1
|
Gong Y, Kang J, Wang M, Firdaus Mohd Hayati M, Wah Goh LP, Bin Syed Abdul Rahim SS. A visualization analysis of immune-related adverse reactions in pulmonary carcinoma. Hum Vaccin Immunother 2024; 20:2429237. [PMID: 39588915 PMCID: PMC11601054 DOI: 10.1080/21645515.2024.2429237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Immunotherapy has emerged as a crucial advancement in pulmonary carcinoma treatment. Nevertheless, its unique side effects not only reduce patients' quality of life but also affect treatment efficacy, with severe cases potentially endangering the patient's life. This study uses bibliometric analysis to perform a comprehensive bibliometric analysis literature on IRAEs in lung cancer from 1991 to 2023, retrieved from the Web of Science database. The dataset was analyzed using VOSviewer and CiteSpace to identify trends, key contributors, and emerging research areas. A total of 124 publications were analyzed, revealing a notable increase in research activity post-2015, with China and the USA contributing over 50% of the studies. This research highlights the importance of understanding IRAEs and suggests future investigations into the pulmonary microbiota and tumor microenvironment.
Collapse
Affiliation(s)
- Yifan Gong
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Jianping Kang
- Orthopedics Ward 2, Yunnan Cancer Hospital, Kunming, China
| | - Mingting Wang
- Oncology Department, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | | | - Lucky Poh Wah Goh
- Faculty of Science and Natural Resources, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | | |
Collapse
|
2
|
Khalil NB, Coscarella G, Dhabhar FS, Yosipovitch G. A Narrative Review on Stress and Itch: What We Know and What We Would Like to Know. J Clin Med 2024; 13:6854. [PMID: 39597998 PMCID: PMC11595100 DOI: 10.3390/jcm13226854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Itch is one of the most prevalent symptoms experienced by patients with inflammatory skin conditions, yet it is also one of the most debilitating. Patients suffering from chronic itch have been found to have significantly higher stress levels compared with those not experiencing itch. In fact, recent studies have revealed a bidirectional relationship between stress and itch, where each condition worsens the other. This is thought to be driven by the vicious itch-scratch cycle, which is fueled by underlying inflammation. The precise molecular pathways and mediators involved, however, remain unclear. This narrative review discusses the existing research on the relationship between stress and itch and outlines future research directions that will be necessary to advance our understanding and treatment of these conditions. Given that the effective management of both symptoms often requires a combined treatment approach, further investigation into their shared mechanisms is essential for identifying successful therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Nicole B. Khalil
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Giulia Coscarella
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Firdaus S. Dhabhar
- Department of Psychiatry and Behavioral Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Salvi V, Gaudenzi C, Mariotti B, Giongrandi G, Alacqua S, Gianello V, Schioppa T, Tiberio L, Ceribelli A, Selmi C, Bergese P, Calza S, Del Prete A, Sozzani S, Bazzoni F, Bosisio D. Cell damage shifts the microRNA content of small extracellular vesicles into a Toll-like receptor 7-activating cargo capable to propagate inflammation and immunity. Cell Commun Signal 2024; 22:536. [PMID: 39516877 PMCID: PMC11545887 DOI: 10.1186/s12964-024-01924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The physiological relevance of cell-to-cell communication mediated by small extracellular vesicle-encapsulated microRNAs (sEV-miRNAs) remains debated because of the limiting representativity of specific miRNAs within the extracellular pool. We hypothesize that sEV-miRNA non-canonical function consisting of the stimulation of Toll-like receptor 7 (TLR7) may rely on a global shift of the sEV cargo rather than on the induction of one or few specific miRNAs. Psoriasis represents an ideal model to test such hypothesis as it is driven by overt activation of TLR7-expressing plasmacytoid dendritic cells (pDCs) following keratinocyte damage. METHODS To mimic the onset of psoriasis, keratinocytes were treated with a cocktail of psoriatic cytokines or UV-irradiated. SmallRNA sequencing was performed on sEVs released by healthy and UV-treated keratinocytes. sEV-miRNAs were analyzed for nucleotide composition as well as for the presence of putative TLR7-binding triplets. Primary human pDCs where stimulated with sEVs +/- inhibitors of TLR7 (Enpatoran), of sEV release (GW4869 + manumycin) and of TLR7-mediated pDC activation (anti-BDCA-2 antibody). Secretion of type I IFNs and activation of CD8+T cells were used as readouts. qPCR on psoriatic and healthy skin biopsies was conducted to identify induced miRNAs. RESULTS sEV-miRNAs released by damaged keratinocytes revealed a significantly higher content of TLR7-activating sequences than healthy cells. As expected, differential expression analysis confirmed the presence of miRNAs upregulated in psoriatic skin, including miR203a. More importantly, 76.5% of induced miRNAs possessed TLR7-binding features and among these we could detect several previously demonstrated TLR7 ligands. In accordance with this in silico analysis, sEVs from damaged keratinocytes recapitulated key events of psoriatic pathogenesis by triggering pDCs to release type I interferon and activate cytotoxic CD8+T cells in a TLR7- and sEV-dependent manner. DISCUSSION Our results demonstrate that miR203a is just one paradigmatic TLR7-activating miRNA among the hundreds released by UV-irradiated keratinocytes, which altogether trigger pDC activation in psoriatic conditions. This represents the first evidence that cell damage shifts the miRNA content of sEVs towards a TLR7-activating cargo capable to propagate inflammation and immunity, offering strong support to the physiological role of systemic miRNA-based cell-to-cell communication.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | | | - Gaia Giongrandi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Silvia Alacqua
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Veronica Gianello
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Angela Ceribelli
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Carlo Selmi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Flavia Bazzoni
- Department of Medicine, University of Verona, Verona, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
| |
Collapse
|
4
|
Rodríguez-Palma EJ, Huerta de la Cruz S, Islas-Espinoza AM, Castañeda-Corral G, Granados-Soto V, Khanna R. Nociplastic pain mechanisms and toll-like receptors as promising targets for its management. Pain 2024; 165:2150-2164. [PMID: 38595206 DOI: 10.1097/j.pain.0000000000003238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024]
Abstract
ABSTRACT Nociplastic pain, characterized by abnormal pain processing without an identifiable organic cause, affects a significant portion of the global population. Unfortunately, current pharmacological treatments for this condition often prove ineffective, prompting the need to explore new potential targets for inducing analgesic effects in patients with nociplastic pain. In this context, toll-like receptors (TLRs), known for their role in the immune response to infections, represent promising opportunities for pharmacological intervention because they play a relevant role in both the development and maintenance of pain. Although TLRs have been extensively studied in neuropathic and inflammatory pain, their specific contributions to nociplastic pain remain less clear, demanding further investigation. This review consolidates current evidence on the connection between TLRs and nociplastic pain, with a specific focus on prevalent conditions like fibromyalgia, stress-induced pain, sleep deprivation-related pain, and irritable bowel syndrome. In addition, we explore the association between nociplastic pain and psychiatric comorbidities, proposing that modulating TLRs can potentially alleviate both pain syndromes and related psychiatric disorders. Finally, we discuss the potential sex differences in TLR signaling, considering the higher prevalence of nociplastic pain among women. Altogether, this review aims to shed light on nociplastic pain, its underlying mechanisms, and its intriguing relationship with TLR signaling pathways, ultimately framing the potential therapeutic role of TLRs in addressing this challenging condition.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Wu B, Zhang T, Chen H, Shi X, Guan C, Hu J, Lu H. Exosomes derived from bone marrow mesenchymal stem cell preconditioned by low-intensity pulsed ultrasound stimulation promote bone-tendon interface fibrocartilage regeneration and ameliorate rotator cuff fatty infiltration. J Orthop Translat 2024; 48:89-106. [PMID: 39189009 PMCID: PMC11345897 DOI: 10.1016/j.jot.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Background Fibrovascular scar healing of bone-tendon interface (BTI) instead of functional fibrocartilage regeneration is the main concern associated with unsatisfactory prognosis in rotator cuff repair. Mesenchymal stem cells (MSCs) exosomes have been reported to be a new promising cell-free approach for rotator cuff healing. Whereas, controversies abound in whether exosomes of native MSCs alone can effectively induce chondrogenesis. Purpose To explore the effect of exosomes derived from low-intensity pulsed ultrasound stimulation (LIPUS)-preconditioned bone marrow mesenchymal stem cells (LIPUS-BMSC-Exos) or un-preconditioned BMSCs (BMSC-Exos) on rotator cuff healing and the underlying mechanism. Methods C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair were randomly assigned to saline, BMSCs-Exos or LIPUS-BMSC-Exos injection therapy. Histological, immunofluorescent and biomechanical tests were detected to investigate the effect of exosomes injection on BTI healing and muscle fatty infiltration of the repaired rotator cuff. In vitro, native BMSCs were incubated with BMSC-Exos or LIPUS-BMSC-Exos and then chondrogenic/adipogenic differentiation were observed. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the chondrogenesis/adipogenesis-related miRNA profiles of LIPUS-BMSC-Exos and BMSC-Exos. The chondrogenic/adipogenic potential of the key miRNA was verified through function recover test with its mimic and inhibitor. Results The results indicated that the biomechanical properties of the supraspinatus tendon-humeral junction were significantly improved in the LIPUS-BMSC-Exos group than that of the BMSCs-Exos group. The LIPUS-BMSC-Exos group also exhibited a higher histological score and more newly regenerated fibrocartilage at the repair site at postoperative 2 and 4 weeks and less fatty infiltration at 4 weeks than the BMSCs-Exos group. In vitro, co-culture of BMSCs with LIPUS-BMSC-Exos could significantly promote BMSCs chondrogenic differentiation and inhibit adipogenic differentiation. Subsequently, qRT-PCR revealed significantly higher enrichment of chondrogenic miRNAs and less enrichment of adipogenic miRNAs in LIPUS-BMSC-Exos compared with BMSC-Exos. Moreover, we demonstrated that this chondrogenesis-inducing potential was primarily attributed to miR-140, one of the most abundant miRNAs in LIPUS-BMSC-Exos. Conclusion LIPUS-preconditioned BMSC-Exos can effectively promote BTI fibrocartilage regeneration and ameliorate supraspinatus fatty infiltration by positive regulation of pro-chondrogenesis and anti-adipogenesis, which was primarily through delivering miR-140. The translational potential of this article These findings propose an innovative "LIPUS combined Exosomes strategy" for rotator cuff healing which combines both physiotherapeutic and biotherapeutic advantages. This strategy possesses a good translational potential as a local injection of LIPUS preconditioned BMSC-derived Exos during operation can be not only efficient for promoting fibrocartilage regeneration and ameliorating rotator cuff fatty infiltration, but also time-saving, simple and convenient for patients.
Collapse
Affiliation(s)
- Bing Wu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huabin Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xin Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
6
|
He G, Li Y, Zeng Y, Zhang Y, Jiang Q, Zhang Q, Zhu J, Gong J. Advancements in melanoma immunotherapy: the emergence of Extracellular Vesicle Vaccines. Cell Death Discov 2024; 10:374. [PMID: 39174509 PMCID: PMC11341806 DOI: 10.1038/s41420-024-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Malignant melanoma represents a particularly aggressive type of skin cancer, originating from the pathological transformation of melanocytes. While conventional interventions such as surgical resection, chemotherapy, and radiation therapy are available, their non-specificity and collateral damage to normal cells has shifted the focus towards immunotherapy as a notable approach. Extracellular vesicles (EVs) are naturally occurring transporters, and are capable of delivering tumor-specific antigens and directly engaging in the immune response. Multiple types of EVs have emerged as promising platforms for melanoma vaccination. The effectiveness of EV-based melanoma vaccines manifests their ability to potentiate the immune response, particularly by activating dendritic cells (DCs) and CD8+ T lymphocytes, through engineering a synergy of antigen presentation and targeted delivery. Here, this review mainly focuses on the construction strategies for EV vaccines from various sources, their effects, and immunological mechanisms in treating melanoma, as well as the shortcomings and future perspectives in this field. These findings will provide novel insights into the innovative exploitation of EV-based vaccines for melanoma immune therapy.
Collapse
Affiliation(s)
- Guijuan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuyang Zeng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Jiang
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China.
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Mohammadinasr M, Montazersaheb S, Ayromlou H, Hosseini V, Molavi O, Hejazi MS. Exosome Content-Mediated Signaling Pathways in Multiple Sclerosis. Mol Neurobiol 2024; 61:5404-5417. [PMID: 38191693 DOI: 10.1007/s12035-023-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Exosomes are small extracellular vesicles with a complex lipid-bilayer surface and 30-150 nm diameter. These vesicles play a critical role in intercellular signaling networks during physiopathological processes through data trafficking and cell reprogramming. It has been demonstrated that exosomes are involved in a variety of central nervous system (CNS) disorders such as multiple sclerosis (MS). Exosome mediators' cell-to-cell communication is possibly by delivering their contents such as proteins, RNAs (coding and non-coding), DNAs (mitochondrial and genomic), and transposable elements to the target cells. Exosomal microRNAs (miRNAs) differ in their expression patterns in MS disease, thereby providing novel diagnostic and prognostic biomarkers and therapeutic options for better treatment of MS disease. Furthermore, these microvesicles are non-immunogenic and non-toxic therapeutic tools for transferring miRNAs across the blood-brain barrier (BBB). Collectively, exosomes could be used as novel drug delivery devices for the treatment of MS patients. This review summarized research regarding the exosomes from serum, plasma, PBMC, and other cells in MS patients and experimental models. We also provide a critical view of exosome content-mediated signaling pathways in MS, including TNF-α, TGF-β, NF-κB, and Wnt pathways. The use of exosomes as a therapeutic potential in MS has also been discussed.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Javdani-Mallak A, Salahshoori I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171774. [PMID: 38508246 DOI: 10.1016/j.scitotenv.2024.171774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.
Collapse
Affiliation(s)
- Afsaneh Javdani-Mallak
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Lv Y, Wu S, Nie Q, Liu S, Xu W, Chen G, Du Y, Chen J. Extracellular vesicles derived from plasmodium-infected red blood cells alleviate cerebral malaria in plasmodium berghei ANKA-infected C57BL/6J mice. Int Immunopharmacol 2024; 132:111982. [PMID: 38569430 DOI: 10.1016/j.intimp.2024.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. To mitigate the risk of cerebral malaria (CM) among children under the age of 5, it is imperative to develop new vaccines. EVs are potential vaccine candidates as they obtain the ability of brain-targeted delivery and transfer plasmodium antigens and immunomodulators during infections. This study extracted EVs from BALB/c mice infected with Plasmodium yoelii 17XNL (P.y17XNL). C57BL/6J mice were intravenously immunized with EVs (EV-I.V. + CM group) or subcutaneously vaccinated with the combination of EVs and CpG ODN-1826 (EV + CPG ODN-S.C. + CM group) on days 0 and 20, followed by infection with Plasmodium berghei ANKA (P.bANKA) on day 20 post-second immunization. We monitored Parasitemia and survival rate. The integrity of the Blood-brain barrier (BBB) was examined using Evans blue staining.The levels of cytokines and adhesion molecules were evaluated using Luminex, RT-qPCR, and WB. Brain pathology was evaluated by hematoxylin and eosin and immunohistochemical staining. The serum levels of IgG, IgG1, and IgG2a were analyzed by enzyme-linked immunosorbent assay. Compared with those in the P.bANKA-infected group, parasitemia increased slowly, death was delayed (day 10 post-infection), and the survival rate reached 75 %-83.3 % in the EV-I.V. + ECM and EV + CPG ODN-S.C. + ECM groups. Meanwhile, compared with the EV + CPG ODN-S.C. + ECM group, although parasitemia was almost the same, the survival rate increased in the EV-I.V. + ECM group.Additionally, EVs immunization markedly downregulated inflammatory responses in the spleen and brain and ameliorated brain pathological changes, including BBB disruption and infected red blood cell (iRBC) sequestration. Furthermore, the EVs immunization group exhibited enhanced antibody responses (upregulation of IgG1 and IgG2a production) compared to the normal control group. EV immunization exerted protective effects, improving the integrity of the BBB, downregulating inflammation response of brain tissue, result in reduces the incidence of CM. The protective effects were determined by immunological pathways and brain targets elicited by EVs. Intravenous immunization exhibited better performance than subcutaneous immunization, which perhaps correlated with EVs, which can naturally cross BBB to play a better role in brain protection.
Collapse
Affiliation(s)
- Yinyi Lv
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Shuang Wu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin Distric, Weifang 261061, Shandong Province, China
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, China
| | - Wenxin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Guang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China.
| | - Yunting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Jinguang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China.
| |
Collapse
|
10
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Deng L, Gao R, Chen H, Jiao B, Zhang C, Wei L, Yan C, Ye-Lehmann S, Zhu T, Chen C. Let-7b-TLR7 Signaling Axis Contributes to the Anesthesia/Surgery-Induced Cognitive Impairment. Mol Neurobiol 2024; 61:1818-1832. [PMID: 37782443 DOI: 10.1007/s12035-023-03658-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Perioperative neurocognitive disorders (PNDs) are severe and common neurological complications among elderly patients following anesthesia and surgery. As the first line of defense of the innate immune system, Toll-like receptors (TLRs) have been found to be involved in the occurrence of neurodegenerative diseases in recent years. However, the role of TLR7 in the pathology and development of PNDs remains largely unclear. In our current study, we hypothesized that increased microRNA let-7b (let-7b) during anesthesia and surgical operation would activate TLR7 signaling pathways and mediate PNDs. Using a mouse model of PNDs, 18-20 months wild-type (WT) mice were undergoing unilateral nephrectomy, and increased TLR7 and let-7b expression levels were found in the surgery group compared with the Sham group. Of note, increased TLR7 was found to be co-localized with let-7b in the hippocampal area CA1 in the PNDs model. In addition, TLR7 and let-7b inhibition could improve hippocampus-dependent memory and attenuate the production of inflammatory cytokines. Together, our results indicated that TLR7 activation and up-regulation might be triggered by increased let-7b under stressful conditions and initiated the downstream inflammatory signaling, playing a substantial role in the development of PNDs.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Jiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Changteng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Liuxing Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Caiyi Yan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- Unité INSERM U1195, Diseases and Hormones of the Nervous System, University of Paris-Scalay, Bicêtre Hosptial, Bât. Grégory Pincus, Le Kremlin-Bicêtre, France
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Campisi M, Cannella L, Pavanello S. Cosmic chronometers: Is spaceflight a catalyst for biological ageing? Ageing Res Rev 2024; 95:102227. [PMID: 38346506 DOI: 10.1016/j.arr.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
13
|
Chong MC, Shah AD, Schittenhelm RB, Silva A, James PF, Wu SSX, Howitt J. Acute exercise-induced release of innate immune proteins via small extracellular vesicles changes with aerobic fitness and age. Acta Physiol (Oxf) 2024; 240:e14095. [PMID: 38243724 DOI: 10.1111/apha.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024]
Abstract
AIM Physical exercise triggers the secretion of small extracellular vesicles (sEVs) into the circulation in humans, enabling signalling crosstalk between tissues. Exercise-derived EVs and their cargo have been proposed to mediate adaptations to exercise; however, our understanding of how exercise-derived EV protein cargo is modulated by factors such as aerobic fitness and age of an individual is currently unknown. Here, we examined the circulating sEV proteome following aerobic exercise in healthy males of different ages and aerobic fitness to understand exercise-induced EV response during the aging process. METHODS Twenty-eight healthy men completed a bout of 20-min cycling exercise at 70% estimated VO2peak . Small EVs were isolated from blood samples collected before and immediately after exercise, and then quantified using particle analysis and Western blotting. Small EV proteome was examined using quantitative proteomic analysis. RESULTS We identified a significant increase in 13 proteins in small plasma EVs following moderate-to-vigorous intensity exercise. We observed distinct changes in sEV proteome after exercise in young, mature, unfit, and fit individuals, highlighting the impact of aerobic fitness and age on sEV protein secretion. Functional enrichment and pathway analysis identified that the majority of the significantly altered sEV proteins are associated with the innate immune system, including proteins known to be damage-associated molecular patterns (DAMPs). CONCLUSION Together, our findings suggest that exercise-evoked acute stress can positively challenge the innate immune system through the release of signalling molecules such as DAMPs in sEVs, proposing a novel EV-based mechanism for moderate-to-vigorous intensity exercise in immune surveillance pathways.
Collapse
Affiliation(s)
- Mee Chee Chong
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Anup D Shah
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, Australia
| | - Anabel Silva
- Exopharm Limited, Melbourne, Victoria, Australia
| | | | - Sam Shi Xuan Wu
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jason Howitt
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Iverson Health Innovation Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
14
|
Montone RA, Camilli M, Calvieri C, Magnani G, Bonanni A, Bhatt DL, Rajagopalan S, Crea F, Niccoli G. Exposome in ischaemic heart disease: beyond traditional risk factors. Eur Heart J 2024; 45:419-438. [PMID: 38238478 PMCID: PMC10849374 DOI: 10.1093/eurheartj/ehae001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Ischaemic heart disease represents the leading cause of morbidity and mortality, typically induced by the detrimental effects of risk factors on the cardiovascular system. Although preventive interventions tackling conventional risk factors have helped to reduce the incidence of ischaemic heart disease, it remains a major cause of death worldwide. Thus, attention is now shifting to non-traditional risk factors in the built, natural, and social environments that collectively contribute substantially to the disease burden and perpetuate residual risk. Of importance, these complex factors interact non-linearly and in unpredictable ways to often enhance the detrimental effects attributable to a single or collection of these factors. For this reason, a new paradigm called the 'exposome' has recently been introduced by epidemiologists in order to define the totality of exposure to these new risk factors. The purpose of this review is to outline how these emerging risk factors may interact and contribute to the occurrence of ischaemic heart disease, with a particular attention on the impact of long-term exposure to different environmental pollutants, socioeconomic and psychological factors, along with infectious diseases such as influenza and COVID-19. Moreover, potential mitigation strategies for both individuals and communities will be discussed.
Collapse
Affiliation(s)
- Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Giulia Magnani
- Department of Medicine, University of Parma, Parma, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
15
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
16
|
Luo S, Long H, Lou F, Liu Y, Wang H, Pu J, Ji P, Jin X. Chronic restraint stress promotes oral squamous cell carcinoma development by inhibiting ALDH3A1 via stress response hormone. BMC Oral Health 2024; 24:43. [PMID: 38191346 PMCID: PMC10773021 DOI: 10.1186/s12903-023-03787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Chronic restraint stress (CRS) has iteratively been reported to be possibly implicated in the development of numerous cancer types. However, its role in oral squamous cell carcinoma (OSCC) has not been well elucidated. Here we intended to evaluate the role and mechanism. METHODS The effects of CRS were investigated in xenograft models of OSCC by using transcriptome sequencing, LC-MS, ELISA and RT-PCR. Moreover, the role of CRS and ALDH3A1 on OSCC cells was researched by using Trans-well, flow cytometry, western blotting, immunofluorescence, ATP activity and OCR assay. Furthermore, immunohistochemical staining was employed to observe the cell proliferation and invasion of OSCC in xenotransplantation models. RESULTS CRS promoted the progression of OSCC in xenograft models, stimulated the secretion of norepinephrine and the expression of ADRB2, but decreased the expression of ALDH3A1. Moreover, CRS changed energy metabolism and increased mitochondrial metabolism markers. However, ALDH3A1 overexpression suppressed proliferation, EMT and mitochondrial metabolism of OSCC cells. CONCLUSION Inhibition of ALDH3A1 expression plays a pivotal role in CRS promoting tumorigenic potential of OSCC cells, and the regulatory of ALDH3A1 on mitochondrial metabolism may be involved in this process.
Collapse
Affiliation(s)
- Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Huiqing Long
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.
| |
Collapse
|
17
|
Mamelak M. Depression and the Glutamate/GABA-Glutamine Cycle. Curr Neuropharmacol 2024; 23:75-84. [PMID: 39150032 PMCID: PMC11519819 DOI: 10.2174/1570159x22666240815120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 08/17/2024] Open
Abstract
Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic- pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
19
|
Cho O. Post-Radiotherapy Exosomal Non-Coding RNA and Hemograms for Early Death Prediction in Patients with Cervical Cancer. Int J Mol Sci 2023; 25:126. [PMID: 38203297 PMCID: PMC10778718 DOI: 10.3390/ijms25010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Concurrent chemo-radiotherapy (CCRT) is linked with accelerated disease progression and early death (ED) in various cancers. This study aimed to assess the association of plasma levels of exosomal non-coding ribonucleic acid (RNA) (ncRNA) and blood cell dynamics with ED prediction in patients with cervical cancer undergoing CCRT. Using propensity score matching, a comparison of complete blood counts (CBCs) was performed among 370 CCRT-treated patients. Differences in ncRNA and messenger RNA (mRNA) expression before and after CCRT in 84 samples from 42 patients (cohort 2) were represented as logarithmic fold change (log2FC). Networks were constructed to link the CBCs to the RNAs whose expression correlated with ED. From the key RNAs selected using multiple regression of all RNA combinations in the network, CBC dynamics-associated ncRNAs were functionally characterized using an enrichment analysis. Cohort 1 (120 patients) exhibited a correlation between elevated absolute neutrophil counts (ANC) and ED. Cohort 2 exhibited a prevalence of microRNA (miR)-574-3p and long intergenic non-protein coding (LINC)01003 ncRNA, whose expression correlated with ANC and hemoglobin values, respectively. Conversely, acyl-coenzyme A thioesterase 9 (ACOT9) mRNA was relevant to all CBC components. An integrative analysis of post-CCRT ncRNA levels and CBC values revealed that the patients with miR-574-3p-LINC01003-ACOT9 log2FC) < 0 had a better prospect of 30-month disease-specific survival. These findings indicate that miR-574-3p and LINC01003 could serve as ED prognostic biomarkers.
Collapse
Affiliation(s)
- Oyeon Cho
- Gynecologic Cancer Center, Department of Radiation Oncology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
20
|
Zhao K, Jia C, Wang J, Shi W, Wang X, Song Y, Peng C. Exosomal hsa-miR-151a-3p and hsa-miR-877-5p are potential novel biomarkers for predicting bone metastasis in lung cancer. Aging (Albany NY) 2023; 15:14864-14888. [PMID: 38180107 PMCID: PMC10781484 DOI: 10.18632/aging.205314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Exosomal miRNAs (exo-miRNAs) have arisen as novel diagnostic biomarkers for various cancers. However, few reports on exo-miRNAs related to bone metastasis (BM) in lung cancer exist. This study aims to screen out key exo-miRNAs and estimate their prognostic values for predicting BM in lung cancer. The differentially expressed exo-miRNAs between the highly-metastatic (95D) and lowly-metastatic (A549) human lung cancer cell lines were comprehensively analyzed using high-throughput sequencing followed by bioinformatic analyses. 29 candidate exo-miRNAs were identified, and 101 BM-related target genes were predicted. Enrichment analysis revealed that these target genes were mainly involved in regulating transcription and pathways in cancer. An exosomal miRNA-mRNA regulatory network consisting of 7 key miRNAs and 10 hub genes was constructed. Further function analysis indicated that these 10 hub genes were mainly enriched in regulating cancer's apoptosis and central carbon metabolism. The survival analysis indicated that 7 of 10 hub genes were closely related to prognosis. Mutation analysis showed that lung cancer patients presented certain genetic alterations in the 7 real hub genes. GSEA for a single hub gene suggested that 6 of 7 real hub genes had close associations with lung cancer development. Finally, ROC analysis revealed that hsa-miR-151a-3p and hsa-miR-877-5p provided high diagnostic accuracy in discriminating patients with bone metastasis (BM+) from patients without bone metastasis (BM-). These findings provided a comprehensive analysis of exo-miRNAs and target genes in the regulatory network of BM in lung cancer. In particular, hsa-miR-151a-3p and hsa-miR-877-5p may be novel biomarkers for predicting BM in lung cancer.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changji Jia
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jin Wang
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Weiye Shi
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changliang Peng
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
21
|
Xu SX, Xie XH, Yao L, Wang W, Zhang H, Chen MM, Sun S, Nie ZW, Nagy C, Liu Z. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 2023; 77:653-664. [PMID: 37675893 DOI: 10.1111/pcn.13596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
AIM The current study aimed to investigate the neuroinflammatory hypothesis of depression and the potential anti-inflammatory effect of electroconvulsive therapy (ECT) in vivo, utilizing astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma. METHODS A total of 40 patients with treatment-resistant depression (TRD) and 35 matched healthy controls were recruited at baseline, and 34 patients with TRD completed the post-ECT visits. Blood samples were collected at baseline and post-ECT. Plasma ADEVs were isolated and confirmed, and the concentrations of two astrocyte markers (glial fibrillary acidic protein [GFAP] and S100β), an extracellular vesicle marker cluster of differentiation 81 (CD81), and nine inflammatory markers in ADEVs were measured as main analyses. In addition, correlation analysis was conducted between clinical features and ADEV protein levels as exploratory analysis. RESULTS At baseline, the TRD group exhibited significantly higher levels of two astrocyte markers GFAP and S100β, as well as CD81 compared with the healthy controls. Inflammatory markers interferon γ (IFN-γ), interleukin (IL) 1β, IL-4, IL-6, tumor necrosis factor α, IL-10, and IL-17A were also significantly higher in the TRD group. After ECT, there was a significant reduction in the levels of GFAP, S100β, and CD81, along with a significant decrease in the levels of IFN-γ and IL-4. Furthermore, higher levels of GFAP, S100β, CD81, and inflammatory cytokines were associated with more severe depressive symptoms and poorer cognitive function. CONCLUSION This study provides direct insight supporting the astrocyte activation and neuroinflammatory hypothesis of depression using ADEVs. ECT may exert an anti-inflammatory effect through inhibition of such activation of astrocytes.
Collapse
Affiliation(s)
- Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhao-Wen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Li Z, Qiao O, Wang Y, Li N, Gong Y. Potential therapeutic targets for trauma management. Trends Pharmacol Sci 2023; 44:S0165-6147(23)00234-1. [PMID: 39492319 DOI: 10.1016/j.tips.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024]
Abstract
Despite advances in medical treatments for severe trauma, it remains a critical condition associated with high mortality. During trauma, the release of endogenous damage-associated molecular patterns (DAMPs) can induce immune dysfunction, leading to sepsis or multiple organ dysfunction syndrome (MODS). Vaccines based on specific pathogen antigens and pathogen-associated molecular patterns (PAMPs) contribute largely to the prevention of communicable diseases through the induction of adaptive immune responses. Vaccines developed based on autologous molecules may also promote recovery from non-communicable diseases (NCDs) by eliciting appropriate immune responses, as recent clinical trials indicate. Developing new vaccines targeting DAMPs may be an effective pre-protective measure for trauma management. We describe the role of DAMPs in post-traumatic immune dysfunction and discuss the potential of harnessing them for trauma vaccine development as well as the risks and challenges.
Collapse
Affiliation(s)
- Zizheng Li
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China; Thinking Biomed (Beijing) Co., Ltd, Beijing Economic and Technological Development Zone, Beijing, 100176, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| |
Collapse
|
23
|
Sekar R, Wooff Y, Cioanca AV, Kurera M, Ngo C, Man SM, Natoli R. Impairing Gasdermin D-mediated pyroptosis is protective against retinal degeneration. J Neuroinflammation 2023; 20:239. [PMID: 37864169 PMCID: PMC10588253 DOI: 10.1186/s12974-023-02927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Inflammasome activation and the subsequent release of pro-inflammatory cytokines including Interleukin 1β (IL-1β) have been widely reported to contribute to the progression of retinal degenerations, including age-related macular degeneration (AMD), the leading cause of blindness in the Western World. The role of Gasdermin D (GSDMD), a key executioner of pyroptosis following inflammasome activation, however, is less well-established. In this study we aimed to characterise the role of GSDMD in the healthy and degenerating retina, and uncover its role as a conduit for IL-1β release, including via extracellular vesicle (EV)-mediated release. METHODS GSDMD mutant and knockout mice, in vitro models of inflammation and a well-established in vivo model of retinal degeneration (photo-oxidative damage; PD) were utilised to explore the role and pathological contribution of GSDMD in regulating IL-1β release and propagating retinal inflammation. RNA sequencing of whole retinas was used to investigate GSDMD-mediated inflammation during degeneration. The role of EVs in GSDMD-mediated IL-1β release was investigated using nanoparticle tracking analysis, ELISA and EV inhibition paradigms. Finally, the therapeutic efficacy of targeting GSDMD was examined using GSDMD-specific siRNA. RESULTS We identified in this work that mice deficient in GSDMD had better-preserved retinal function, increased photoreceptor survivability and reduced inflammation. RNA-Seq analysis revealed that GSDMD may propagate inflammation in the retina via NF-κB signalling cascades and release of pro-inflammatory cytokines. We also showed that IL-1β was packaged and released via EV in a GSDMD-dependent manner. Finally, we demonstrated that impairing GSDMD function using RNAi or blocking EV release was able to reduce IL-1β content in cell-free supernatant and EV. CONCLUSIONS Taken together, these results suggest that pyroptotic pore-forming protein GSDMD plays a key role in the propagation of retinal inflammation, in particular via the release of EV-encapsulated IL-1β. Targeting GSDMD using genetic or pharmacological inhibitors may pose a therapeutic opportunity to dampen inflammatory cascades and delay the progression of retinal degeneration.
Collapse
Affiliation(s)
- Rakshanya Sekar
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Melan Kurera
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Chinh Ngo
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
24
|
Lortz J, Rassaf T, Jansen C, Knuschke R, Schweda A, Schnaubert L, Rammos C, Köberlein-Neu J, Skoda EM, Teufel M, Bäuerle A. A mHealth intervention to reduce perceived stress in patients with ischemic heart disease: study protocol of the randomized, controlled confirmatory intervention "mStress-IHD" trial. Trials 2023; 24:592. [PMID: 37715203 PMCID: PMC10504703 DOI: 10.1186/s13063-023-07618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Stress is highly prevalent in patients with ischemic heart disease (IHD) and is associated with lower health-related quality of life and impaired cardiovascular outcome. The importance of stress management is now recognized in recent guidelines for the management of cardiovascular disease. However, effective stress management interventions are not implemented in clinical routine yet. The development of easily disseminated eHealth interventions, particularly mHealth, may offer a cost-effective and scalable solution to this problem. The aim of the proposed trial is to assess the efficiency and cost-effectiveness of the mHealth intervention "mindfulHeart" in terms of reducing stress in patients with IHD. METHODS AND ANALYSIS This randomized controlled confirmatory interventional trial with two parallel arms has assessments at six measurement time points: baseline (T0, prior randomization), post-treatment (T1), and four follow-ups at months 1, 3, 6, and 12 after intervention (T2, T3, T4, and T5). We will include patients with confirmed diagnosis of IHD, high-perceived stress, and use of an internet-enabled smartphone. Patients will be randomized into two groups (intervention vs. control). The proposed sample size calculation allocates 128 participants in total. The primary analysis will be performed in the intention-to-treat population, with missing data imputed. An ANCOVA with the outcome at T1, a between-subject factor (intervention vs. control), and the participants' pre-intervention baseline values as a covariate will be used. Different ANOVAs, regression, and descriptive approaches will be performed for secondary analyses. ETHICS The Ethics Committee of the Medical Faculty of the University of Duisburg-Essen approved the study (22-11,015-BO). TRIAL REGISTRATION ClinicalTrials NCT05846334. Release 26.04.2023.
Collapse
Affiliation(s)
- Julia Lortz
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, 45147, Germany.
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, 45147, Germany
| | - Christoph Jansen
- Clinic for Psychosomatic Medicine and Psychotherapy, University of Duisburg-Essen, LVR-University Hospital Essen, Essen, 45147, Germany
- Centre for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, 45147, Germany
| | - Ramtin Knuschke
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, 45147, Germany
| | - Adam Schweda
- Clinic for Psychosomatic Medicine and Psychotherapy, University of Duisburg-Essen, LVR-University Hospital Essen, Essen, 45147, Germany
- Centre for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, 45147, Germany
| | - Lenka Schnaubert
- Learning Sciences Research Institute, School of Education, University of Nottingham, Nottingham, NG8 1BB, UK
| | - Christos Rammos
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, 45147, Germany
| | - Juliane Köberlein-Neu
- Schumpeter School of Business and Economics, Center for Health Economics and Health Services Research, University of Wuppertal, Wuppertal, 42119, Germany
| | - Eva-Maria Skoda
- Clinic for Psychosomatic Medicine and Psychotherapy, University of Duisburg-Essen, LVR-University Hospital Essen, Essen, 45147, Germany
- Centre for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, 45147, Germany
| | - Martin Teufel
- Clinic for Psychosomatic Medicine and Psychotherapy, University of Duisburg-Essen, LVR-University Hospital Essen, Essen, 45147, Germany
- Centre for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, 45147, Germany
| | - Alexander Bäuerle
- Clinic for Psychosomatic Medicine and Psychotherapy, University of Duisburg-Essen, LVR-University Hospital Essen, Essen, 45147, Germany
- Centre for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, 45147, Germany
| |
Collapse
|
25
|
Shangguan F, Chen Z, Lv Y, Zhang XY. Interaction between high interleukin-2 and high cortisol levels is associated with psychopathology in patients with chronic schizophrenia. J Psychiatr Res 2023; 165:255-263. [PMID: 37541091 DOI: 10.1016/j.jpsychires.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Both cortisol and interleukins appear at abnormal levels in schizophrenia. Our previous study has shown that cortisol and interleukins are associated with psychopathology and response to antipsychotic medications in a relatively small sample size of patients with schizophrenia. The current study was designed to investigate how cortisol, interleukins (ILs) and their interactions would correlate with clinical presentation in a relatively large sample size of patients with schizophrenia. METHODS We compared serum cortisol, IL-2, IL-6, and IL-8 levels in 162 medicated schizophrenia patients (including 27 patients in remission) and 62 healthy controls. Serum levels of cortisol and interleukins were measured by radioimmunoassay and quantitative ELISA, respectively. Clinical symptoms were assessed according to the Positive and Negative Syndrome Scale (PANSS). RESULTS Patients with schizophrenia had significantly higher levels of cortisol and IL-2 compared to controls. Patients in remission had higher levels of IL-6 than non-remitting patients. PANSS positive symptoms, general psychopathology, cortisol and IL-2 were the most central nodes in the cortisol-IL-symptom network. The interaction between cortisol and IL-2 was associated with PANSS positive symptoms, general psychopathology and depressive factor. For patients with cortisol level above the median, IL-2 was negatively associated with PANSS positive symptoms and general psychopathology. CONCLUSIONS Our results indicated that the interaction between cytokines and cortisol may be associated with the pathophysiology of some symptoms in chronic schizophrenia. In particular, the interaction between cortisol and IL-2 is associated with the clinical phenotypes of schizophrenia.
Collapse
Affiliation(s)
- Fangfang Shangguan
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Ziwei Chen
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Yue Lv
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Li H, Zhao S, Jiang M, Zhu T, Liu J, Feng G, Lu L, Dong J, Wu X, Chen X, Zhao Y, Fan S. Biomodified Extracellular Vesicles Remodel the Intestinal Microenvironment to Overcome Radiation Enteritis. ACS NANO 2023; 17:14079-14098. [PMID: 37399352 DOI: 10.1021/acsnano.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Ionizing radiation (IR) is associated with the occurrence of enteritis, and protecting the whole intestine from radiation-induced gut injury remains an unmet clinical need. Circulating extracellular vesicles (EVs) are proven to be vital factors in the establishment of tissue and cell microenvironments. In this study, we aimed to investigate a radioprotective strategy mediated by small EVs (exosomes) in the context of irradiation-induced intestinal injury. We found that exosomes derived from donor mice exposed to total body irradiation (TBI) could protect recipient mice against TBI-induced lethality and alleviate radiation-induced gastrointestinal (GI) tract toxicity. To enhance the protective effect of EVs, profilings of mouse and human exosomal microRNAs (miRNAs) were performed to identify the functional molecule in exosomes. We found that miRNA-142-5p was highly expressed in exosomes from both donor mice exposed to TBI and patients after radiotherapy (RT). Moreover, miR-142 protected intestinal epithelial cells from irradiation-induced apoptosis and death and mediated EV protection against radiation enteritis by ameliorating the intestinal microenvironment. Then, biomodification of EVs was accomplished via enhancing miR-142 expression and intestinal specificity of exosomes, and thus improved EV-mediated protection from radiation enteritis. Our findings provide an effective approach for protecting against GI syndrome in people exposed to irradiation.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Shuya Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
27
|
Chang X, Song YH, Xia T, He ZX, Zhao SB, Wang ZJ, Gu L, Li ZS, Xu C, Wang SL, Bai Y. Macrophage-derived exosomes promote intestinal mucosal barrier dysfunction in inflammatory bowel disease by regulating TMIGD1 via mircroRNA-223. Int Immunopharmacol 2023; 121:110447. [PMID: 37301121 DOI: 10.1016/j.intimp.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND & AIM Exosomes are effective mediators of cell-to-cell interactions and transport several regulatory molecules, including microRNAs (miRNAs), involved in diverse fundamental biological processes. The role of macrophage-derived exosomes in the development of inflammatory bowel disease (IBD) has not been previously reported. This study investigated specific miRNAs in macrophage-derived exosomes in IBD and their molecular mechanism. METHODS A dextran sulfate sodium (DSS)-induced IBD mouse model was established. The culture supernatant of murine bone marrow-derived macrophages (BMDMs) cultured with or without lipopolysaccharide (LPS) was used for isolating exosomes, which were subjected to miRNA sequencing. Lentiviruses were used to alter miRNA expression and investigate the role of macrophage-derived exosomal miRNAs. Both mouse and human organoids were co-cultured with macrophages in a Transwell system to model cellular IBD in vitro. RESULTS LPS-induced macrophages released exosomes containing various miRNAs and exacerbated IBD. Based on miRNA sequencing of macrophage-derived exosomes, miR-223 was selected for further analysis. Exosomes with upregulated miR-223 expression contributed to the exacerbation of intestinal barrier dysfunction in vivo, which was further verified using both mouse and human colon organoids. Furthermore, time-dependent analysis of the mRNAs in DSS-induced colitis mouse tissue and miR-223 target gene prediction were performed to select the candidate gene, resulting in the identification of the barrier-related factor Tmigd1. CONCLUSION Macrophage-derived exosomal miR-223 has a novel role in the progression of DSS-induced colitis by inducing intestinal barrier dysfunction through the inhibition of TMIGD1.
Collapse
Affiliation(s)
- Xin Chang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Department of Gastroenterology, the General Hospital of Central Theater Command, Wuhan, China
| | - Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tian Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
28
|
Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci 2023; 17:1057622. [PMID: 37265513 PMCID: PMC10230067 DOI: 10.3389/fnint.2023.1057622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Significant efforts have been made in the past decades to understand how mental and cognitive processes are underpinned by neural mechanisms in the brain. This paper argues that a promising way forward in understanding the nature of human cognition is to zoom out from the prevailing picture focusing on its neural basis. It considers instead how neurons work in tandem with other type of cells (e.g., immune) to subserve biological self-organization and adaptive behavior of the human organism as a whole. We focus specifically on the immune cellular processing as key actor in complementing neuronal processing in achieving successful self-organization and adaptation of the human body in an ever-changing environment. We overview theoretical work and empirical evidence on "basal cognition" challenging the idea that only the neuronal cells in the brain have the exclusive ability to "learn" or "cognize." The focus on cellular rather than neural, brain processing underscores the idea that flexible responses to fluctuations in the environment require a carefully crafted orchestration of multiple cellular and bodily systems at multiple organizational levels of the biological organism. Hence cognition can be seen as a multiscale web of dynamic information processing distributed across a vast array of complex cellular (e.g., neuronal, immune, and others) and network systems, operating across the entire body, and not just in the brain. Ultimately, this paper builds up toward the radical claim that cognition should not be confined to one system alone, namely, the neural system in the brain, no matter how sophisticated the latter notoriously is.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, Faculty of Science, University of Lisbon, Lisbon, Portugal
- Faculty of Brain Sciences, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Evgeniya V. Shmeleva
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| |
Collapse
|
29
|
Giloteaux L, Li J, Hornig M, Lipkin WI, Ruppert D, Hanson MR. Proteomics and cytokine analyses distinguish myalgic encephalomyelitis/chronic fatigue syndrome cases from controls. J Transl Med 2023; 21:322. [PMID: 37179299 PMCID: PMC10182359 DOI: 10.1186/s12967-023-04179-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS. METHODS We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects. RESULTS ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. CONCLUSIONS These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jiayin Li
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Departments of Neurology and Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Ruppert
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
- School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Alehossein P, Taheri M, Tayefeh Ghahremani P, Dakhlallah D, Brown CM, Ishrat T, Nasoohi S. Transplantation of Exercise-Induced Extracellular Vesicles as a Promising Therapeutic Approach in Ischemic Stroke. Transl Stroke Res 2023; 14:211-237. [PMID: 35596116 DOI: 10.1007/s12975-022-01025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Clinical evidence affirms physical exercise is effective in preventive and rehabilitation approaches for ischemic stroke. This sustainable efficacy is independent of cardiovascular risk factors and associates substantial reprogramming in circulating extracellular vesicles (EVs). The intricate journey of pluripotent exercise-induced EVs from parental cells to the whole-body and infiltration to cerebrovascular entity offers several mechanisms to reduce stroke incidence and injury or accelerate the subsequent recovery. This review delineates the potential roles of EVs as prospective effectors of exercise. The candidate miRNA and peptide cargo of exercise-induced EVs with both atheroprotective and neuroprotective characteristics are discussed, along with their presumed targets and pathway interactions. The existing literature provides solid ground to hypothesize that the rich vesicles link exercise to stroke prevention and rehabilitation. However, there are several open questions about the exercise stressors which may optimally regulate EVs kinetic and boost brain mitochondrial adaptations. This review represents a novel perspective on achieving brain fitness against stroke through transplantation of multi-potential EVs generated by multi-parental cells, which is exceptionally reachable in an exercising body.
Collapse
Affiliation(s)
- Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Pargol Tayefeh Ghahremani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
| | - Duaa Dakhlallah
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Cairo, Egypt
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran.
| |
Collapse
|
31
|
Korobkova L, Morin EL, Aoued H, Sannigrahi S, Garza KM, Siebert ER, Walum H, Cabeen RP, Sanchez MM, Dias BG. RNA in extracellular vesicles during adolescence reveal immune, energetic and microbial imprints of early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529808. [PMID: 36865138 PMCID: PMC9980043 DOI: 10.1101/2023.02.23.529808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of neuropsychiatric disorders in adolescence and adulthood. Despite this relationship being well established, the underlying mechanisms remain unclear. One way to achieve this understanding is to identify molecular pathways and processes that are perturbed as a consequence of childhood maltreatment. Ideally, these perturbations would be evident as changes in DNA, RNA or protein profiles in easily accessible biological samples collected in the shadow of childhood maltreatment. In this study, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT) or maternal maltreatment (MALT) in infancy. RNA sequencing of RNA in plasma EVs and gene enrichment analysis revealed that genes related to translation, ATP synthesis, mitochondrial function and immune response were downregulated in MALT samples, while genes involved in ion transport, metabolism and cell differentiation were upregulated. Interestingly, we found that a significant proportion of EV RNA aligned to the microbiome and that MALT altered the diversity of microbiome-associated RNA signatures found in EVs. Part of this altered diversity suggested differences in prevalence of bacterial species in CONT and MALT animals noted in the RNA signatures of the circulating EVs. Our findings provide evidence that immune function, cellular energetics and the microbiome may be important conduits via which infant maltreatment exerts effects on physiology and behavior in adolescence and adulthood. As a corollary, perturbations of RNA profiles related to immune function, cellular energetics and the microbiome may serve as biomarkers of responsiveness to ELA. Our results demonstrate that RNA profiles in EVs can serve as a powerful proxy to identify biological processes that might be perturbed by ELA and that may contribute to the etiology of neuropsychiatric disorders in the aftermath of ELA.
Collapse
|
32
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
33
|
Xu M, Ye S, Tang Z, Gong S. Bone Marrow Mesenchymal Stem Cells Restrain the Migration and Invasion of Breast Cancer Cells by Up-Regulating miR-2158 and Inactivating RAI2/NLRP3 Pathway. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exosomes are the key mediator for intercellular communication and participate in malignancies. Short non-coding RNAs derived from BMSCs-originated exosomes (BMSCs-exosomes) can be employed as biomolecules for tumor treatment. Here to we aim to dissect the function of microRNA-2158 from
BMSCs-exosomes in breast malignant disease. Breast malignant cells received a separated transfection of miR-2158-mimics and miR-2158-inhibitor, and also treated with BMSCoriginated exosomes followed by analysis of cell viability by MTT method, cell invading and migrating capabilities via Transwell
assays and protein levels of EMT-related and RAI2/NLRP3-related proteins by Western-blot. Breast cancer cells exhibited a significantly enhanced miR-2158 expression after transfection with miR-2158-mimics or treatment with BMSC-EXO, while it was reduced by miR-2158-inhibitor. As the miR-2158
was up-regulated, a significant impediment of proliferation and migration was denoted, along with a down-regulation of RAI2/NLRP3 signal transduction pathway and a retarded EMT process. Furthermore, cell proliferating and migrating capabilities were strengthened by miR-2158-inhibitor, together
with an enhanced RAI2/NLRP3 signal and a strengthened EMT process. In conclusion, miR-2158 retarded the in vitro proliferating and migrating activities of breast malignant cells, leading to the inactivation of RAI2/NLRP3 signal transduction pathway, thereby exerting its tumor-suppressing
function.
Collapse
Affiliation(s)
- Meiyu Xu
- Department of General Surgery, South Campus of the Sixth People’s Hospital Affiliated to Shanghai Jiaotong University (Shanghai Fengxian District Central Hospital), Shanghai, 201499, China
| | - Shen Ye
- Department of General Surgery, South Campus of the Sixth People’s Hospital Affiliated to Shanghai Jiaotong University (Shanghai Fengxian District Central Hospital), Shanghai, 201499, China
| | - Zhiqiang Tang
- Department of General Surgery, South Campus of the Sixth People’s Hospital Affiliated to Shanghai Jiaotong University (Shanghai Fengxian District Central Hospital), Shanghai, 201499, China
| | - Shuai Gong
- Department of Radiotherapy, Qingdao Municipal Hospital, Qingdao, Shangdong, 266000, China
| |
Collapse
|
34
|
Lou F, Long H, Luo S, Liu Y, Pu J, Wang H, Ji P, Jin X. Chronic restraint stress promotes the tumorigenic potential of oral squamous cell carcinoma cells by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Exp Neurol 2023; 359:114268. [PMID: 36343679 DOI: 10.1016/j.expneurol.2022.114268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Chronic stress promotes tumor progression and may harm homeostasis of energy metabolism by disrupting key metabolic processes. Recently, emerging evidence that chemokines CXCL3 as a novel adipokine plays a new role in lipid metabolism and various human malignancies. However, the role and mechanism of the CXCL3 in oral squamous cell carcinoma (OSCC) progression and reprogramming lipid metabolism induced by chronic restraint stress is unclear. The analysis of transcriptome sequencing, LC-MS, GC-MS, CCK8, cell apoptosis assays, cell cycle analysis, qRT-PCR, ELISA, western blotting, immunofluorescence, immunohistochemistry, RNA interference and lentivirus transfection and a xenograft tumor growth and chronic restraint stress model were used to investigate the role of CXCL3 in the regulation of lipid metabolism and OSCC and explore the underlying molecular mechanisms. We showed that CXCL3 plays a critical role in in fatty acid de novo synthesis and tumor growth induced by chronic restraint stress. We demonstrated that chronic restraint stress promoted lipid accumulation, OSCC growth and metastasis in a mouse xenograft model. CXCL3 knockdown and FH535, an inhibitor of Wnt/β-catenin pathway, could attenuate fatty acid de novo synthesis, cell proliferation and epithelial-mesenchymal transition induced by chronic restraint stress in OSCC cells. Our findings demonstrate that chronic restraint stress promotes the proliferation and metastasis of OSCC by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Our study provides novel insights to help understand the underlying mechanisms of CXCL3 in OSCC progression induced by chronic restraint stress.
Collapse
Affiliation(s)
- Fangzhi Lou
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Huiqing Long
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Shihong Luo
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Xin Jin
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| |
Collapse
|
35
|
Felger JC. Increased Inflammation and Treatment of Depression: From Resistance to Reuse, Repurposing, and Redesign. ADVANCES IN NEUROBIOLOGY 2023; 30:387-416. [PMID: 36928859 DOI: 10.1007/978-3-031-21054-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Based on mounting clinical and translational evidence demonstrating the impact of exogenously administered inflammatory stimuli on the brain and behavior, increased endogenous inflammation has received attention as one pathophysiologic process contributing to psychiatric illnesses and particularly depression. Increased endogenous inflammation is observed in a significant proportion of depressed patients and has been associated with reduced responsiveness to standard antidepressant therapies. This chapter presents recent evidence that inflammation affects neurotransmitters and neurocircuits to contribute to specific depressive symptoms including anhedonia, motor slowing, and anxiety, which may preferentially improve after anti-cytokine therapies in patients with evidence of increased inflammation. Existing and novel pharmacological strategies that target inflammation or its downstream effects on the brain and behavior will be discussed in the context of a need for intelligent trial design in order to meaningfully translate these concepts and develop more precise therapies for depressed patients with increased inflammation.
Collapse
|
36
|
Harsanyi S, Kupcova I, Danisovic L, Klein M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int J Mol Sci 2022; 24:578. [PMID: 36614020 PMCID: PMC9820159 DOI: 10.3390/ijms24010578] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Depression is one of the leading mental illnesses worldwide and lowers the quality of life of many. According to WHO, about 5% of the worldwide population suffers from depression. Newer studies report a staggering global prevalence of 27.6%, and it is rising. Professionally, depression belonging to affective disorders is a psychiatric illness, and the category of major depressive disorder (MDD) comprises various diagnoses related to persistent and disruptive mood disorders. Due to this fact, it is imperative to find a way to assess depression quantitatively using a specific biomarker or a panel of biomarkers that would be able to reflect the patients' state and the effects of therapy. Cytokines, hormones, oxidative stress markers, and neuropeptides are studied in association with depression. The latest research into inflammatory cytokines shows that their relationship with the etiology of depression is causative. There are stronger cytokine reactions to pathogens and stressors in depression. If combined with other predisposing factors, responses lead to prolonged inflammatory processes, prolonged dysregulation of various axes, stress, pain, mood changes, anxiety, and depression. This review focuses on the most recent data on cytokines as markers of depression concerning their roles in its pathogenesis, their possible use in diagnosis and management, their different levels in bodily fluids, and their similarities in animal studies. However, cytokines are not isolated from the pathophysiologic mechanisms of depression or other psychiatric disorders. Their effects are only a part of the whole pathway.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
37
|
Bauer EE, Reed CH, Lyte M, Clark PJ. An evaluation of the rat intestinal monoamine biogeography days following exposure to acute stress. Front Physiol 2022; 13:1021985. [PMID: 36582358 PMCID: PMC9792511 DOI: 10.3389/fphys.2022.1021985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Stress-induced abnormalities in gut monoamine levels (e.g., serotonin, dopamine, norepinephrine) have been linked to gastrointestinal (GI) dysfunction, as well as the worsening of symptoms in GI disorders. However, the influence of stress on changes across the entire intestinal monoamine biogeography has not been well-characterized, especially in the days following stress exposure. Therefore, the aim of this study was to comprehensively assess changes to monoamine neurochemical signatures across the entire rat intestinal tract days after exposure to an acute stressor. To the end, adult male F344 rats were subjected to an episode of unpredictable tail shocks (acute stress) or left undisturbed. Forty-eight hours later rats were euthanized either following a 12 h period of fasting or 30 min of food access to evaluate neurochemical profiles during the peri- and early postprandial periods. Monoamine-related neurochemicals were measured via UHPLC in regions of the small intestine (duodenum, jejunum, ileum), large intestine (cecum, proximal colon, distal colon), cecal contents, fecal contents, and liver. The results suggest a relatively wide-spread increase in measures of serotonin activity across intestinal regions can be observed 48 h after exposure to acute stress, however some evidence was found supporting localized differences in serotonin metabolization. Moreover, acute stress exposure reduced catecholamine-related neurochemical concentrations most notably in the ileum, and to a lesser extent in the cecal contents. Next, stress-related fecal serotonin concentrations were consistent with intestinal profiles. However, fecal dopamine was elevated in association with stress, which did not parallel findings in any other intestinal area. Finally, stress exposure and the food access period together only had minor effects on intestinal monoamine profiles. Taken together, these data suggest nuanced differences in monoaminergic profiles exist across intestinal regions the days following exposure to an acute stressor, highlighting the importance of assessments that consider the entire intestinal tract biogeography when investigating stress-related biological outcomes that may be relevant to GI pathophysiology.
Collapse
Affiliation(s)
- Ella E. Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Carter H. Reed
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Peter J. Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
38
|
Rauch CE, Mika AS, McCubbin AJ, Huschtscha Z, Costa RJS. Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise-A systematic literature review. Front Nutr 2022; 9:1003620. [PMID: 36570133 PMCID: PMC9768503 DOI: 10.3389/fnut.2022.1003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A systematic literature search was undertaken to assess the impact of pre-, pro-, and syn-biotic supplementation on measures of gastrointestinal status at rest and in response to acute exercise. Methods Six databases (Ovid MEDLINE, EMBASE, Cinahl, SportsDISCUS, Web of Science, and Scopus) were used. Included were human research studies in healthy sedentary adults, and healthy active adults, involving supplementation and control or placebo groups. Sedentary individuals with non-communicable disease risk or established gastrointestinal inflammatory or functional diseases/disorders were excluded. Results A total of n = 1,204 participants were included from n = 37 papers reported resting outcomes, and n = 13 reported exercise-induced gastrointestinal syndrome (EIGS) outcomes. No supplement improved gastrointestinal permeability or gastrointestinal symptoms (GIS), and systemic endotoxemia at rest. Only modest positive changes in inflammatory cytokine profiles were observed in n = 3/15 studies at rest. Prebiotic studies (n = 4/5) reported significantly increased resting fecal Bifidobacteria, but no consistent differences in other microbes. Probiotic studies (n = 4/9) increased the supplemented bacterial species-strain. Only arabinoxylan oligosaccharide supplementation increased total fecal short chain fatty acid (SCFA) and butyrate concentrations. In response to exercise, probiotics did not substantially influence epithelial injury and permeability, systemic endotoxin profile, or GIS. Two studies reported reduced systemic inflammatory cytokine responses to exercise. Probiotic supplementation did not substantially influence GIS during exercise. Discussion Synbiotic outcomes resembled probiotics, likely due to the minimal dose of prebiotic included. Methodological issues and high risk of bias were identified in several studies, using the Cochrane Risk of Bias Assessment Tool. A major limitation in the majority of included studies was the lack of a comprehensive approach of well-validated biomarkers specific to gastrointestinal outcomes and many included studies featured small sample sizes. Prebiotic supplementation can influence gut microbial composition and SCFA concentration; whereas probiotics increase the supplemented species-strain, with minimal effect on SCFA, and no effect on any other gastrointestinal status marker at rest. Probiotic and synbiotic supplementation does not substantially reduce epithelial injury and permeability, systemic endotoxin and inflammatory cytokine profiles, or GIS in response to acute exercise.
Collapse
Affiliation(s)
- Christopher E. Rauch
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alice S. Mika
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alan J. McCubbin
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Zoya Huschtscha
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia,*Correspondence: Ricardo J. S. Costa
| |
Collapse
|
39
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
40
|
McDermott K, Nash P, Boyington A, Planell LP, Joe S, Streifel K, Nichols G, Lucas B, Spence A, Campisi J. Effects of olfactory stimulus on group performance and individual stress responses in university students. Physiol Behav 2022; 254:113905. [PMID: 35817123 DOI: 10.1016/j.physbeh.2022.113905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Group work is essential in professional settings to encourage effective communication and optimize outcomes. Stress can reduce teamwork effectiveness and aromatherapy might be able to reduce feelings of stress/anxiety in individuals. However, it is unclear if aromatherapy impacts stress levels or performance during group activities. Therefore, we examined if essential oil exposure impacted stress responses and performance of individuals and groups during a team-based task involving a challenging medical decision. Subjects (n = 36) were part of a 3-person group (12 groups total) that completed a timed moral reasoning dilemma wearing a mask that contained a purported stimulatory essential oil (peppermint), a purported relaxing essential oil (lavender) or masks that contained neither odor (3 groups/mask type). Heart rate (HR) responses were recorded continuously before, during and after the task. The time to complete the task, decision making during the task, and subject's perceptions of the task were also recorded. Control subjects and subjects exposed to peppermint demonstrated a significant stress-induced increase in HR during the group task. However, subjects exposed to lavender demonstrated a significantly attenuated HR. Subjects in the control group who perceived high stress levels during the task demonstrated further elevations in HR than those not reporting stress, however, this pattern was not observed in subjects exposed to either essential oil. Groups did not differ in the time required to complete the task although only the groups exposed to lavender used decision making consistent with medical practice. Therefore, exposure to lavender was associated with differential physiological responses during a stressful group task, potentially due to olfactory system stimulation of anxiolytic and/or trust promoting central nervous system pathways. Aromatherapy might be a useful tool in group settings to mitigate the impact of stress and improve group performance.
Collapse
Affiliation(s)
- Katie McDermott
- Department of Biology, Regis University, Denver, CO, United States
| | - Priscilla Nash
- Department of Biology, Regis University, Denver, CO, United States
| | - Amber Boyington
- Department of Biology, Regis University, Denver, CO, United States
| | | | - Steven Joe
- Department of Biology, Regis University, Denver, CO, United States
| | - Karin Streifel
- Department of Biology, Regis University, Denver, CO, United States
| | - Gena Nichols
- Department of Biology, Regis University, Denver, CO, United States
| | - Bethany Lucas
- Department of Biology, Regis University, Denver, CO, United States
| | - Allyson Spence
- Department of Biology, Regis University, Denver, CO, United States
| | - Jay Campisi
- Department of Biology, Regis University, Denver, CO, United States.
| |
Collapse
|
41
|
Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice. Int J Sport Nutr Exerc Metab 2022; 32:387-418. [PMID: 35963615 DOI: 10.1123/ijsnem.2022-0048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Strenuous exercise is synonymous with disturbing gastrointestinal integrity and function, subsequently prompting systemic immune responses and exercise-associated gastrointestinal symptoms, a condition established as "exercise-induced gastrointestinal syndrome." When exercise stress and aligned exacerbation factors (i.e., extrinsic and intrinsic) are of substantial magnitude, these exercise-associated gastrointestinal perturbations can cause performance decrements and health implications of clinical significance. This potentially explains the exponential growth in exploratory, mechanistic, and interventional research in exercise gastroenterology to understand, accurately measure and interpret, and prevent or attenuate the performance debilitating and health consequences of exercise-induced gastrointestinal syndrome. Considering the recent advancement in exercise gastroenterology research, it has been highlighted that published literature in the area is consistently affected by substantial experimental limitations that may affect the accuracy of translating study outcomes into practical application/s and/or design of future research. This perspective methodological review attempts to highlight these concerns and provides guidance to improve the validity, reliability, and robustness of the next generation of exercise gastroenterology research. These methodological concerns include participant screening and description, exertional and exertional heat stress load, dietary control, hydration status, food and fluid provisions, circadian variation, biological sex differences, comprehensive assessment of established markers of exercise-induced gastrointestinal syndrome, validity of gastrointestinal symptoms assessment tool, and data reporting and presentation. Standardized experimental procedures are needed for the accurate interpretation of research findings, avoiding misinterpreted (e.g., pathological relevance of response magnitude) and overstated conclusions (e.g., clinical and practical relevance of intervention research outcomes), which will support more accurate translation into safe practice guidelines.
Collapse
|
42
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
43
|
Phenotype Diversity of Macrophages in Osteoarthritis: Implications for Development of Macrophage Modulating Therapies. Int J Mol Sci 2022; 23:ijms23158381. [PMID: 35955514 PMCID: PMC9369350 DOI: 10.3390/ijms23158381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammation is implicated in numerous human pathologies. In particular, low-grade inflammation is currently recognized as an important mechanism of osteoarthritis (OA), at least in some patients. Among the signs of the inflammatory process are elevated macrophage numbers detected in the OA synovium compared to healthy controls. High macrophage counts also correlate with clinical symptoms of the disease. Macrophages are central players in the development of chronic inflammation, pain, cartilage destruction, and bone remodeling. However, macrophages are also involved in tissue repair and remodeling, including cartilage. Therefore, reduction of macrophage content in the joints correlates with deleterious effects in OA models. Macrophage population is heterogeneous and dynamic, with phenotype transitions being induced by a variety of stimuli. In order to effectively use the macrophage inflammatory circuit for treatment of OA, it is important to understand macrophage heterogeneity and interactions with surrounding cells and tissues in the joint. In this review, we discuss functional phenotypes of macrophages and specific targeting approaches relevant for OA treatment development.
Collapse
|
44
|
Li C, Wang M, Wang W, Li Y, Zhang D. Autophagy regulates the effects of ADSC-derived small extracellular vesicles on acute lung injury. Respir Res 2022; 23:151. [PMID: 35681240 PMCID: PMC9185906 DOI: 10.1186/s12931-022-02073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Small extracellular vesicles (sEVs) have been recognized to be more effective than direct stem cell differentiation into functional target cells in preventing tissue injury and promoting tissue repair. Our previous study demonstrated the protective effect of adipose-derived stem cells (ADSCs) on lipopolysaccharide (LPS)-induced acute lung injury and the effect of autophagy on ADSC functions, but the role of ADSC-derived sEVs (ADSC-sEVs) and autophagy-mediated regulation of ADSC-sEVs in LPS-induced pulmonary microvascular barrier damage remains unclear. After treatment with sEVs from ADSCs with or without autophagy inhibition, LPS-induced human pulmonary microvascular endothelial cell (HPMVECs) barrier damage was detected. LPS-induced acute lung injury in mice was assessed in vivo after intravenous administration of sEVs from ADSCs with or without autophagy inhibition. The effects of autophagy on the bioactive miRNA components of ADSC-sEVs were assessed after prior inhibition of cell autophagy. We found that ADSC-sEV effectively alleviated LPS-induced apoptosis, tight junction damage and high permeability of PMVECs. Moreover, in vivo administration of ADSC-sEV markedly inhibited LPS-triggered lung injury. However, autophagy inhibition, markedly weakened the therapeutic effect of ADSC-sEVs on LPS-induced PMVECs barrier damage and acute lung injury. In addition, autophagy inhibition, prohibited the expression of five specific miRNAs in ADSC-sEVs -under LPS-induced inflammatory conditions. Our results indicate that ADSC-sEVs protect against LPS-induced pulmonary microvascular barrier damage and acute lung injury. Autophagy is a positive mediator of sEVs function, at least in part through controlling the expression of bioactive miRNAs in sEVs.
Collapse
Affiliation(s)
- Chichi Li
- Plastic Surgery Department, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province, 325000, People's Republic of China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province, 325000, People's Republic of China
| | - Wangjia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province, 325000, People's Republic of China
| | - Yuping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province, 325000, People's Republic of China.
| | - Dan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province, 325000, People's Republic of China.
| |
Collapse
|
45
|
Shen L, Niu M, Lu Y, Cao W, Gao X. Bone Marrow Mesenchymal Stem Cells (BMSC)-Upregulated miR-139 Inhibited the Migration and Invasion of Breast Cancer Cells In Vitro. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNAs exert a crucial impact on tumor biology. However, the biological effect of miR-139 on breast cancer cells remains unclear yet. Here we intend to clarify the effect and mechanism of miR-139 derived from BMSCs on the biological behavior of gastric cancer cells. Breast cancer
cells were divided into BMSC group (mixed culture of BMSC and breast cancer cells 1:1), miR-139 mimics group, si-PXN group and control group followed by analysis of miR-139 level, cell activity by MTT assay and the targeted binding of miR-139 to PXN by luciferase reporter assay. In relative
to control, miR-139 level was significantly declined in gastric cancer cells, while PXN level was elevated and associated with the prognosis. miR-139 was up-regulated by BMSCs or miR-139 mimics, thereby regulating EMT process through targeted inhibition of PCN, and ultimately inhibiting the
activity of breast cancer cells. In conclusion, BMSC co-culture can inhibit PCN by up-regulating miR-139, thereby regulating EMT process and inhibiting breast cancer progression, implying that miR-139 and PXN could be used as therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Liandi Shen
- Department of Maternal and Child Health, Jiading Maternal and Child Health Hospital, Shanghai, 201800, China
| | - Mengdi Niu
- Department of Breast and Thyroid, Qingdao Women and Children’s Hospital, Qingdao, Shandong, 266000, China
| | - Yangyong Lu
- Department of Breast and Thyroid, Qingdao Women and Children’s Hospital, Qingdao, Shandong, 266000, China
| | - Weihong Cao
- Department of Breast Disease Clinic, Qingdao University Hospital, Qingdao, Shandong, 266000, China
| | - Xueqiang Gao
- Department of Breast Disease Clinic, Qingdao University Hospital, Qingdao, Shandong, 266000, China
| |
Collapse
|
46
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
47
|
Xiao YC, Wang W, Gao Y, Li WY, Tan X, Wang YK, Wang WZ. The Peripheral Circulating Exosomal microRNAs Related to Central Inflammation in Chronic Heart Failure. J Cardiovasc Transl Res 2022; 15:500-513. [PMID: 35501543 DOI: 10.1007/s12265-022-10266-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Sympathetic hyperactivity plays an important role in the progression of chronic heart failure (CHF). It is reported that inflammation in the rostral ventrolateral medulla (RVLM), a key region for sympathetic control, excites the activity of neurons and leads to an increase in sympathetic outflow. Exosome, as the carrier of microRNAs (miRNAs), has the function of crossing the blood-brain barrier. The present study was designed to investigate the effect of exosomal miRNAs on central inflammation via peripheral-central interaction in CHF. The miRNA microarray detection was performed to compare the difference between circulating exosomes and the RVLM in CHF rats. It was shown that the expression of miR-214-3p was significantly up-regulated, whereas let-7g-5p and let-7i-5p were significantly down-regulated in circulating exosomes and the RVLM. Further studies in PC12 cells revealed that miR-214-3p enhanced the inflammatory response, while let-7g-5p and let-7i-5p reduced the neuroinflammation. The direct interaction between the miRNA and its inflammatory target gene (miR-214-3p, Traf3; let-7g-5p, Smad2; and let-7i-5p, Mapk6) was confirmed by the dual-luciferase reporter assay. These results suggest that the circulating exosomes participate in the enhancement of inflammatory response in the RVLM through their packaged miRNAs, which may further contribute to sympathetic hyperactivity in CHF.
Collapse
Affiliation(s)
- Yu-Chen Xiao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuan Gao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Wan-Yang Li
- School of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
48
|
Gabisonia K, Khan M, Recchia FA. Extracellular vesicle-mediated bidirectional communication between heart and other organs. Am J Physiol Heart Circ Physiol 2022; 322:H769-H784. [PMID: 35179973 PMCID: PMC8993522 DOI: 10.1152/ajpheart.00659.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
In recent years, a wealth of studies has identified various molecular species released by cardiac muscle under physiological and pathological conditions that exert local paracrine and/or remote endocrine effects. Conversely, humoral factors, principally produced by organs such as skeletal muscle, kidney, or adipose tissue, may affect the function and metabolism of normal and diseased hearts. Although this cross communication within cardiac tissue and between the heart and other organs is supported by mounting evidence, research on the role of molecular mediators carried by exosomes, microvesicles, and apoptotic bodies, collectively defined as extracellular vesicles (EVs), is at an early stage of investigation. Once released in the circulation, EVs can potentially reach any organ where they transfer their cargo of proteins, lipids, and nucleic acids that exert potent biological effects on recipient cells. Although there are a few cases where such signaling was clearly demonstrated, the results from many other studies can only be tentatively inferred based on indirect evidence obtained by infusing exogenous EVs in experimental animals or by adding them to cell cultures. This area of research is in rapid expansion and most mechanistic interpretations may change in the near future; hence, the present review on the role played by EV-carried mediators in the two-way communication between heart and skeletal muscle, kidneys, bone marrow, lungs, liver, adipose tissue, and brain is necessarily limited. Nonetheless, the available data are already unveiling new, intriguing, and ample scenarios in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mohsin Khan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Gabriele Monasterio, Pisa, Italy
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A. The Role of KH-Type Splicing Regulatory Protein (KSRP) for Immune Functions and Tumorigenesis. Cells 2022; 11:cells11091482. [PMID: 35563788 PMCID: PMC9104899 DOI: 10.3390/cells11091482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional control of gene expression is one important mechanism that enables stringent and rapid modulation of cytokine, chemokines or growth factors expression, all relevant for immune or tumor cell function and communication. The RNA-binding protein KH-type splicing regulatory protein (KSRP) controls the mRNA stability of according genes by initiation of mRNA decay and inhibition of translation, and by enhancing the maturation of microRNAs. Therefore, KSRP plays a pivotal role in immune cell function and tumor progression. In this review, we summarize the current knowledge about KSRP with regard to the regulation of immunologically relevant targets, and the functional role of KSRP on immune responses and tumorigenesis. KSRP is involved in the control of myeloid hematopoiesis. Further, KSRP-mediated mRNA decay of pro-inflammatory factors is necessary to keep immune homeostasis. In case of infection, functional impairment of KSRP is important for the induction of robust immune responses. In this regard, KSRP seems to primarily dampen T helper cell 2 immune responses. In cancer, KSRP has often been associated with tumor growth and metastasis. In summary, aside of initiation of mRNA decay, the KSRP-mediated regulation of microRNA maturation seems to be especially important for its diverse biological functions, which warrants further in-depth examination.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
- Correspondence: ; Tel.: +49-6131-179276; Fax: +49-6131-179042
| |
Collapse
|
50
|
Rudzki S. Is PTSD an Evolutionary Survival Adaptation Initiated by Unrestrained Cytokine Signaling and Maintained by Epigenetic Change? Mil Med 2022; 188:usac095. [PMID: 35446412 DOI: 10.1093/milmed/usac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Treatment outcomes for PTSD with current psychological therapies are poor, with very few patients achieving sustained symptom remission. A number of authors have identified physiological and immune disturbances in Post Traumatic Stress Disorder (PTSD) patients, but there is no unifying hypothesis that explains the myriad features of the disorder. MATERIALS AND METHODS The medical literature was reviewed over a 6-year period primarily using the medical database PUBMED. RESULTS The literature contains numerous papers that have identified a range of physiological and immune dysfunction in association with PTSD. This paper proposes that unrestrained cytokine signaling induces epigenetic changes that promote an evolutionary survival adaptation, which maintains a defensive PTSD phenotype. The brain can associate immune signaling with past threat and initiate a defensive behavioral response. The sympathetic nervous system is pro-inflammatory, while the parasympathetic nervous system is anti-inflammatory. Prolonged cholinergic withdrawal will promote a chronic inflammatory state. The innate immune cytokine IL-1β has pleiotropic properties and can regulate autonomic, glucocorticoid, and glutamate receptor functions, sleep, memory, and epigenetic enzymes. Changes in epigenetic enzyme activity can potentially alter phenotype and induce an adaptation. Levels of IL-1β correlate with severity and duration of PTSD and PTSD can be prevented by bolus administration of hydrocortisone in acute sepsis, consistent with unrestrained inflammation being a risk factor for PTSD. The nervous and immune systems engage in crosstalk, governed by common receptors. The benefits of currently used psychiatric medication may arise from immune, as well as synaptic, modulation. The psychedelic drugs (3,4-Methylenedioxymethamphetamine (MDMA), psilocybin, and ketamine) have potent immunosuppressive and anti-inflammatory effects on the adaptive immune system, which may contribute to their reported benefit in PTSD. There may be distinct PTSD phenotypes induced by innate and adaptive cytokine signaling. CONCLUSION In order for an organism to survive, it must adapt to its environment. Cytokines signal danger to the brain and can induce epigenetic changes that result in a persistent defensive phenotype. PTSD may be the price individuals pay for the genomic flexibility that promotes adaptation and survival.
Collapse
Affiliation(s)
- Stephan Rudzki
- Canberra Sports Medicine, Deakin, Australian Capital Territory 2600, Australia
| |
Collapse
|