer cell infiltration (CD335+) correlated with CD8+ T cells and with CD68/CD163/triggering receptor expressed on myeloid cells 2 anti-inflammatory microglia/macrophages at the leading edge. In an independent large glioblastoma cohort with transcriptomic data, positive correlations between anti-inflammatory microglia/macrophage markers (triggering receptor expressed on myeloid cells 2, CD163 and CD32a) and CD4+/CD8+/programmed death-ligand 1 RNA expression were validated (P < 0.001). Finally, multivariate analysis showed that high triggering receptor expressed on myeloid cells 2, programmed death-ligand 1 and CD32a expression at the leading edge were significantly associated with poorer overall patient survival (hazard ratio = 2.05, 3.42 and 2.11, respectively), independent of clinical variables. In conclusion, anti-inflammatory microglia/macrophages, CD8+ T cells and programmed death-ligand 1 are correlated in the invasive margins of glioblastoma, consistent with immune-suppressive interactions. High triggering receptor expressed on myeloid cells 2, programmed death-ligand 1 and CD32a expression at the human glioblastoma leading edge are predictors of poorer overall survival. Given substantial interest in targeting microglia/macrophages, together with immune checkpoint inhibitors in cancer, these data have major clinical implications.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Neuromuscular Diseases, The Francis Crick Institute and University College London, London NW1 1AT, UK
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London SO16 6AQ, UK
| | - Kastytis Sidlauskas
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sean Pellow
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Reece Savage
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeannette L Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David S Chatelet
- Biomedical Imaging Unit, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Mark Fabian
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paul Grundy
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jeng Ching
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
18
|
Typiak M, Rękawiecki B, Rębała K, Dubaniewicz A. Comparative Analysis of FCGR Gene Polymorphism in Pulmonary Sarcoidosis and Tuberculosis. Cells 2023; 12:cells12091221. [PMID: 37174624 PMCID: PMC10177102 DOI: 10.3390/cells12091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The clinical outcome of sarcoidosis (SA) is very similar to tuberculosis (TB); however, they are treated differently and should not be confused. In search for their biomarkers, we have previously revealed changes in the phagocytic activity of monocytes in sarcoidosis and tuberculosis. On these monocytes we found a higher expression of receptors for the Fc fragment of immunoglobulin G (FcγR) in SA and TB patients vs. healthy controls. FcγRs are responsible for the binding of immune complexes (ICs) to initiate an (auto)immune response and for ICs clearance. Surprisingly, our SA patients had a high blood level of ICs, despite the abundant presence of FcγRs. It pointed to FcγR disfunction, presumably caused by the polymorphism of their (FCGR) genes. Therefore, we present here an analysis of the occurrence of FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B variants in Caucasian SA and TB patients, and healthy individuals with the use of polymerase chain reaction (PCR) and real-time PCR. The presented data point to a possibility of supporting the differential diagnosis of SA and TB by analyzing FCGR2C, FCGR3A and FCGR3B polymorphism, while for severe stages of SA also by studying FCGR2A variants. Additionally, the genotyping of FCGR2A and FCGR3B might serve as a marker of SA progression.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Anna Dubaniewicz
- Department of Pulmonology, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|
19
|
Hamdan F, Cerullo V. Cancer immunotherapies: A hope for the uncurable? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140977. [PMID: 39086690 PMCID: PMC11285639 DOI: 10.3389/fmmed.2023.1140977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 08/02/2024]
Abstract
The use of cancer immunotherapies is not novel but has been used over the decades in the clinic. Only recently have we found the true potential of stimulating an anti-tumor response after the breakthrough of checkpoint inhibitors. Cancer immunotherapies have become the first line treatment for many malignancies at various stages. Nevertheless, the clinical results in terms of overall survival and progression free survival were not as anticipated. Majority of cancer patients do not respond to immunotherapies and the reasons differ. Hence, further improvements for cancer immunotherapies are crucially needed. In the review, we will discuss various forms of cancer immunotherapies that are being tested or already in the clinic. Moreover, we also highlight future directions to improve such therapies.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
20
|
Advances in antibody-based therapy in oncology. NATURE CANCER 2023; 4:165-180. [PMID: 36806801 DOI: 10.1038/s43018-023-00516-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/10/2023] [Indexed: 02/22/2023]
Abstract
Monoclonal antibodies are a growing class of targeted cancer therapeutics, characterized by exquisite specificity, long serum half-life, high affinity and immune effector functions. In this review, we outline key advances in the field with a particular focus on recent and emerging classes of engineered antibody therapeutic candidates, discuss molecular structure and mechanisms of action and provide updates on clinical development and practice.
Collapse
|
21
|
Li Y, Liu J, Chen W, Wang W, Yang F, Liu X, Sheng Y, Du K, He M, Lyu X, Li H, Zhao L, Wei Z, Wang F, Zheng S, Sui J. A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol 2023; 16:2. [PMID: 36650558 PMCID: PMC9844003 DOI: 10.1186/s13045-023-01399-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The antiphagocytic molecule CD47 is overexpressed in a wide variety of cancer cells, and antibodies targeting CD47 for cancer therapies are currently under intensive investigation. However, owing to the ubiquitous expression of CD47 on healthy cells, anti-CD47 therapies often achieve only weak therapeutic benefits and can induce severe side effects. Here, we report the generation of a pH-dependent anti-CD47 antibody (BC31M4) which selectively binds to tumors under the acidic solid tumor microenvironment. METHODS BC31M4 was generated using antibody phage display and a pH-dependent selection strategy. The pH-dependent binding and blocking activities of BC31M4 were verified using in vitro assays, and the structural basis of the pH-dependent binding property was characterized. BC31M4's antitumor effect was confirmed by both phagocytosis assays and studies in xenograft models. The tumor selectivity, mechanism of action, PK properties, side effects, and therapeutic efficacy were further evaluated in humanized (hCD47 and its receptor hSIRPα) immunocompetent syngeneic mouse models. RESULTS The crystal structure reveals that two histidines locate within the CDRs of the light chain directly contribute to the pH-dependent binding of BC31M4. BC31M4 promotes macrophage phagocytosis of tumor cells more potently at acidic-pH than at physiological-pH. Our hCD47/hSIRPα humanized syngeneic mouse model results demonstrated that BC31M4 selectively accumulates in tumors but not in normal tissues. BC31M4 causes minimal side effects and exhibits superior PK properties as compared to the other examined anti-CD47 antibodies. When combined with adoptive T cell transfer, BC31M4 efficiently promotes adaptive immune responses against tumors and also induces immune memory. Moreover, we show that BC31M4's antitumor effects rely on an Fc that mediates strong effector functions. CONCLUSIONS Our study illustrates that the development of a tumor-selective, pH-dependent anti-CD47 antibody safely confers strong therapeutic effects against solid tumors, thus providing a promising therapeutic strategy to overcome the challenges of anti-CD47 therapy.
Collapse
Affiliation(s)
- Yulu Li
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences (NIBS), Beijing, China
| | - Juan Liu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Wei Chen
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Wei Wang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Ximing Liu
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences (NIBS), Beijing, China
| | - Yao Sheng
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Kaixin Du
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Miaomiao He
- National Institute of Biological Sciences (NIBS), Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyuan Lyu
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huiyu Li
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Linlin Zhao
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhizhong Wei
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Sanduo Zheng
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences (NIBS), Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
An anti-CD98 antibody displaying pH-dependent Fc-mediated tumour-specific activity against multiple cancers in CD98-humanized mice. Nat Biomed Eng 2023; 7:8-23. [PMID: 36424464 DOI: 10.1038/s41551-022-00956-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
The cell-surface glycoprotein CD98-a subunit of the LAT1/CD98 amino acid transporter-is an attractive target for cancer immunotherapies, but its widespread expression has hampered the development of CD98-targeting antibody therapeutics. Here we report that an anti-CD98 antibody, identified via the screening of phage-display libraries of CD98 single-chain variable fragments with mutated complementarity-determining regions, preserves the physiological function of CD98 and elicits broad-spectrum crystallizable-fragment (Fc)-mediated anti-tumour activity (requiring Fcγ receptors for immunoglobulins, macrophages, dendritic cells and CD8+ T cells, as well as other components of the innate and adaptive immune systems) in multiple xenograft and syngeneic tumour models established in CD98-humanized mice. We also show that a variant of the anti-CD98 antibody with pH-dependent binding, generated by solving the structure of the antibody-CD98 complex, displayed enhanced tumour-specific activity and pharmacokinetics. pH-dependent antibody variants targeting widely expressed antigens may lead to superior therapeutic outcomes.
Collapse
|
23
|
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int J Mol Sci 2022; 23:12869. [PMID: 36361658 PMCID: PMC9655775 DOI: 10.3390/ijms232112869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024] Open
Abstract
Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Würzburg, Auvera Haus, Grombühlstrasse 12, 97080 Würzburg, Germany
| |
Collapse
|
24
|
Webb ER, Moreno-Vincente J, Easton A, Lanati S, Taylor M, James S, Williams EL, English V, Penfold C, Beers SA, Gray JC. Cyclophosphamide depletes tumor infiltrating T regulatory cells and combined with anti-PD-1 therapy improves survival in murine neuroblastoma. iScience 2022; 25:104995. [PMID: 36097618 PMCID: PMC9463572 DOI: 10.1016/j.isci.2022.104995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/20/2022] [Accepted: 08/18/2022] [Indexed: 10/27/2022] Open
Abstract
The outcome for children with high-risk neuroblastoma is poor despite intensive multi-modal treatment protocols. Toxicity from current treatments is significant, and novel approaches are needed to improve outcome. Cyclophosphamide (CPM) is a key component of current chemotherapy regimens and is known to have immunomodulatory effects. However, this has not been investigated in the context of tumor infiltrating lymphocytes in neuroblastoma. Using murine models of neuroblastoma, the immunomodulatory effects of low-dose CPM were investigated using detailed immunophenotyping. We demonstrated that CPM resulted in a specific depletion of intratumoral T regulatory cells by apoptosis, and when combined with anti-PD-1 antibody therapy, this resulted in improved therapeutic efficacy. CPM combined with anti-PD-1 therapy was demonstrated to be an effective combinational therapy, with metronomic CPM found to be more effective than single dosing in more resistant tumor models. Overall, this pre-clinical data strongly support clinical evaluation of such combination strategies in neuroblastoma.
Collapse
Affiliation(s)
- Emily R. Webb
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Julia Moreno-Vincente
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Alistair Easton
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
- Cellular Pathology, University Hospitals Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Silvia Lanati
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Martin Taylor
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Emily L. Williams
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Vikki English
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Chris Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Juliet C. Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| |
Collapse
|
25
|
Van Coillie J, Schulz MA, Bentlage AEH, de Haan N, Ye Z, Geerdes DM, van Esch WJE, Hafkenscheid L, Miller RL, Narimatsu Y, Vakhrushev SY, Yang Z, Vidarsson G, Clausen H. Role of N-Glycosylation in FcγRIIIa interaction with IgG. Front Immunol 2022; 13:987151. [PMID: 36189205 PMCID: PMC9524020 DOI: 10.3389/fimmu.2022.987151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulins G (IgG) and their Fc gamma receptors (FcγRs) play important roles in our immune system. The conserved N-glycan in the Fc region of IgG1 impacts interaction of IgG with FcγRs and the resulting effector functions, which has led to the design of antibody therapeutics with greatly improved antibody-dependent cell cytotoxicity (ADCC) activities. Studies have suggested that also N-glycosylation of the FcγRIII affects receptor interactions with IgG, but detailed studies of the interaction of IgG1 and FcγRIIIa with distinct N-glycans have been hindered by the natural heterogeneity in N-glycosylation. In this study, we employed comprehensive genetic engineering of the N-glycosylation capacities in mammalian cell lines to express IgG1 and FcγRIIIa with different N-glycan structures to more generally explore the role of N-glycosylation in IgG1:FcγRIIIa binding interactions. We included FcγRIIIa variants of both the 158F and 158V allotypes and investigated the key N-glycan features that affected binding affinity. Our study confirms that afucosylated IgG1 has the highest binding affinity to oligomannose FcγRIIIa, a glycan structure commonly found on Asn162 on FcγRIIIa expressed by NK cells but not monocytes or recombinantly expressed FcγRIIIa.
Collapse
Affiliation(s)
- Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Morten A. Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arthur E. H. Bentlage
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lise Hafkenscheid
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Typiak M, Audzeyenka I, Dubaniewicz A. Presence and possible impact of Fcγ receptors on resident kidney cells in health and disease. Immunol Cell Biol 2022; 100:591-604. [DOI: 10.1111/imcb.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of General and Medical Biochemistry, Faculty of Biology University of Gdansk Gdansk Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of Molecular Biotechnology, Faculty of Chemistry University of Gdansk Gdansk Poland
| | - Anna Dubaniewicz
- Department of Pulmonology Medical University of Gdansk Gdansk Poland
| |
Collapse
|
27
|
Wang W, Thiemann S, Chen Q. Utility of SPR technology in biotherapeutic development: Qualification for intended use. Anal Biochem 2022; 654:114804. [PMID: 35839915 DOI: 10.1016/j.ab.2022.114804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/16/2022]
Abstract
Surface plasmon resonance (SPR) analysis provides important binding characteristic information for an antibody to its binding partner, such as binding specificity and affinity (KD). In recent years, SPR has been increasingly used in biosimilar development as part of the comparative analytical similarity assessment. Although there is no systematic study describing how to qualify SPR assays, there are various SPR result types (outputs) that have been used for assay qualification in publicly available regulatory documents. The mixed usage of SPR output can cause confusion and can be misleading when comparing binding attributes among antibody molecules. In this report, using a recombinant huIgG1 (mAb 1) antibody as an example, we performed assay qualification strictly based on the nature of the biomolecular interaction. We recommend that KD should be used as the output of assay qualification when the KD can be measured accurately by SPR. When KD cannot be accurately determined in a SPR setting, sensorgram comparison and Parallel Line Analysis (PLA) can be used to qualify the assay. We emphasize the importance of setting up appropriate SPR assay conditions for target and/or Fc receptor interactions to ensure the assay qualification parameters, such as accuracy and repeatability, to meet the criteria acceptable for regulatory filings. With increasing numbers of biotherapeutics being developed, the methods and guidelines provided here can help to align SPR application between the drug development industry and regulatory authorities which will benefit the scientific communities involved in biotherapeutic drug development.
Collapse
Affiliation(s)
- Wei Wang
- Department of Therapeutic Discovery, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Sandra Thiemann
- Biosimilar Business Unit, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Qing Chen
- Department of Therapeutic Discovery, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
28
|
Shimizu T, Kawaguchi Y, Ando H, Ishima Y, Ishida T. Development of an Antigen Delivery System for a B Cell-Targeted Vaccine as an Alternative to Dendritic Cell-Targeted Vaccines. Chem Pharm Bull (Tokyo) 2022; 70:341-350. [DOI: 10.1248/cpb.c22-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
29
|
Tipoe T, Fidler S, Frater J. An exploration of how broadly neutralizing antibodies might induce HIV remission: the 'vaccinal' effect. Curr Opin HIV AIDS 2022; 17:162-170. [PMID: 35439790 DOI: 10.1097/coh.0000000000000731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bNAbs) are a potential new therapeutic strategy to treat HIV infection. This review explores possible mechanisms of action of bNAbs and summarizes the current evidence supporting their immunomodulatory properties, which might lead to sustained virological remission - the 'vaccinal effect'. RECENT FINDINGS Antiretroviral therapy (ART) is required to confer lasting HIV suppression; stopping ART almost invariably leads to HIV recrudescence from a persistent pool of virally infected cells - the HIV reservoir. HIV-specific broadly neutralizing antibodies (bNAbs) may confer viral control after ART cessation predominantly through blockade of viral entry into uninfected target cells. In some human and animal studies, HIV bNAbs also conferred lasting viral suppression after therapeutic bNAb plasma levels had declined. Immune-modulatory mechanisms have been postulated to underlie this observation - the 'vaccinal effect'. Hypothesized mechanisms include the formation of immune complexes between bNAbs and HIV envelope protein, thereby enhancing antigen presentation and uptake by immune cells, with boosted adaptive immune responses subsequently controlling the HIV reservoir. SUMMARY There is emerging evidence for potent antiviral efficacy of bNAb therapy. Whether bNAbs can induce sustained viral suppression after dropping below therapeutic levels remains controversial. Mechanistic data from on-going and future clinical trials will help answer these questions.
Collapse
Affiliation(s)
- Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Department of GU and HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London
- NIHR Imperial College Biomedical Research, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- NIHR Oxford Biomedical Research Centre, Oxford
| |
Collapse
|
30
|
Wang W, Chen Q. Antigen improves binding of IgGs to FcγRs in SPR analysis. Anal Biochem 2022; 640:114411. [PMID: 34648807 DOI: 10.1016/j.ab.2021.114411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
FcγR binding characterization is one of the critical attributes during the development of therapeutic antibodies. Here, we report a novel assay format to characterize IgG-FcγR interaction in the presence of antigen using Surface plasmon resonance (SPR). The new assay format was developed by creating stable antigen/antibody immunocomplexes on a sensor chip surface before injection of FcγRs. In this assay format, binding activity of both huIgG1 (including IgG1 Fc fusion Protein) and huIgG2 increased significantly to most activating human FcγRs, especially to FcγRI, FcγRIIa-131H and FcγRIIIa-158F. To our knowledge, this study provides the first set of evidence using a biophysical method to demonstrate antigen binding facilitating IgG-FcγR interaction, especially for huIgG2 where previous studies did not indicate its binding to human FcγRI or FcγRIIIa-158F. Although further studies are needed to investigate the correlation of the binding data with effector function data in vivo, our results suggest that it may be useful to evaluate the IgG-FcγR interaction in the presence of antigen to help design safer and more effective biotherapeutics.
Collapse
Affiliation(s)
- Wei Wang
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | - Qing Chen
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
31
|
Sahin M, Remy MM, Fallet B, Sommerstein R, Florova M, Langner A, Klausz K, Straub T, Kreutzfeldt M, Wagner I, Schmidt CT, Malinge P, Magistrelli G, Izui S, Pircher H, Verbeek JS, Merkler D, Peipp M, Pinschewer DD. Antibody bivalency improves antiviral efficacy by inhibiting virion release independently of Fc gamma receptors. Cell Rep 2022; 38:110303. [PMID: 35108544 PMCID: PMC8822495 DOI: 10.1016/j.celrep.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Melissa M Remy
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Benedict Fallet
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Marianna Florova
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Anna Langner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Cinzia T Schmidt
- BioEM Lab, Center for Cellular Imaging & Nano Analytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience, Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
32
|
Epidermal Growth Factor Receptor as Target for Perioperative Elimination of Circulating Colorectal Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:3577928. [PMID: 35035479 PMCID: PMC8759909 DOI: 10.1155/2022/3577928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats. This study investigated whether the epidermal growth factor receptor (EGFR) represents a suitable target for preoperative antibody treatment of colorectal cancer patients undergoing surgery. The majority of patients with resectable colorectal liver metastases were shown to have EGFR + CTCs. Three different anti-EGFR mAbs (cetuximab, zalutumumab, and panitumumab) were equally efficient in the opsonization of tumor cell lines. Additionally, all three mAbs induced antibody-dependent cellular phagocytosis (ADCP) of tumor cells by macrophages at low antibody concentrations in vitro, independent of mutations in EGFR signaling pathways. The plasma of cetuximab-treated patients efficiently opsonized tumor cells ex vivo and induced phagocytosis. Furthermore, neither proliferation nor migration of epithelial cells was affected in vitro, supporting that wound healing will not be hampered by treatment with low anti-EGFR mAb concentrations. These data support the use of a low dose of anti-EGFR mAbs prior to resection of the tumor to eliminate CTCs without interfering with the healing of the anastomosis. Ultimately, this may reduce the risk of metastasis development, consequently improving long-term patient outcome significantly.
Collapse
|
33
|
Woodall DW, Dillon TM, Kalenian K, Padaki R, Kuhns S, Semin DJ, Bondarenko PV. Non-targeted characterization of attributes affecting antibody-FcγRIIIa V158 (CD16a) binding via online affinity chromatography-mass spectrometry. MAbs 2022; 14:2004982. [PMID: 34978527 PMCID: PMC8741291 DOI: 10.1080/19420862.2021.2004982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibodies facilitate targeted cell killing by engaging with immune cells such as natural killer cells through weak binding interactions with Fcγ receptors on the cell surface. Here, we evaluate the binding affinity of the receptor FcγRIIIa V158 (CD16a) for several therapeutic antibody classes, isoforms, and Fc-fusion proteins using an immobilized receptor affinity liquid chromatography (LC) approach coupled with online mass spectrometry (MS) detection. Aglycosylated FcγRIIIa was used in the affinity chromatography and compared with published affinities using glycosylated receptors. Affinity LC-MS differentiated the IgG1 antibodies primarily according to their Fc glycosylation patterns, with highly galactosylated species having greater affinity for the immobilized receptors and thus eluting later from the column (M5< G0F < G0 afucosylated ≅ G1F < G2F). Sialylated species bound weaker to their asialylated counterparts as reported previously. High mannose glycoforms bound weaker than G0F, contrary to previously published studies using glycosylated receptors. Also, increased receptor binding affinity associated with afucosylated antibodies was not observed with the aglycosylated FcγRIIIa. This apparent difference from previous findings highlighted the importance of the glycans on the receptors for mediating stronger binding interactions. Characterization of temperature-stressed samples by LC-MS peptide mapping revealed over 200 chemical and post-translational modifications, but only the Fc glycans, deamidation of EU N325, and an unknown modification to either proline or cysteine residues of the hinge region were found to have a statistically significant impact on binding. Abbreviations: Antibody-dependent cell-mediated cytotoxicity (ADCC), chimeric antigen receptor (CAR), Chinese hamster ovary (CHO), dithiothreitol (DTT), electrospray ionization (ESI), hydrogen-deuterium exchange (HDX), filter aided-sample preparation (FASP), Fcγ receptor (FcγR), fragment crystallizable (Fc), high-pressure liquid chromatography (HPLC), immunoglobulin G (IgG), liquid chromatography (LC), monoclonal antibody (mAb), mass spectrometry (MS), natural killer (NK), N-glycolylneuraminic acid (NGNA), N-acetylneuraminic acid (NANA), principal component analysis (PCA), surface plasmon resonance (SPR), trifluoroacetic acid (TFA), and extracted mass chromatogram (XMC).
Collapse
Affiliation(s)
- Daniel W Woodall
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Kevin Kalenian
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Rupa Padaki
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Scott Kuhns
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| |
Collapse
|
34
|
Farkash I, Feferman T, Cohen-Saban N, Avraham Y, Morgenstern D, Mayuni G, Barth N, Lustig Y, Miller L, Shouval DS, Biber A, Kirgner I, Levin Y, Dahan R. Anti-SARS-CoV-2 antibodies elicited by COVID-19 mRNA vaccine exhibit a unique glycosylation pattern. Cell Rep 2021; 37:110114. [PMID: 34883043 PMCID: PMC8610888 DOI: 10.1016/j.celrep.2021.110114] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
Messenger RNA-based vaccines against COVID-19 induce a robust anti-SARS-CoV-2 antibody response with potent viral neutralization activity. Antibody effector functions are determined by their constant region subclasses and by their glycosylation patterns, but their role in vaccine efficacy is unclear. Moreover, whether vaccination induces antibodies similar to those in patients with COVID-19 remains unknown. We analyze BNT162b2 vaccine-induced IgG subclass distribution and Fc glycosylation patterns and their potential to drive effector function via Fcγ receptors and complement pathways. We identify unique and dynamic pro-inflammatory Fc compositions that are distinct from those in patients with COVID-19 and convalescents. Vaccine-induced anti-Spike IgG is characterized by distinct Fab- and Fc-mediated functions between different age groups and in comparison to antibodies generated during natural viral infection. These data highlight the heterogeneity of Fc responses to SARS-CoV-2 infection and vaccination and suggest that they support long-lasting protection differently.
Collapse
Affiliation(s)
- Inbal Farkash
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Medicine "T", Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tali Feferman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noy Cohen-Saban
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yahel Avraham
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Morgenstern
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Grace Mayuni
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Natasha Barth
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer 5262000, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liron Miller
- Blood Services, Sheba Medical Center, Tel Hashomer 5262101, Israel
| | - Dror S Shouval
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tiqwa 4920235, Israel
| | - Asaf Biber
- The Center for Geographic Medicine and Tropical Diseases, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262101, Israel
| | - Ilya Kirgner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
35
|
Duan S, Wang S, Huang T, Wang J, Yuan X. circRNAs: Insight Into Their Role in Tumor-Associated Macrophages. Front Oncol 2021; 11:780744. [PMID: 34926295 PMCID: PMC8671731 DOI: 10.3389/fonc.2021.780744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Currently, it is well known that the tumor microenvironment not only provides energy support for tumor growth but also regulates tumor signaling pathways and promotes the proliferation, invasion, metastasis, and drug resistance of tumor cells. The tumor microenvironment, especially the function and mechanism of tumor-associated macrophages (TAMs), has attracted great attention. TAMs are the most common immune cells in the tumor microenvironment and play a vital role in the occurrence and development of tumors. circular RNA (circRNA) is a unique, widespread, and stable form of non-coding RNA (ncRNA), but little is known about the role of circRNAs in TAMs or how TAMs affect circRNAs. In this review, we summarize the specific manifestations of circRNAs that affect the tumor-associated macrophages and play a significant role in tumor progression. This review helps improve our understanding of the association between circRNAs and TAMs, thereby promoting the development and progress of potential clinical targeted therapies.
Collapse
Affiliation(s)
- Saili Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Junpu Wang, ; Xiaoqing Yuan,
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Junpu Wang, ; Xiaoqing Yuan,
| |
Collapse
|
36
|
Zaytseva OO, Sharapov SZ, Perola M, Esko T, Landini A, Hayward C, Wilson JF, Lauc G, Aulchenko YS, Klarić L, Tsepilov YA. Investigation of the causal relationships between human IgG N-glycosylation and twelve common diseases associated with changes in the IgG N-glycome. Hum Mol Genet 2021; 31:1545-1559. [PMID: 34791244 DOI: 10.1093/hmg/ddab335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022] Open
Abstract
Changes in the N-glycosylation of immunoglobulin G (IgG) are often observed in pathological states, such as autoimmune, inflammatory, neurodegenerative, cardiovascular diseases and some types of cancer. However, in most cases it is not clear if the disease onset causes these changes, or if the changes in IgG N-glycosylation are among the risk factors for the diseases. The aim of this study was to investigate the casual relationships between IgG N-glycosylation traits and 12 diseases, in which the alterations of IgG N-glycome were previously reported, using Two Sample Mendelian Randomization (MR) approach. We have performed Two Sample MR using publicly available summary statistics of genome-wide association studies of IgG N-glycosylation and disease risks. Our results indicate positive causal effect of systemic lupus erythematosus (SLE) on the abundance of N-glycans with bisecting N-acetylglucosamine in the total IgG N-glycome. Therefore, we suggest regarding this IgG glycosylation trait as a biomarker of SLE. We also emphasize the need for more powerful GWAS studies of IgG N-glycosylation to further elucidate the causal effect of IgG N-glycome on the diseases.
Collapse
Affiliation(s)
- Olga O Zaytseva
- Genos Glycoscience Research Laboratory, Zagreb, 10000, Croatia
| | - Sodbo Zh Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Marcus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare (THL), Helsinki, FI-00271, Finland
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, 10000, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| | - Yurii S Aulchenko
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Lucija Klarić
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, 630090, Russia.,Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| |
Collapse
|
37
|
Wines BD, Trist HM, Esparon S, Impey RE, Mackay GA, Andrews RK, Soares da Costa TP, Pietersz GA, Baker RI, Hogarth PM. Fc Binding by FcγRIIa Is Essential for Cellular Activation by the Anti-FcγRIIa mAbs 8.26 and 8.2. Front Immunol 2021; 12:666813. [PMID: 34759915 PMCID: PMC8573391 DOI: 10.3389/fimmu.2021.666813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
FcγR activity underpins the role of antibodies in both protective immunity and auto-immunity and importantly, the therapeutic activity of many monoclonal antibody therapies. Some monoclonal anti-FcγR antibodies activate their receptors, but the properties required for cell activation are not well defined. Here we examined activation of the most widely expressed human FcγR; FcγRIIa, by two non-blocking, mAbs, 8.26 and 8.2. Crosslinking of FcγRIIa by the mAb F(ab’)2 regions alone was insufficient for activation, indicating activation also required receptor engagement by the Fc region. Similarly, when mutant receptors were inactivated in the Fc binding site, so that intact mAb was only able to engage receptors via its two Fab regions, again activation did not occur. Mutation of FcγRIIa in the epitope recognized by the agonist mAbs, completely abrogated the activity of mAb 8.26, but mAb 8.2 activity was only partially inhibited indicating differences in receptor recognition by these mAbs. FcγRIIa inactivated in the Fc binding site was next co-expressed with the FcγRIIa mutated in the epitope recognized by the Fab so that each mAb 8.26 molecule can contribute only three interactions, each with separate receptors, one via the Fc and two via the Fab regions. When the Fab and Fc binding were thus segregated onto different receptor molecules receptor activation by intact mAb did not occur. Thus, receptor activation requires mAb 8.26 Fab and Fc interaction simultaneously with the same receptor molecules. Establishing the molecular nature of FcγR engagement required for cell activation may inform the optimal design of therapeutic mAbs.
Collapse
Affiliation(s)
- Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Halina M Trist
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Sandra Esparon
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Rachael E Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Graham A Mackay
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Robert K Andrews
- Department Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Geoffrey A Pietersz
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ross I Baker
- Perth Blood Institute, Murdoch University, Perth, WA, Australia.,Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, WA, Australia
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
38
|
There Is Strength in Numbers: Quantitation of Fc Gamma Receptors on Murine Tissue-Resident Macrophages. Int J Mol Sci 2021; 22:ijms222212172. [PMID: 34830050 PMCID: PMC8620503 DOI: 10.3390/ijms222212172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Many of the effector functions of antibodies rely on the binding of antibodies/immune complexes to cellular Fcγ receptors (FcγRs). Since the majority of innate immune effector cells express both activating and inhibitory Fc receptors, the outcome of the binding of immune complexes to cells of a given population is influenced by the relative affinities of the respective IgG subclasses to these receptors, as well as by the numbers of activating and inhibitory FcγRs on the cell surface. A group of immune cells that has come into focus more recently is the various subsets of tissue-resident macrophages. The central functions of FcγRs on tissue macrophages include the clearance of opsonized pathogens, the removal of small immune complexes from the circulation and the depletion of antibody-opsonized cells in the therapy of autoimmunity and cancer. Despite these essential functions of FcγRs on tissue-resident macrophages, an in-depth quantification of FcγRs is lacking. Thus, the aim of our current study was to quantify the various Fcγ receptors on macrophages in murine liver, lung, kidney, brain, skin and spleen. Our study identified a pronounced heterogeneity between FcγR expression patterns of the different tissue macrophages, which may reflect their specialized functions within their unique niches in different organ environments.
Collapse
|
39
|
De Picker LJ, Victoriano GM, Richards R, Gorvett AJ, Lyons S, Buckland GR, Tofani T, Norman JL, Chatelet DS, Nicoll JAR, Boche D. Immune environment of the brain in schizophrenia and during the psychotic episode: A human post-mortem study. Brain Behav Immun 2021; 97:319-327. [PMID: 34339805 PMCID: PMC8475749 DOI: 10.1016/j.bbi.2021.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 02/05/2023] Open
Abstract
A causal relationship between immune dysregulation and schizophrenia has been supported by genome-wide association studies and epidemiological evidence. It remains unclear to what extent the brain immune environment is implicated in this hypothesis. We investigated the immunophenotype of microglia and the presence of perivascular macrophages and T lymphocytes in post-mortem brain tissue. Dorsal prefrontal cortex of 40 controls (22F:18M) and 37 (10F:27M) schizophrenia cases, of whom 16 had active psychotic symptoms at the time of death, was immunostained for seven markers of microglia (CD16, CD32a, CD64, CD68, HLA-DR, Iba1 and P2RY12), two markers for perivascular macrophages (CD163 and CD206) and T-lymphocytes (CD3). Automated quantification was blinded to the case designation and performed separately on the grey and white matter. 3D reconstruction of Iba1-positive microglia was performed in selected cases. An increased cortical expression of microglial Fcγ receptors (CD64 F = 7.92, p = 0.007; CD64/HLA-DR ratio F = 5.02, p = 0.029) highlights the importance of communication between the central and peripheral immune systems in schizophrenia. Patients in whom psychotic symptoms were present at death demonstrated an age-dependent increase of Iba1 and increased CD64/HLA-DR ratios relative to patients without psychotic symptoms. Microglia in schizophrenia demonstrated a primed/reactive morphology. A potential role for T-lymphocytes was observed, but we did not confirm the presence of recruited macrophages in the brains of schizophrenia patients. Taking in account the limitations of a post-mortem study, our findings support the hypothesis of an alteration of the brain immune environment in schizophrenia, with symptomatic state- and age-dependent effects.
Collapse
Affiliation(s)
- Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium; University Psychiatric Department Campus Duffel, Duffel, Belgium
| | - Gerardo Mendez Victoriano
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rhys Richards
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexander J Gorvett
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Simeon Lyons
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - George R Buckland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tommaso Tofani
- Psychiatry Unit, Health Science Department, University of Florence, Florence, Italy
| | - Jeanette L Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine University of Southampton, Southampton, UK
| | - David S Chatelet
- Biomedical Imaging Unit, Southampton General Hospital, University of Southampton, Southampton, UK
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
40
|
Phelps M, Balazs AB. Contribution to HIV Prevention and Treatment by Antibody-Mediated Effector Function and Advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Front Immunol 2021; 12:734304. [PMID: 34603314 PMCID: PMC8479175 DOI: 10.3389/fimmu.2021.734304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) targeting the viral envelope have shown significant promise in both HIV prevention and viral clearance, including pivotal results against sensitive strains in the recent Antibody Mediated Prevention (AMP) trial. Studies of bNAb passive transfer in infected patients have demonstrated transient reduction of viral load at high concentrations that rebounds as bNAb is cleared from circulation. While neutralization is a crucial component of therapeutic efficacy, numerous studies have demonstrated that bNAbs can also mediate effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent complement deposition (ADCD). These functions have been shown to contribute towards protection in several models of HIV acquisition and in viral clearance during chronic infection, however the role of target epitope in facilitating these functions, as well as the contribution of individual innate functions in protection and viral clearance remain areas of active investigation. Despite their potential, the transient nature of antibody passive transfer limits the widespread use of bNAbs. To overcome this, we and others have demonstrated vectored antibody delivery capable of yielding long-lasting expression of bNAbs in vivo. Two clinical trials have shown that adeno-associated virus (AAV) delivery of bNAbs is safe and capable of sustained bNAb expression for over 18 months following a single intramuscular administration. Here, we review key concepts of effector functions mediated by bNAbs against HIV infection and the potential for vectored immunoprophylaxis as a means of producing bNAbs in patients.
Collapse
|
41
|
Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes. Proc Natl Acad Sci U S A 2021; 118:2018102118. [PMID: 33593910 DOI: 10.1073/pnas.2018102118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we utilized a panel of human immunoglobulin (Ig) IgA monoclonal antibodies isolated from the plasmablasts of eight donors after 2014/2015 influenza virus vaccination (Fluarix) to study the binding and functional specificities of this isotype. In this cohort, isolated IgA monoclonal antibodies were primarily elicited against the hemagglutinin protein of the H1N1 component of the vaccine. To compare effector functionalities, an H1-specific subset of antibodies targeting distinct epitopes were expressed as monomeric, dimeric, or secretory IgA, as well as in an IgG1 backbone. When expressed with an IgG Fc domain, all antibodies elicited Fc-effector activity in a primary polymorphonuclear cell-based assay which differs from previous observations that found only stalk-specific antibodies activate the low-affinity FcγRIIIa. However, when expressed with IgA Fc domains, only antibodies targeting the stalk domain showed Fc-effector activity in line with these previous findings. To identify the cause of this discrepancy, we then confirmed that IgG signaling through the high-affinity FcγI receptor was not restricted to stalk epitopes. Since no corresponding high-affinity Fcα receptor exists, the IgA repertoire may therefore be limited to stalk-specific epitopes in the context of Fc receptor signaling.
Collapse
|
42
|
Scuteri D, Corasaniti MT, Tonin P, Nicotera P, Bagetta G. Role of CGRP pathway polymorphisms in migraine: a systematic review and impact on CGRP mAbs migraine therapy. J Headache Pain 2021; 22:87. [PMID: 34330208 PMCID: PMC8325208 DOI: 10.1186/s10194-021-01295-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background the interest of clinical reaseach in polymorphisms and epigenetics in migraine has been growing over the years. Due to the new era of preventative migraine treatment opened by monoclonal antibodies (mAbs) targeting the signaling of the calcitonin-gene related peptide (CGRP), the present systematic review aims at identifying genetic variants occurring along the CGRP pathway and at verifying whether these can affect the clinical features and the course of disease and the responsiveness of patients to therapy. Methods the literature search has been conducted consulting the most relevant scientific databases, i.e. PubMed/MEDLINE, Scopus, Web of Science, the Human Genome Epidemiology (HuGE) Published Literature database (Public Health Genomics Knowledge Base) and Clinicaltrials.gov from database inception until April 1, 2021. The process of identification and selection of the studies included in the analysis has followed the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) criteria for systematic reviews and meta-analyses and the guidance from the Human Genome Epidemiology Network for reporting gene-disease associations. Results the search has retrieved 800 results, among which only 7 studies have met the eligibility criteria for inclusion in the analysis. The latter are case-control studies of genetic association and an exploratory analysis and two polymorphisms have been detected as the most recurring: the rs3781719 (T > C) of the CALC A gene encoding CGRP and the rs7590387 of the gene encoding the receptor activity-modifying protein (RAMP) 1 (C > G). Only one study assessing the methylation pattern with regard to CGRP pathway has been found from the search. No genetic association studies investigating the possible effect of genetic variants affecting CGRP signaling on the responsiveness to the most recent pharmacological approaches, i.e. anti-CGRP(R) mAbs, gepants and ditans, have been published. According to the Human Genome Epidemiology (HuGE) systematic reviews and meta-analyses risk-of-bias score for genetic association studies, the heterogeneity between and across studies and the small sample size do not allow to draw conclusions and prompt future studies. Conclusions adequately powered, good quality genetic association studies are needed to understand the impact of genetic variants affecting the pathway of CGRP on migraine susceptibility and clinical manifestation and to predict the response to therapy in terms of efficacy and safety.
Collapse
Affiliation(s)
- Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.,Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | | | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | | | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
43
|
Lagassé HAD, Hopkins LB, Jankowski W, Jacquemin MG, Sauna ZE, Golding B. Factor VIII-Fc Activates Natural Killer Cells via Fc-Mediated Interactions With CD16. Front Immunol 2021; 12:692157. [PMID: 34262568 PMCID: PMC8273617 DOI: 10.3389/fimmu.2021.692157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
The most challenging complication associated with Factor VIII (FVIII) replacement therapy is the development of neutralizing anti-drug antibodies, or inhibitors, which occur in 23-35% of severe (FVIII level <1%) hemophilia A (HA) patients and are a serious hindrance to effective management of HA. Consequently, strategies that can either prevent anti-FVIII inhibitors from developing or "tolerize" individuals who develop such antibodies represent a clinically important unmet need. One intervention for patients with high-titer inhibitors is immune tolerance induction (ITI) therapy. Although ITI therapy is the only clinically proven strategy to eradicate anti-FVIII inhibitors, mechanisms of inhibitor reduction remain unknown. Factor VIII Fc-fusion (rFVIIIFc) is an enhanced half-life antihemophilic factor used in replacement therapy for HA. Fc-fusion is a successful protein bio-engineering platform technology. In addition to enhancement of plasma half-life via neonatal Fc receptor (FcRn) binding, other Fc-mediated interactions, including engagement with Fc gamma receptors (FcγR), may have immunological consequences. Several case reports and retrospective analyses suggest that rFVIIIFc offers superior outcomes with respect to ITI compared to other FVIII products. Previously we and others demonstrated rFVIIIFc interactions with activating FcγRIIIA/CD16. Here, we investigated if rFVIIIFc activates natural killer (NK) cells via CD16. We demonstrated rFVIIIFc signaling via CD16 independent of Von Willebrand Factor (VWF):FVIII complex formation. We established that rFVIIIFc potently activated NK cells in a CD16-dependent fashion resulting in IFNγ secretion and cytolytic perforin and granzyme B release. We also demonstrated an association between rFVIIIFc-mediated NK cell IFNγ secretion levels and the high-affinity (158V) CD16 genotype. Furthermore, we show that rFVIIIFc-activated CD16+ NK cells were able to lyse a B-cell clone (BO2C11) bearing an anti-FVIII B-cell receptor in an antibody-dependent cellular cytotoxicity (ADCC) assay. These in vitro findings provide an underlying molecular mechanism that may help explain clinical case reports and retrospective studies suggesting rFVIIIFc may be more effective in tolerizing HA patients with anti-FVIII inhibitors compared to FVIII not linked to Fc. Our in vitro findings suggest a potential use of Fc-fusion proteins acting via NK cells to target antigen-specific B-cells, in the management of unwanted immune responses directed against immunogenic self-antigens or therapeutic protein products.
Collapse
Affiliation(s)
- H A Daniel Lagassé
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Louis B Hopkins
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Wojciech Jankowski
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Marc G Jacquemin
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Basil Golding
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
44
|
Keeler SP, Fox JM. Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Based Protection against Emerging Virus Infections. Viruses 2021; 13:v13061037. [PMID: 34072720 PMCID: PMC8226613 DOI: 10.3390/v13061037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
45
|
Afucosylated IgG Targets FcγRIV for Enhanced Tumor Therapy in Mice. Cancers (Basel) 2021; 13:cancers13102372. [PMID: 34069226 PMCID: PMC8156657 DOI: 10.3390/cancers13102372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Cancer treatments are increasingly based on therapeutic antibodies to clear tumors. While in vivo mouse models are useful to predict effectiveness of human antibodies it is not completely clear how useful these models are to test antibodies engineered with enhanced effector functions designed for humans. One of the changes considered for many new antibody-based drugs is the removal of fucose (resulting in afucosylated IgG) which enhances IgG-Fc receptor (FcγR) mediated effector functions in humans through FcγRIIIa. Here we show that afucosylated human IgG1 also have enhanced effector functions against peritoneal metastasis of melanoma cells in mice through the evolutionary related mouse FcγRIV. This shows that afucosylated human IgG is functionally recognized across species and shows that mouse tumor models can be used to assess the therapeutic potential of afucosylated IgG1. Abstract Promising strategies for maximizing IgG effector functions rely on the introduction of natural and non-immunogenic modifications. The Fc domain of IgG antibodies contains an N-linked oligosaccharide at position 297. Human IgG antibodies lacking the core fucose in this glycan have enhanced binding to human (FcγR) IIIa/b, resulting in enhanced antibody dependent cell cytotoxicity and phagocytosis through these receptors. However, it is not yet clear if glycan-enhancing modifications of human IgG translate into more effective treatment in mouse models. We generated humanized hIgG1-TA99 antibodies with and without core-fucose. C57Bl/6 mice that were injected intraperitoneally with B16F10-gp75 mouse melanoma developed significantly less metastasis outgrowth after treatment with afucosylated hIgG1-TA99 compared to mice treated with wildtype hhIgG1-TA99. Afucosylated human IgG1 showed stronger interaction with the murine FcγRIV, the mouse orthologue of human FcγRIIIa, indicating that this glycan change is functionally conserved between the species. In agreement with this, no significant differences were observed in tumor outgrowth in FcγRIV-/- mice treated with human hIgG1-TA99 with or without the core fucose. These results confirm the potential of using afucosylated therapeutic IgG to increase their efficacy. Moreover, we show that afucosylated human IgG1 antibodies act across species, supporting that mouse models can be suitable to test afucosylated antibodies.
Collapse
|
46
|
Geyer CE, Mes L, Newling M, den Dunnen J, Hoepel W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells 2021; 10:1175. [PMID: 34065953 PMCID: PMC8150799 DOI: 10.3390/cells10051175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.
Collapse
Affiliation(s)
- Chiara Elisabeth Geyer
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lynn Mes
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
47
|
Salem AA, Ismail AFM. Protective impact of Spirulina platensis against γ-irradiation and thioacetamide-induced nephrotoxicity in rats mediated by regulation of micro-RNA 1 and micro-RNA 146a. Toxicol Res (Camb) 2021; 10:453-466. [PMID: 34141159 DOI: 10.1093/toxres/tfab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease develops popular and medical health problems, especially in developing countries. The objective of this study is to investigate the protective mechanism of Spirulina platensis against γ-irradiation (R) and/or thioacetamide (TAA)-induced nephrotoxicity in rats. Rats intoxicated with R or TAA showed alterations in kidney function markers (urea, creatinine, albumin, and total protein contents), oxidative stress markers (malondialdehyde, reduced glutathione), antioxidant enzymes (superoxide dismutase, catalase), and several inflammatory markers (including, the high-sensitivity C-reactive protein, hypoxia-inducible factor-1 alpha, tumor necrosis factor-alpha, interferon-gamma, some interleukins, and nuclear factor-kappa B). Rats also acquired apoptosis, evinced by high caspase-3 efficacy. This nephrotoxicity mediated by upregulation of the messenger RNA (mRNA) gene expression of the autophagy markers: Beclin-1, microtubule-associated protein LC3, p62 binding protein, immunoglobulin G receptor Fcγ receptor (FcγR), micro-RNA-1 (miR-1), protein expression of phospho-adenosine monophosphate-activated protein kinase, and phospho-mammalian target of rapamycin, along with downregulation of miR-146a mRNA gene expression and alteration of calcium and iron levels. The combined treatment R/TAA enhanced the observed oxidative stress, inflammation, apoptosis, and autophagy that mediated by higher upregulation of miR-1 and downregulation of miR-146a mRNA gene expression. Spirulina platensis administration exhibited a nephroprotective impact on R, TAA, and R/TAA toxicities via regulating miR-1 and miR-146a mRNA gene expression that monitored adenosine monophosphate-activated protein kinase/mammalian target of rapamycin signaling.
Collapse
Affiliation(s)
- Asmaa A Salem
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza 12619, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787 Cairo, Egypt
| |
Collapse
|
48
|
Yaffe ZA, Naiman NE, Slyker J, Wines BD, Richardson BA, Hogarth PM, Bosire R, Farquhar C, Ngacha DM, Nduati R, John-Stewart G, Overbaugh J. Improved HIV-positive infant survival is correlated with high levels of HIV-specific ADCC activity in multiple cohorts. Cell Rep Med 2021; 2:100254. [PMID: 33948582 PMCID: PMC8080236 DOI: 10.1016/j.xcrm.2021.100254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023]
Abstract
Defining immune responses that protect humans against diverse HIV strains has been elusive. Studying correlates of protection from mother-to-child transmission provides a benchmark for HIV vaccine protection because passively transferred HIV antibodies are present during infant exposure to HIV through breast milk. A previous study by our group illustrated that passively acquired antibody-dependent cellular cytotoxicity (ADCC) activity is associated with improved infant survival whereas neutralization is not. Here, we show, in another cohort and with two effector measures, that passively acquired ADCC antibodies correlate with infant survival. In combined analyses of data from both cohorts, there are highly statistically significant associations between higher infant survival and passively acquired ADCC levels (p = 0.029) as well as dimeric FcγRIIa (p = 0.002) or dimeric FcγRIIIa binding (p < 0.001). These results suggest that natural killer (NK) cell- and monocyte antibody-mediated effector functions may contribute to the observed survival benefit and support a role of pre-existing ADCC-mediating antibodies in clinical outcome.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Nicole E. Naiman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Bruce D. Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - P. Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Rose Bosire
- Centre for Public Health Research, Kenya Medical Research Institute, 20752-00202 Nairobi, Kenya
| | - Carey Farquhar
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Dorothy Mbori Ngacha
- HIV Section, United Nations Children’s Fund, 3 United Nations Plaza, New York, NY 10017, USA
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
49
|
Matrix Protein 2 Extracellular Domain-Specific Monoclonal Antibodies Are an Effective and Potentially Universal Treatment for Influenza A. J Virol 2021; 95:JVI.01027-20. [PMID: 33268521 PMCID: PMC8092830 DOI: 10.1128/jvi.01027-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Influenza virus infection causes significant morbidity and mortality worldwide. Humans fail to make a universally protective memory immune response to influenza A. Hemagglutinin and Neuraminidase undergo antigenic drift and shift, resulting in new influenza A strains to which humans are naive. Seasonal vaccines are often ineffective and escape mutants have been reported to all treatments for influenza A. In the absence of a universal influenza A vaccine or treatment, influenza A will remain a significant threat to human health. The extracellular domain of the M2-ion channel (M2e) is an ideal antigenic target for a universal therapeutic agent, as it is highly conserved across influenza A serotypes, has a low mutation rate, and is essential for viral entry and replication. Previous M2e-specific monoclonal antibodies (M2e-MAbs) show protective potential against influenza A, however, they are either strain specific or have limited efficacy. We generated seven murine M2e-MAbs and utilized in vitro and in vivo assays to validate the specificity of our novel M2e-MAbs and to explore the universality of their protective potential. Our data shows our M2e-MAbs bind to M2e peptide, HEK cells expressing the M2 channel, as well as, influenza virions and MDCK-ATL cells infected with influenza viruses of multiple serotypes. Our antibodies significantly protect highly influenza A virus susceptible BALB/c mice from lethal challenge with H1N1 A/PR/8/34, pH1N1 A/CA/07/2009, H5N1 A/Vietnam/1203/2004, and H7N9 A/Anhui/1/2013 by improving survival rates and weight loss. Based on these results, at least four of our seven M2e-MAbs show strong potential as universal influenza A treatments.IMPORTANCE Despite a seasonal vaccine and multiple therapeutic treatments, Influenza A remains a significant threat to human health. The biggest obstacle is producing a vaccine or treatment for influenza A is their universality or efficacy against not only seasonal variances in the influenza virus, but also against all human, avian, and swine serotypes and, therefore, potential pandemic strains. M2e has huge potential as a target for a vaccine or treatment against influenza A. It is the most conserved external protein on the virus. Antibodies against M2e have made it to clinical trials, but not succeeded. Here, we describe novel M2e antibodies produced in mice that are not only protective at low doses, but that we extensively test to determine their universality and found to be cross protective against all strains tested. Additionally, our work begins to elucidate the critical role of isotype for an influenza A monoclonal antibody therapeutic.
Collapse
|
50
|
Grandjean CL, Garcia Z, Lemaître F, Bréart B, Bousso P. Imaging the mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in antibody-dependent phagocytosis. SCIENCE ADVANCES 2021; 7:7/8/eabd6167. [PMID: 33608271 PMCID: PMC7895428 DOI: 10.1126/sciadv.abd6167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/31/2020] [Indexed: 05/16/2023]
Abstract
Anti-CD20 antibody (mAb) represents an effective strategy for the treatment of B cell malignancies, possibly involving complement activity, antibody-dependent cellular cytotoxicity and phagocytosis (ADP). While ADP by Kupffer cells deplete circulating tumors, mechanisms targeting non-circulating tumors remain unclear. Using intravital imaging in a model of B cell lymphoma, we establish here the dominance and limitations of ADP in the bone marrow (BM). We found that tumor cells were stably residing in the BM with little evidence for recirculation. To elucidate the mechanism of depletion, we designed a dual fluorescent reporter to visualize phagocytosis and apoptosis. ADP by BM-associated macrophages was the primary mode of tumor elimination but was no longer active after one hour, resulting in partial depletion. Moreover, macrophages were present at low density in tumor-rich regions, targeting only neighboring tumors. Overcoming spatiotemporal bottlenecks in tumor-targeting Ab therapy thus represents a critical path towards the design of optimized therapies.
Collapse
Affiliation(s)
- Capucine L Grandjean
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France.
- INSERM U1223, 75015 Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France
- INSERM U1223, 75015 Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France
- INSERM U1223, 75015 Paris, France
| | - Béatrice Bréart
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France
- INSERM U1223, 75015 Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France.
- INSERM U1223, 75015 Paris, France
| |
Collapse
|