1
|
Panchal MH, Swindle EJ, Pell TJ, Rowan WC, Childs CE, Thompson J, Nicholas BL, Djukanovic R, Goss VM, Postle AD, Davies DE, Blume C. Membrane lipid composition of bronchial epithelial cells influences antiviral responses during rhinovirus infection. Tissue Barriers 2024; 12:2300580. [PMID: 38179897 PMCID: PMC11583602 DOI: 10.1080/21688370.2023.2300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.
Collapse
Affiliation(s)
- Madhuriben H Panchal
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Emily J Swindle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | - Caroline E Childs
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| | - James Thompson
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin L Nicholas
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Victoria M Goss
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anthony D Postle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Donna E Davies
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Cornelia Blume
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
3
|
Van Eyndhoven LC, Vreezen CC, Tiemeijer BM, Tel J. Immune quorum sensing dictates IFN-I response dynamics in human plasmacytoid dendritic cells. Eur J Immunol 2024; 54:e2350955. [PMID: 38587967 DOI: 10.1002/eji.202350955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Type I interferons (IFN-Is) are key in fighting viral infections, but also serve major roles beyond antiviral immunity. Crucial is the tight regulation of IFN-I responses, while excessive levels are harmful to the cells. In essence, immune responses are generated by single cells making their own decisions, which are based on the signals they perceive. Additionally, immune cells must anticipate the future state of their environment, thereby weighing the costs and benefits of each possible outcome, in the presence of other potentially competitive decision makers (i.e., IFN-I producing cells). A rather new cellular communication mechanism called quorum sensing describes the effect of cell density on cellular secretory behaviors, which fits well with matching the right amount of IFN-Is produced to fight an infection. More competitive decision makers must contribute relatively less and vice versa. Intrigued by this concept, we assessed the effects of immune quorum sensing in pDCs, specialized immune cells known for their ability to mass produce IFN-Is. Using conventional microwell assays and droplet-based microfluidics assays, we were able the characterize the effect of quorum sensing in human primary immune cells in vitro. These insights open new avenues to manipulate IFN-I response dynamics in pathological conditions affected by aberrant IFN-I signaling.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cherise C Vreezen
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart M Tiemeijer
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Guha M, Singh A, Butzin NC. Gram-positive bacteria are primed for surviving lethal doses of antibiotics and chemical stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596288. [PMID: 38895422 PMCID: PMC11185512 DOI: 10.1101/2024.05.28.596288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Antibiotic resistance kills millions worldwide yearly. However, a major contributor to recurrent infections lies in a small fraction of bacterial cells, known as persisters. These cells are not inherently antibiotic-resistant, yet they lead to increased antibiotic usage, raising the risk of developing resistant progenies. In a bacterial population, individual cells exhibit considerable fluctuations in their gene expression levels despite being cultivated under identical, stable conditions. This variability in cell-to-cell characteristics (phenotypic diversity) within an isogenic population enables persister cells to withstand antibiotic exposure by entering a non-dividing state. We recently showed the existence of "primed cells" in E. coli. Primed cells are dividing cells prepared for antibiotic stress before encountering it and are more prone to form persisters. They also pass their "prepared state" down for several generations through epigenetic memory. Here, we show that primed cells are common among distant bacterial lineages, allowing for survival against antibiotics and other chemical stress, and form in different growth phases. They are also responsible for increased persister levels in transition and stationary phases compared to the log phase. We tested and showed that the Gram-positive bacterium Bacillus megaterium, evolutionarily very distant from E. coli, forms primed cells and has a transient epigenetic memory that is maintained for 7 generations or more. We showed this using ciprofloxacin and the non-antibiotic chemical stress fluoride. It is well established that persister levels are higher in the stationary phase than in the log phase, and B. megaterium persisters levels are nearly identical from the early to late-log phase but are ~2-fold and ~4-fold higher in the transition and stationary phase, respectively. It was previously proposed that there are two distinct types of persisters: Type II forms in the log phase, while Type I forms in the stationary phase. However, we show that primed cells lead to increased persisters in the transition and stationary phase and found no evidence of Type I or II persisters with distant phenotypes. Overall, we have provided substantial evidence of the importance of primed cells and their transitory epigenetic memories to surviving stress.
Collapse
Affiliation(s)
- Manisha Guha
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD, 57006; USA
| | - Abhyudai Singh
- Electrical & Computer Engineering; University of Delaware; Newark, DE 19716; USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD, 57006; USA
- Department of Chemistry and Biochemistry; South Dakota State University; Brookings, SD, 57006; USA
| |
Collapse
|
5
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
6
|
Bonhomme D, Poirier EZ. Early signaling pathways in virus-infected cells. Curr Opin Virol 2024; 66:101411. [PMID: 38718574 DOI: 10.1016/j.coviro.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 06/07/2024]
Abstract
Virus infection activates specific pattern recognition receptors and immune signal transduction, resulting in pro-inflammatory cytokine production and activation of innate immunity. We describe here the molecular organization of early signaling pathways downstream of viral recognition, including conformational changes, post-translational modifications, formation of oligomers, and generation of small-molecule second messengers. Such molecular organization allows tight regulation of immune signal transduction, characterized by swift but transient responses, nonlinearity, and signal amplification. Pathologies of early immune signaling caused by genomic mutations illustrate the fine regulation of the immune transduction cascade.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France
| | - Enzo Z Poirier
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
7
|
Van Eyndhoven LC, Chouri E, Matos CI, Pandit A, Radstake TRDJ, Broen JCA, Singh A, Tel J. Unraveling IFN-I response dynamics and TNF crosstalk in the pathophysiology of systemic lupus erythematosus. Front Immunol 2024; 15:1322814. [PMID: 38596672 PMCID: PMC11002168 DOI: 10.3389/fimmu.2024.1322814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The innate immune system serves the crucial first line of defense against a wide variety of potential threats, during which the production of pro-inflammatory cytokines IFN-I and TNFα are key. This astonishing power to fight invaders, however, comes at the cost of risking IFN-I-related pathologies, such as observed during autoimmune diseases, during which IFN-I and TNFα response dynamics are dysregulated. Therefore, these response dynamics must be tightly regulated, and precisely matched with the potential threat. This regulation is currently far from understood. Methods Using droplet-based microfluidics and ODE modeling, we studied the fundamentals of single-cell decision-making upon TLR signaling in human primary immune cells (n = 23). Next, using biologicals used for treating autoimmune diseases [i.e., anti-TNFα, and JAK inhibitors], we unraveled the crosstalk between IFN-I and TNFα signaling dynamics. Finally, we studied primary immune cells isolated from SLE patients (n = 8) to provide insights into SLE pathophysiology. Results single-cell IFN-I and TNFα response dynamics display remarkable differences, yet both being highly heterogeneous. Blocking TNFα signaling increases the percentage of IFN-I-producing cells, while blocking IFN-I signaling decreases the percentage of TNFα-producing cells. Single-cell decision-making in SLE patients is dysregulated, pointing towards a dysregulated crosstalk between IFN-I and TNFα response dynamics. Discussion We provide a solid droplet-based microfluidic platform to study inherent immune secretory behaviors, substantiated by ODE modeling, which can challenge the conceptualization within and between different immune signaling systems. These insights will build towards an improved fundamental understanding on single-cell decision-making in health and disease.
Collapse
Affiliation(s)
- Laura C. Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eleni Chouri
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Catarina I. Matos
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R. D. J. Radstake
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper C. A. Broen
- Regional Rheumatology Center, Máxima Medical Center, Eindhoven and Veldhoven, Eindhoven, Netherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
8
|
Fu C, Yang C, Ni C, Wang L, Hou J. Echinococcus granulosus cyst fluid inhibits the type I interferon response by promoting ROS in macrophages. Acta Trop 2024; 250:107101. [PMID: 38101763 DOI: 10.1016/j.actatropica.2023.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
In cystic echinococcosis (CE), Echinococcus granulosus cystic fluid (EgCF) could impede macrophage-mediated immunity. However, whether EgCF is implicated in the type I interferon response remains to be established. Here, we revealed that EgCF reduced 2'3'-cGAMP-induced IFN-β production in macrophages by inhibiting the cGAS-STING-IRF3 signaling. EgCF also increased the intracellular reactive oxygen species (ROS) levels. Administration of the ROS inhibitor N-acetylcysteine (NAC) restored the cGAS-STING-IRF3 signaling, which, in turn, upregulated IFN-β expression. The findings disclose that EgCF could increase macrophage ROS levels, thereby blocking cGAS-STING-IRF3 signaling and repressing the IFN-I response.
Collapse
Affiliation(s)
- Chunxue Fu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Caiya Ni
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
9
|
Hsu SCJ, Luu TU, Smith TD, Liu WF. Macro- and micro-scale culture environment differentially regulate the effects of crowding on macrophage function. Biotechnol Bioeng 2024; 121:306-316. [PMID: 37792882 DOI: 10.1002/bit.28554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/25/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023]
Abstract
Macrophages hold vital roles in immune defense, wound healing, and tissue homeostasis, and have the exquisite ability to sense and respond to dynamically changing cues in their microenvironment. Much of our understanding of their behavior has been derived from studies performed using in vitro culture systems, in which the cell environment can be precisely controlled. Recent advances in miniaturized culture platforms also offer the ability to recapitulate some features of the in vivo environment and analyze cellular responses at the single-cell level. Since macrophages are sensitive to their surrounding environments, the specific conditions in both macro- and micro-scale cultures likely contribute to observed responses. In this study, we investigate how the presence of neighboring cells influence macrophage activation following proinflammatory stimulation in both bulk and micro-scale culture. We found that in bulk cultures, higher seeding density negatively regulated the average TNF-α secretion from individual macrophages in response to inflammatory agonists, and this effect was partially caused by the reduced cell-to-media volume ratio. In contrast, studies conducted using microwells to isolate single cells and groups of cells revealed that increasing numbers of cells positively influences their inflammatory activation, suggesting that the absolute cell numbers in the system may be important. In addition, a single inflammatory cell enhanced the inflammatory state of a small group of cells. Overall, this work helps to better understand how variations of macroscopic and microscopic culture environments influence studies in macrophage biology and provides insight into how the presence of neighboring cells and the soluble environment influences macrophage activation.
Collapse
Affiliation(s)
- Ssu-Chieh J Hsu
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, California, USA
| | - Thuy U Luu
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, California, USA
| | - Tim D Smith
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, California, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
10
|
Olmos Liceaga D, Nunes SF, Saenz RA. Ex Vivo Experiments Shed Light on the Innate Immune Response from Influenza Virus. Bull Math Biol 2023; 85:115. [PMID: 37833614 DOI: 10.1007/s11538-023-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
The innate immune response is recognized as a key driver in controlling an influenza virus infection in a host. However, the mechanistic action of such innate response is not fully understood. Infection experiments on ex vivo explants from swine trachea represent an efficient alternative to animal experiments, as the explants conserved key characteristics of an organ from an animal. In the present work we compare three cellular automata models of influenza virus dynamics. The models are fitted to free virus and infected cells data from ex vivo swine trachea experiments. Our findings suggest that the presence of an immune response is necessary to explain the observed dynamics in ex vivo organ culture. Moreover, such immune response should include a refractory state for epithelial cells, and not just a reduced infection rate. Our results may shed light on how the immune system responds to an infection event.
Collapse
Affiliation(s)
- Daniel Olmos Liceaga
- Departamento de Matemáticas, Universidad de Sonora, Blvd. Rosales y Luis Encinas S/N, Col Centro, 83000, Hermosillo, SON, Mexico
| | - Sandro Filipe Nunes
- Cambridge Infectious Disease Consortium, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, AstraZeneca Biopharmaceuticals R &D, Pepparedsleden 1, SE-43183, Mölndal, Sweden
| | - Roberto A Saenz
- Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Col Villas de San Sebastián, 28045, Colima, COL, Mexico.
| |
Collapse
|
11
|
Srinivas N, Song L, Lei KC, Gravemeyer J, Furtmann F, Gambichler T, Becker JC, Sriram A. The HDAC inhibitor domatinostat induces type I interferon α in Merkel cell carcinoma by HES1 repression. J Cancer Res Clin Oncol 2023; 149:8267-8277. [PMID: 37071208 PMCID: PMC10374800 DOI: 10.1007/s00432-023-04733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Class I selective histone deacetylase inhibitors (HDACi) have been previously demonstrated to not only increase major histocompatibility complex class I surface expression in Merkel cell carcinoma (MCC) cells by restoring the antigen processing and presentation machinery, but also exert anti-tumoral effect by inducing apoptosis. Both phenomena could be due to induction of type I interferons (IFN), as has been described for HDACi. However, the mechanism of IFN induction under HDACi is not fully understood because the expression of IFNs is regulated by both activating and inhibitory signaling pathways. Our own preliminary observations suggest that this may be caused by suppression of HES1. METHODS The effect of the class I selective HDACi domatinostat and IFNα on cell viability and the apoptosis of MCPyV-positive (WaGa, MKL-1) and -negative (UM-MCC 34) MCC cell lines, as well as, primary fibroblasts were assessed by colorimetric methods or measuring mitochondrial membrane potential and intracellular caspase-3/7, respectively. Next, the impact of domatinostat on IFNA and HES1 mRNA expression was measured by RT-qPCR; intracellular IFNα production was detected by flow cytometry. To confirm that the expression of IFNα induced by HDACi was due to the suppression of HES1, it was silenced by RNA interference and then mRNA expression of IFNA and IFN-stimulated genes was assessed. RESULTS Our studies show that the previously reported reduction in viability of MCC cell lines after inhibition of HDAC by domatinostat is accompanied by an increase in IFNα expression, both of mRNA and at the protein level. We confirmed that treatment of MCC cells with external IFNα inhibited their proliferation and induced apoptosis. Re-analysis of existing single-cell RNA sequencing data indicated that induction of IFNα by domatinostat occurs through repression of HES1, a transcriptional inhibitor of IFNA; this was confirmed by RT-qPCR. Finally, siRNA-mediated silencing of HES1 in the MCC cell line WaGa not only increased mRNA expression of IFNA and IFN-stimulated genes but also decreased cell viability. CONCLUSION Our results demonstrate that the direct anti-tumor effect of HDACi domatinostat on MCC cells is at least in part mediated via decreased HES1 expression allowing the induction of IFNα, which in turn causes apoptosis.
Collapse
Affiliation(s)
- Nalini Srinivas
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Lina Song
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuan Cheok Lei
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Gravemeyer
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frauke Furtmann
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen C. Becker
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Ashwin Sriram
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Grabowski F, Kochańczyk M, Korwek Z, Czerkies M, Prus W, Lipniacki T. Antagonism between viral infection and innate immunity at the single-cell level. PLoS Pathog 2023; 19:e1011597. [PMID: 37669278 PMCID: PMC10503725 DOI: 10.1371/journal.ppat.1011597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/15/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
When infected with a virus, cells may secrete interferons (IFNs) that prompt nearby cells to prepare for upcoming infection. Reciprocally, viral proteins often interfere with IFN synthesis and IFN-induced signaling. We modeled the crosstalk between the propagating virus and the innate immune response using an agent-based stochastic approach. By analyzing immunofluorescence microscopy images we observed that the mutual antagonism between the respiratory syncytial virus (RSV) and infected A549 cells leads to dichotomous responses at the single-cell level and complex spatial patterns of cell signaling states. Our analysis indicates that RSV blocks innate responses at three levels: by inhibition of IRF3 activation, inhibition of IFN synthesis, and inhibition of STAT1/2 activation. In turn, proteins coded by IFN-stimulated (STAT1/2-activated) genes inhibit the synthesis of viral RNA and viral proteins. The striking consequence of these inhibitions is a lack of coincidence of viral proteins and IFN expression within single cells. The model enables investigation of the impact of immunostimulatory defective viral particles and signaling network perturbations that could potentially facilitate containment or clearance of the viral infection.
Collapse
Affiliation(s)
- Frederic Grabowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Korwek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Prus
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Statistics, Rice University, Houston, Texas, United States of America
| |
Collapse
|
13
|
Pan L, Xue Y, Wang K, Zheng X, Islam A, Tapryal N, Chakraborty A, Bacsi A, Ba X, Hazra TK, Boldogh I. Nei-like DNA glycosylase 2 selectively antagonizes interferon-β expression upon respiratory syncytial virus infection. J Biol Chem 2023; 299:105028. [PMID: 37423306 PMCID: PMC10403741 DOI: 10.1016/j.jbc.2023.105028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
As part of the antiviral response, cells activate the expressions of type I interferons (IFNs) and proinflammatory mediators to control viral spreading. Viral infections can impact DNA integrity; however, how DNA damage repair coordinates antiviral response remains elusive. Here we report Nei-like DNA glycosylase 2 (NEIL2), a transcription-coupled DNA repair protein, actively recognizes the oxidative DNA substrates induced by respiratory syncytial virus (RSV) infection to set the threshold of IFN-β expression. Our results show that NEIL2 antagonizes nuclear factor κB (NF-κB) acting on the IFN-β promoter early after infection, thus limiting gene expression amplified by type I IFNs. Mice lacking Neil2 are far more susceptible to RSV-induced illness with an exuberant expression of proinflammatory genes and tissue damage, and the administration of NEIL2 protein into the airway corrected these defects. These results suggest a safeguarding function of NEIL2 in controlling IFN-β levels against RSV infection. Due to the short- and long-term side effects of type I IFNs applied in antiviral therapy, NEIL2 may provide an alternative not only for ensuring genome fidelity but also for controlling immune responses.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Attila Bacsi
- Faculty of Medicine, Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.
| |
Collapse
|
14
|
Poma AM, Bonuccelli D, Macerola E, Niballi S, Basolo A, Santini F, Basolo F, Toniolo A. Transcriptional changes in multiple endocrine organs from lethal cases of COVID-19. J Mol Med (Berl) 2023; 101:973-986. [PMID: 37246981 PMCID: PMC10225763 DOI: 10.1007/s00109-023-02334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Altered circulating hormone and metabolite levels have been reported during and post-COVID-19. Yet, studies of gene expression at the tissue level capable of identifying the causes of endocrine dysfunctions are lacking. Transcript levels of endocrine-specific genes were analyzed in five endocrine organs of lethal COVID-19 cases. Overall, 116 autoptic specimens from 77 individuals (50 COVID-19 cases and 27 uninfected controls) were included. Samples were tested for the SARS-CoV-2 genome. The adrenals, pancreas, ovary, thyroid, and white adipose tissue (WAT) were investigated. Transcript levels of 42 endocrine-specific and 3 interferon-stimulated genes (ISGs) were measured and compared between COVID-19 cases (virus-positive and virus-negative in each tissue) and uninfected controls. ISG transcript levels were enhanced in SARS-CoV-2-positive tissues. Endocrine-specific genes (e.g., HSD3B2, INS, IAPP, TSHR, FOXE1, LEP, and CRYGD) were deregulated in COVID-19 cases in an organ-specific manner. Transcription of organ-specific genes was suppressed in virus-positive specimens of the ovary, pancreas, and thyroid but enhanced in the adrenals. In WAT of COVID-19 cases, transcription of ISGs and leptin was enhanced independently of virus detection in tissue. Though vaccination and prior infection have a protective role against acute and long-term effects of COVID-19, clinicians must be aware that endocrine manifestations can derive from virus-induced and/or stress-induced transcriptional changes of individual endocrine genes. KEY MESSAGES: • SARS-CoV-2 can infect adipose tissue, adrenals, ovary, pancreas and thyroid. • Infection of endocrine organs induces interferon response. • Interferon response is observed in adipose tissue independently of virus presence. • Endocrine-specific genes are deregulated in an organ-specific manner in COVID-19. • Transcription of crucial genes such as INS, TSHR and LEP is altered in COVID-19.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.
| | - Diana Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Elisabetta Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Sara Niballi
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Alessio Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | | |
Collapse
|
15
|
Jiang B, Schmitt MJ, Rand U, Company C, Dramaretska Y, Grossmann M, Serresi M, Čičin-Šain L, Gargiulo G. Pharmacological modulators of epithelial immunity uncovered by synthetic genetic tracing of SARS-CoV-2 infection responses. SCIENCE ADVANCES 2023; 9:eadf4975. [PMID: 37343108 PMCID: PMC10284557 DOI: 10.1126/sciadv.adf4975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Epithelial immune responses govern tissue homeostasis and offer drug targets against maladaptation. Here, we report a framework to generate drug discovery-ready reporters of cellular responses to viral infection. We reverse-engineered epithelial cell responses to SARS-CoV-2, the viral agent fueling the ongoing COVID-19 pandemic, and designed synthetic transcriptional reporters whose molecular logic comprises interferon-α/β/γ and NF-κB pathways. Such regulatory potential reflected single-cell data from experimental models to severe COVID-19 patient epithelial cells infected by SARS-CoV-2. SARS-CoV-2, type I interferons, and RIG-I drive reporter activation. Live-cell image-based phenotypic drug screens identified JAK inhibitors and DNA damage inducers as antagonistic modulators of epithelial cell response to interferons, RIG-I stimulation, and SARS-CoV-2. Synergistic or antagonistic modulation of the reporter by drugs underscored their mechanism of action and convergence on endogenous transcriptional programs. Our study describes a tool for dissecting antiviral responses to infection and sterile cues and rapidly discovering rational drug combinations for emerging viruses of concern.
Collapse
Affiliation(s)
- Ben Jiang
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ulfert Rand
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Carlos Company
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Melanie Grossmann
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Luka Čičin-Šain
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| |
Collapse
|
16
|
Barnard TR, Landry BN, Wang AB, Sagan SM. Zika virus NS3 and NS5 proteins determine strain-dependent differences in dsRNA accumulation in a host cell type-dependent manner. J Gen Virol 2023; 104. [PMID: 37289497 DOI: 10.1099/jgv.0.001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
For positive-sense RNA viruses, initiation of viral RNA replication represents a major target of antiviral responses to infection. Despite this, the interplay between viral replication and the innate antiviral response at early steps in the Zika virus (ZIKV) life cycle is not well understood. We have previously identified ZIKV isolates with differing levels of dsRNA accumulation, ZIKVPR (high dsRNA per infected cell) and ZIKVCDN (low dsRNA per infected cell), and we hypothesized that we could use reverse genetics to investigate how host and viral factors contribute to the establishment of viral RNA replication. We found that both the ZIKV NS3 and NS5 proteins as well as host factors were necessary to determine the dsRNA accumulation phenotype. Additionally, we show that dsRNA correlates with viral negative-strand RNA measured by strand-specific RT-qPCR, suggesting that dsRNA is an accurate readout of viral RNA replication. Interestingly, although we did not observe NS3- and NS5-dependent differences in cells with defects in interferon (IFN) production, differences in RNA accumulation precede induction of the IFN response, suggesting that RNA sensing pathways or intrinsic restriction factors may differentially restrict ZIKV in an NS3- and NS5-dependent manner. This work expands our understanding of the interplay of early steps of viral RNA replication and the induction of the innate antiviral response to ZIKV infection.
Collapse
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Breanna N Landry
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Alex B Wang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Singh A, Saint-Antoine M. Probing transient memory of cellular states using single-cell lineages. Front Microbiol 2023; 13:1050516. [PMID: 36824587 PMCID: PMC9942930 DOI: 10.3389/fmicb.2022.1050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
The inherent stochasticity in the gene product levels can drive single cells within an isoclonal population to different phenotypic states. The dynamic nature of this intercellular variation, where individual cells can transition between different states over time, makes it a particularly hard phenomenon to characterize. We reviewed recent progress in leveraging the classical Luria-Delbrück experiment to infer the transient heritability of the cellular states. Similar to the original experiment, individual cells were first grown into cell colonies, and then, the fraction of cells residing in different states was assayed for each colony. We discuss modeling approaches for capturing dynamic state transitions in a growing cell population and highlight formulas that identify the kinetics of state switching from the extent of colony-to-colony fluctuations. The utility of this method in identifying multi-generational memory of the both expression and phenotypic states is illustrated across diverse biological systems from cancer drug resistance, reactivation of human viruses, and cellular immune responses. In summary, this fluctuation-based methodology provides a powerful approach for elucidating cell-state transitions from a single time point measurement, which is particularly relevant in situations where measurements lead to cell death (as in single-cell RNA-seq or drug treatment) or cause an irreversible change in cell physiology.
Collapse
Affiliation(s)
- Abhyudai Singh
- Departments of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences University of Delaware, Newark, DE, United States
| | | |
Collapse
|
18
|
Van Eyndhoven LC, Verberne VPG, Bouten CVC, Singh A, Tel J. Transiently heritable fates and quorum sensing drive early IFN-I response dynamics. eLife 2023; 12:83055. [PMID: 36629318 PMCID: PMC9910831 DOI: 10.7554/elife.83055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Type I interferon (IFN-I)-mediated antiviral responses are central to host defense against viral infections. Crucial is the tight and well-orchestrated control of cellular decision-making leading to the production of IFN-Is. Innovative single-cell approaches revealed that the initiation of IFN-I production is limited to only fractions of 1-3% of the total population, both found in vitro, in vivo, and across cell types, which were thought to be stochastically regulated. To challenge this dogma, we addressed the influence of various stochastic and deterministic host-intrinsic factors on dictating early IFN-I responses, using a murine fibroblast reporter model. Epigenetic drugs influenced the percentage of responding cells. Next, with the classical Luria-Delbrück fluctuation test, we provided evidence for transient heritability driving responder fates, which was verified with mathematical modeling. Finally, while studying varying cell densities, we substantiated an important role for cell density in dictating responsiveness, similar to the phenomenon of quorum sensing. Together, this systems immunology approach opens up new avenues to progress the fundamental understanding on cellular decision-making during early IFN-I responses, which can be translated to other (immune) signaling systems.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Vincent PG Verberne
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Carlijn VC Bouten
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
- Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of DelawareNewarkUnited States
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| |
Collapse
|
19
|
Granulocyte-macrophage colony-stimulating factor suppresses induction of type I interferon in infants with severe pneumonia. Pediatr Res 2023; 93:72-77. [PMID: 35414668 DOI: 10.1038/s41390-022-02059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The underlying mechanisms for infantile bronchopneumonia development remain unknown. METHODS Peripheral blood mononuclear cell (PBMCs) and serum derived from severe and mild infantile bronchopneumonia were obtained, and the expression of various molecules was detected with enzyme-linked immunosorbent assay and quantitative PCR. Such molecules were also detected in granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced bone marrow-derived NFκB2-/- dendritic cells (DCs) or NIK SMI1 (NF-κB-inducing kinase inhibitor) administrated DCs. RESULTS The relative mRNA expression levels of type I interferons (IFNs) (IFN-α4, IFN-β), Th17 cell-associated markers (interleukin-17A, retinoic-acid-receptor-related orphan nuclear receptor gamma, and GM-CSF), and non-canonical NF-κB member (NFκB2) were significantly up-regulated in PBMCs and DCs derived from infantile bronchopneumonia compared with healthy controls. However, compared with Th17 cell-associated markers and non-canonical NF-κB molecules, the expression of IFN-α4 and IFN-β was significantly inhibited in severe infantile bronchopneumonia compared with mild infantile bronchopneumonia. The relative protein expression of the above molecules also showed a similar expression pattern in the PBMCs or serum. NF-κB2 knockout or NIK SMI1 administration could reverse the diminished expression of IFN-β in GM-CSF-induced bone marrow-derived DCs. CONCLUSIONS GM-CSF-dependent non-canonical NF-κB pathway-mediated inhibition of type I IFNs production in DCs contributes to the development of severe bronchopneumonia in infant. IMPACT Granulocyte-macrophage colony-stimulating factor-dependent non-canonical NF-κB pathway-mediated inhibition of type I IFNs production in dendritic cells is critical for the development of infantile bronchopneumonia. Our findings reveal a possible mechanism underlying the development of severe infantile bronchopneumonia. The results could provide therapeutic molecular target for the treatment of such disease.
Collapse
|
20
|
Van Eyndhoven LC, Tel J. Revising immune cell coordination: Origins and importance of single-cell variation. Eur J Immunol 2022; 52:1889-1897. [PMID: 36250412 PMCID: PMC10092580 DOI: 10.1002/eji.202250073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Moving from the optimalization of single-cell technologies to the interpretation of the multi-complex single-cell data, the field of immunoengineering is granted with numerous important insights into the coordination of immune cell activation and how to modulate it for therapeutic purposes. However, insights come with additional follow-up questions that challenge our perception on how immune responses are generated and fine-tuned to fight a wide array of pathogens in ever-changing and often unpredictable microenvironments. Are immune responses really either being tightly regulated by molecular determinants, or highly flexible attributed to stochasticity? What exactly makes up the basic rules by which single cells cooperate to establish tissue-level immunity? Taking the type I IFN system and its newest insights as a main example throughout this review, we revise the basic concepts of (single) immune cell coordination, redefine the concepts of noise, stochasticity and determinism, and highlight the importance of single-cell variation in immunology and beyond.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
21
|
Deak P, Studnitzer B, Ung T, Steinhardt R, Swartz M, Esser-Kahn A. Isolating and targeting a highly active, stochastic dendritic cell subpopulation for improved immune responses. Cell Rep 2022; 41:111563. [PMID: 36323246 PMCID: PMC10099975 DOI: 10.1016/j.celrep.2022.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Dendritic cell (DC) activation via pathogen-associated molecular patterns (PAMPs) is critical for antigen presentation and development of adaptive immune responses, but the stochastic distribution of DC responses to PAMP signaling, especially during the initial stages of immune activation, is poorly understood. In this study, we isolate a unique DC subpopulation via preferential phagocytosis of microparticles (MPs) and characterize this subpopulation of "first responders" (FRs). We present results that show these cells (1) can be isolated and studied via both increased accumulation of the micron-sized particles and combinations of cell surface markers, (2) show increased responses to PAMPs, (3) facilitate adaptive immune responses by providing the initial paracrine signaling, and (4) can be selectively targeted by vaccines to modulate both antibody and T cell responses in vivo. This study presents insights into a temporally controlled, distinctive cell population that influences downstream immune responses. Furthermore, it demonstrates potential for improving vaccine designs via FR targeting.
Collapse
Affiliation(s)
- Peter Deak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Bradley Studnitzer
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel Steinhardt
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Melody Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Kalliara E, Kardynska M, Bagnall J, Spiller DG, Müller W, Ruckerl D, Śmieja J, Biswas SK, Paszek P. Post-transcriptional regulatory feedback encodes JAK-STAT signal memory of interferon stimulation. Front Immunol 2022; 13:947213. [PMID: 36238296 PMCID: PMC9552616 DOI: 10.3389/fimmu.2022.947213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/β1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/β1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network’s ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy.
Collapse
Affiliation(s)
- Eirini Kalliara
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malgorzata Kardynska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Zabrze, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Müller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dominik Ruckerl
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Subhra K. Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- *Correspondence: Pawel Paszek,
| |
Collapse
|
23
|
Shakfa N, Li D, Nersesian S, Wilson-Sanchez J, Koti M. The STING pathway: Therapeutic vulnerabilities in ovarian cancer. Br J Cancer 2022; 127:603-611. [PMID: 35383278 PMCID: PMC9381712 DOI: 10.1038/s41416-022-01797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer is the leading cause of mortality due to gynecologic malignancy. The majority of women diagnosed with the most common subtype, high-grade serous ovarian carcinoma (HGSC), develop resistance to conventional therapies despite initial response to treatment. HGSC tumors displaying DNA damage repair (DDR) gene deficiency and high chromosomal instability mainly associate with higher cytotoxic immune cell infiltration and expression of genes associated with these immune pathways. Despite the high level of immune infiltration observed, the majority of patients with HGSC have not benefited from immunomodulatory treatments as the mechanistic basis of this infiltration is unclear. This lack of response can be primarily attributed to heterogeneity at the levels of both cancer cell genetic alterations and the tumour immune microenvironment. Strategies to enhance anti-tumour immunity have been investigated in ovarian cancer, of which interferon activating therapies present as an attractive option. Of the several type I interferon (IFN-1) stimulating therapies, exogenously activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is emerging as a promising avenue. Herein, we highlight our current understanding of how constitutive and induced cGAS-STING pathway activation influences the ovarian tumour microenvironment. We further elaborate on the links between the genomic alterations prevalent in ovarian tumours and how the resultant immune phenotypes can make them more susceptible to exogenous STING pathway activation and potentiate immune-mediated killing of cancer cells. The therapeutic potential of cGAS-STING pathway activation in ovarian cancer and factors implicating treatment outcomes are discussed, providing a rationale for future combinatorial treatment approaches on the backbone of chemotherapy.
Collapse
Affiliation(s)
- Noor Shakfa
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Deyang Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Juliette Wilson-Sanchez
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
24
|
Graham AL, Schrom EC, Metcalf CJE. The evolution of powerful yet perilous immune systems. Trends Immunol 2021; 43:117-131. [PMID: 34949534 PMCID: PMC8686020 DOI: 10.1016/j.it.2021.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/23/2022]
Abstract
The mammalian immune system packs serious punch against infection but can also cause harm: for example, coronavirus disease 2019 (COVID-19) made headline news of the simultaneous power and peril of human immune responses. In principle, natural selection leads to exquisite adaptation and therefore cytokine responsiveness that optimally balances the benefits of defense against its costs (e.g., immunopathology suffered and resources expended). Here, we illustrate how evolutionary biology can predict such optima and also help to explain when/why individuals exhibit apparently maladaptive immunopathological responses. Ultimately, we argue that the evolutionary legacies of multicellularity and life-history strategy, in addition to our coevolution with symbionts and our demographic history, together explain human susceptibility to overzealous, pathology-inducing cytokine responses. Evolutionary insight thereby complements molecular/cellular mechanistic insights into immunopathology.
Collapse
|