1
|
Høberg A, Solberg BS, Hegvik TA, Haavik J. Using polygenic scores in combination with symptom rating scales to identify attention-deficit/hyperactivity disorder. BMC Psychiatry 2024; 24:471. [PMID: 38937684 PMCID: PMC11210094 DOI: 10.1186/s12888-024-05925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The inclusion of biomarkers could improve diagnostic accuracy of attention-deficit/hyperactivity disorder (ADHD). One potential biomarker is the ADHD polygenic score (PGS), a measure of genetic liability for ADHD. This study aimed to investigate if the ADHD PGS can provide additional information alongside ADHD rating scales and examination of family history of ADHD to distinguish between ADHD cases and controls. METHODS Polygenic scores were calculated for 576 adults with ADHD and 530 ethnically matched controls. ADHD PGS was used alongside scores from the Wender-Utah Rating Scale (WURS) and the Adult ADHD Self-Report Scale (ASRS) as predictors of ADHD diagnosis in a set of nested logistic regression models. These models were compared by likelihood ratio (LR) tests, Akaike information criterion corrected for small samples (AICc), and Lee R². These analyses were repeated with family history of ADHD as a covariate in all models. RESULTS The ADHD PGS increased the variance explained of the ASRS by 0.58% points (pp) (R2ASRS = 61.11%, R2ASRS + PGS=61.69%), the WURS by 0.61pp (R2WURS = 77.33%, R2WURS + PGS= 77.94%), of ASRS and WURS together by 0.57pp (R2ASRS + WURS=80.84%, R2ASRS + WURS+PGS=81.40%), and of self-reported family history by 1.40pp (R2family = 28.06%, R2family + PGS=29.46%). These increases were statistically significant, as measured by LR tests and AICc. CONCLUSION We found that the ADHD PGS contributed additional information to common diagnostic aids. However, the increase in variance explained was small, suggesting that the ADHD PGS is currently not a clinically useful diagnostic aid. Future studies should examine the utility of ADHD PGS in ADHD prediction alongside non-genetic risk factors, and the diagnostic utility of the ADHD PGS should be evaluated as more genetic data is accumulated and computational tools are further refined.
Collapse
Affiliation(s)
- André Høberg
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.
| | - Berit Skretting Solberg
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
- Child- and adolescent psychiatric outpatient unit, Hospital Betanien, Bergen, Norway
| | - Tor-Arne Hegvik
- Clinic of Surgery, St. Olavs Hospital, Trondheim, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Cho JY, Rumschlag JA, Tsvetkov E, Proper DS, Lang H, Berto S, Assali A, Cowan CW. MEF2C Hypofunction in GABAergic Cells Alters Sociability and Prefrontal Cortex Inhibitory Synaptic Transmission in a Sex-Dependent Manner. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100289. [PMID: 38390348 PMCID: PMC10881314 DOI: 10.1016/j.bpsgos.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
Background Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods We employed GABAergic cell type-specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Divya S. Proper
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
3
|
Chen D, Zhou Y, Zhang Y, Zeng H, Wu L, Liu Y. Unraveling shared susceptibility loci and Mendelian genetic associations linking educational attainment with multiple neuropsychiatric disorders. Front Psychiatry 2024; 14:1303430. [PMID: 38250258 PMCID: PMC10797721 DOI: 10.3389/fpsyt.2023.1303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Empirical studies have demonstrated that educational attainment (EA) is associated with neuropsychiatric disorders (NPDs), suggesting a shared etiological basis between them. However, little is known about the shared genetic mechanisms and causality behind such associations. Methods This study explored the shared genetic basis and causal relationships between EA and NPDs using the high-definition likelihood (HDL) method, cross phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) with summary-level data for EA (N = 293,723) and NPDs (N range = 9,725 to 455,258). Results Significant genetic correlations between EA and 12 NPDs (rg range - 0.49 to 0.35; all p < 3.85 × 10-3) were observed. CPASSOC identified 37 independent loci shared between EA and NPDs, one of which was novel (rs71351952, mapped gene: ARFGEF2). Functional analyses and TWAS found shared genes were enriched in brain tissue, especially in the cerebellum and highlighted the regulatory role of neuronal signaling, purine nucleotide metabolic process, and cAMP-mediated signaling pathways. CPASSOC and TWAS supported the role of three regions of 6q16.1, 3p21.31, and 17q21.31 might account for the shared causes between EA and NPDs. MR confirmed higher genetically predicted EA lower the risk of ADHD (ORIVW: 0.50; 95% CI: 0.39 to 0.63) and genetically predicted ADHD decreased the risk of EA (Causal effect: -2.8 months; 95% CI: -3.9 to -1.8). Conclusion These findings provided evidence of shared genetics and causation between EA and NPDs, advanced our understanding of EA, and implicated potential biological pathways that might underlie both EA and NPDs.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| |
Collapse
|
4
|
Ribasés M, Mitjans M, Hartman CA, Soler Artigas M, Demontis D, Larsson H, Ramos-Quiroga JA, Kuntsi J, Faraone SV, Børglum AD, Reif A, Franke B, Cormand B. Genetic architecture of ADHD and overlap with other psychiatric disorders and cognition-related phenotypes. Neurosci Biobehav Rev 2023; 153:105313. [PMID: 37451654 PMCID: PMC10789879 DOI: 10.1016/j.neubiorev.2023.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.
Collapse
Affiliation(s)
- M Ribasés
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - M Mitjans
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain
| | - C A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Soler Artigas
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - D Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - H Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - J A Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Kuntsi
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - S V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - A D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - B Franke
- Departments of Cognitive Neuroscience and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - B Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
6
|
Green A, Baroud E, DiSalvo M, Faraone SV, Biederman J. Examining the impact of ADHD polygenic risk scores on ADHD and associated outcomes: A systematic review and meta-analysis. J Psychiatr Res 2022; 155:49-67. [PMID: 35988304 DOI: 10.1016/j.jpsychires.2022.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Early identification of attention-deficit/hyperactivity disorder (ADHD) is critical for mitigating the many negative functional outcomes associated with its diagnosis. Because of the strong genetic basis of ADHD, the use of polygenic risk scores (PRS) could potentially aid in the early identification of ADHD and associated outcomes. Therefore, a systematic search of the literature on the association between ADHD and PRS in pediatric populations was conducted. All articles were screened for a priori inclusion and exclusion criteria, and, after careful review, 33 studies were included in our systematic review and 16 studies with extractable data were included in our meta-analysis. The results of the review were categorized into three common themes: the associations between ADHD-PRS with 1) the diagnosis of ADHD and ADHD symptoms 2) comorbid psychopathology and 3) cognitive and educational outcomes. Higher ADHD-PRS were associated with increased odds of having a diagnosis (OR = 1.37; p<0.001) and more symptoms of ADHD (β = 0.06; p<0.001). While ADHD-PRS were associated with a persistent diagnostic trajectory over time in the systematic review, the meta-analysis did not confirm these findings (OR = 1.09; p = 0.62). Findings showed that ADHD-PRS were associated with increased odds for comorbid psychopathology such as anxiety/depression (OR = 1.16; p<0.001) and irritability/emotional dysregulation (OR = 1.14; p<0.001). Finally, while the systematic review showed that ADHD-PRS were associated with a variety of negative cognitive outcomes, the meta-analysis showed no significant association (β = 0.08; p = 0.07). Our review of the available literature suggests that ADHD-PRS, together with risk factors, may contribute to the early identification of children with suspected ADHD and associated disorders.
Collapse
Affiliation(s)
- Allison Green
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Evelyne Baroud
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital and McLean Hospital, Harvard Medical School, Boston, MA, United States
| | - Maura DiSalvo
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | | | - Joseph Biederman
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Torgersen K, Rahman Z, Bahrami S, Hindley GFL, Parker N, Frei O, Shadrin A, O’Connell KS, Tesli M, Smeland OB, Munkhaugen J, Djurovic S, Dammen T, Andreassen OA. Shared genetic loci between depression and cardiometabolic traits. PLoS Genet 2022; 18:e1010161. [PMID: 35560157 PMCID: PMC9170110 DOI: 10.1371/journal.pgen.1010161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/06/2022] [Accepted: 03/22/2022] [Indexed: 01/02/2023] Open
Abstract
Epidemiological and clinical studies have found associations between depression and cardiovascular disease risk factors, and coronary artery disease patients with depression have worse prognosis. The genetic relationship between depression and these cardiovascular phenotypes is not known. We here investigated overlap at the genome-wide level and in individual loci between depression, coronary artery disease and cardiovascular risk factors. We used the bivariate causal mixture model (MiXeR) to quantify genome-wide polygenic overlap and the conditional/conjunctional false discovery rate (pleioFDR) method to identify shared loci, based on genome-wide association study summary statistics on depression (n = 450,619), coronary artery disease (n = 502,713) and nine cardiovascular risk factors (n = 204,402–776,078). Genetic loci were functionally annotated using FUnctional Mapping and Annotation (FUMA). Of 13.9K variants influencing depression, 9.5K (SD 1.0K) were shared with body-mass index. Of 4.4K variants influencing systolic blood pressure, 2K were shared with depression. ConjFDR identified 79 unique loci associated with depression and coronary artery disease or cardiovascular risk factors. Six genomic loci were associated jointly with depression and coronary artery disease, 69 with blood pressure, 49 with lipids, 9 with type 2 diabetes and 8 with c-reactive protein at conjFDR < 0.05. Loci associated with increased risk for depression were also associated with increased risk of coronary artery disease and higher total cholesterol, low-density lipoprotein and c-reactive protein levels, while there was a mixed pattern of effect direction for the other risk factors. Functional analyses of the shared loci implicated metabolism of alpha-linolenic acid pathway for type 2 diabetes. Our results showed polygenic overlap between depression, coronary artery disease and several cardiovascular risk factors and suggest molecular mechanisms underlying the association between depression and increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Kristin Torgersen
- Department of Behavioral Medicine and Faculty of Medicine, University of Oslo, Norway
- * E-mail: (KT); (OAA)
| | - Zillur Rahman
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guy Frederick Lanyon Hindley
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Nadine Parker
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kevin S. O’Connell
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Martin Tesli
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Olav B. Smeland
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - John Munkhaugen
- Department of Behavioral Medicine and Faculty of Medicine, University of Oslo, Norway
- Department of Medicine, Drammen Hospital, Drammen, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Toril Dammen
- Section of Psychiatric Treatment Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Ole A. Andreassen
- NORMENT: Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- * E-mail: (KT); (OAA)
| |
Collapse
|
8
|
Fu X, Yao T, Chen X, Li H, Wu J. MEF2C gene variations are associated with ADHD in the Chinese Han population: a case-control study. J Neural Transm (Vienna) 2022; 129:431-439. [PMID: 35357565 DOI: 10.1007/s00702-022-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
Myocyte enhancer factor 2C (MEF2C) is associated with hyperactivity and might be a novel risk gene for susceptibility to attention deficit hyperactivity disorder (ADHD). Therefore, this study aimed to explore the association between MEF2C genetic variants and ADHD in the Chinese Han population. A total of 215 patients with ADHD and 233 controls were recruited for this study. The Swanson, Nolan, and Pelham version IV questionnaire was used to evaluate the clinical features of ADHD. In silico analysis was used to annotate the biological functions of the promising single nucleotide polymorphisms. Our findings indicated that MEF2C rs587490 was significantly associated with ADHD in the multiplicative model (OR = 0.640, p = 0.002). Participants with the rs587490 TT allele exhibited less hyperactivity/impulsivity than those with the rs587490 CC allele. Furthermore, the expression quantitative trait loci analysis suggested that rs587490 could regulate the gene expression of MEF2C in the hippocampus, putamen, thalamus, and frontal white matter. Our study concluded that the MEF2C rs587490 T allele is significantly associated with a reduced risk of ADHD in the Chinese Han population, which provides new insight into the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Huiru Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
9
|
Wang H, Alda M, Trappenberg T, Nunes A. A scoping review and comparison of approaches for measuring genetic heterogeneity in psychiatric disorders. Psychiatr Genet 2022; 32:1-8. [PMID: 34694248 DOI: 10.1097/ypg.0000000000000304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An improved understanding of genetic etiological heterogeneity in a psychiatric condition may help us (a) isolate a neurophysiological 'final common pathway' by identifying its upstream genetic origins and (b) facilitate characterization of the condition's phenotypic variation. This review aims to identify existing genetic heterogeneity measurements in the psychiatric literature and provides a conceptual review of their mechanisms, limitations, and assumptions. The Scopus database was searched for studies that quantified genetic heterogeneity or correlation of psychiatric phenotypes with human genetic data. Ninety studies were included. Eighty-seven reports quantified genetic correlation, five applied genomic structural equation modelling, three evaluated departure from the Hardy-Weinberg equilibrium at one or more loci, and two applied a novel approach known as MiXeR. We found no study that rigorously measured genetic etiological heterogeneity across a large number of markers. Developing such approaches may help better characterize the biological diversity of psychopathology.
Collapse
Affiliation(s)
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Abraham Nunes
- Faculty of Computer Science
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Zhang Z, Zhao Y. Progress on the roles of MEF2C in neuropsychiatric diseases. Mol Brain 2022; 15:8. [PMID: 34991657 PMCID: PMC8740500 DOI: 10.1186/s13041-021-00892-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Myocyte Enhancer Factor 2 C (MEF2C), one of the transcription factors of the MADS-BOX family, is involved in embryonic brain development, neuronal formation and differentiation, as well as in the growth and pruning of axons and dendrites. MEF2C is also involved in the development of various neuropsychiatric disorders, such as autism spectrum disorders (ASD), epilepsy, schizophrenia and Alzheimer’s disease (AD). Here, we review the relationship between MEF2C and neuropsychiatric disorders, and provide further insights into the mechanism of these diseases.
Collapse
Affiliation(s)
- Zhikun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Mental Health, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
O'Connell KS, Shadrin A, Bahrami S, Smeland OB, Bettella F, Frei O, Krull F, Askeland RB, Walters GB, Davíðsdóttir K, Haraldsdóttir GS, Guðmundsson ÓÓ, Stefánsson H, Fan CC, Steen NE, Reichborn-Kjennerud T, Dale AM, Stefánsson K, Djurovic S, Andreassen OA. Identification of genetic overlap and novel risk loci for attention-deficit/hyperactivity disorder and bipolar disorder. Mol Psychiatry 2021; 26:4055-4065. [PMID: 31792363 DOI: 10.1038/s41380-019-0613-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Differential diagnosis between childhood onset attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) remains a challenge, mainly due to overlapping symptoms and high rates of comorbidity. Despite this, genetic correlation reported for these disorders is low and non-significant. Here we aimed to better characterize the genetic architecture of these disorders utilizing recent large genome-wide association studies (GWAS). We analyzed independent GWAS summary statistics for ADHD (19,099 cases and 34,194 controls) and BD (20,352 cases and 31,358 controls) applying the conditional/conjunctional false discovery rate (condFDR/conjFDR) statistical framework that increases the power to detect novel phenotype-specific and shared loci by leveraging the combined power of two GWAS. We observed cross-trait polygenic enrichment for ADHD conditioned on associations with BD, and vice versa. Leveraging this enrichment, we identified 19 novel ADHD risk loci and 40 novel BD risk loci at condFDR <0.05. Further, we identified five loci jointly associated with ADHD and BD (conjFDR < 0.05). Interestingly, these five loci show concordant directions of effect for ADHD and BD. These results highlight a shared underlying genetic risk for ADHD and BD which may help to explain the high comorbidity rates and difficulties in differentiating between ADHD and BD in the clinic. Improving our understanding of the underlying genetic architecture of these disorders may aid in the development of novel stratification tools to help reduce these diagnostic difficulties.
Collapse
Affiliation(s)
- Kevin S O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
| | - Alexey Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Francesco Bettella
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Florian Krull
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Ragna B Askeland
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - G Bragi Walters
- deCODE genetics/Amgen, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Katrín Davíðsdóttir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Gyða S Haraldsdóttir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Ólafur Ó Guðmundsson
- deCODE genetics/Amgen, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland.,Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | | | - Chun C Fan
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Nils Eiel Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA.,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kári Stefánsson
- deCODE genetics/Amgen, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway. .,Departments of Neurology and Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Identification of pleiotropy at the gene level between psychiatric disorders and related traits. Transl Psychiatry 2021; 11:410. [PMID: 34326310 PMCID: PMC8322263 DOI: 10.1038/s41398-021-01530-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Major mental disorders are highly prevalent and make a substantial contribution to the global disease burden. It is known that mental disorders share clinical characteristics, and genome-wide association studies (GWASs) have recently provided evidence for shared genetic factors as well. Genetic overlaps are usually identified at the single-marker level. Here, we aimed to identify genetic overlaps at the gene level between 7 mental disorders (schizophrenia, autism spectrum disorder, major depressive disorder, anorexia nervosa, ADHD, bipolar disorder and anxiety), 8 brain morphometric traits, 2 cognitive traits (educational attainment and general cognitive function) and 9 personality traits (subjective well-being, depressive symptoms, neuroticism, extraversion, openness to experience, agreeableness and conscientiousness, children's aggressive behaviour, loneliness) based on publicly available GWASs. We performed systematic conditional regression analyses to identify independent signals and select loci associated with more than one trait. We identified 48 genes containing independent markers associated with several traits (pleiotropy at the gene level). We also report 9 genes with different markers that show independent associations with single traits (allelic heterogeneity). This study demonstrates that mental disorders and related traits do show pleiotropy at the gene level as well as the single-marker level. The identification of these genes might be important for prioritizing further deep genotyping, functional studies, or drug targeting.
Collapse
|
13
|
Shared genetic architecture between neuroticism, coronary artery disease and cardiovascular risk factors. Transl Psychiatry 2021; 11:368. [PMID: 34226488 PMCID: PMC8257646 DOI: 10.1038/s41398-021-01466-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 11/08/2022] Open
Abstract
Neuroticism is associated with poor health, cardiovascular disease (CVD) risk factors and coronary artery disease (CAD). The conditional/conjunctional false discovery rate method (cond/conjFDR) was applied to genome wide association study (GWAS) summary statistics on neuroticism (n = 432,109), CAD (n = 184,305) and 12 CVD risk factors (n = 188,577-339,224) to investigate genetic overlap between neuroticism and CAD and CVD risk factors. CondFDR analyses identified 729 genomic loci associated with neuroticism after conditioning on CAD and CVD risk factors. The conjFDR analyses revealed 345 loci jointly associated with neuroticism and CAD (n = 30), body mass index (BMI) (n = 96) or another CVD risk factor (n = 1-60). Several loci were jointly associated with neuroticism and multiple CVD risk factors. Seventeen of the shared loci with CAD and 61 of the shared loci with BMI are novel for neuroticism. 21 of 30 (70%) neuroticism risk alleles were associated with higher CAD risk. Functional analyses of the genes mapped to the shared loci implicated cell division, nuclear receptor, elastic fiber formation as well as starch and sucrose metabolism pathways. Our results indicate polygenic overlap between neuroticism and CAD and CVD risk factors, suggesting that genetic factors may partly cause the comorbidity. This gives new insight into the shared molecular genetic basis of these conditions.
Collapse
|
14
|
Chaudhary R, Agarwal V, Kaushik AS, Rehman M. Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon 2021; 7:e06854. [PMID: 33981903 PMCID: PMC8082549 DOI: 10.1016/j.heliyon.2021.e06854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2), a family of transcription factor of MADS (minichromosome maintenance 1, agamous, deficiens and serum response factor)-box family needed in the growth and differentiation of a variety of human cells, such as neural, immune, endothelial, and muscles. As per existing literature, MEF2 transcription factors have also been associated with synaptic plasticity, the developmental mechanisms governing memory and learning, and several neurologic conditions, like autism spectrum disorders (ASDs). Recent genomic findings have ascertained a link between MEF2 defects, particularly in the MEF2C isoform and the ASD. In this review, we summarized a concise overview of the general regulation, structure and functional roles of the MEF2C transcription factor. We further outlined the potential role of MEF2C as a risk factor for various neurodevelopmental disorders, such as ASD, MEF2C Haploinsufficiency Syndrome and Fragile X syndrome.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
15
|
Liley J, Wallace C. Accurate error control in high-dimensional association testing using conditional false discovery rates. Biom J 2021; 63:1096-1130. [PMID: 33682201 PMCID: PMC7612315 DOI: 10.1002/bimj.201900254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/05/2020] [Accepted: 12/30/2020] [Indexed: 01/13/2023]
Abstract
High-dimensional hypothesis testing is ubiquitous in the biomedical sciences, and informative covariates may be employed to improve power. The conditional false discovery rate (cFDR) is a widely used approach suited to the setting where the covariate is a set of p-values for the equivalent hypotheses for a second trait. Although related to the Benjamini–Hochberg procedure, it does not permit any easy control of type-1 error rate and existing methods are over-conservative. We propose a newmethod for type-1 error rate control based on identifyingmappings from the unit square to the unit interval defined by the estimated cFDR and splitting observations so that each map is independent of the observations it is used to test. We also propose an adjustment to the existing cFDR estimator which further improves power. We show by simulation that the new method more than doubles potential improvement in power over unconditional analyses compared to existing methods. We demonstrate our method on transcriptome-wide association studies and show that the method can be used in an iterative way, enabling the use of multiple covariates successively. Our methods substantially improve the power and applicability of cFDR analysis.
Collapse
Affiliation(s)
- James Liley
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.,Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.,Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
16
|
O'Connell KS, Shadrin A, Smeland OB, Bahrami S, Frei O, Bettella F, Krull F, Fan CC, Askeland RB, Knudsen GPS, Halmøy A, Steen NE, Ueland T, Walters GB, Davíðsdóttir K, Haraldsdóttir GS, Guðmundsson ÓÓ, Stefánsson H, Reichborn-Kjennerud T, Haavik J, Dale AM, Stefánsson K, Djurovic S, Andreassen OA. Identification of Genetic Loci Shared Between Attention-Deficit/Hyperactivity Disorder, Intelligence, and Educational Attainment. Biol Psychiatry 2020; 87:1052-1062. [PMID: 32061372 PMCID: PMC7255939 DOI: 10.1016/j.biopsych.2019.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that is consistently associated with lower levels of educational attainment. A recent large genome-wide association study identified common gene variants associated with ADHD, but most of the genetic architecture remains unknown. METHODS We analyzed independent genome-wide association study summary statistics for ADHD (19,099 cases and 34,194 controls), educational attainment (N = 842,499), and general intelligence (N = 269,867) using a conditional/conjunctional false discovery rate (FDR) statistical framework that increases power of discovery by conditioning the FDR on overlapping associations. The genetic variants identified were characterized in terms of function, expression, and biological processes. RESULTS We identified 58 linkage disequilibrium-independent ADHD-associated loci (conditional FDR < 0.01), of which 30 were shared between ADHD and educational attainment or general intelligence (conjunctional FDR < 0.01) and 46 were novel risk loci for ADHD. CONCLUSIONS These results expand on previous genetic and epidemiological studies and support the hypothesis of a shared genetic basis between these phenotypes. Although the clinical utility of the identified loci remains to be determined, they can be used as resources to guide future studies aiming to disentangle the complex etiologies of ADHD, educational attainment, and general intelligence.
Collapse
Affiliation(s)
- Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Florian Krull
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Chun C Fan
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Cognitive Science, University of California, San Diego, La Jolla, California
| | - Ragna B Askeland
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Gun Peggy S Knudsen
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne Halmøy
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - G Bragi Walters
- deCODE Genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Katrín Davíðsdóttir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Gyða S Haraldsdóttir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Ólafur Ó Guðmundsson
- deCODE Genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | | | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Haavik
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California; Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California
| | - Kári Stefánsson
- deCODE Genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
17
|
Bahrami S, Steen NE, Shadrin A, O’Connell K, Frei O, Bettella F, Wirgenes KV, Krull F, Fan CC, Dale AM, Smeland OB, Djurovic S, Andreassen OA. Shared Genetic Loci Between Body Mass Index and Major Psychiatric Disorders: A Genome-wide Association Study. JAMA Psychiatry 2020; 77:503-512. [PMID: 31913414 PMCID: PMC6990967 DOI: 10.1001/jamapsychiatry.2019.4188] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/30/2019] [Indexed: 01/02/2023]
Abstract
Importance People with major psychiatric disorders (MPDs) have a 10- to 20-year shorter life span than the rest of the population, and this difference is mainly due to comorbid cardiovascular diseases. Genome-wide association studies have identified common variants involved in schizophrenia (SCZ), bipolar disorder (BIP), and major depression (MD) and body mass index (BMI), a key cardiometabolic risk factor. However, genetic variants jointly influencing MPD and BMI remain largely unknown. Objective To assess the extent of the overlap between the genetic architectures of MPDs and BMI and identify genetic loci shared between them. Design, Setting, and Participants Using a conditional false discovery rate statistical framework, independent genome-wide association study data on individuals with SCZ (n = 82 315), BIP (n = 51 710), MD (n = 480 359), and BMI (n = 795 640) were analyzed. The UK Biobank cohort (n = 29 740) was excluded from the MD data set to avoid sample overlap. Data were collected from August 2017 to May 2018, and analysis began July 2018. Main Outcomes and Measures The primary outcomes were a list of genetic loci shared between BMI and MPDs and their functional pathways. Results Genome-wide association study data from 1 380 284 participants were analyzed, and the genetic correlation between BMI and MPDs varied (SCZ: r for genetic = -0.11, P = 2.1 × 10-10; BIP: r for genetic = -0.06, P = .0103; MD: r for genetic = 0.12, P = 6.7 × 10-10). Overall, 63, 17, and 32 loci shared between BMI and SCZ, BIP, and MD, respectively, were analyzed at conjunctional false discovery rate less than 0.01. Of the shared loci, 34% (73 of 213) in SCZ, 52% (36 of 69) in BIP, and 57% (56 of 99) in MD had risk alleles associated with higher BMI (conjunctional false discovery rate <0.05), while the rest had opposite directions of associations. Functional analyses indicated that the overlapping loci are involved in several pathways including neurodevelopment, neurotransmitter signaling, and intracellular processes, and the loci with concordant and opposite association directions pointed mostly to different pathways. Conclusions and Relevance In this genome-wide association study, extensive polygenic overlap between BMI and SCZ, BIP, and MD were found, and 111 shared genetic loci were identified, implicating novel functional mechanisms. There was mixture of association directions in SCZ and BMI, albeit with a preponderance of discordant ones.
Collapse
Affiliation(s)
- Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kevin O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Florian Krull
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Chun C. Fan
- Department of Radiology, University of California, San Diego, La Jolla
- Department of Cognitive Science, University of California, San Diego, La Jolla
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla
- Multimodal Imaging Laboratory, University of California, San Diego, La Jolla
- Department of Psychiatry, University of California, San Diego, La Jolla
- Department of Neurosciences, University of California, San Diego, La Jolla
| | - Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry 2020; 10:8. [PMID: 32066674 PMCID: PMC7026179 DOI: 10.1038/s41398-020-0710-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic variation in peripheral tissues is being widely studied as a molecular biomarker of complex disease and disease-related exposures. To date, few studies have examined differences in DNA methylation associated with attention-deficit hyperactivity disorder (ADHD). In this study, we profiled genetic and methylomic variation across the genome in saliva samples from children (age 7-12 years) with clinically established ADHD (N = 391) and nonpsychiatric controls (N = 213). We tested for differentially methylated positions (DMPs) associated with both ADHD diagnosis and ADHD polygenic risk score, by using linear regression models including smoking, medication effects, and other potential confounders in our statistical models. Our results support previously reported associations between ADHD and DNA methylation levels at sites annotated to VIPR2, and identify several novel disease-associated DMPs (p < 1e-5), although none of them were genome-wide significant. The two top-ranked, ADHD-associated DMPs (cg17478313 annotated to SLC7A8 and cg21609804 annotated to MARK2) are also significantly associated with nearby SNPs (p = 1.2e-46 and p = 2.07e-59), providing evidence that disease-associated DMPs are under genetic control. We also report a genome-wide significant association between ADHD polygenic risk and variable DNA methylation at a site annotated to the promoter of GART and SON (p = 6.71E-8). Finally, we show that ADHD-associated SNPs colocalize with SNPs associated with methylation levels in saliva. This is the first large-scale study of DNA methylation in children with ADHD. Our results represent novel epigenetic biomarkers for ADHD that may be useful for patient stratification, reinforce the importance of genetic effects on DNA methylation, and provide plausible molecular mechanisms for ADHD risk variants.
Collapse
Affiliation(s)
- Michael A. Mooney
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690OHSU Knight Cancer Institute, Portland, OR USA
| | - Peter Ryabinin
- grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Beth Wilmot
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Priya Bhatt
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, Exeter University, Exeter, UK
| | - Joel T. Nigg
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
19
|
Smeland OB, Frei O, Fan CC, Shadrin A, Dale AM, Andreassen OA. The emerging pattern of shared polygenic architecture of psychiatric disorders, conceptual and methodological challenges. Psychiatr Genet 2019; 29:152-159. [PMID: 31464996 PMCID: PMC10752571 DOI: 10.1097/ypg.0000000000000234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have transformed psychiatric genetics and provided novel insights into the genetic etiology of psychiatric disorders. Two major discoveries have emerged; the disorders are polygenic, with a large number of common variants each with a small effect and many genetic variants influence more than one phenotype, suggesting shared genetic etiology. These concepts have the potential to revolutionize the current classification system with diagnostic categories and facilitate development of better treatments. However, to reach clinical impact, we need larger samples and better analytical tools, as most polygenic factors remain undetected. We here present statistical approaches designed to improve the yield of existing genome-wide association studies for polygenic phenotypes. We review how these tools have informed the current knowledge on the genetic architecture of psychiatric disorders, focusing on schizophrenia, bipolar disorder and major depression, and overlap with psychological and cognitive traits. We discuss application of statistical tools for stratification and prediction.
Collapse
Affiliation(s)
- Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chun-Chieh Fan
- Center for Human Development, University of California, San Diego, USA
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Department of Radiology, University of California, USA
- Department of Neuroscience, University of California, San Diego, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California, USA
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Smeland OB, Frei O, Shadrin A, O'Connell K, Fan CC, Bahrami S, Holland D, Djurovic S, Thompson WK, Dale AM, Andreassen OA. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum Genet 2019; 139:85-94. [PMID: 31520123 DOI: 10.1007/s00439-019-02060-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
In recent years, genome-wide association study (GWAS) sample sizes have become larger, the statistical power has improved and thousands of trait-associated variants have been uncovered, offering new insights into the genetic etiology of complex human traits and disorders. However, a large fraction of the polygenic architecture underlying most complex phenotypes still remains undetected. We here review the conditional false discovery rate (condFDR) method, a model-free strategy for analysis of GWAS summary data, which has improved yield of existing GWAS and provided novel findings of genetic overlap between a wide range of complex human phenotypes, including psychiatric, cardiovascular, and neurological disorders, as well as psychological and cognitive traits. The condFDR method was inspired by Empirical Bayes approaches and leverages auxiliary genetic information to improve statistical power for discovery of single-nucleotide polymorphisms (SNPs). The cross-trait condFDR strategy analyses separate GWAS data, and leverages overlapping SNP associations, i.e., cross-trait enrichment, to increase discovery of trait-associated SNPs. The extension of the condFDR approach to conjunctional FDR (conjFDR) identifies shared genomic loci between two phenotypes. The conjFDR approach allows for detection of shared genomic associations irrespective of the genetic correlation between the phenotypes, often revealing a mixture of antagonistic and agonistic directional effects among the shared loci. This review provides a methodological comparison between condFDR and other relevant cross-trait analytical tools and demonstrates how condFDR analysis may provide novel insights into the genetic relationship between complex phenotypes.
Collapse
Affiliation(s)
- Olav B Smeland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway.
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Kevin O'Connell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Chun-Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Shahram Bahrami
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Dominic Holland
- Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, San Diego, CA, 92037, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Wesley K Thompson
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, San Diego, CA, 92037, USA
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway.
| |
Collapse
|
21
|
Emerging roles for MEF2 in brain development and mental disorders. Curr Opin Neurobiol 2019; 59:49-58. [PMID: 31129473 DOI: 10.1016/j.conb.2019.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
The MEF2 family of transcription factors regulate large programs of gene expression important for the development and maintenance of many tissues, including the brain. MEF2 proteins are regulated by neuronal synaptic activity, and they recruit several epigenetic enzymes to influence chromatin structure and gene expression during development and throughout adulthood. Here, we provide a brief review of the recent literature reporting important roles for MEF2 during early brain development and function, and we highlight emerging roles for MEF2 as a risk factor for multiple neurodevelopmental disorders and mental illnesses, such as autism, intellectual disability, and schizophrenia.
Collapse
|
22
|
Srinivasan S, Bettella F, Frei O, Hill WD, Wang Y, Witoelar A, Schork AJ, Thompson WK, Davies G, Desikan RS, Deary IJ, Melle I, Ueland T, Dale AM, Djurovic S, Smeland OB, Andreassen OA. Enrichment of genetic markers of recent human evolution in educational and cognitive traits. Sci Rep 2018; 8:12585. [PMID: 30135563 PMCID: PMC6105609 DOI: 10.1038/s41598-018-30387-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Higher cognitive functions are regarded as one of the main distinctive traits of humans. Evidence for the cognitive evolution of human beings is mainly based on fossil records of an expanding cranium and an increasing complexity of material culture artefacts. However, the molecular genetic factors involved in the evolution are still relatively unexplored. Here, we investigated whether genomic regions that underwent positive selection in humans after divergence from Neanderthals are enriched for genetic association with phenotypes related to cognitive functions. We used genome wide association data from a study of college completion (N = 111,114), one of educational attainment (N = 293,623) and two different studies of general cognitive ability (N = 269,867 and 53,949). We found nominally significant polygenic enrichment of associations with college completion (p = 0.025), educational attainment (p = 0.043) and general cognitive ability (p = 0.015 and 0.025, respectively), suggesting that variants influencing these phenotypes are more prevalent in evolutionarily salient regions. The enrichment remained significant after controlling for other known genetic enrichment factors, and for affiliation to genes highly expressed in the brain. These findings support the notion that phenotypes related to higher order cognitive skills typical of humans have a recent genetic component that originated after the separation of the human and Neanderthal lineages.
Collapse
Affiliation(s)
- Saurabh Srinivasan
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Yunpeng Wang
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aree Witoelar
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Andrew J Schork
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Wesley K Thompson
- Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Rahul S Desikan
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California at San Diego, La Jolla, CA, USA
- Center for Human Development, University of California at San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
23
|
McGrath LM. Two GWASs Are Better Than One: Enhancing Genetic Discovery for Developmental Phenotypes. J Am Acad Child Adolesc Psychiatry 2018; 57:77-79. [PMID: 29413150 PMCID: PMC6178947 DOI: 10.1016/j.jaac.2017.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022]
|