1
|
Zhao D, Liu M, Zeng W, Chen S, Bibi S, Wang M, Huang X, Zhu F, Zheng P, Gao Y, Wu Q, Zhang H, Cheng Q, Sun C, Bai L, Zhu Z, Li B, Wu S, Shang Y, Hasi C, Ma H, Zhou S, Jin T. A bispecific antibody targeting the Ig domains of Siglec-E displays enhanced antitumor effects. Int J Biol Macromol 2024; 281:136635. [PMID: 39419134 DOI: 10.1016/j.ijbiomac.2024.136635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Siglec-9 is a promising immune checkpoint molecule, and therapeutics targeting Siglec-9 have the potential to augment anti-tumor immunity. Here, we generated a bispecific antibody, named as aSE4-1-Fc, by fusing two distinct alpaca derived nanobodies, which can simultaneously target the extracellular Ig variable (V)-set domain and C2-set domains of murine Siglec-9 (also known as Siglec-E) with high affinity. In vivo studies showed that aSE4-1-Fc was better than its component antibodies in inhibiting tumor growth/metastasis, and Siglec-E blockade using aSE4-1-Fc generated protective anti-tumor T cell memory. Furthermore, the combination of aSE4-1-Fc with anti-PD-L1 therapy greatly improved the antitumor effects by augmenting both T and NK cells. Taken together, this study emphasizes the importance of Siglec-9 as a potential cancer therapeutic target, demonstrates the synergistic effect of co-inhibition of Siglec-9 and PD-L1, and may have implications for developing engineered antibodies targeting Siglec-9 with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Muziying Liu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shi Chen
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shaheen Bibi
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Meihua Wang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoxue Huang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongxiang Gao
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiqin Wu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hongliang Zhang
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Qingyu Cheng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Cheng Sun
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Li Bai
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongliang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Genebiol Biotech. LTD., Hefei, 230000, China
| | - Bofeng Li
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Genebiol Biotech. LTD., Hefei, 230000, China
| | - Songquan Wu
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Yuhua Shang
- Anhui Genebiol Biotech. LTD., Hefei, 230000, China
| | - Chaolu Hasi
- Sonid Suoqi Animal Husbandry Workstation, Xilinhot City, Inner Mongolia Xilin Gol League, China
| | - Huan Ma
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shoubing Zhou
- Department of Breast Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Anhui, 230031, China; Department of Breast Oncology, Anhui Provincial Cancer Hospital. Hefei, Anhui, 230031, China.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; College of Medicine, Lishui University, Lishui, 323000, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Anhui Genebiol Biotech. LTD., Hefei, 230000, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
2
|
Yin S, Li C, Shen X, Yu G, Cui L, Wu Y, He Y, Yu S, Chen J, Lu S, Qiu G, Song M, Qian C, Zou Z, Yu Y, Xu S. Siglec-G Suppresses CD8 + T Cells Responses through Metabolic Rewiring and Can be Targeted to Enhance Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403438. [PMID: 39373395 DOI: 10.1002/advs.202403438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Indexed: 10/08/2024]
Abstract
CD8+ T cells play a critical role in cancer immune-surveillance and pathogen elimination. However, their effector function can be severely impaired by inhibitory receptors such as programmed death-1 (PD-1) and T cell immunoglobulin domain and mucin domain-3 (Tim-3). Here Siglec-G is identified as a coinhibitory receptor that limits CD8+ T cell function. Siglec-G is highly expressed on tumor-infiltrating T cells and is enriched in the exhausted T cell subset. Ablation of Siglec-G enhances the efficacy of adoptively transferred T cells and chimeric antigen receptor (CAR) T cells in suppressing solid tumors growth. Mechanistically, sialoglycan ligands, such as CD24 on tumor cells, activate the Siglec-G-SHP2 axis in CD8+ T cells, impairing metabolic reprogramming from oxidative phosphorylation to glycolysis, which dampens cytotoxic T lymphocyte (CTL) activation, expansion, and cytotoxicity. These findings discover a critical role for Siglec-G in inhibiting CD8+ T cell responses, suggesting its potential therapeutic effect in adoptive T cell therapy and tumor immunotherapy.
Collapse
Affiliation(s)
- Shenhui Yin
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Xin Shen
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Yunyang Wu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Yixian He
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shu Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Jie Chen
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Guifang Qiu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Mengqi Song
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
3
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
4
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
6
|
Zhang X, Li C, Zhu D, Mao H, Jiang X. In Situ Engineering Cancer Mask to Immobilize Tumor Cells and Block Metastasis. Adv Healthc Mater 2024; 13:e2400742. [PMID: 38676706 DOI: 10.1002/adhm.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Indexed: 04/29/2024]
Abstract
This work reports a new concept of cancer mask in situ to alter the specific biological functions of cancer cells. Metastatic cancer cells are highly invasive in part due to the presence of the glycan matrix in the cell membrane. Using a rational designed bio-orthogonal reaction, the cancer cell surface is reconstructed in situ by incorporating endogenous polysialic acids in the glycan matrix on the cell membrane to form a mesh-like network, called cancer mask. The network of the glycan matrix can not only immobilize cancer cells but also effectively block the stimulation of metastasis promoters to tumor cells and inhibit the formation of epithelial to mesenchymal transition (EMT), causing metastatic cancer cells incarceration. The results demonstrate a new strategy to control and even eliminate the cancer metastasis that is a major cause of treatment failure and poor patient outcome.
Collapse
Affiliation(s)
- Xiaoke Zhang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Cheng Li
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Dan Zhu
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
7
|
Chen QW, Zhang Y, Bao P, Zhang XZ. Sialidase-Chimeric Bioengineered Bacteria for Tumor-Sialoglycan-Triggered Solid Tumor Therapy. NANO LETTERS 2024; 24:10362-10371. [PMID: 39133195 DOI: 10.1021/acs.nanolett.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Adoptive cell therapies for solid tumors are usually limited by off-target antigens, incapable tissue infiltration, and cell function exhaustion. In contrast, bacterial cells possess the inherent competencies of preferential tumor targeting, deep tissue penetration, and high intratumoral bioactivity and represent promising alternatives to overcome these challenges. Here, a sialic-acid-responsive regulatory gene circuit is engineered into Escherichia coli MG1655 to express cytolysin of hemolysin E (HlyE). Furthermore, sialidases are bioorthogonally decorated onto the surface of azido-functionalized bioengineered bacteria for recognizing tumor sialoglycans and cleaving their sialosides into free sialic acids. As chemical inducers, sialic acids feedbackingly activate the bacterial gene circuit to produce HlyE and lyse tumor cells. This study mimics the tumor antigen-induced cytotoxin production and cell lysis that occurs in chimeric antigen receptor T (CAR-T) cells yet surmounts the intrinsic limitations of adoptive cell therapies. Moreover, sialidase-mediated tumor cell desialylation also reverses the immunosuppressive effect of glycoimmune checkpoints and further improves the therapeutic effect of solid tumors.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yun Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
8
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
9
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
10
|
Mustafov D, Ahmad MS, Serrano A, Braoudaki M, Siddiqui SS. MicroRNA:Siglec crosstalk in cancer progression. Curr Opin Chem Biol 2024; 81:102502. [PMID: 39029379 DOI: 10.1016/j.cbpa.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
Aberrant Siglec expression in the tumour microenvironment has been implicated in tumour malignancies and can impact tumour behaviour and patient survival. Further to this, engagement with sialoglycans induces masked antigen recognition and promotes immune evasion, highlighting deregulated immune function. This necessitates the elucidation of their expression profiles in tumour progression. MicroRNAs (miRNAs) mediated targeting represents a novel approach to further elucidate Siglec potential and clinical relevance. Although miRNA activity in Siglec expression remains limited, we highlight current literature detailing miRNA:Siglec interactions within the tumour landscape and provide insights for possible diagnostic and therapeutic strategies in targeting the Siglec/sialic acid axis.
Collapse
Affiliation(s)
- D Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - M S Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - A Serrano
- Francisco de Vitoria University, Ctra. M-515 Pozuelo-Majadahonda, Km. 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain. https://twitter.com/Antonation2002
| | - M Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | - S S Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
11
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. Front Oncol 2024; 14:1432333. [PMID: 39104719 PMCID: PMC11299042 DOI: 10.3389/fonc.2024.1432333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Ovarian and other peritoneal cancers have a strong tendency to metastasize into the surrounding adipose tissue. This study describes an effect of the adipose microenvironment on upregulation of sialic acid-containing glycans in ovarian cancer (OC). Heterogeneous populations of glycosylated OC tumors converged to a highly sialylated cell state that regulates tumorigenesis in an immune-dependent manner. Methods We modeled the adipose microenvironment by conditioning growth media with human patient-derived adipose tissue. OC cell lines grown in the presence vs. absence of adipose conditioned media (ACM) were characterized by transcriptomics, western blotting, and chemical biology glycan labeling methods. Fluorescence-activated cell sorting was used to separate adipose-driven upregulation of hypersialylated ("SNA-high") vs. hyposialylated ("SNA-low") OC subpopulations. The two subpopulations were characterized by further transcriptomic and quantitative polymerase chain reaction analyses, then injected into a syngeneic mouse model. Immune system involvement was implicated using wild type and athymic nude mice with a primary endpoint of overall survival. Results Adipose conditioning resulted in upregulation of sialyltransferases ST3GAL1, ST6GAL1, ST6GALNAC3, and ST8Sia1. In culture, OC cells displayed two distinct sialylated subpopulations that were stable for up to 9 passages, suggesting inherent heterogeneity in sialylation that is maintained throughout cell division and media changes. OC tumors that implanted in the omental adipose tissue exclusively reprogrammed to the highly sialylated subpopulation. In wild type C57BL/6 mice, only the hypersialylated SNA-high subpopulation implanted in the adipose, whereas the hyposialylated SNA-low subpopulation failed to be tumorigenic (p=0.023, n=5). In the single case where SNA-low established a tumor, post-mortem analysis revealed reprogramming of the tumor to the SNA-high state in vivo. In athymic nude mice, both subpopulations rapidly formed tumors, implicating a role of the adaptive immune system. Conclusions These findings suggest a model of glycan-dependent tumor evolution wherein the adipose microenvironment reprograms OC to a tumorigenic state that resists the adaptive immune system. Mechanistically, adipose factors upregulate sialyltransferases. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancer tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Alexandra Fox
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Garry D. Leonard
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Nicholas Adzibolosu
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Terrence Wong
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Roslyn Tedja
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Sapna Sharma
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Radhika Gogoi
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Gil Mor
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
12
|
Cornelissen LAM, Santegoets KCM, Kers-Rebel ED, Bossmann SAJFH, Ter Laan M, Granado D, Adema GJ. Glioma-Associated Sialoglycans Drive the Immune Suppressive Phenotype and Function of Myeloid Cells. Pharmaceutics 2024; 16:953. [PMID: 39065651 PMCID: PMC11279593 DOI: 10.3390/pharmaceutics16070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment of glioblastoma IDH-wildtype is highly immune suppressive and is characterized by a strong component of myeloid-derived suppressor cells (MDSCs). To interfere with the immune suppressive functions of MDSCs, a comprehensive understanding on how MDSCs acquire their suppressive phenotype is essential. Previously, we and others have shown a distinct Sialic acid-binding immunoglobulin-like lectin (Siglec) receptor expression profile for MDSCs in glioblastoma. Siglec receptors can transmit inhibitory signals comparable to PD-1 and are suggested to act as glyco-immune checkpoints. Here, we investigated how glioma specific Siglec-sialic acid interactions influence myeloid immune suppressive functions. Co-culturing monocytes with glioblastoma cells induced CD163 expression on the monocytes. Upon desialylation of the glioblastoma cells, this induction of CD163 was hampered, and furthermore, the monocytes were now able to secrete higher amounts of IL-6 and TNFα compared to fully sialylated glioblastoma cells. Additionally, Siglec-specific triggering using anti-Siglec-7 or Siglec-9 antibodies displayed a decreased TNFα secretion by the monocytes, validating the role of the Siglec-Sialic axis in the co-culture experiments. Together, our results demonstrate that glioblastoma cells induce a myeloid immune-suppressive phenotype that could be partly rescued by lowering the glioblastoma-associated sialic acid levels. This manuscript supports further research of the Siglec-Sialic acid axis in the context of glioblastoma and its potential to improve clinical outcome.
Collapse
Affiliation(s)
- Lenneke A. M. Cornelissen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Kim C. M. Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esther D. Kers-Rebel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Daniel Granado
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gosse J. Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
13
|
Li M, Jia L, Zhu A, Li J, Li J, Liu X, Xie X. Engineered Leukocyte Biomimetic Colorimetric Sensor Enables High-Efficient Detection of Tumor Cells Based on Bioorthogonal Chemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36106-36116. [PMID: 38955781 DOI: 10.1021/acsami.4c06272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Accurate detection of heterogeneous circulating tumor cells (CTCs) is critical as they can make tumor cells more aggressive, drug-resistant, and metastasizing. Although the leukocyte membrane coating strategy is promising in meeting the challenge of detecting heterogeneous CTCs due to its inherent antiadhesive properties, it is still limited by the reduction or loss of expression of known markers. Bioorthogonal glycol-metabolic engineering is expected to break down this barrier by feeding the cells with sugar derivatives with a unique functional group to establish artificial targets on the surface of tumor cells. Herein, an engineered leukocyte biomimetic colorimetric sensor was accordingly fabricated for high-efficient detection of heterogeneous CTCs. Compared with conventional leukocyte membrane coating, the sensor could covalently bound to the heterogeneous CTCs models fed with Ac4ManNAz in vitro through the synergy of bioorthogonal chemistry and metabolic glycoengineering, ignoring the phenotypic changes of heterogeneous CTCs. Meanwhile, a sandwich structure composed of leukocyte biomimetic layer/CTCs/MoS2 nanosheet was formed for visual detection of HeLa cells as low as 10 cells mL-1. Overall, this approach can overcome the dependence of conventional cell membrane biomimetic technology on specific cell phenotypes and provide a new viewpoint to highly efficiently detect heterogeneous CTCs.
Collapse
Affiliation(s)
- Min Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Lanlan Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Aihong Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaqi Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Jing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xia Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| |
Collapse
|
14
|
Cumin C, Gee L, Litfin T, Muchabaiwa R, Martin G, Cooper O, Heinzelmann-Schwarz V, Lange T, von Itzstein M, Jacob F, Everest-Dass A. Highly Sensitive Spatial Glycomics at Near-Cellular Resolution by On-Slide Derivatization and Mass Spectrometry Imaging. Anal Chem 2024; 96:11163-11171. [PMID: 38953530 PMCID: PMC11256013 DOI: 10.1021/acs.analchem.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Glycans on proteins and lipids play important roles in maturation and cellular interactions, contributing to a variety of biological processes. Aberrant glycosylation has been associated with various human diseases including cancer; however, elucidating the distribution and heterogeneity of glycans in complex tissue samples remains a major challenge. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is routinely used to analyze the spatial distribution of a variety of molecules including N-glycans directly from tissue surfaces. Sialic acids are nine carbon acidic sugars that often exist as the terminal sugars of glycans and are inherently difficult to analyze using MALDI-MSI due to their instability prone to in- and postsource decay. Here, we report on a rapid and robust method for stabilizing sialic acid on N-glycans in FFPE tissue sections. The established method derivatizes and identifies the spatial distribution of α2,3- and α2,6-linked sialic acids through complete methylamidation using methylamine and PyAOP ((7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate). Our in situ approach increases the glycans detected and enhances the coverage of sialylated species. Using this streamlined, sensitive, and robust workflow, we rapidly characterize and spatially localize N-glycans in human tumor tissue sections. Additionally, we demonstrate this method's applicability in imaging mammalian cell suspensions directly on slides, achieving cellular resolution with minimal sample processing and cell numbers. This workflow reveals the cellular locations of distinct N-glycan species, shedding light on the biological and clinical significance of these biomolecules in human diseases.
Collapse
Affiliation(s)
- Cécile Cumin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Lindsay Gee
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Thomas Litfin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ropafadzo Muchabaiwa
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gael Martin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Oren Cooper
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Viola Heinzelmann-Schwarz
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
- Hospital
for Women, Department of Gynaecology and Gynaecological Oncology, University Hospital Basel and University of Basel, Basel 4001, Switzerland
| | - Tobias Lange
- Institute
of Anatomy and Experimental Morphology, University Cancer Center Hamburg
(UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Institute
of Anatomy I, Comprehensive Cancer Center Central Germany (CCCG), Jena University Hospital, Jena 07740, Germany
| | - Mark von Itzstein
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Francis Jacob
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Arun Everest-Dass
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
15
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
16
|
Chen Z, Yu M, Zhang B, Jin L, Yu Q, Liu S, Zhou B, Yan J, Zhang W, Li X, Xu Y, Xiao Y, Zhou J, Fan J, Hung MC, Ye Q, Li H, Guo L. SIGLEC15, negatively correlated with PD-L1 in HCC, could induce CD8+ T cell apoptosis to promote immune evasion. Oncoimmunology 2024; 13:2376264. [PMID: 38988824 PMCID: PMC11236293 DOI: 10.1080/2162402x.2024.2376264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Lei Jin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Qiang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Shuang Liu
- Neurosurgery Department of Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Binghai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wentao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yongsheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, TX, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qinghai Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Translational Research Center, Shanghai, P.R. China
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| |
Collapse
|
17
|
Hodgson K, Orozco-Moreno M, Goode EA, Fisher M, Garnham R, Beatson R, Turner H, Livermore K, Zhou Y, Wilson L, Visser EA, Pijnenborg JF, Eerden N, Moons SJ, Rossing E, Hysenaj G, Krishna R, Peng Z, Nangkana KP, Schmidt EN, Duxfield A, Dennis EP, Heer R, Lawson MA, Macauley M, Elliott DJ, Büll C, Scott E, Boltje TJ, Drake RR, Wang N, Munkley J. Sialic acid blockade inhibits the metastatic spread of prostate cancer to bone. EBioMedicine 2024; 104:105163. [PMID: 38772281 PMCID: PMC11134892 DOI: 10.1016/j.ebiom.2024.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Bone metastasis is a common consequence of advanced prostate cancer. Bisphosphonates can be used to manage symptoms, but there are currently no curative treatments available. Altered tumour cell glycosylation is a hallmark of cancer and is an important driver of a malignant phenotype. In prostate cancer, the sialyltransferase ST6GAL1 is upregulated, and studies show ST6GAL1-mediated aberrant sialylation of N-glycans promotes prostate tumour growth and disease progression. METHODS Here, we monitor ST6GAL1 in tumour and serum samples from men with aggressive prostate cancer and using in vitro and in vivo models we investigate the role of ST6GAL1 in prostate cancer bone metastasis. FINDINGS ST6GAL1 is upregulated in patients with prostate cancer with tumours that have spread to the bone and can promote prostate cancer bone metastasis in vivo. The mechanisms involved are multi-faceted and involve modification of the pre-metastatic niche towards bone resorption to promote the vicious cycle, promoting the development of M2 like macrophages, and the regulation of immunosuppressive sialoglycans. Furthermore, using syngeneic mouse models, we show that inhibiting sialylation can block the spread of prostate tumours to bone. INTERPRETATION Our study identifies an important role for ST6GAL1 and α2-6 sialylated N-glycans in prostate cancer bone metastasis, provides proof-of-concept data to show that inhibiting sialylation can suppress the spread of prostate tumours to bone, and highlights sialic acid blockade as an exciting new strategy to develop new therapies for patients with advanced prostate cancer. FUNDING Prostate Cancer Research and the Mark Foundation For Cancer Research, the Medical Research Council and Prostate Cancer UK.
Collapse
Affiliation(s)
- Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Matthew Fisher
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Richard Beatson
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London WC1E 6JF, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | - Karen Livermore
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Yuhan Zhou
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK
| | - Eline A Visser
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | | | - Nienke Eerden
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands; GlycoTherapeutics B.V., Nijmegen, the Netherlands
| | | | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Rashi Krishna
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Kyla Putri Nangkana
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK; International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Ella P Dennis
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK; Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Michelle A Lawson
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Matthew Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Christian Büll
- Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK; Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, LE2 7LX, UK.
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
18
|
Schuurmans F, Wagemans KE, Adema GJ, Cornelissen LAM. Tumor glucose metabolism and the T cell glycocalyx: implication for T cell function. Front Immunol 2024; 15:1409238. [PMID: 38881904 PMCID: PMC11176483 DOI: 10.3389/fimmu.2024.1409238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The T cell is an immune cell subset highly effective in eliminating cancer cells. Cancer immunotherapy empowers T cells and occupies a solid position in cancer treatment. The response rate, however, remains relatively low (<30%). The efficacy of immunotherapy is highly dependent on T cell infiltration into the tumor microenvironment (TME) and the ability of these infiltrated T cells to sustain their function within the TME. A better understanding of the inhibitory impact of the TME on T cells is crucial to improve cancer immunotherapy. Tumor cells are well described for their switch into aerobic glycolysis (Warburg effect), resulting in high glucose consumption and a metabolically distinct TME. Conversely, glycosylation, a predominant posttranslational modification of proteins, also relies on glucose molecules. Proper glycosylation of T cell receptors influences the immunological synapse between T cells and tumor cells, thereby affecting T cell effector functions including their cytolytic and cytostatic activities. This review delves into the complex interplay between tumor glucose metabolism and the glycocalyx of T cells, shedding light on how the TME can induce alterations in the T cell glycocalyx, which can subsequently influence the T cell's ability to target and eliminate tumor cells.
Collapse
Affiliation(s)
| | | | | | - Lenneke A. M. Cornelissen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
21
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593990. [PMID: 38798490 PMCID: PMC11118282 DOI: 10.1101/2024.05.13.593990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sialylation, the addition of negatively charged sialic acid sugars to terminal ends of glycans, is upregulated in most cancers. Hypersialylation supports multiple pro-tumor mechanisms such as enhanced migration and invasion, resistance to apoptosis and immune evasion. A current gap in knowledge is the lack of understanding on how the tumor microenvironment regulates cancer cell sialylation. The adipose niche is a main component of most peritoneal cancers' microenvironment. This includes ovarian cancer (OC), which causes most deaths from all gynecologic cancers. In this report, we demonstrate that the adipose microenvironment is a critical regulator of OC cell sialylation. In vitro adipose conditioning led to an increase in both ⍺2,3- and ⍺2,6-linked cell surface sialic acids in both human and mouse models of OC. Adipose-induced sialylation reprogramming was also observed in vivo from intra-peritoneal OC tumors seeded in the adipose-rich omentum. Mechanistically, we observed upregulation of at least three sialyltransferases, ST3GAL1, ST6GAL1 and ST3GALNAC3. Hypersialylated OC cells consistently formed intra-peritoneal tumors in both immune-competent mice and immune-compromised athymic nude mice. In contrast, hyposiaylated OC cells persistently formed tumors only in athymic nude mice demonstrating that sialylation impacts OC tumor formation in an immune dependent manner. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancers.
Collapse
|
22
|
Xiao R, Tian Y, Zhang J, Li N, Qi M, Liu L, Wang J, Li Z, Zhang J, Zhao F, Wang T, Tan S, Li C, Wu Z, Yu M, Jiang X, Zhan P, Gao L, Han B, Liu X, Liang X, Ma C. Increased Siglec-9/Siglec-9L interactions on NK cells predict poor HCC prognosis and present a targetable checkpoint for immunotherapy. J Hepatol 2024; 80:792-804. [PMID: 38331327 DOI: 10.1016/j.jhep.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND & AIMS Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.
Collapse
Affiliation(s)
- Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ye Tian
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan 250012, Shandong, China
| | - Ling Liu
- Department of Pathology, Dezhou Municipal Hospital, Dezhou 253036, Shandong, China
| | - Jianping Wang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jie Zhang
- Advanced Medical Research Institute and Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Mingyan Yu
- Shandong Institute for Food and Drug Control, Jinan 250101, Shandong, China
| | - Xuemei Jiang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Bo Han
- Department of Pathology, Shandong University Qilu Hospital, Jinan 250012, Shandong, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
23
|
Wieboldt R, Sandholzer M, Carlini E, Lin CW, Börsch A, Zingg A, Lardinois D, Herzig P, Don L, Zippelius A, Läubli H, Mantuano NR. Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2. Cell Mol Immunol 2024; 21:495-509. [PMID: 38448555 PMCID: PMC11061307 DOI: 10.1038/s41423-024-01142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
The overexpression of sialic acids on glycans, called hypersialylation, is a common alteration found in cancer cells. Sialylated glycans can enhance immune evasion by interacting with sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on tumor-infiltrating immune cells. Here, we investigated the effect of sialylated glycans and their interaction with Siglec receptors on myeloid-derived suppressor cells (MDSCs). We found that MDSCs derived from the blood of lung cancer patients and tumor-bearing mice strongly express inhibitory Siglec receptors and are highly sialylated. In murine cancer models of emergency myelopoiesis, Siglec-E knockout in myeloid cells resulted in prolonged survival and increased tumor infiltration of activated T cells. Targeting suppressive myeloid cells by blocking Siglec receptors or desialylation strongly reduced their suppressive potential. We further identified CCL2 as a mediator involved in T-cell suppression upon interaction between sialoglycans and Siglec receptors on MDSCs. Our results demonstrated that sialylated glycans inhibit anticancer immunity by modulating CCL2 expression.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Michael Sandholzer
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Emanuele Carlini
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Chia-Wei Lin
- Functional Genomics Center Zurich, ETH Zurich, Zurich, Switzerland
| | - Anastasiya Börsch
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Andreas Zingg
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Didier Lardinois
- Department of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Petra Herzig
- Laboratory of Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Leyla Don
- Laboratory of Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Alfred Zippelius
- Laboratory of Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.
- Division of Oncology, University Hospital Basel, Basel, Switzerland.
| | - Natalia Rodrigues Mantuano
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
25
|
Onigbinde S, Peng W, Solomon J, Adeniyi M, Nwaiwu J, Fowowe M, Daramola O, Purba W, Mechref Y. O-Glycome Profiling of Breast Cancer Cell Lines to Understand Breast Cancer Brain Metastasis. J Proteome Res 2024; 23:1458-1470. [PMID: 38483275 PMCID: PMC11299836 DOI: 10.1021/acs.jproteome.3c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
26
|
Sun W, Han C, Ge R, Jiang X, Wang Y, Han Y, Wang N, Song Y, Yang M, Chen G, Deng Y. Sialic Acid Conjugate-Modified Cationic Liposomal Paclitaxel for Targeted Therapy of Lung Metastasis in Breast Cancer: What a Difference the Cation Content Makes. Mol Pharm 2024; 21:1625-1638. [PMID: 38403951 DOI: 10.1021/acs.molpharmaceut.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chao Han
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruirui Ge
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaotong Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingchao Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Ning Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
27
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
28
|
Yang F, Dai L, Shi K, Liu Q, Pan M, Mo D, Deng H, Yuan L, Lu Y, Pan L, Yang T, Qian Z. A facile boronophenylalanine modified polydopamine dual drug-loaded nanoparticles for enhanced anti-tumor immune response in hepatocellular carcinoma comprehensive treatment. Biomaterials 2024; 305:122435. [PMID: 38150771 DOI: 10.1016/j.biomaterials.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Hepatocellular carcinoma (HCC) has an insidious onset and high malignancy. Most patients have progressed to intermediate and advanced stages by the time of diagnosis, and the long-term efficacy of traditional treatments is not satisfactory. Immunotherapy has shown great promise in the treatment of HCC in recent years; however, the low immunogenicity and severe immunosuppressive tumor microenvironment result in a low response rate to immunotherapy in HCC patients. Therefore, it is of great significance to improve the immunogenicity of HCC and thus enhance its sensitivity to immunotherapy. Here, we prepared the boronophenylalanine-modified dual drug-loaded polydopamine nanoparticles by a facile method. This system used boronophenylalanine-modified polydopamine nanoparticles as a delivery vehicle and photothermal material for the chemotherapeutic drug doxorubicin and the immune agonist CpG oligodeoxynucleotides (CpG-ODN), with both active targeting and lysosomal escape functions. The cancer cells are rapidly killed by photothermal treatment, and then chemotherapy is used to further kill cancer cells that are inadequately treated by photothermal treatment. The combination of photothermal-chemotherapy synergistically induces the release of relevant antigens from tumor cells, thus initiating anti-tumor immunity; and then cooperates with CpG-ODN to trigger a powerful anti-tumor immune memory effect, potently and durably inhibiting HCC recurrence.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hanzhi Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
29
|
Park S, Colville MJ, Paek JH, Shurer CR, Singh A, Secor EJ, Sailer CJ, Huang LT, Kuo JCH, Goudge MC, Su J, Kim M, DeLisa MP, Neelamegham S, Lammerding J, Zipfel WR, Fischbach C, Reesink HL, Paszek MJ. Immunoengineering can overcome the glycocalyx armour of cancer cells. NATURE MATERIALS 2024; 23:429-438. [PMID: 38361041 PMCID: PMC11471287 DOI: 10.1038/s41563-024-01808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Marshall J Colville
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Justin H Paek
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Carolyn R Shurer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Arun Singh
- State University of New York, Buffalo, NY, USA
| | - Erica J Secor
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Cooper J Sailer
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Marc C Goudge
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Warren R Zipfel
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY, USA.
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
McCord K, Wang C, Anhalt M, Poon WW, Gavin AL, Wu P, Macauley MS. Dissecting the Ability of Siglecs To Antagonize Fcγ Receptors. ACS CENTRAL SCIENCE 2024; 10:315-330. [PMID: 38435516 PMCID: PMC10906256 DOI: 10.1021/acscentsci.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
Fcγ receptors (FcγRs) play key roles in the effector function of IgG, but their inappropriate activation plays a role in several disease etiologies. Therefore, it is critical to better understand how FcγRs are regulated. Numerous studies suggest that sialic acid-binding immunoglobulin-type lectins (Siglecs), a family of immunomodulatory receptors, modulate FcγR activity; however, it is unclear of the circumstances in which Siglecs can antagonize FcγRs and which Siglecs have this ability. Using liposomes displaying selective ligands to coengage FcγRs with a specific Siglec, we explore the ability of Siglec-3, Siglec-5, Siglec-7, and Siglec-9 to antagonize signaling downstream of FcγRs. We demonstrate that Siglec-3 and Siglec-9 can fully inhibit FcγR activation in U937 cells when coengaged with FcγRs. Cells expressing Siglec mutants reveal differential roles for the immunomodulatory tyrosine-based inhibitory motif (ITIM) and immunomodulatory tyrosine-based switch motif (ITSM) in this inhibition. Imaging flow cytometry enabled visualization of SHP-1 recruitment to Siglec-3 in an ITIM-dependent manner, while SHP-2 recruitment is more ITSM-dependent. Conversely, both cytosolic motifs of Siglec-9 contribute to SHP-1/2 recruitment. Siglec-7 poorly antagonizes FcγR activation for two reasons: masking by cis ligands and differences in its ITIM and ITSM. A chimera of the Siglec-3 extracellular domains and Siglec-5 cytosolic tail strongly inhibits FcγR when coengaged, providing evidence that Siglec-5 is more like Siglec-3 and Siglec-9 in its ability to antagonize FcγRs. Additionally, Siglec-3 and Siglec-9 inhibited FcγRs when coengaged by cells displaying ligands for both the Siglec and FcγRs. These results suggest a role for Siglecs in mediating FcγR inhibition in the context of an immunological synapse, which has important relevance to the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Kelli
A. McCord
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Chao Wang
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mirjam Anhalt
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne W. Poon
- Institute
for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92617, United States
| | - Amanda L. Gavin
- Department
of Immunology and Microbiology, Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
31
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. COLLAGEN MINERALIZATION DECREASES NK CELL-MEDIATED CYTOTOXICITY OF BREAST CANCER CELLS VIA INCREASED GLYCOCALYX THICKNESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576377. [PMID: 38328161 PMCID: PMC10849468 DOI: 10.1101/2024.01.20.576377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
32
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Qi L, Jiang K, Zhao FF, Ren P, Wang L. Identification of therapeutic targets and prognostic biomarkers in the Siglec family of genes in tumor immune microenvironment of sarcoma. Sci Rep 2024; 14:577. [PMID: 38182638 PMCID: PMC10770367 DOI: 10.1038/s41598-023-50758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Sarcomas (SARC) are a highly heterogeneous cancer type that is prone to recurrence and metastasis. Numerous studies have confirmed that Siglecs are involved in immune signaling and play a key role in regulating immune responses in inflammatory diseases and various cancers. However, studies that systematically explore the therapeutic and prognostic value of Siglecs in SARC patients are very limited. The online databases GEPIA, UALCAN, TIMER, The Kaplan-Meier Plotter, GeneMANIA, cBioPortal, and STING were used in this study. IHC staining was performed on the collected patient tissues, and clinical data were statistically analyzed. The transcript levels of most Siglec family members showed a high expression pattern in SARC. Compared with normal tissues, Siglec-5, Siglec-10, and Siglec-12 were abnormally highly expressed in tumor tissues. Importantly, Siglec-15 was significantly associated with poor prognosis. Functional enrichment analysis showed that the Siglec family was mainly enriched in hematopoietic cell lineages. The genes associated with molecular mutations in the Siglec family were mainly TP53 and MUC16, among which Siglec-2 and Siglec-15 were significantly associated with the survival of patients. The expression levels of all Siglec family members were significantly correlated with various types of immune cells (B cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils and dendritic cells). Furthermore, a significant correlation was found between the somatic copy number changes of all Siglec molecules and the abundance of immune infiltrates. Our study paints a promising vision for the development of immunotherapy drugs and the construction of prognostic stratification models by investigating the therapeutic and prognostic potential of the Siglec family for SARC.
Collapse
Affiliation(s)
- Lili Qi
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Kuiying Jiang
- National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, People's Republic of China
| | - Fei-Fei Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ping Ren
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ling Wang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
34
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
35
|
Baysal Ö, Genç D, Silme RS, Kırboğa KK, Çoban D, Ghafoor NA, Tekin L, Bulut O. Targeting Breast Cancer with N-Acetyl-D-Glucosamine: Integrating Machine Learning and Cellular Assays for Promising Results. Anticancer Agents Med Chem 2024; 24:334-347. [PMID: 38305389 DOI: 10.2174/0118715206270568231129054853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Breast cancer is a common cancer with high mortality rates. Early diagnosis is crucial for reducing the prognosis and mortality rates. Therefore, the development of alternative treatment options is necessary. OBJECTIVE This study aimed to investigate the inhibitory effect of N-acetyl-D-glucosamine (D-GlcNAc) on breast cancer using a machine learning method. The findings were further confirmed through assays on breast cancer cell lines. METHODS MCF-7 and 4T1 cell lines (ATCC) were cultured in the presence and absence of varying concentrations of D-GlcNAc (0.5 mM, 1 mM, 2 mM, and 4 mM) for 72 hours. A xenograft mouse model for breast cancer was established by injecting 4T1 cells into mammary glands. D-GlcNAc (2 mM) was administered intraperitoneally to mice daily for 28 days, and histopathological effects were evaluated at pre-tumoral and post-tumoral stages. RESULTS Treatment with 2 mM and 4 mM D-GlcNAc significantly decreased cell proliferation rates in MCF-7 and 4T1 cell lines and increased Fas expression. The number of apoptotic cells was significantly higher than untreated cell cultures (p < 0.01 - p < 0.0001). D-GlcNAc administration also considerably reduced tumour size, mitosis, and angiogenesis in the post-treatment group compared to the control breast cancer group (p < 0.01 - p < 0.0001). Additionally, molecular docking/dynamic analysis revealed a high binding affinity of D-GlcNAc to the marker protein HER2, which is involved in tumour progression and cell signalling. CONCLUSION Our study demonstrated the positive effect of D-GlcNAc administration on breast cancer cells, leading to increased apoptosis and Fas expression in the malignant phenotype. The binding affinity of D-GlcNAc to HER2 suggests a potential mechanism of action. These findings contribute to understanding D-GlcNAc as a potential anti-tumour agent for breast cancer treatment.
Collapse
Affiliation(s)
- Ömür Baysal
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Deniz Genç
- Faculty of Health Sciences, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Türkiye
| | - Kevser Kübra Kırboğa
- Department of Bioengineering, Bilecik Seyh Edebali University, 11230, Bilecik, Türkiye
| | - Dilek Çoban
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Naeem Abdul Ghafoor
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Leyla Tekin
- Department of Pathology, Faculty of Medicine, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Osman Bulut
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Koçman University, Milas, Muğla, Türkiye
| |
Collapse
|
36
|
Bouti P, Blans C, Klein BJAM, Shome D, Nadafi R, Van Houdt M, Schornagel K, Verkuijlen PJJH, Roos V, Reijmers RM, Van Bruggen R, Kuijpers TW, Matlung HL. SIGLEC-5/14 Inhibits CD11b/CD18 Integrin Activation and Neutrophil-Mediated Tumor Cell Cytotoxicity. Int J Mol Sci 2023; 24:17141. [PMID: 38138970 PMCID: PMC10742634 DOI: 10.3390/ijms242417141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.
Collapse
Affiliation(s)
- Panagiota Bouti
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Colin Blans
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Bart J. A. M. Klein
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Debarati Shome
- LUMICKS, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Reza Nadafi
- LUMICKS, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Michel Van Houdt
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Karin Schornagel
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Paul J. J. H. Verkuijlen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Virginie Roos
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | - Robin Van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hanke L. Matlung
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
37
|
Jin T, Wang W, Ge L, Li X, Ge M. The expression of two immunosuppressive SIGLEC family molecules in papillary thyroid cancer and their effect on prognosis. Endocrine 2023; 82:590-601. [PMID: 37480496 DOI: 10.1007/s12020-023-03452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND The thyroid cancer (THCA) subtype that occurs more frequently is papillary thyroid cancer (PTC). Despite a favorable postoperative outcome, traditional antitumor therapy does not offer ideal results for patients with metastasis, relapse, and radioiodine resistance. Recent studies demonstrated the remarkable effects of immune checkpoint inhibitors on solid tumors, of which the immunoglobulin superfamily member SIGLEC10 and SIGLEC15 act as novel immunotherapy targets for tumors. Nevertheless, their role in PTC prognosis is still indefinite. METHODS Immunohistochemistry was utilized to examine the expression of SIGLEC10 and SIGLEC15 in 244 PTC tissue specimens. Then the expression correlation between the two was analyzed in normal tissues (NT), tumor cells (TC), and tumor stroma (TS), respectively. Subsequently, the retrospective data on patients with PTC were collected to examine whether the two immunosuppressive SIGLEC family members could affect their prognosis. RESULTS We confirmed that TC expressed higher levels of SIGLEC10 than NT. However, SIGLEC10 was down-regulated in TS and predicted poor outcomes. Meanwhile, down-regulation of SIGLEC15 expression was observed in both TC and TS, indicating a favorable prognosis. PTC patients with both SIGLEC10-SIGLEC15+ expression in TC and TS had a significantly higher recurrence risk. The expression of SIGLEC10 in TS and SIGLEC15 in TC or TS was an independent predictor of PFS, and a positive correlation was shown between SIGLEC10 and SIGLEC15 expression in TS. CONCLUSIONS Therefore, our results indicate that SIGLEC10 and SIGLEC15 may be applied as significant prognostic markers for PTC and attractive targets for THCA immunotherapy.
Collapse
Affiliation(s)
- Tiefeng Jin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wei Wang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Li
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
38
|
Li S, Wang W, Yu H, Zhang S, Bi W, Sun S, Hong B, Fang Z, Chen X. Characterization of genomic instability-related genes predicts survival and therapeutic response in lung adenocarcinoma. BMC Cancer 2023; 23:1115. [PMID: 37974107 PMCID: PMC10655275 DOI: 10.1186/s12885-023-11580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) and is the leading cause of cancer death worldwide. Its progression is characterized by genomic instability. In turn, the level of genomic instability affects the prognosis and immune status of patients with LUAD. However, the impact of molecular features associated with genomic instability on the tumor microenvironment (TME) has not been well characterized. In addition, the effect of the genes related to genomic instability in LUAD on individualized treatment of LUAD is unknown. METHODS The RNA-Sequencing, somatic mutation, and clinical data of LUAD patients were downloaded from publicly available databases. A genetic signature associated with genomic instability (GSAGI) was constructed by univariate Cox regression, Lasso regression, and multivariate Cox regression analysis. Bioinformatics analysis investigated the differences in prognosis, immune characteristics, and the most appropriate treatment strategy among different subtypes of LUAD patients. CCK-8 and colony formation verified the various effects of Etoposide on different subtypes of LUAD cell lines. Cell-to-cell communication analysis was performed using the "CellChat" R package. The expression of the risk factors in the GSAGI was verified using real-time quantitative PCR (qRT-PCR) and Immunohistochemistry (IHC). RESULTS We constructed and validated the GSAGI, consisting of five genes: ANLN, RHOV, KRT6A, SIGLEC6, and KLRG2. The GSAGI was an independent prognostic factor for LUAD patients. Patients in the high-risk group distinguished by the GSAGI are more suitable for chemotherapy. More immune cells are infiltrating the tumor microenvironment of patients in the low-risk group, especially B cells. Low-risk group patients are more suitable for receiving immunotherapy. The single-cell level analysis confirmed the influence of the GSAGI on TME and revealed the Mode of action between tumor cells and other types of cells. qRT-PCR and IHC showed increased ANLN, RHOV, and KRT6A expression in the LUAD cells and tumor tissues. CONCLUSION This study confirms that genes related to genomic instability can affect the prognosis and immune status of LUAD patients. The GSAGI we identified has the potential to guide clinicians in predicting clinical outcomes, assessing immunological status, and even developing personalized treatment plans for LUAD patients.
Collapse
Affiliation(s)
- Shuyang Li
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Wei Wang
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Huihan Yu
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Siyu Zhang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Wenxu Bi
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Suling Sun
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Bo Hong
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China.
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| | - Xueran Chen
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China.
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
39
|
Wu Z, Wang Z, Wu H, Zheng N, Huang D, Huang Z, Han H, Bao J, Xu H, Zhang R, Du Z, Wu D. The pan-cancer multi-omics landscape of key genes of sialylation combined with RNA-sequencing validation. Comput Biol Med 2023; 166:107556. [PMID: 37801920 DOI: 10.1016/j.compbiomed.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Sialylation, the process of salivary acid glycan synthesis, plays a pivotal function in tumor growth, immune escape, tumor metastasis, and resistance to drugs. However, the association between sialylation and prognosis, tumor microenvironment (TME), and treatment response in a variety of cancers remains unclear. METHODS A comprehensive survey of the expression profile, prognostic value, and genetic and epigenetic alterations of sialylation-related genes was performed in pan-cancer. Subsequently, the single-sample gene set enrichment analysis (ssGSEA) algorithm was used to compute sialylation pathway scores in pan-cancer. Correlations of sialylation pathway scores with clinical features, prognosis, and TME were evaluated using multiple algorithms. Finally, the efficacy of the sialylation pathway score in determining the effect of immunotherapy was evaluated. The expression of sialylation-related genes were verified by RNA-sequencing. RESULTS Significant differences were observed in sialylation-related genes expression between tumors and adjacent normal tissues for most cancer types. Sialylation pathway scores differed according to the type of tumor, where the poor prognosis was correlated with high sialylation pathway scores in uveal melanoma (UVM) and pancreatic adenocarcinoma (PAAD). In addition, sialylation pathway scores were positively associated with the ImmuneScore, StromalScore and immune-related pathways. Moreover, the level of immune cells infiltration was higher in tumors with higher sialylation pathway scores. Finally, patients with high sialylation pathway scores were more sensitive to immunotherapy. CONCLUSION Sialylation-related genes are essential in pan-cancer. The sialylation pathway score may be used as a biomarker in oncology patients.
Collapse
Affiliation(s)
- Zhixuan Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Ziqiong Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Haodong Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Na Zheng
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Dongdong Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Zhipeng Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Hui Han
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Jingxia Bao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Hongjie Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Rongrong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
| | - Zhou Du
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
| | - Dazhou Wu
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
| |
Collapse
|
40
|
Pienkowski T, Kowalczyk T, Cysewski D, Kretowski A, Ciborowski M. Glioma and post-translational modifications: A complex relationship. Biochim Biophys Acta Rev Cancer 2023; 1878:189009. [PMID: 37913943 DOI: 10.1016/j.bbcan.2023.189009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Post-translational modifications (PTMs) are common covalent processes in biochemical pathways that alter protein function and activity. These modifications occur through proteolytic cleavage or attachment of modifying groups, such as phosphoryl, methyl, glycosyl, or acetyl groups, with one or more amino acid residues of a single protein. Some PTMs also present crosstalk abilities that affect both protein functionality and structure, creating new proteoforms. Any alteration in organism homeostasis may be a cancer hallmark. Cataloging PTMs and consequently, emerging proteoforms, present new therapeutic targets, approaches, and opportunities to discover additional discriminatory biomarkers in disease diagnostics. In this review, we focus on experimentally confirmed PTMs and their potential crosstalk in glioma research to introduce new opportunities for this tumor type, which emerge within the PTMomics area.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| |
Collapse
|
41
|
Li B, Guo Y, Yi Y, Huang Z, Ren Y, Wang H, Yang L. Non-spatial and spatial heterogeneity revealed a suppressive immune feature of Siglec-15 in lung adenocarcinomas. J Transl Med 2023; 21:599. [PMID: 37674198 PMCID: PMC10483852 DOI: 10.1186/s12967-023-04489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has emerged as a novel immunotherapy candidate, which deserves a comprehensive investigation in lung adenocarcinoma (LUAD). METHODS Multiplex fluorescence-based immunohistochemistry was conducted to assess Siglec-15 expression and tumor-infiltrating immune cells in LUAD from Tianjin cohort, with validation cohorts Xinchao 04 and 07. RESULTS This study revealed that Siglec-15 was positively correlated with CD8+ T cells and tumor-associated macrophages (TAMs) infiltration, but CD8+ T cells were mostly infiltrated in the stroma area, not in the tumor area. Spatially, fewer CD8+ T cells surrounded Siglec-15+ tumor cells in PD-L1- cells, and more TAMs surrounded Siglec-15+ tumor cells in PD-L1-/+ cells. Siglec-15+ TAMs infiltrated with more CD8+ T cells, and were closer to CD8+ T cells than Siglec-15- TAMs and Siglec-15+ tumor cells. Siglec-15+ TAMs infiltrated with more Tregs and were closer to Tregs than Siglec-15+ tumor cells. Siglec-15+ tumor cells or TAMs reversed CD8+ T cells prognosis value, and enhanced the prognosis value of Tregs and TAMs. The immunotyping based on Siglec-15 and CD8A / CD8+ T cells revealed that patients with high CD8A and Siglec-15 expression exhibited immune activation. Patients with low CD8A expression / CD8+ T cells infiltration and Siglec-15 overexpression were related to the activation of immunosuppressive signature and metabolism-related pathway, and infiltrated with more TAMs. CONCLUSIONS We revealed the distinct characteristics between Siglec-15+ tumor cells and TAMs in relation to CD8+ T cells, and a unique relationship between Siglec-15 and immunosuppressive TIME in LUAD, which may provide potential value for anti-Siglec-15 therapy.
Collapse
Affiliation(s)
- Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yan Guo
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yeran Yi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ziqi Huang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yulin Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hao Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
42
|
Wang Y, He M, Zhang C, Cao K, Zhang G, Yang M, Huang Y, Jiang W, Liu H. Siglec-9 + tumor-associated macrophages delineate an immunosuppressive subset with therapeutic vulnerability in patients with high-grade serous ovarian cancer. J Immunother Cancer 2023; 11:e007099. [PMID: 37709296 PMCID: PMC10503378 DOI: 10.1136/jitc-2023-007099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The potent immunosuppressive properties of sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on myeloid cells and lymphocytes provide a strong rationale for serving as a therapeutic target. However, the expression profile and critical role of Siglec-9 in high-grade serous ovarian cancer (HGSC) remain obscure. This study aimed to elucidate the prognostic significance of Siglec-9 expression and its predictive value for immunotherapy in HGSC. METHODS Study enrolled two cohorts, consisting of 120 tumor microarray specimens of HGSC for immunohistochemistry (IHC) and 40 fresh tumor specimens for flow cytometry (FCM). Expression profile of Siglec-9 in immune cells was analyzed by both bioinformatics analysis and FCM. Role of Siglec-9 was studied to identify that Siglec-9+TAMs linked with an immunosuppressive phenotype by IHC and FCM, and block Siglec-9 was sensitive to immunotherapy by ex vivo and in vitro assays. RESULTS Siglec-9 is predominantly expressed on tumor-associated macrophages (TAMs). High Siglec-9+TAMs were associated with inferior overall survival (OS). Both tumor-conditioned medium (TCM) and tumor ascites induced enrichment of Siglec-9+TAMs with protumorigenic phenotypes. Siglec-9+TAMs were associated with immunosuppressive tumor microenvironment (TME) characterized by exhausted CD8+T cells and increased immune checkpoint expression. Blockade of Siglec-9 suppressed phosphorylation of the inhibitory phosphatase SHP-1 and repolarized TAMs to antitumorigenic phenotype and retrieved cytotoxic activity of CD8+T cells in vitro and ex vivo. Responders toward antiprogrammed death receptor-1 (anti-PD-1) therapy present more Siglec-9+TAMs than non-responders. Furthermore, blockade Siglec-9 synergized with anti-PD-1 antibody to enhance the cytotoxic activity of CD8+T cells in tissues with higher Siglec-9+TAMs. CONCLUSIONS Siglec-9+TAMs may serve as an independent prognostic of poor survival but a predictive biomarker for anti-PD-1/antiprogrammed death ligand-1 immunotherapy in HGSC. In addition, the potential of immunosuppressive Siglec-9+TAMs as a therapeutic target is worth further exploration.
Collapse
Affiliation(s)
- Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Jiang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
43
|
Al Saoud R, Hamrouni A, Idris A, Mousa WK, Abu Izneid T. Recent advances in the development of sialyltransferase inhibitors to control cancer metastasis: A comprehensive review. Biomed Pharmacother 2023; 165:115091. [PMID: 37421784 DOI: 10.1016/j.biopha.2023.115091] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Metastasis accounts for the majority of cancer-associated mortalities, representing a huge health and economic burden. One of the mechanisms that enables metastasis is hypersialylation, characterized by an overabundance of sialylated glycans on the tumor surface, which leads to repulsion and detachment of cells from the original tumor. Once the tumor cells are mobilized, sialylated glycans hijack the natural killer T-cells through self-molecular mimicry and activatea downstream cascade of molecular events that result in inhibition of cytotoxicity and inflammatory responses against cancer cells, ultimately leading to immune evasion. Sialylation is mediated by a family of enzymes known as sialyltransferases (STs), which catalyse the transfer of sialic acid residue from the donor, CMP-sialic acid, onto the terminal end of an acceptor such as N-acetylgalactosamine on the cell-surface. Upregulation of STs increases tumor hypersialylation by up to 60% which is considered a distinctive hallmark of several types of cancers such as pancreatic, breast, and ovarian cancer. Therefore, inhibiting STs has emerged as a potential strategy to prevent metastasis. In this comprehensive review, we discuss the recent advances in designing novel sialyltransferase inhibitors using ligand-based drug design and high-throughput screening of natural and synthetic entities, emphasizing the most successful approaches. We analyse the limitations and challenges of designing selective, potent, and cell-permeable ST inhibitors that hindered further development of ST inhibitors into clinical trials. We conclude by analysing emerging opportunities, including advanced delivery methods which further increase the potential of these inhibitors to enrich the clinics with novel therapeutics to combat metastasis.
Collapse
Affiliation(s)
- Ranim Al Saoud
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Amar Hamrouni
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Adi Idris
- School of Biomedical Sciences, Queensland University of Technology, Gardens Point, QLD, Australia; School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Walaa K Mousa
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Tareq Abu Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
44
|
Moons SJ, Hornikx DLAH, Aasted MKM, Pijnenborg JFA, Calzari M, White PB, Narimatsu Y, Clausen H, Wandall HH, Boltje TJ, Büll C. UV light-induced spatial loss of sialic acid capping using a photoactivatable sialyltransferase inhibitor. RSC Chem Biol 2023; 4:506-511. [PMID: 37415865 PMCID: PMC10320844 DOI: 10.1039/d3cb00006k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/06/2023] [Indexed: 07/08/2023] Open
Abstract
Sialic acids cap glycans displayed on mammalian glycoproteins and glycolipids and mediate many glycan-receptor interactions. Sialoglycans play a role in diseases such as cancer and infections where they facilitate immune evasion and metastasis or serve as cellular receptors for viruses, respectively. Strategies that specifically interfere with cellular sialoglycan biosynthesis, such as sialic acid mimetics that act as metabolic sialyltransferase inhibitors, enable research into the diverse biological functions of sialoglycans. Sialylation inhibitors are also emerging as potential therapeutics for cancer, infection, and other diseases. However, sialoglycans serve many important biological functions and systemic inhibition of sialoglycan biosynthesis can have adverse effects. To enable local and inducible inhibition of sialylation, we have synthesized and characterized a caged sialyltransferase inhibitor that can be selectively activated with UV-light. A photolabile protecting group was conjugated to a known sialyltransferase inhibitor (P-SiaFNEtoc). This yielded a photoactivatable inhibitor, UV-SiaFNEtoc, that remained inactive in human cell cultures and was readily activated through radiation with 365 nm UV light. Direct and short radiation of a human embryonic kidney (HEK293) cell monolayer was well-tolerated and resulted in photoactivation of the inhibitor and subsequent spatial restricted synthesis of asialoglycans. The developed photocaged sialic acid mimetic holds the potential to locally hinder the synthesis of sialoglycans through focused treatment with UV light and may be applied to bypass the adverse effects related to systemic loss of sialylation.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen Nijmegen The Netherlands
| | - Daniël L A H Hornikx
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen Nijmegen The Netherlands
| | - Mikkel K M Aasted
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen Copenhagen Denmark
| | - Johan F A Pijnenborg
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen Nijmegen The Netherlands
| | - Matteo Calzari
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen Nijmegen The Netherlands
| | - Paul B White
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen Nijmegen The Netherlands
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen Copenhagen Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen Copenhagen Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen Copenhagen Denmark
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen Nijmegen The Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen Nijmegen The Netherlands
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen Copenhagen Denmark
| |
Collapse
|
45
|
Zare I, Taheri-Ledari R, Esmailzadeh F, Salehi MM, Mohammadi A, Maleki A, Mostafavi E. DNA hydrogels and nanogels for diagnostics, therapeutics, and theragnostics of various cancers. NANOSCALE 2023. [PMID: 37337663 DOI: 10.1039/d3nr00425b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
46
|
Zhou X, Chi K, Zhang C, Liu Q, Yang G. Sialylation: A Cloak for Tumors to Trick the Immune System in the Microenvironment. BIOLOGY 2023; 12:832. [PMID: 37372117 DOI: 10.3390/biology12060832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is known to accumulate in tumors and acts as a "cloak" to help tumor cells evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing technologies, more research is being conducted to understand the effects of sialylation on immunity regulation. This review provides updated insights into recent research on the function of sialylation in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics, including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with sialic acid-Siglec interaction.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kaijun Chi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chairui Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Quan Liu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
47
|
Lustig M, Chan C, Jansen JHM, Bräutigam M, Kölling MA, Gehlert CL, Baumann N, Mester S, Foss S, Andersen JT, Bastian L, Sondermann P, Peipp M, Burger R, Leusen JHW, Valerius T. Disruption of the sialic acid/Siglec-9 axis improves antibody-mediated neutrophil cytotoxicity towards tumor cells. Front Immunol 2023; 14:1178817. [PMID: 37346044 PMCID: PMC10279866 DOI: 10.3389/fimmu.2023.1178817] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. H. Marco Jansen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Max A. Kölling
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Simone Mester
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lorenz Bastian
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
48
|
Xu S, Gu Z, Lu H, Guan P, Liu Z. Leveraging Macrophage-Mediated Cancer Immunotherapy via a Cascading Effect Induced by a Molecularly Imprinted Nanocoordinator. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267068 DOI: 10.1021/acsami.3c03950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reprogramming tumor-associated macrophages (TAMs) has emerged as a promising strategy in cancer immunotherapy. Targeted therapeutics integrating multiple functions to fully leverage the antitumor immune functions of macrophages without affecting systemic or tissue-resident macrophages are crucial for TAM reprogramming. Herein, by integrating molecular imprinting and nanotechnology, we rationally designed and engineered an unprecedented nanocoordinator for targeted remolding of TAMs to fully leverage the antitumor efficacy of macrophages by inducing a cascade effect. The nanocoordinator features a magnetic iron oxide nanoinner core and sialic acid-imprinted shell. Intravenously administered into systemic circulation, the nanocoordinator can rapidly accumulate at the tumor site in response to an external magnet. Then, by specifically binding to sialic acid overexpressed on tumor cells, the nanocoordinator anchors at the tumor site with prolonged retention time. Via binding with the nanocoordinator, tumor cells are tagged with a foreign substance, which promotes the intrinsic phagocytosis of macrophages. Subsequently, the nanocoordinator taken up by macrophages effectively promotes the polarization of macrophages toward the M1 phenotype, thus activating the immunotherapeutic efficacy of macrophages. Synergized by the cascade effect, this nanocoordinator effectively harnesses TAMs for macrophage-mediated immunotherapy. This study offers new TAM-targeted therapeutics that allows us to fully leverage the antitumor immune functions of macrophages without affecting the normal tissue.
Collapse
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Peixin Guan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
49
|
Egan H, Treacy O, Lynch K, Leonard NA, O'Malley G, Reidy E, O'Neill A, Corry SM, De Veirman K, Vanderkerken K, Egan LJ, Ritter T, Hogan AM, Redmond K, Peng L, Che J, Gatlin W, Jayaraman P, Sheehan M, Canney A, Hynes SO, Kerr EM, Dunne PD, O'Dwyer ME, Ryan AE. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep 2023; 42:112475. [PMID: 37167967 DOI: 10.1016/j.celrep.2023.112475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.
Collapse
Affiliation(s)
- Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Niamh A Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aoise O'Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kim De Veirman
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence J Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aisling M Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Jenny Che
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | | | | | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Sean O Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland; Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael E O'Dwyer
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Blood Cancer Network of Ireland (BCNI), Galway, Ireland; Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
50
|
van Houtum EJH, Kers-Rebel ED, Looman MW, Hooijberg E, Büll C, Granado D, Cornelissen LAM, Adema GJ. Tumor cell-intrinsic and tumor microenvironmental conditions co-determine signaling by the glycoimmune checkpoint receptor Siglec-7. Cell Mol Life Sci 2023; 80:169. [PMID: 37253806 DOI: 10.1007/s00018-023-04816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
Tumors create an immunosuppressive tumor microenvironment by altering protein expression, but also by changing their glycosylation status, like altered expression of sialoglycans. Sialoglycans are capped with sialic acid sugar residues and are recognized by Siglec immune receptors. Siglec-7 is an inhibitory immune receptor similar to PD-1, and is emerging as glycoimmune checkpoint exploited by cancer cells to evade the immune system. However, the exact cellular and molecular conditions required for Siglec-7-mediated immune cell inhibition remain largely unknown. Here, we report on the development of a chimeric Siglec-7 cell system that enables dissection of Siglec-7 signaling, rather than Siglec-7 binding. Antibody-induced clustering, sialic acid-containing polymers, and highly sialylated erythrocytes effectively induced Siglec-7 signaling, thereby validating functionality of this reporter system. Moreover, the system reveals tumor cell-dependent Siglec-7 signaling. Tumor-associated conditions important for Siglec-7 signaling were defined, such as Siglec-7 ligand expression levels, presence of the known Siglec-7 ligand CD43, and sialic acid availability for sialylation of glycans. Importantly, therapeutic targeting of the Siglec-7/sialic acid axis using a sialyltransferase inhibitor resulted in strong reduction of Siglec-7 signaling. In conclusion, using a newly established cellular tool, we defined a set of tumor-associated conditions that influence Siglec-7 signaling. Moreover, the system allows to assess the efficacy of novel cancer drugs interfering with the Siglec-7/sialic acid axis as immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Eline J H van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Maaike W Looman
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Daniel Granado
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|