1
|
Tamburri S, Zucchelli C, Matafora V, Zapparoli E, Jevtic Z, Farris F, Iannelli F, Musco G, Bachi A. SP140 represses specific loci by recruiting polycomb repressive complex 2 and NuRD complex. Nucleic Acids Res 2024:gkae1215. [PMID: 39718989 DOI: 10.1093/nar/gkae1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
SP140, a lymphocytic-restricted protein, is an epigenetic reader working as a corepressor of genes implicated in inflammation and orchestrating macrophage transcriptional programs to maintain cellular identity. Reduced SP140 expression is associated both to autoimmune diseases and blood cancers. However, the molecular mechanisms that link SP140 altered protein levels to detrimental effects on the immune response and cellular growth, as well as the interactors through which SP140 promotes gene silencing, remain elusive. In this work, we have applied a multi-omics approach (i.e. interactomics, ChIP-seq and proteomics) in two Burkitt lymphoma cell lines to identify both interactors and target genes of endogenous SP140. We found that SP140 interacts with the PRC2 and NuRD complexes, and we showed that these interactions are functional as SP140 directs H3K27me3 deposition and NuRD binding on a set of target genes implicated in cellular growth and leukemia progression.
Collapse
Affiliation(s)
- Simone Tamburri
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Vittoria Matafora
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Zivojin Jevtic
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Francesco Farris
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Fabio Iannelli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| |
Collapse
|
2
|
Cable JM, Wongwiwat W, Grabowski JC, White RE, Luftig MA. Sp140L Is a Novel Herpesvirus Restriction Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628399. [PMID: 39713285 PMCID: PMC11661405 DOI: 10.1101/2024.12.13.628399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Herpesviruses, including the oncogenic Epstein-Barr Virus (EBV), must bypass host DNA sensing mechanisms to establish infection. The first viral latency protein expressed, EBNA-LP, is essential for transformation of naïve B cells, yet its role in evading host defenses remains unclear. Using single-cell RNA sequencing of EBNA-LP-Knockout (LPKO)-infected B cells, we reveal an antiviral response landscape implicating the 'speckled proteins' as key restriction factors countered by EBNA-LP. Specifically, loss of SP100 or the primate-specific SP140L reverses the restriction of LPKO, suppresses a subset of canonically interferon-stimulated genes, and restores viral gene transcription and cellular proliferation. Notably, we also identify Sp140L as a restriction target of the herpesvirus saimiri ORF3 protein, implying a role in immunity to other DNA viruses. This study reveals Sp140L as a restriction factor that we propose links sensing and transcriptional suppression of viral DNA to an IFN-independent innate immune response, likely relevant to all nuclear DNA viruses.
Collapse
Affiliation(s)
- Jana M. Cable
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| | - Wiyada Wongwiwat
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jenna C. Grabowski
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A. Luftig
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| |
Collapse
|
3
|
Tan Y, Li J, Zhang S, Zhang Y, Zhuo Z, Ma X, Yin Y, Jiang Y, Cong Y, Meng G. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Cell Discov 2024; 10:118. [PMID: 39587079 PMCID: PMC11589706 DOI: 10.1038/s41421-024-00735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are essential in regulating tumor suppression, antiviral response, inflammation, metabolism, aging, and other important life processes. The re-assembly of PML NBs might lead to an ~100% cure of acute promyelocytic leukemia. However, until now, the molecular mechanism underpinning PML NB biogenesis remains elusive due to the lack of structural information. In this study, we present the cryo-electron microscopy (cryo-EM) structure of the PML dimer at an overall resolution of 5.3 Å, encompassing the RING, B-box1/2 and part of the coiled-coil (RBCC) domains. The integrated approach, combining crosslinking and mass spectrometry (XL-MS) and functional analyses, enabled us to observe a unique folding event within the RBCC domains. The RING and B-box1/2 domains fold around the α3 helix, and the α6 helix serves as a pivotal interface for PML dimerization. More importantly, further characterizations of the cryo-EM structure in conjugation with AlphaFold2 prediction, XL-MS, and NB formation assays, help unveil an unprecedented octopus-like mechanism in NB assembly, wherein each CC helix of a PML dimer (PML dimer A) interacts with a CC helix from a neighboring PML dimer (PML dimer B) in an anti-parallel configuration, ultimately leading to the formation of a 2 µm membrane-less subcellular organelle.
Collapse
Affiliation(s)
- Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yanling Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Zou D, Feng S, Hu B, Guo M, Lv Y, Ma R, Du Y, Feng J. Bromodomain proteins as potential therapeutic targets for B-cell non-Hodgkin lymphoma. Cell Biosci 2024; 14:143. [PMID: 39580422 PMCID: PMC11585172 DOI: 10.1186/s13578-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND B-cell non-Hodgkin lymphoma (B-NHL) is the most common type of lymphoma and is significantly heterogeneous among various subtypes. Despite of considerable advancements in treatment strategies for B-NHL, the prognosis of relapsed/refractory patients remains poor. MAIN TEXT It has been indicated that epigenetic dysregulation is critically associated with the pathogenesis of most hematological malignancies, resulting in the clinical targeting of epigenetic modifications. Bromodomain (BRD) proteins are essential epigenetic regulators which contain eight subfamilies, including BRD and extra-terminal domain (BET) family, histone acetyltransferases (HATs) and HAT-related proteins, transcriptional coactivators, transcriptional mediators, methyltransferases, helicases, ATP-dependent chromatin-remodeling complexes, and nuclear-scaffolding proteins. Most pre-clinical and clinical studies on B-NHL have focused predominantly on the BET family and the use of BET inhibitors as mono-treatment or co-treatment with other anti-tumor drugs. Furthermore, preclinical models of B-NHL have revealed that BET degraders are more active than BET inhibitors. Moreover, with the development of BET inhibitors and degraders, non-BET BRD protein inhibitors have also been designed and have shown antitumor activities in B-NHL preclinical models. This review summarized the mechanism of BRD proteins and the recent progress of BRD protein-related drugs in B-NHL. This study aimed to collect the most recent evidences and summarize possibility on whether BRD proteins can serve as therapeutic targets for B-NHL. CONCLUSION In summary, BRD proteins are critical epigenetic regulatory factors and may be potential therapeutic targets for B-NHL.
Collapse
Affiliation(s)
- Dan Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Sitong Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bowen Hu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mengya Guo
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
5
|
Razavi R, Fathi A, Yellan I, Brechalov A, Laverty KU, Jolma A, Hernandez-Corchado A, Zheng H, Yang AW, Albu M, Barazandeh M, Hu C, Vorontsov IE, Patel ZM, Kulakovskiy IV, Bucher P, Morris Q, Najafabadi HS, Hughes TR. Extensive binding of uncharacterized human transcription factors to genomic dark matter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622123. [PMID: 39605320 PMCID: PMC11601254 DOI: 10.1101/2024.11.11.622123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Most of the human genome is thought to be non-functional, and includes large segments often referred to as "dark matter" DNA. The genome also encodes hundreds of putative and poorly characterized transcription factors (TFs). We determined genomic binding locations of 166 uncharacterized human TFs in living cells. Nearly half of them associated strongly with known regulatory regions such as promoters and enhancers, often at conserved motif matches and co-localizing with each other. Surprisingly, the other half often associated with genomic dark matter, at largely unique sites, via intrinsic sequence recognition. Dozens of these, which we term "Dark TFs", mainly bind within regions of closed chromatin. Dark TF binding sites are enriched for transposable elements, and are rarely under purifying selection. Some Dark TFs are KZNFs, which contain the repressive KRAB domain, but many are not: the Dark TFs also include known or potential pioneer TFs. Compiled literature information supports that the Dark TFs exert diverse functions ranging from early development to tumor suppression. Thus, our results sheds light on a large fraction of previously uncharacterized human TFs and their unappreciated activities within the dark matter genome.
Collapse
Affiliation(s)
- Rozita Razavi
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ali Fathi
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Isaac Yellan
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Alexander Brechalov
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Kaitlin U. Laverty
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
- Memorial Sloan Kettering Cancer Center, Rockefeller Research Laboratories, New York, NY 10065, USA
| | - Arttu Jolma
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Aldo Hernandez-Corchado
- Victor P. Dahdaleh Institute of Genomic Medicine, 740 Dr. Penfield Avenue, Room 7202, Montréal, Québec, H3A 0G1, Canada
| | - Hong Zheng
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ally W.H. Yang
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Mihai Albu
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Marjan Barazandeh
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Chun Hu
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ilya E. Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Zain M. Patel
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | | | - Ivan V. Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Philipp Bucher
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Quaid Morris
- Memorial Sloan Kettering Cancer Center, Rockefeller Research Laboratories, New York, NY 10065, USA
| | - Hamed S. Najafabadi
- Victor P. Dahdaleh Institute of Genomic Medicine, 740 Dr. Penfield Avenue, Room 7202, Montréal, Québec, H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0C7, Canada
| | - Timothy R. Hughes
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
6
|
Nakamura H, Hikichi H, Seto S, Hijikata M, Keicho N. Transcriptional regulators SP110 and SP140 modulate inflammatory response genes in Mycobacterium tuberculosis-infected human macrophages. Microbiol Spectr 2024; 12:e0010124. [PMID: 39162523 PMCID: PMC11448263 DOI: 10.1128/spectrum.00101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Understanding the functions of human transcriptional regulatory genes SP110 and SP140 during Mycobacterium tuberculosis infection is crucial; in a mouse model, homologous genes Sp110 and Sp140 have been shown to negatively regulate inflammatory response genes, including the type I interferon (IFN) response. The reduction of these genes in mice is associated with susceptibility to M. tuberculosis infection and the development of necrotizing granulomatous lesions. To investigate the involvement of SP110 and SP140 in human inflammatory response, we analyzed their regulatory manner in THP-1 macrophages infected with M. tuberculosis. Genome-wide transcriptional profiling revealed that the depletion of SP110 and/or SP140 impaired the induction of gene expression associated with inflammatory responses, including IFN response genes, although it had little effect on the intracellular proliferation of M. tuberculosis. By contrast, genes related to phosphorylation were upregulated in infected macrophages with SP110 and/or SP140 knockdown, but downregulated in infected control macrophages without their knockdown. Reverse transcription-quantitative PCR and ELISA further confirmed the impairment of the induction of IFN response genes by the depletion of SP110 and/or SP140 in M. tuberculosis-infected macrophages. These findings suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses in M. tuberculosis-infected macrophages. IMPORTANCE Tuberculosis (TB) is one of the most serious infectious diseases, with high morbidity and mortality worldwide. C3HeB/FeJ mice are widely utilized for evaluating anti-TB drugs because their drug sensitivity and pathology during M. tuberculosis infection resemble those of human TB, including the development of necrotizing granulomas. Downregulation of the transcriptional regulatory genes Sp110 and Sp140 in C3HeB/FeJ mice has been demonstrated to activate gene expression associated with inflammatory responses during M. tuberculosis infection, resulting in susceptibility to the infection. Here, we examined the regulatory manner of SP110 and SP140 using transcriptomic analysis in M. tuberculosis-infected human macrophages. Depletion of SP110 and/or SP140 in M. tuberculosis-infected THP-1 macrophages impaired the induction of gene expression associated with inflammatory responses, including interferon response genes, compared with that in control macrophages. These results suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses upon M. tuberculosis infection.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
7
|
Yabaji SM, Zhernovkov V, Araveti PB, Lata S, Rukhlenko OS, Al Abdullatif S, Vanvalkenburg A, Alekseev Y, Ma Q, Dayama G, Lau NC, Johnson WE, Bishai WR, Crossland NA, Campbell JD, Kholodenko BN, Gimelbrant AA, Kobzik L, Kramnik I. Lipid Peroxidation and Type I Interferon Coupling Fuels Pathogenic Macrophage Activation Causing Tuberculosis Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583602. [PMID: 38496444 PMCID: PMC10942339 DOI: 10.1101/2024.03.05.583602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop pulmonary TB. We developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: the development of necrotic lung granulomas and determined that the sst1-susceptible phenotype was driven by the aberrant macrophage activation. This study demonstrates that the aberrant response of the sst1-susceptible macrophages to prolonged stimulation with TNF is primarily driven by conflicting Myc and antioxidant response pathways leading to a coordinated failure 1) to properly sequester intracellular iron and 2) to activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled IFNβ superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. The upregulation of Myc pathway in peripheral blood cells of human TB patients was significantly associated with poor outcomes of TB treatment. Thus, Myc dysregulation in activated macrophages results in an aberrant macrophage activation and represents a novel target for host-directed TB therapies.
Collapse
Affiliation(s)
- Shivraj M. Yabaji
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | | | - Suruchi Lata
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Salam Al Abdullatif
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Arthur Vanvalkenburg
- Rutgers University, New Jersey Medical School, Division of Infectious Disease, Department of Medicine
- Rutgers University, New Jersey Medical School, Center for Data Science
| | - Yuriy Alekseev
- The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - Qicheng Ma
- Department of Biochemistry, and Cell Biology and Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine
| | - Gargi Dayama
- Department of Biochemistry, and Cell Biology and Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine
| | - Nelson C. Lau
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
- Department of Biochemistry, and Cell Biology and Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine
| | - W. Evan Johnson
- Rutgers University, New Jersey Medical School, Division of Infectious Disease, Department of Medicine
- Rutgers University, New Jersey Medical School, Center for Data Science
| | - William R. Bishai
- Center for TB Research, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Nicholas A. Crossland
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
- The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - Joshua D. Campbell
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven CT, USA
| | | | | | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
- Pulmonary Center, The Department of Medicine, Boston University Chobanian & Avedisian School of Medicine
- Dept. of Microbiology, Boston University Chobanian & Avedisian School of Medicine
- Lead Contact
| |
Collapse
|
8
|
Huoh YS, Zhang Q, Törner R, Baca SC, Arthanari H, Hur S. Mechanism for controlled assembly of transcriptional condensates by Aire. Nat Immunol 2024; 25:1580-1592. [PMID: 39169234 PMCID: PMC11362013 DOI: 10.1038/s41590-024-01922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators.
Collapse
Affiliation(s)
- Yu-San Huoh
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qianxia Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
10
|
Dziulko AK, Allen H, Chuong EB. An endogenous retrovirus regulates tumor-specific expression of the immune transcriptional regulator SP140. Hum Mol Genet 2024; 33:1454-1464. [PMID: 38751339 PMCID: PMC11305685 DOI: 10.1093/hmg/ddae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 07/26/2024] Open
Abstract
Speckled Protein 140 (SP140) is a chromatin reader with critical roles regulating immune cell transcriptional programs, and SP140 splice variants are associated with immune diseases including Crohn's disease, multiple sclerosis, and chronic lymphocytic leukemia. SP140 expression is currently thought to be restricted to immune cells. However, by analyzing human transcriptomic datasets from a wide range of normal and cancer cell types, we found recurrent cancer-specific expression of SP140, driven by an alternative intronic promoter derived from an intronic endogenous retrovirus (ERV). The ERV belongs to the primate-specific LTR8B family and is regulated by oncogenic mitogen-activated protein kinase (MAPK) signaling. The ERV drives expression of multiple cancer-specific isoforms, including a nearly full-length isoform that retains all the functional domains of the full-length canonical isoform and is also localized within the nucleus, consistent with a role in chromatin regulation. In a fibrosarcoma cell line, silencing the cancer-specific ERV promoter of SP140 resulted in increased sensitivity to interferon-mediated cytotoxicity and dysregulation of multiple genes. Our findings implicate aberrant ERV-mediated SP140 expression as a novel mechanism contributing to immune gene dysregulation in a wide range of cancer cells.
Collapse
Affiliation(s)
- Adam K Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Holly Allen
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| |
Collapse
|
11
|
Wang D, Chen D, Xu S, Wei F, Zhao H. Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus. J Vet Sci 2024; 25:e54. [PMID: 39083206 PMCID: PMC11291433 DOI: 10.4142/jvs.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
IMPORTANCE As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.
Collapse
Affiliation(s)
- Di Wang
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyuan Zhao
- School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China.
| |
Collapse
|
12
|
Xu G, Wang X, Qin L, Gao J, Song G. SP110 Could be Used as a Potential Predictive and Therapeutic Biomarker for Oral Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01212-8. [PMID: 38951481 DOI: 10.1007/s12033-024-01212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
The morbidity of oral squamous cell carcinoma (OSCC) has been rising year after year, making it a major global health issue. But the molecular pathogenesis of OSCC is currently unclear. To study the potential pathogenesis of OSCC, the differentially expressed genes (DEGs) were screened, and multiple databases were used to perform the tumor stage, expression, prognosis, protein-protein interaction (PPI) networks, modules, and the functional enrichment analysis. Moreover, we have identified SP110 as the key candidate gene and conducted various analyses on it using multiple databases. The research indicated that there were 211 common DEGs, and they were enriched in various GO terms and pathways. Meanwhile, one DEG is significantly related to short disease-free survival, four are associated with overall survival, and 12 DEGs have close ties with tumor staging. Additionally, the SP110 is significantly associated with methylation level, HPV status, tumor staging, gender, race, tumor grade, age, and overall/disease-free survival of oral cancer patients, as well as the immune process. The copy number variation of SP110 significantly affected the abundance of immune infiltration. Therefore, we speculate that SP110 could be used as the diagnostic and therapeutic biomarker for OSCC, and can help to further understand oral carcinogenesis.
Collapse
Affiliation(s)
- Guoqiang Xu
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
- Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001, China
| | - Xiaotang Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
- Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001, China
| | - Litao Qin
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China.
| |
Collapse
|
13
|
Ravi Sundar Jose Geetha A, Fischer K, Babadei O, Smesnik G, Vogt A, Platanitis E, Müller M, Farlik M, Decker T. Dynamic control of gene expression by ISGF3 and IRF1 during IFNβ and IFNγ signaling. EMBO J 2024; 43:2233-2263. [PMID: 38658796 PMCID: PMC11148166 DOI: 10.1038/s44318-024-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Type I interferons (IFN-I, including IFNβ) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.
Collapse
Affiliation(s)
- Aarathy Ravi Sundar Jose Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Georg Smesnik
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | | | - Ekaterini Platanitis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria.
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria.
| |
Collapse
|
14
|
Li Z, Han J, Jing J, Fan A, Zhang Y, Gao Y. Bovine DDX3X Restrains Bovine SP110c-Mediated Activation of Inflammasome in Macrophages. Animals (Basel) 2024; 14:1650. [PMID: 38891697 PMCID: PMC11171048 DOI: 10.3390/ani14111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The inflammasome is a vital part of the host's innate immunity activated by cellular infection or stress. Our previous research identified the bovine SP110c isoform (bSP110c) as a novel activator of the inflammasome that promoted the secretion of proinflammatory cytokines IL-1β and IL-18 in macrophages infected with Listeria monocytogenes or stimulated with lipopolysaccharide (LPS). However, the exact molecular mechanism for inhibiting bSP110c-induced inflammasome activation requires further clarification. Here, the researchers identified bovine DDX3X (bDDX3X) as an NLRP3-associated protein and an inhibitor of the bSP110c-induced inflammasome in the human THP1 macrophage cell line. Immunoprecipitation showed that bDDX3X interacted with the bSP110c CARD domain via its helicase domain. The co-expression of bSP110c and bDDX3X in THP1 macrophages significantly prevented the bSP110c-induced activation of inflammasomes. In addition, both bDDX3X and bSP110c interacted with bovine NLRP3 (bNLRP3), and bDDX3X enhanced the interaction between bSP110c and bNLRP3. The expression of bDDX3X in nigericin-stimulated THP1 macrophages significantly suppressed NLRP3 inflammasome activation, ASC speck formation, and pyroptosis. These findings demonstrate that bDDX3X negatively regulates the bSP110c-mediated inflammatory response by restricting the activation of the NLRP3 inflammasome. This discovery unveils a novel regulatory mechanism involving bDDX3X and bSP110c in coordinating inflammasome activation and subsequent cell-fate decisions in LPS-treated macrophages and, in turn, constitutes a step forward toward the implementation of marker-assisted selection in breeding programs aimed at utilizing cattle's immune defenses.
Collapse
|
15
|
Cho T, Hoeg L, Setiaputra D, Durocher D. NFATC2IP is a mediator of SUMO-dependent genome integrity. Genes Dev 2024; 38:233-252. [PMID: 38503515 PMCID: PMC11065178 DOI: 10.1101/gad.350914.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.
Collapse
Affiliation(s)
- Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
16
|
Shi A, Lin C, Wang J, Chen Y, Zhong J, Lyu J. EPRIM: An approach of identifying cancer immune-related epigenetic regulators. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102100. [PMID: 38222302 PMCID: PMC10784696 DOI: 10.1016/j.omtn.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Epigenetic regulation contributes to the dysregulation of gene expression involved in cancer biology. Nevertheless, the roles of epigenetic regulators (ERs) in tumor immunity and immune response remain basically unclear. Here, we developed the epigenetic regulator in immunology (EPRIM) approach to identify immune-related ERs and comprehensively dissected the ER regulation in tumor immune response across 33 cancers. The identified immune-related ERs were related to immune infiltration and could stratify cancer patients into two risk groups in multiple independent datasets. These patient groups were characterized by distinct immune functions, immune infiltrates, driver gene mutations, and prognoses. Furthermore, we constructed an immune ER-based signature and highlighted its potential utility in predicting clinical benefit from immunotherapy and selecting therapeutic agents. Taken together, our identification and evaluation of immune-related ERs highlight the usefulness of EPRIM for the understanding of ERs in immune regulation and the clinical relevance in evaluation of cancer patient prognosis and response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Aiai Shi
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People’s Republic of China
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Chaohuan Lin
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, People’s Republic of China
| | - Jilu Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ying’ao Chen
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, People’s Republic of China
| | - Jinjin Zhong
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jie Lyu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People’s Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, People’s Republic of China
| |
Collapse
|
17
|
Li X, Li G, Li L, Gao B, Niu X, Wang Y, Wang Z. SP140 inhibitor suppressing TRIM22 expression regulates glioma progress through PI3K/AKT signaling pathway. Brain Behav 2024; 14:e3465. [PMID: 38468469 PMCID: PMC10928341 DOI: 10.1002/brb3.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND SP gene family, consisting of SP100, SP110, SP140, and SP140L, has been implicated in the initiation and advancement of numerous malignancies. Nevertheless, their clinical significance in glioma remains incompletely understood. METHOD Expression levels and prognostic significance of SP family members were evaluated in the TCGA and CGGA datasets. Multifactorial analysis was used to identify SP gene family members that can independently impact the prognosis of glioma patients. A SP140-based predictive risk model/nomogram was developed in TCGA dataset and validated in CGGA dataset. The model's performance was evaluated through receiver operating characteristic (ROC) curves, calibration plots, and decision curve analyses. Phenotypic associations of SP140 and TRIM22 were examined through CancerSEA and TIMER. The effect of SP140 inhibitor in glioma progress and TRIM22/PI3K/AKT signaling pathway was confirmed in U251/U87 glioma cells. RESULTS The SP family members exhibited elevated expression in gliomas and were negatively correlated with prognosis. SP140 emerged as an independent prognostic factor, and a SP140-based nomogram/predictive risk model demonstrated high accuracy. SP140 inhibitor, GSK761, lead to the suppression of TRIM22 expression and the PI3K/AKT signaling pathway. GSK761 also restrain glioma proliferation, migration, and invasion. Furthermore, SP140 and TRIM22 coexpressed in glioma cells with high level of vascular proliferation, TRIM22 is closely associated with the immune cell infiltration. CONCLUSION SP140-based nomogram proved to be a practical tool for predicting the survival of glioma patients. SP140 inhibitor could suppress glioma progress via TRIM22/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of NeurosurgeryXinghua People's HospitalXinghuaChina
| | - Guangzhao Li
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of NeurosurgeryHefei First People's HospitalHefeiChina
| | - Longyuan Li
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bixi Gao
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaowang Niu
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of NeurosurgeryThe Affiliated Suqian Hospital of Xuzhou Medical UniversitySuqianChina
| | - Yunjiang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of NeurosurgeryYancheng Third People's HospitalYanchengChina
| | - Zhong Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
18
|
Tian S, Chen M, Jing W, Meng Q, Wu J. miR-1204 Positioning in 8q24.21 Involved in the Tumorigenesis of Colorectal Cancer by Targeting MASPIN. Protein Pept Lett 2024; 31:544-558. [PMID: 39082173 DOI: 10.2174/0109298665305114240718072029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Colorectal cancer remains to be the third leading cause of cancer mortality rates. Despite the diverse effects of the miRNA cluster located in PVT1 of 8q24.21 across various tumors, the specific biological function in colorectal cancer has not been clarified. METHODS The amplification of the miR-1204 cluster was analyzed with the cBioPortal database, while the expression and survival analysis of the miRNAs in the cluster were obtained from several GEO databases of colorectal cancer. To investigate the functional role of miR-1204 in colorectal cancer, overexpression and silencing experiments were performed by miR-1204 mimic and inhibitor transfection in colorectal cancer cell lines, respectively. Then, the effects of miR-1204 on cell proliferation were assessed through CCK-8, colony formation, and Edu assay. In addition, cell migration was evaluated using wound healing and Transwell assay. Moreover, candidate genes identified through RNA sequencing and predicted databases were identified and validated using PCR and western blot. A Dual-luciferase reporter experiment was conducted to identify MASPIN as the target gene of miR-1204. RESULTS In colorectal cancer, the miR-1204 cluster exhibited high amplification, and the expression levels of several cluster miRNAs were also significantly increased. Furthermore, miR-1204 was found to be significantly associated with disease-specific survival according to the analysis of GSE17536. Functional experiments demonstrated that transfection of miR-1204 mimic or inhibitor could enhance or decrease cancer cell proliferation and migration. MASPIN was identified as a target of miR-1204. Additionally, the overexpression of MASPIN partially rescued the effect of miR-1204 mimics on tumorigenic abilities in LOVO cells. CONCLUSION miR-1204 positioning in 8q24.21 promotes the proliferation and migration of colorectal cancer cells by targeting MASPIN.
Collapse
Affiliation(s)
- Simeng Tian
- Department of Surgery, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meilin Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Department of Pathology, XiaMen SuSong Hospital, Xia- Men, China
| | - Wanting Jing
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Qinghui Meng
- Department of Surgery, The 1st Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Kotov DI, Lee OV, Fattinger SA, Langner CA, Guillen JV, Peters JM, Moon A, Burd EM, Witt KC, Stetson DB, Jaye DL, Bryson BD, Vance RE. Early cellular mechanisms of type I interferon-driven susceptibility to tuberculosis. Cell 2023; 186:5536-5553.e22. [PMID: 38029747 PMCID: PMC10757650 DOI: 10.1016/j.cell.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/16/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Ophelia V Lee
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Charlotte A Langner
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jaresley V Guillen
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andres Moon
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kristen C Witt
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Al-Aubodah TA, Aoudjit L, Pascale G, Perinpanayagam MA, Langlais D, Bitzan M, Samuel SM, Piccirillo CA, Takano T. The extrafollicular B cell response is a hallmark of childhood idiopathic nephrotic syndrome. Nat Commun 2023; 14:7682. [PMID: 37996443 PMCID: PMC10667257 DOI: 10.1038/s41467-023-43504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The efficacy of the B cell-targeting drug rituximab (RTX) in childhood idiopathic nephrotic syndrome (INS) suggests that B cells may be implicated in disease pathogenesis. However, B cell characterization in children with INS remains limited. Here, using single-cell RNA sequencing, we demonstrate that a B cell transcriptional program poised for effector functions represents the major immune perturbation in blood samples from children with active INS. This transcriptional profile was associated with an extrafollicular B cell response marked by the expansion of atypical B cells (atBCs), marginal zone-like B cells, and antibody-secreting cells (ASCs). Flow cytometry of blood from 13 children with active INS and 24 healthy donors confirmed the presence of an extrafollicular B cell response denoted by the expansion of proliferating RTX-sensitive extrafollicular (CXCR5-) CD21low T-bet+ CD11c+ atBCs and short-lived T-bet+ ASCs in INS. Together, our study provides evidence for an extrafollicular origin for humoral immunity in active INS.
Collapse
Affiliation(s)
- Tho-Alfakar Al-Aubodah
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Lamine Aoudjit
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Giuseppe Pascale
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Maneka A Perinpanayagam
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Langlais
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University Genome Centre, Montréal, Québec, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Kidney Centre of Excellence, Al Jalila Children's Hospital, and Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Susan M Samuel
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Tomoko Takano
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
21
|
Zou C, Zan X, Jia Z, Zheng L, Gu Y, Liu F, Han Y, Xu C, Wu A, Zhi Q. Crosstalk between alternative splicing and inflammatory bowel disease: Basic mechanisms, biotechnological progresses and future perspectives. Clin Transl Med 2023; 13:e1479. [PMID: 37983927 PMCID: PMC10659771 DOI: 10.1002/ctm2.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an omnipresent regulatory mechanism of gene expression that enables the generation of diverse splice isoforms from a single gene. Recently, AS events have gained considerable momentum in the pathogenesis of inflammatory bowel disease (IBD). METHODS Our review has summarized the complex process of RNA splicing, and firstly highlighted the potential involved molecules that target aberrant splicing events in IBD. The quantitative transcriptome analyses such as microarrays, next-generation sequencing (NGS) for AS events in IBD have been also discussed. RESULTS Available evidence suggests that some abnormal splicing RNAs can lead to multiple intestinal disorders during the onset of IBD as well as the progression to colitis-associated cancer (CAC), including gut microbiota perturbations, intestinal barrier dysfunctions, innate/adaptive immune dysregulations, pro-fibrosis activation and some other risk factors. Moreover, current data show that the advanced technologies, including microarrays and NGS, have been pioneeringly employed to screen the AS candidates and elucidate the potential regulatory mechanisms of IBD. Besides, other biotechnological progresses such as the applications of third-generation sequencing (TGS), single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST), will be desired with great expectations. CONCLUSIONS To our knowledge, the current review is the first one to evaluate the potential regulatory mechanisms of AS events in IBD. The expanding list of aberrantly spliced genes in IBD along with the developed technologies provide us new clues to how IBD develops, and how these important AS events can be explored for future treatment.
Collapse
Affiliation(s)
- Chentao Zou
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinquan Zan
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhenyu Jia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lu Zheng
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yijie Gu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fei Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ye Han
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chunfang Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Airong Wu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qiaoming Zhi
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
22
|
Silva DM, Akera T. Meiotic drive of noncentromeric loci in mammalian meiosis II eggs. Curr Opin Genet Dev 2023; 81:102082. [PMID: 37406428 PMCID: PMC10527070 DOI: 10.1016/j.gde.2023.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
The germline produces haploid gametes through a specialized cell division called meiosis. In general, homologous chromosomes from each parent segregate randomly to the daughter cells during meiosis, providing parental alleles with an equal chance of transmission. Meiotic drivers are selfish elements who cheat this process to increase their transmission rate. In female meiosis, selfish centromeres and noncentromeric drivers cheat by preferentially segregating to the egg cell. Selfish centromeres cheat in meiosis I (MI), while noncentromeric drivers can cheat in both meiosis I and meiosis II (MII). Here, we highlight recent advances on our understanding of the molecular mechanisms underlying these genetic cheating strategies, especially focusing on mammalian systems, and discuss new models of how noncentromeric selfish drivers can cheat in MII eggs.
Collapse
Affiliation(s)
- Duilio Mza Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Ghiboub M, Bell M, Sinkeviciute D, Prinjha RK, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. The Epigenetic Reader Protein SP140 Regulates Dendritic Cell Activation, Maturation and Tolerogenic Potential. Curr Issues Mol Biol 2023; 45:4228-4245. [PMID: 37232738 DOI: 10.3390/cimb45050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
SP140 is an epigenetic reader protein expressed predominantly in immune cells. GWAS studies have shown an association between SP140 single nucleotide polymorphisms (SNPs) and diverse autoimmune and inflammatory diseases, suggesting a possible pathogenic role for SP140 in immune-mediated diseases. We previously demonstrated that treatment of human macrophages with the novel selective inhibitor of the SP140 protein (GSK761) reduced the expression of endotoxin-induced cytokines, implicating a role of SP140 in the function of inflammatory macrophages. In this study, we investigated the effects of GSK761 on in vitro human dendritic cell (DC) differentiation and maturation, assessing the expression of cytokines and co-stimulatory molecules and their capacity to stimulate T-cell activation and induce phenotypic changes. In DCs, lipopolysaccharide (LPS) stimulation induced an increase in SP140 expression and its recruitment to transcription start sites (TSS) of pro-inflammatory cytokine genes. Moreover, LPS-induced cytokines such as TNF, IL-6, and IL-1β were reduced in GSK761- or SP140 siRNA- treated DCs. Although GSK761 did not significantly affect the expression of surface markers that define the differentiation of CD14+ monocytes into immature DCs (iDCs), subsequent maturation of iDCs to mature DCs was significantly inhibited. GSK761 strongly reduced expression of the maturation marker CD83, the co-stimulatory molecules CD80 and CD86, and the lipid-antigen presentation molecule CD1b. Finally, when the ability of DCs to stimulate recall T-cell responses by vaccine-specific T cells was assessed, T cells stimulated by GSK761-treated DCs showed reduced TBX21 and RORA expression and increased FOXP3 expression, indicating a preferential generation of regulatory T cells. Overall, this study suggests that SP140 inhibition enhances the tolerogenic properties of DCs, supporting the rationale of targeting SP140 in autoimmune and inflammatory diseases where DC-mediated inflammatory responses contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Matthew Bell
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Dovile Sinkeviciute
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Rab K Prinjha
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Medicine, Institute for Cardiovascular Prevention (IPEK), 80336 Munich, Germany
| | - Nicola R Harker
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - David F Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
24
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
25
|
Flietner E, Yu M, Poudel G, Veltri AJ, Zhou Y, Rajagopalan A, Feng Y, Lasho T, Wen Z, Sun Y, Patnaik MM, Callander NS, Asimakopoulos F, Wang D, Zhang J. Molecular characterization stratifies VQ myeloma cells into two clusters with distinct risk signatures and drug responses. Oncogene 2023; 42:1751-1762. [PMID: 37031341 PMCID: PMC10367583 DOI: 10.1038/s41388-023-02684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of malignant plasma cells in the bone marrow and extramedullary sites. We previously characterized a VQ model for human high-risk MM. The various VQ lines display different disease phenotypes and survival rates, suggesting significant intra-model variation. Here, we use whole-exome sequencing and copy number variation (CNV) analysis coupled with RNA-Seq to stratify the VQ lines into corresponding clusters: Group A cells had monosomy chromosome (chr) 5 and overexpressed genes and pathways associated with sensitivity to bortezomib (Btz) treatment in human MM patients. By contrast, Group B VQ cells carried recurrent amplification (Amp) of chr3 and displayed high-risk MM features, including downregulation of Fam46c, upregulation of cancer growth pathways associated with functional high-risk MM, and expression of Amp1q and high-risk UAMS-70 and EMC-92 gene signatures. Consistently, in sharp contrast to Group A VQ cells that showed short-term response to Btz, Group B VQ cells were de novo resistant to Btz in vivo. Our study highlights Group B VQ lines as highly representative of the human MM subset with ultrahigh risk.
Collapse
Affiliation(s)
- Evan Flietner
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Govinda Poudel
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adhithi Rajagopalan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yubin Feng
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Zhi Wen
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Yuqian Sun
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Natalie S Callander
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA.
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
26
|
Weiner AB, Yu CY, Kini M, Liu Y, Davicioni E, Mitrofanova A, Lotan TL, Schaeffer EM. High intratumoral plasma cells content in primary prostate cancer defines a subset of tumors with potential susceptibility to immune-based treatments. Prostate Cancer Prostatic Dis 2023; 26:105-112. [PMID: 35568781 PMCID: PMC10353550 DOI: 10.1038/s41391-022-00547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Data on advanced prostate cancer (PCa) suggest more prior systemic therapies might reduce tumor immune responsiveness. In treatment-naïve primary PCa, recent work correlated intratumoral plasma cell content with enhanced tumor immune-responsiveness. We sought to identify features of localized PCa at a high risk of recurrence following local treatment with high plasma cell content to help focus future immune-based neoadjuvant trials. METHODS We performed retrospective analyses of molecular profiles from three independent cohorts of over 1300 prostate tumors. We used Wilcoxon Rank Sum to compare molecular pathways between tumors with high and low intratumoral plasma cell content and multivariable Cox proportional hazards regression analyses to assess metastasis-free survival. RESULTS We validated an expression-based signature for intratumoral plasma cell content in 113 primary prostate tumors with both RNA-expression data and digital image quantification of CD138+ cells (plasma cell marker) based on immunohistochemisty. The signature showed castration-resistant tumors (n = 101) with more prior systemic therapies contained lower plasma cell content. In high-grade primary PCa, tumors with high plasma cell content were associated with increased predicted response to immunotherapy and decreased response to androgen-deprivation therapy. Master regulator analyses identified upregulated transcription factors implicated in immune (e.g. SKAP1, IL-16, and HCLS1), and B-cell activity (e.g. VAV1, SP140, and FLI-1) in plasma cell-high tumors. Master regulators overactivated in tumors with low plasma cell content were associated with shorter metastasis-free survival following radical prostatectomy. CONCLUSIONS Markers of plasma cell activity might be leveraged to augment clinical trial targeting and selection and better understand the potential for immune-based treatments in patients with PCa at a high risk of recurrence following local treatment.
Collapse
Affiliation(s)
- Adam B Weiner
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Y Yu
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Mitali Kini
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Liu
- Veracyte, Inc, San Diego, CA, USA
| | | | - Antonina Mitrofanova
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward M Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
27
|
Muralidhara P, Kumar A, Chaurasia MK, Bansal K. Topoisomerases in Immune Cell Development and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:126-133. [PMID: 36596219 PMCID: PMC7614072 DOI: 10.4049/jimmunol.2200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 01/04/2023]
Abstract
DNA topoisomerases (TOPs) are complex enzymatic machines with extraordinary capacity to maintain DNA topology during torsion-intensive steps of replication and transcription. Recently, TOPs have gained significant attention for their tissue-specific function, and the vital role of TOPs in immune homeostasis and dysfunction is beginning to emerge. TOPs have been implicated in various immunological disorders such as autoimmunity, B cell immunodeficiencies, and sepsis, underscoring their importance in immune regulation. However, much remains unknown about immunological underpinnings of TOPs, and a deeper understanding of the role of TOPs in the immune system will be critical for yielding significant insights into the etiology of immunological disorders. In this review, we first discuss the recent literature highlighting the contribution of TOPs in the development of immune cells, and we further provide an overview of their importance in immune cell responses.
Collapse
Affiliation(s)
- Prerana Muralidhara
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Amit Kumar
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Mukesh Kumar Chaurasia
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India,Corresponding author ()
| |
Collapse
|
28
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
29
|
Rosochowicz MA, Lipowicz JM, Karwacka MI, Ostapowicz J, Cisek M, Mackiewicz AA, Czerwinska P. It Runs in the Bromodomain Family: Speckled Proteins (SP) Play a Role in the Antitumor Immune Response in Solid Tumors. Int J Mol Sci 2022; 24:ijms24010549. [PMID: 36614001 PMCID: PMC9820261 DOI: 10.3390/ijms24010549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Cells and immune cells in the extracellular matrix: Depending on the tumor type and variety of TAAs (tumor-associated antigens), immune infiltrates are composed of many different subpopulations of immune cells. Epigenetic changes are also considered to be characteristic of cancer. Epigenetic factors taking part in the regulation of gene expression include the VII group of bromodomain proteins (BrD)-SP-family proteins. Here, we used transcriptomic data from the TCGA database, as well as immunological evidence from ESTIMATE, TIP, and TIMER2.0 databases for various solid tumor types and harnessed several publicly available bioinformatic tools (such as GSEA and GSCA) to demonstrate mechanisms and interactions between BrD proteins and immune infiltrates in cancer. We present a consistently positive correlation between the SP-family genes and immune score regardless of the tumor type. The SP-family proteins correlate positively with T cells' trafficking and infiltration into tumor. Our results also show an association between the high expression of SP family genes and enriched transcriptome profiles of inflammatory response and TNF-α signaling via NF-κβ. We also show that the SP-family proteins could be considered good predictors of high immune infiltration phenotypes.
Collapse
Affiliation(s)
- Monika Anna Rosochowicz
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Julia Maria Lipowicz
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Histology and Embriology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marianna Iga Karwacka
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Julia Ostapowicz
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Malgorzata Cisek
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Correspondence: ; Tel.: +48-61-885-06-67; Fax: +48-61-852-85-02
| | - Patrycja Czerwinska
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
30
|
Larrieux A, Sanjuán R. Cellular resistance to an oncolytic virus is driven by chronic activation of innate immunity. iScience 2022; 26:105749. [PMID: 36590165 PMCID: PMC9794979 DOI: 10.1016/j.isci.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cellular resistances to oncolytic viruses is an underexplored process that could compromise the efficacy of cancer virotherapy. Here, we isolated and characterized B16 mouse melanoma cells that evolved resistance to an oncolytic vesicular stomatitis virus (VSV-D51). RNA-seq revealed that resistance was associated to broad changes in gene expression, which typically involved chronic upregulation of interferon-stimulated genes. Innate immunity activation was maintained in the absence of the virus or other infection signals, and conferred cross-resistance to wild-type VSV and the unrelated Sindbis virus. Furthermore, we identified differentially expressed genes with no obvious role in antiviral immunity, such as Mnda, Psmb8 and Btn2a2, suggesting novel functions for these genes. Transcriptomic changes associated to VSV resistance were similar among B16 clones and in some clones derived from the mouse colon carcinoma cell line CT26, suggesting that oncolytic virus resistance involves certain conserved mechanisms and is therefore a potentially predictable process.
Collapse
Affiliation(s)
- Alejandra Larrieux
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain,Corresponding author
| |
Collapse
|
31
|
Tanagala KKK, Morin-Baxter J, Carvajal R, Cheema M, Dubey S, Nakagawa H, Yoon A, Cheng YSL, Taylor A, Nickerson J, Mintz A, Momen-Heravi F. SP140 inhibits STAT1 signaling, induces IFN-γ in tumor-associated macrophages, and is a predictive biomarker of immunotherapy response. J Immunother Cancer 2022; 10:e005088. [PMID: 36600652 PMCID: PMC9748993 DOI: 10.1136/jitc-2022-005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding the role and potential therapeutic targeting of tumor-associated macrophages (TAMs) is crucial to developing new biomarkers and therapeutic strategies for cancer immunotherapies. The epigenetic reader SP140 has emerged as a master regulator of macrophage transcriptional programs; however, its role in the signaling of TAMs and response to immunotherapy has not been investigated. METHODS We evaluated the correlation between SP140 expression in head and neck squamous cell carcinoma (HNSCC) TAMs and clinical outcomes. We also used complementary bioinformatics and experimental approaches to study the association of SP140 expression with tumor mutation burden, patient survival, immunogenic signature of tumors, and signaling of TAMs. SP140 overexpression or knockdown was implemented to identify the role of SP140 in downstream signaling and production of inflammatory cytokine and chemokines. Chromatin immunoprecipitation and analysis of assay of transposase accessible chromatin sequencing data were used to demonstrate the direct binding of SP140 on the promoters of STAT1. Finally, correlation of SP140 with immune cell infiltrates and response to immune-checkpoint blockade in independent cohorts of HNSCC, metastatic melanoma, and melanoma was assessed. RESULTS We found that SP140 is highly expressed in TAMs across many cancer types, including HNSCCs. Interestingly, higher expression of SP140 in the tumors was associated with higher tumor mutation burden, improved survival, and a favorable response to immunotherapy. Tumors with high SP140 expression showed enrichment of inflammatory response and interferon-gamma (IFN-γ) pathways in both pan-cancer analysis and HNSCC-specific analysis. Mechanistically, SP140 negatively regulates transcription and phosphorylation of STAT1 and induces IFN-γ signaling. Activating SP140 in macrophages and TAMs induced the proinflammatory macrophage phenotype, increased the antitumor activity of macrophages, and increased the production of IFN-γ and antitumor cytokines and chemokines including interleukin-12 and CXCL10. SP140 expression provided higher sensitivity and specificity to predict antiprogrammed cell death protein 1 immunotherapy response compared with programmed death-ligand 1 in HNSCCs and lung cancer. In metastatic melanoma, higher levels of SP140 were associated with a durable response to immunotherapy, higher immune score estimates, high infiltrations of CD8+ T cells, and inflammatory TAMs. CONCLUSIONS Our findings suggest that SP140 could serve as both a therapeutic target and a biomarker to identify immunotherapy responders.
Collapse
Affiliation(s)
- Kranthi Kiran Kishore Tanagala
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Joshua Morin-Baxter
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard Carvajal
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, New York, USA
| | - Maryum Cheema
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sunil Dubey
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Angela Yoon
- Department of Stomatology, Division of Diagnostic science and Services, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yi-Shing L Cheng
- Department of Diagnostic Sciences, Texas A&M University System, Dallas, Texas, USA
| | - Alison Taylor
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032
| | - Jeffrey Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Akiva Mintz
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
32
|
Li X, Huo X, Zhao C, Chen Z, Xu Z, Yu J, Sun X. A novel chromatin regulator signature predicts the prognosis, clinical features and immunotherapy of colon cancer. Epigenomics 2022; 14:1325-1341. [PMID: 36545887 DOI: 10.2217/epi-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To elucidate the potential function and prognostic value of chromatin regulators (CRs) in colon cancer. Materials & methods: A comprehensive analysis of CR RNA expression data from public databases was conducted. Results: The authors successfully established and validated a 17 CR-based signature using public databases. Ten CRs of the signature were eventually verified at the protein level using the Human Protein Atlas database. Functional enrichment showed that CRs were significantly enriched in cancer-related pathways. This signature was remarkably relevant to immune cell infiltration, immune checkpoints, tumor immune dysfunction and exclusion (TIDE) score and drug sensitivity. Conclusion: The authors identified a novel, reliable prognostic signature for colon cancer. The study provided new insights into the function of CRs and has important clinical implications for immunotherapy for colon cancer.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiongwei Huo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenye Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
33
|
Fraschilla I, Amatullah H, Rahman RU, Jeffrey KL. Immune chromatin reader SP140 regulates microbiota and risk for inflammatory bowel disease. Cell Host Microbe 2022; 30:1370-1381.e5. [PMID: 36130593 PMCID: PMC10266544 DOI: 10.1016/j.chom.2022.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel disease (IBD) is driven by host genetics and environmental factors, including commensal microorganisms. Speckled Protein 140 (SP140) is an immune-restricted chromatin "reader" that is associated with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the disease-causing mechanisms of SP140 remain undefined. Here, we identify an immune-intrinsic role for SP140 in regulating phagocytic defense responses to prevent the expansion of inflammatory bacteria. Mice harboring altered microbiota due to hematopoietic Sp140 deficiency exhibited severe colitis that was transmissible upon cohousing and ameliorated with antibiotics. Loss of SP140 results in blooms of Proteobacteria, including Helicobacter in Sp140-/- mice and Enterobacteriaceae in humans bearing the CD-associated SP140 loss-of-function variant. Phagocytes from patients with the SP140 loss-of-function variant and Sp140-/- mice exhibited altered antimicrobial defense programs required for control of pathobionts. Thus, mutations within this epigenetic reader may constitute a predisposing event in human diseases provoked by microbiota.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajera Amatullah
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Raza-Ur Rahman
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kate L Jeffrey
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Massachusetts Institute of Technology Center for Microbiome, Informatics and Therapeutics, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
35
|
Seto S, Nakamura H, Guo TC, Hikichi H, Wakabayashi K, Miyabayashi A, Nagata T, Hijikata M, Keicho N. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:968543. [PMID: 36237431 PMCID: PMC9551193 DOI: 10.3389/fcimb.2022.968543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infection with Mycobacterium tuberculosis leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of M. tuberculosis proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with M. tuberculosis to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- *Correspondence: Shintaro Seto,
| | - Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tz-Chun Guo
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Vice Director, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
36
|
Liu C, Omilusik K, Toma C, Kurd NS, Chang JT, Goldrath AW, Wang W. Systems-level identification of key transcription factors in immune cell specification. PLoS Comput Biol 2022; 18:e1010116. [PMID: 36156073 PMCID: PMC9536753 DOI: 10.1371/journal.pcbi.1010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/06/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nadia S. Kurd
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
37
|
Amatullah H, Fraschilla I, Digumarthi S, Huang J, Adiliaghdam F, Bonilla G, Wong LP, Rivard ME, Beauchamp C, Mercier V, Goyette P, Sadreyev RI, Anthony RM, Rioux JD, Jeffrey KL. Epigenetic reader SP140 loss of function drives Crohn's disease due to uncontrolled macrophage topoisomerases. Cell 2022; 185:3232-3247.e18. [PMID: 35952671 PMCID: PMC9442451 DOI: 10.1016/j.cell.2022.06.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/07/2022] [Accepted: 06/27/2022] [Indexed: 01/19/2023]
Abstract
How mis-regulated chromatin directly impacts human immune disorders is poorly understood. Speckled Protein 140 (SP140) is an immune-restricted PHD and bromodomain-containing epigenetic "reader," and SP140 loss-of-function mutations associate with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the relevance of these mutations and mechanisms underlying SP140-driven pathogenicity remains unexplored. Using a global proteomic strategy, we identified SP140 as a repressor of topoisomerases (TOPs) that maintains heterochromatin and macrophage fate. In humans and mice, SP140 loss resulted in unleashed TOP activity, de-repression of developmentally silenced genes, and ultimately defective microbe-inducible macrophage transcriptional programs and bacterial killing that drive intestinal pathology. Pharmacological inhibition of TOP1/2 rescued these defects. Furthermore, exacerbated colitis was restored with TOP1/2 inhibitors in Sp140-/- mice, but not wild-type mice, in vivo. Collectively, we identify SP140 as a TOP repressor and reveal repurposing of TOP inhibition to reverse immune diseases driven by SP140 loss.
Collapse
Affiliation(s)
- Hajera Amatullah
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Fraschilla
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Sreehaas Digumarthi
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Julie Huang
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Fatemeh Adiliaghdam
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Gracia Bonilla
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | - Ruslan I Sadreyev
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rioux
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Kate L Jeffrey
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Gao C, Glass KC, Frietze S. Functional networks of the human bromodomain-containing proteins. FRONTIERS IN BIOINFORMATICS 2022; 2:835892. [PMID: 36304339 PMCID: PMC9580951 DOI: 10.3389/fbinf.2022.835892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/29/2022] [Indexed: 01/22/2023] Open
Abstract
Background: Bromodomains are a structurally conserved epigenetic reader domain that bind to acetylated lysine residues in both histone and non-histone proteins. Bromodomain-containing proteins (BRD proteins) often function as scaffolding proteins in the assembly of multi-protein complexes to regulate diverse biological processes. BRD proteins have been classified based on biological and functional similarity, however the functions of many BRD proteins remains unknown. PPI network analysis is useful for revealing organizational roles, identifying functional clusters, and predicting function for BRD proteins. Results: We used available data to construct protein-protein interaction networks (PPINs) to study the properties of the human bromodomain protein family. The network properties of the BRD PPIN establishes that the BRD proteins serve as hub proteins that are enriched near the global center to form an inter-connected PPIN. We identified dense subgraphs formed by BRD proteins and find that different BRD proteins share topological similarity and functional associations. We explored the functional relationships through clustering and Hallmark pathway gene set enrichment analysis and identify potential biological roles for different BRD proteins. Conclusion: In our network analysis we confirmed that BRD proteins are conserved central nodes in the human PPI network and function as scaffolds to form distinctive functional clusters. Overall, this study provides detailed insight into the predictive functions of BRD proteins in the context of functional complexes and biological pathways.
Collapse
Affiliation(s)
- Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Karen C. Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, United States,University of Vermont Cancer Center, Burlington, VT, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States,University of Vermont Cancer Center, Burlington, VT, United States,*Correspondence: Seth Frietze,
| |
Collapse
|
39
|
Cranston T, Boon H, Olesen MK, Ryan FJ, Shears D, London R, Rostom H, Elajnaf T, Thakker RV, Hannan FM. Spectrum of germline AIRE mutations causing APS-1 and familial hypoparathyroidism. Eur J Endocrinol 2022; 187:111-122. [PMID: 35521792 PMCID: PMC9175554 DOI: 10.1530/eje-21-0730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
Abstract
Objective The autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disorder characterised by immune dysregulation and autoimmune endocrine gland destruction. APS-1 is caused by biallelic mutations affecting the autoimmune regulator (AIRE) gene on chromosome 21q22.3, which facilitates immunological self-tolerance. The objective was to investigate >300 probands with suspected APS-1 or isolated hypoparathyroidism for AIRE abnormalities. Methods Probands were assessed by DNA sequence analysis. Novel variants were characterised using 3D modelling of the AIRE protein. Restriction enzyme and microsatellite analysis were used to investigate for uniparental isodisomy. Results Biallelic AIRE mutations were identified in 35 probands with APS-1 and 5 probands with isolated hypoparathyroidism. These included a novel homozygous p.(His14Pro) mutation, predicted to disrupt the N-terminal caspase activation recruitment domain of the AIRE protein. Furthermore, an apparently homozygous AIRE mutation, p.Leu323fs, was identified in an APS-1 proband, who is the child of non-consanguineous asymptomatic parents. Microsatellite analysis revealed that the proband inherited two copies of the paternal mutant AIRE allele due to uniparental isodisomy. Hypoparathyroidism was the most common endocrine manifestation in AIRE mutation-positive probands and >45% of those harbouring AIRE mutations had at least two diseases out of the triad of candidiasis, hypoparathyroidism, and hypoadrenalism. In contrast, type 1 diabetes and hypothyroidism occurred more frequently in AIRE mutation-negative probands with suspected APS-1. Around 30% of AIRE mutation-negative probands with isolated hypoparathyroidism harboured mutations in other hypoparathyroid genes. Conclusions This study of a large cohort referred for AIRE mutational analysis expands the spectrum of genetic abnormalities causing APS-1.
Collapse
Affiliation(s)
- Treena Cranston
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Hannah Boon
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Mie K Olesen
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona J Ryan
- Paediatric Endocrinology, Children's Hospital, John Radcliffe Hospital, Oxford, UK
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford, UK
| | - Rosemary London
- Paediatric Endocrinology, Children's Hospital, John Radcliffe Hospital, Oxford, UK
| | - Hussam Rostom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Taha Elajnaf
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Fadil M Hannan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Identify a DNA Damage Repair Gene Signature for Predicting Prognosis and Immunotherapy Response in Cervical Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8736575. [PMID: 35368888 PMCID: PMC8967547 DOI: 10.1155/2022/8736575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
Abstract
The DNA damage repair (DDR) genes are increasingly gaining attention as potential therapeutic targets in cancers. In this study, we identified the DDR genes associated with the tumor mutation burden (TMB) and prognosis of cervical squamous cell carcinoma (CESC) based on The Cancer Genome Atlas (TCGA) database. Through LASSO Cox regression, the prognostic signature involving five DDR genes (ACTR2, TEX12, UBE2V1, HSF1, and FBXO6) was established, and the risk score was identified as an independent risk factor for CESC. The nomogram consisting of the five genes accurately predicted the overall survival (OS) and the immunotherapeutic response of CESC patients. Finally, the loss of the copies of the transcription factor (TF) SP140 in CESC patients may decrease the expression of FBXO6, improve DNA repair function, and reduce the diversity of neoantigens, thereby lowering the response to immunotherapies. Therefore, the DDR gene signature is a novel prognostic model and a biomarker for immunotherapies in CESC patients.
Collapse
|
41
|
Li K, Yao S, Zhang Z, Cao B, Wilson CM, Kalos D, Kuan PF, Zhu R, Wang X. Efficient gradient boosting for prognostic biomarker discovery. Bioinformatics 2022; 38:1631-1638. [PMID: 34978570 DOI: 10.1093/bioinformatics/btab869] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION A gradient boosting decision tree (GBDT) is a powerful ensemble machine-learning method that has the potential to accelerate biomarker discovery from high-dimensional molecular data. Recent algorithmic advances, such as extreme gradient boosting (XGB) and light gradient boosting (LGB), have rendered the GBDT training more efficient, scalable and accurate. However, these modern techniques have not yet been widely adopted in discovering biomarkers for censored survival outcomes, which are key clinical outcomes or endpoints in cancer studies. RESULTS In this paper, we present a new R package 'Xsurv' as an integrated solution that applies two modern GBDT training frameworks namely, XGB and LGB, for the modeling of right-censored survival outcomes. Based on our simulations, we benchmark the new approaches against traditional methods including the stepwise Cox regression model and the original gradient boosting function implemented in the package 'gbm'. We also demonstrate the application of Xsurv in analyzing a melanoma methylation dataset. Together, these results suggest that Xsurv is a useful and computationally viable tool for screening a large number of prognostic candidate biomarkers, which may facilitate future translational and clinical research. AVAILABILITY AND IMPLEMENTATION 'Xsurv' is freely available as an R package at: https://github.com/topycyao/Xsurv. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kaiqiao Li
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sijie Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Zhenyu Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher M Wilson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Denise Kalos
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ruoqing Zhu
- Department of Statistics, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
42
|
Maternal high-fat diet in mice induces cerebrovascular, microglial and long-term behavioural alterations in offspring. Commun Biol 2022; 5:26. [PMID: 35017640 PMCID: PMC8752761 DOI: 10.1038/s42003-021-02947-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various environmental exposures during pregnancy, like maternal diet, can compromise, at critical periods of development, the neurovascular maturation of the offspring. Foetal exposure to maternal high-fat diet (mHFD), common to Western societies, has been shown to disturb neurovascular development in neonates and long-term permeability of the neurovasculature. Nevertheless, the effects of mHFD on the offspring’s cerebrovascular health remains largely elusive. Here, we sought to address this knowledge gap by using a translational mouse model of mHFD exposure. Three-dimensional and ultrastructure analysis of the neurovascular unit (vasculature and parenchymal cells) in mHFD-exposed offspring revealed major alterations of the neurovascular organization and metabolism. These alterations were accompanied by changes in the expression of genes involved in metabolism and immunity, indicating that neurovascular changes may result from abnormal brain metabolism and immune regulation. In addition, mHFD-exposed offspring showed persisting behavioural alterations reminiscent of neurodevelopmental disorders, specifically an increase in stereotyped and repetitive behaviours into adulthood. In order to advance our understanding of the effects of maternal high-fat diet (mHFD) on the cerebrovascular health of offspring, Bordeleau et al. use a translational mouse model of mHFD exposure. They demonstrate that mHFD induces cerebrovascular and microglial changes in the offspring as well as behavioural alterations that are reminiscent of neurodevelopmental disorders associated with repetitive behaviours at adulthood.
Collapse
|
43
|
Kolijn PM, Muggen AF, Ljungström V, Agathangelidis A, Wolvers-Tettero ILM, Beverloo HB, Pál K, Hengeveld PJ, Darzentas N, Hendriks RW, van Dongen JJM, Rosenquist R, Langerak AW. Consistent B Cell Receptor Immunoglobulin Features Between Siblings in Familial Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:740083. [PMID: 34513715 PMCID: PMC8427434 DOI: 10.3389/fonc.2021.740083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Key processes in the onset and evolution of chronic lymphocytic leukemia (CLL) are thought to include chronic (antigenic) activation of mature B cells through the B cell receptor (BcR), signals from the microenvironment, and acquisition of genetic alterations. Here we describe three families in which two or more siblings were affected by CLL. We investigated whether there are immunogenetic similarities in the leukemia-specific immunoglobulin heavy (IGH) and light (IGL/IGK) chain gene rearrangements of the siblings in each family. Furthermore, we performed array analysis to study if similarities in CLL-associated chromosomal aberrations are present within each family and screened for somatic mutations using paired tumor/normal whole-genome sequencing (WGS). In two families a consistent IGHV gene mutational status (one IGHV-unmutated, one IGHV-mutated) was observed. Intriguingly, the third family with four affected siblings was characterized by usage of the lambda IGLV3-21 gene, with the hallmark R110 mutation of the recently described clinically aggressive IGLV3-21R110 subset. In this family, the CLL-specific rearrangements in two siblings could be assigned to either stereotyped subset #2 or the immunogenetically related subset #169, both of which belong to the broader IGLV3-21R110 subgroup. Consistent patterns of cytogenetic aberrations were encountered in all three families. Furthermore, the CLL clones carried somatic mutations previously associated with IGHV mutational status, cytogenetic aberrations and stereotyped subsets, respectively. From these findings, we conclude that similarities in immunogenetic characteristics in familial CLL, in combination with genetic aberrations acquired, point towards shared underlying mechanisms behind CLL development within each family.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Alice F Muggen
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece.,Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ingrid L M Wolvers-Tettero
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Karol Pál
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Paul J Hengeveld
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Nikos Darzentas
- Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
44
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
45
|
Zhou R, Guo F, Xiang C, Zhang Y, Yang H, Zhang J. Systematic Study of Crucial Transcription Factors of Coptidis rhizoma Alkaloids against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2021; 12:2308-2319. [PMID: 34114461 DOI: 10.1021/acschemneuro.0c00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coptidis rhizoma alkaloids (CRAs), extracted from Coptidis rhizoma, have been indicated to play important neuroprotective roles, but the mechanism underlying has not been determined, especially from the perspective of transcription factors (TFs). In this study, crucial TFs involved in the protective activity of CRA were revealed based on RNA-Seq technology, proteomics, and network pharmacological analysis of the effects of CRA on middle cerebral artery occlusion-mediated cerebral ischemia-reperfusion (I/R) injury. Importantly, CRA significantly reduced the infarction rate and neurological deficiency score. Moreover, CRA significantly decreased the levels of TNF-α, MCP-1, and IL-1β. In addition, seven TFs, including Ncor1, Smad1, Bhlhe41, Stat3, Sp100, Satb2, and Lrpprc, were found to be crucial TFs, and five of these TFs were associated with inflammation. Furthermore, eight compounds in CRA were associated with the identified TFs through network pharmacological analysis. The alteration of Lrpprc and Sabt2 was further confirmed by measuring their downstream genes, including Pigg, Hhatl, Wdr77, Mpped1, Arpp21, Ppfia3, Rims1, and Cacna2d1 by reverse transcriptase polymerase chain reaction. Thus, these seven TFs may be important targets in CRA-mediated protection against I/R injury. This research provides a new view of the protective effect of CRA against cerebral I/R injury and reveals new therapeutic targets for treating cerebral ischemia.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
46
|
Ji DX, Witt KC, Kotov DI, Margolis SR, Louie A, Chevée V, Chen KJ, Gaidt MM, Dhaliwal HS, Lee AY, Nishimura SL, Zamboni DS, Kramnik I, Portnoy DA, Darwin KH, Vance RE. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. eLife 2021; 10:67290. [PMID: 34151776 PMCID: PMC8248984 DOI: 10.7554/elife.67290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/20/2021] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140–/– mice and found that they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140–/– mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar–/–). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.
Collapse
Affiliation(s)
- Daisy X Ji
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kristen C Witt
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Dmitri I Kotov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Shally R Margolis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Alexander Louie
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Victoria Chevée
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Katherine J Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Moritz M Gaidt
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Harmandeep S Dhaliwal
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Stephen L Nishimura
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Department of Medicine (Pulmonary Center), and Department of Microbiology, Boston University School of Medicine, Boston, United States
| | - Daniel A Portnoy
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - K Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, United States
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
47
|
Huoh YS, Hur S. Death domain fold proteins in immune signaling and transcriptional regulation. FEBS J 2021; 289:4082-4097. [PMID: 33905163 DOI: 10.1111/febs.15901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Death domain fold (DDF) superfamily comprises of the death domain (DD), death effector domain (DED), caspase activation recruitment domain (CARD), and pyrin domain (PYD). By utilizing a conserved mode of interaction involving six distinct surfaces, a DDF serves as a building block that can densely pack into homomultimers or filaments. Studies of immune signaling components have revealed that DDF-mediated filament formation plays a central role in mediating signal transduction and amplification. The unique ability of DDFs to self-oligomerize upon external signals and induce oligomerization of partner molecules underlies key processes in many innate immune signaling pathways, as exemplified by RIG-I-like receptor signalosome and inflammasome assembly. Recent studies showed that DDFs are not only limited to immune signaling pathways, but also are involved with transcriptional regulation and other biological processes. Considering that DDF annotation still remains a challenge, the current list of DDFs and their functions may represent just the tip of the iceberg within the full spectrum of DDF biology. In this review, we discuss recent advances in our understanding of DDF functions, structures, and assembly architectures with a focus on CARD- and PYD-containing proteins. We also discuss areas of future research and the potential relationship of DDFs with biomolecular condensates formed by liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
48
|
Granito A, Muratori L, Tovoli F, Muratori P. Autoantibodies to speckled protein family in primary biliary cholangitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:35. [PMID: 33789734 PMCID: PMC8011120 DOI: 10.1186/s13223-021-00539-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
The autoantibody profile of primary biliary cholangitis (PBC) includes antinuclear antibodies (ANA) which are detectable by indirect immunofluorescence in more than 50% of PBC patients. One of the two immunofluorescence patterns which are historically considered "PBC-specific" is the so-called "multiple nuclear dots" (MND) targeting nuclear body proteins such as Sp100, Sp140, Sp140L proteins, promyelocytic leukemia protein (PML) and small ubiquitin-related modifier proteins (SUMO). It has been hypothesized a role of nuclear body protein alterations in immune disorders such as PBC, thus suggesting novel and more refined therapeutic approaches.
Collapse
Affiliation(s)
- Alessandro Granito
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy.
- Center for the Study, Treatment of Autoimmune Diseases of the Liver, Biliary System, Bologna, Italy.
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Luigi Muratori
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Center for the Study, Treatment of Autoimmune Diseases of the Liver, Biliary System, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Tovoli
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Center for the Study, Treatment of Autoimmune Diseases of the Liver, Biliary System, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Paolo Muratori
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Center for the Study, Treatment of Autoimmune Diseases of the Liver, Biliary System, Bologna, Italy
- Department for the Science of the Quality of Life (QUVI), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Camacho-Ordonez N, Ballestar E, Timmers HTM, Grimbacher B. What can clinical immunology learn from inborn errors of epigenetic regulators? J Allergy Clin Immunol 2021; 147:1602-1618. [PMID: 33609625 DOI: 10.1016/j.jaci.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.
Collapse
Affiliation(s)
- Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST- Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
50
|
The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Viruses 2021; 13:v13020239. [PMID: 33546431 PMCID: PMC7913651 DOI: 10.3390/v13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Nuclear domains 10 (ND10), a.k.a. promyelocytic leukemia nuclear bodies (PML-NBs), are membraneless subnuclear domains that are highly dynamic in their protein composition in response to cellular cues. They are known to be involved in many key cellular processes including DNA damage response, transcription regulation, apoptosis, oncogenesis, and antiviral defenses. The diversity and dynamics of ND10 residents enable them to play seemingly opposite roles under different physiological conditions. Although the molecular mechanisms are not completely clear, the pro- and anti-cancer effects of ND10 have been well established in tumorigenesis. However, in herpesvirus research, until the recently emerged evidence of pro-viral contributions, ND10 nuclear bodies have been generally recognized as part of the intrinsic antiviral defenses that converge to the incoming viral DNA to inhibit the viral gene expression. In this review, we evaluate the newly discovered pro-infection influences of ND10 in various human herpesviruses and analyze their molecular foundation along with the traditional antiviral functions of ND10. We hope to shed light on the explicit role of ND10 in both the lytic and latent cycles of herpesvirus infection, which is imperative to the delineation of herpes pathogenesis and the development of prophylactic/therapeutic treatments for herpetic diseases.
Collapse
|