1
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Dhiman M, Ghosh S, Singh TG, Chauhan S, Roy P, Lahiri D. Exploring the potential of an Aloe vera and honey extract loaded bi-layered nanofibrous scaffold of PCL-Col and PCL-SBMA mimicking the skin architecture for the treatment of diabetic wounds. J Mater Chem B 2024; 12:10383-10408. [PMID: 39290135 DOI: 10.1039/d4tb01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Diabetic wounds are often chronic in nature, and issues like elevated blood sugar, bacterial infections, oxidative stress and persistent inflammation impede the healing process. To ensure the appropriate healing of wounds, scaffolds should promote complete tissue regeneration in wounds, both functionally and structurally. However, the available scaffolds lack the explicit architecture and functionality that could match those of native skin, thus failing to carry out the scar-free skin regeneration in diabetic wounds. This study deals with the synthesis of a bi-layered nanofibrous scaffold mimicking the native skin architecture in terms of porosity and hydrophobic-hydrophilic gradients. In addition, herbal extracts of Aloe vera and litchi honey were added in consecutive layers to manage the high blood glucose level, inflammation, and increased ROS level associated with diabetic wounds. In vitro studies confirmed that the prepared scaffold with herbal extracts showed enhanced proliferation of skin cells with good mechanical strength, degradability, anti-bacterial and anti-diabetic properties. The scaffold also demonstrated superior wound healing in vivo with quicker scar-free wound recovery and appropriate skin regeneration, compared to conventional treatment. Altogether, the synthesized herbal extract loaded bi-layered nanofibrous scaffold can be used as a regenerative template for hard-to-heal diabetic wounds, offering a new strategy for the management of chronic wounds.
Collapse
Affiliation(s)
- Megha Dhiman
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Samrat Chauhan
- Chitkara College of Pharmacy, Chikara University Rajpura, Punjab 140401, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
3
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
4
|
Sanapalli BKR, Deshpande A, Sanapalli V, Sigalapalli DK. Unveiling the Unexplored Multifactorial Potential of 5-Aminosalicylic Acid in Diabetic Wound Therapy. Diseases 2024; 12:172. [PMID: 39195171 DOI: 10.3390/diseases12080172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic wounds (DWs) are considered chronic complications observed in patients suffering from type 2 diabetes mellitus (DM). Usually, DWs originate from the interplay of inflammation, oxidation, impaired tissue re-epithelialization, vasculopathy, nephropathy, and neuropathy, all of which are related to insulin resistance and sensitivity. The conventional approaches available for the treatment of DWs are mainly confined to the relief of wound pressure, debridement of the wound, and management of infection. In this paper, we speculate that treatment of DWs with 5-aminosalicylic acid (5-ASA) and subsequent activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and transforming growth factor beta (TGF-β) via the AhR pathway might be highly beneficial for DW patients. This estimation is based on several lines of evidence showing that 5-ASA and PPAR-γ activation are involved in the restoration of insulin sensitivity, re-epithelialization, and microcirculation. Additionally, 5-ASA and TGF-β activate inflammation and the production of pro-inflammatory mediators. Suitable stabilized formulations of 5-ASA with high absorption rates are indispensable for scrutinizing its probable pharmacological benefits since 5-ASA is known to possess lower solubility profiles because of its reduced permeability through skin tissue. In vitro and in vivo studies with stabilized formulations and a control (placebo) are mandatory to determine whether 5-ASA indeed holds promise for the curative treatment of DWs.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Jadcherla 509301, Hyderabad, India
| | - Ashwini Deshpande
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Jadcherla 509301, Hyderabad, India
| | - Vidyasrilekha Sanapalli
- Department of Pharmaceutical Chemistry, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Jadcherla 509301, Hyderabad, India
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Guntur 522213, Andhra Pradesh, India
| |
Collapse
|
5
|
Schumacher A, Mucha P, Puchalska I, Deptuła M, Wardowska A, Tymińska A, Filipowicz N, Mieczkowska A, Sachadyn P, Piotrowski A, Pikuła M, Cichorek M. Angiopoietin-like growth factor-derived peptides as biological activators of adipose-derived mesenchymal stromal cells. Biomed Pharmacother 2024; 177:117052. [PMID: 38943988 DOI: 10.1016/j.biopha.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro. Angiopoietin-like proteins (ANGPTLs), known for their pleiotropic effects in lipid and glucose metabolism, may play a significant role in this context. Regeneration is a complex and dynamic process controlled by many factors. ANGPTL6 (Angiopoietin-related growth factor, AGF), among many activities modulated the biological activity of stem cells. This study examined the influence of synthesized AGF-derived peptides, designated as AGF9 and AGF27, on AD-MSCs. AGF9 and AGF27 enhanced the viability and migration of AD-MSCs and acted as a chemotactic factor for these cells. AGF9 stimulated chondrogenesis and lipid synthesis during AD-MSCs differentiation, influenced AD-MSCs cytokine secretion and modulated transcriptome for such basic cell activities as migration, transport of molecules, and apoptosis. The ability of AGF9 to modulate the biological activity of AD-MSCs warrants the consideration of this peptide a noteworthy therapeutic agent that deserves further investigation for applications in regenerative medicine.
Collapse
Affiliation(s)
- Adriana Schumacher
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk 80-308, Poland
| | - Izabela Puchalska
- Department of Molecular Biochemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk 80-308, Poland
| | - Milena Deptuła
- Division of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Anna Wardowska
- Department of Physiopathology, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Agata Tymińska
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Natalia Filipowicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Alina Mieczkowska
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Narutowicza 11/12 St, Gdansk 80-233, Poland
| | - Arkadiusz Piotrowski
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Michał Pikuła
- Division of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Miroslawa Cichorek
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland.
| |
Collapse
|
6
|
Guo L, Zhang X, Zhao DM, Chen S, Zhang WX, Yu YL, Wang JH. Portable Photoacoustic Analytical System Combined with Wearable Hydrogel Patch for pH Monitoring in Chronic Wounds. Anal Chem 2024; 96:11595-11602. [PMID: 38950152 DOI: 10.1021/acs.analchem.4c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.
Collapse
Affiliation(s)
- Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Dong-Mei Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wen-Xin Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
7
|
Saberian M, Safari Roudsari R, Haghshenas N, Rousta A, Alizadeh S. How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon 2024; 10:e32040. [PMID: 38912439 PMCID: PMC11192993 DOI: 10.1016/j.heliyon.2024.e32040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Wound management has always been a significant concern, particularly for men, and the search for effective wound dressings has led to the emergence of hydrogels as a promising solution. In recent years, hydrogels, with their unique properties, have gained considerable importance in wound management. Among the various types of hydrogels, those incorporating chitosan and alginate, two distinct chemical materials, have shown potential in accelerating wound healing. This review aims to discuss the desirable characteristics of an effective wound dressing, explore the alginate/chitosan-based hydrogels developed by different researchers, and analyze their effects on wound healing through in vitro and in vivo assessments. In vitro tests encompass a wide range of evaluations, including swelling capacity, degradation rate, porosity, Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis, moisture vapor transmission rate, release studies, mechanical properties, microscopic observation, antibacterial properties, compatibility assessment, cell adhesion investigation, blood clotting capability, cell migration analysis, water contact angle determination, and structural stability. Furthermore, in vivo assessments encompass the examination of wound closure rate, modulation of gene expression, as well as histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Raha Safari Roudsari
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Haghshenas
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rousta
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
8
|
Hasegawa-Haruki A, Obara K, Takaoka N, Shirai K, Hamada Y, Arakawa N, Aki R, Hoffman RM, Amoh Y. Hair-follicle associated pluripotent (HAP)-cell-sheet implantation enhanced wound healing in diabetic db/db mice. PLoS One 2024; 19:e0304676. [PMID: 38875234 PMCID: PMC11178214 DOI: 10.1371/journal.pone.0304676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
Diabetes often results in chronic ulcers that fail to heal. Effective treatment for diabetic wounds has not been achieved, although stem-cell-treatment has shown promise. Hair-follicle-associated-pluripotent (HAP)-stem-cells from bulge area of mouse hair follicle have been shown to differentiate into keratinocytes, vascular endothelial cells, smooth muscle cells, and some other types of cells. In the present study, we developed HAP-cell-sheets to determine their effects on wound healing in type-2 diabetes mellitus (db/db) C57BL/6 mouse model. Flow cytometry analysis showed cytokeratin 15 expression in 64% of cells and macrophage expression in 3.6% of cells in HAP-cell-sheets. A scratch cell migration assay in vitro showed the ability of fibroblasts to migrate and proliferate was enhanced when co-cultured with HAP-cell-sheets. To investigate in vivo effects of the HAP-cell-sheets, they were implanted into 10 mm circular full-thickness resection wounds made on the back of db/db mice. Wound closure was facilitated in the implanted group until day 16. The thickness of epithelium and granulation tissue volume at day 7 were significantly increased by the implantation. CD68 positive area and TGF-β1 positive area were significantly increased; meanwhile, iNOS positive area was reduced at day 7 in the HAP-cell-sheets implanted group. After 21 days, CD68 positive areas in the implanted group were reduced to under the control group level, and TGF-β1 positive area had no difference between the two groups. These observations strongly suggest that the HAP-cell-sheets implantation is efficient to facilitate early macrophage activity and to suppress inflammation level. Using immuno-double-staining against CD34 and α-SMA, we found more vigorous angiogenesis in the implanted wound tissue. The present results suggest autologous HAP-cell-sheets can be used to heal refractory diabetic ulcers and have clinical promise.
Collapse
Affiliation(s)
- Ayami Hasegawa-Haruki
- Department of Dermatology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Koya Obara
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nanako Takaoka
- Department of Dermatology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kyoumi Shirai
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yuko Hamada
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nobuko Arakawa
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ryoichi Aki
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California, United states of America
- Department of Surgery, University of California San Diego, San Diego, California, United states of America
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
9
|
Zhang M, Dong Q, Yang K, Chen R, Zhang J, Xiao P, Zhou Y. Hyaluronic acid hydrogels with excellent self-healing capacity and photo-enhanced mechanical properties for wound healing. Int J Biol Macromol 2024; 267:131235. [PMID: 38554919 DOI: 10.1016/j.ijbiomac.2024.131235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
A continuously stable moist healing environment is immensely beneficial for wound healing, which can be availably achieved by providing an in situ hydrogel with enough strength resembling skin tissue and self-healing ability. Herein, through a dual-crosslinking strategy, hyaluronic acid-based hydrogels with excellent self-healing capacity and enhanced mechanical properties are fabricated via the acylhydrazone linkages and subsequent photocrosslinking based on hydrazide-modified sodium hyaluronate and aldehyde-modified maleic sodium hyaluronate. The hydrogels demonstrate the fast gelation process (< 1 min), the controlled swelling behaviors, and the good biocompatibility. Notably, they possess enhanced mechanical strength similar to the human dermis (∼ 2.2 kPa). Also, they can self-heal rapidly with a self-healing efficiency of ∼90 % at 6 h. Based on this, the hyaluronic acid-based hydrogels, without any biological factors involved, can facilitate the full-thickness skin wound reconstruction process by accelerating the three phases of the wound repair, including reducing wound inflammation in the inflammatory phase, promoting angiogenesis in the proliferative phase, and promoting the deposition and reconstruction of collagen in the remodeling phase. The produced hyaluronic acid hydrogel can serve as an ideal candidate for wound healing.
Collapse
Affiliation(s)
- Mengfan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Kaidan Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Ruina Chen
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Jing Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China; College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China.
| |
Collapse
|
10
|
Zhang H, Lin X, Cao X, Wang Y, Wang J, Zhao Y. Developing natural polymers for skin wound healing. Bioact Mater 2024; 33:355-376. [PMID: 38282639 PMCID: PMC10818118 DOI: 10.1016/j.bioactmat.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024] Open
Abstract
Natural polymers are complex organic molecules that occur in the natural environment and have not been subjected to artificial synthesis. They are frequently encountered in various creatures, including mammals, plants, and microbes. The aforementioned polymers are commonly derived from renewable sources, possess a notable level of compatibility with living organisms, and have a limited adverse effect on the environment. As a result, they hold considerable significance in the development of sustainable and environmentally friendly goods. In recent times, there has been notable advancement in the investigation of the potential uses of natural polymers in the field of biomedicine, specifically in relation to natural biomaterials that exhibit antibacterial and antioxidant characteristics. This review provides a comprehensive overview of prevalent natural polymers utilized in the biomedical domain throughout the preceding two decades. In this paper, we present a comprehensive examination of the components and typical methods for the preparation of biomaterials based on natural polymers. Furthermore, we summarize the application of natural polymer materials in each stage of skin wound repair. Finally, we present key findings and insights into the limitations of current natural polymers and elucidate the prospects for their future development in this field.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
11
|
Erdoğmuş SF, Altintaş ÖE, Demirel HH, Okumuş N. Fabrication of wound dressings: Herbal extract-loaded nanoliposomes embedded in fungal chitosan/polycaprolactone electrospun nanofibers for tissue regeneration. Microsc Res Tech 2024; 87:360-372. [PMID: 37850370 DOI: 10.1002/jemt.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Wound healing is a complex process and one of the major therapeutic and economic subjects in the pharmaceutical area. In recent years, the fabrication of nano-sized wound dressing models has attracted great attention for tissue regeneration. Plant extracts loaded nanoparticles are environmentally friendly and non-toxic and the release of the bioactive substance will be controlled to the wound area. This study aims to fabricate wound dressing models that contain bioactive components for tissue regeneration. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extracts loaded nanoliposomes were prepared, characterized, and embedded in nanofiber structures. The effectiveness of wound dressing models for tissue regeneration was evaluated by in vitro and in vivo studies. It was observed that all wound dressing models positively affect the cell viability of human dermal fibroblast cells. It was determined that plant extracts loaded nanoparticles embedded in nanofibers increased in cell viability than nanoparticles that were non-embedded in nanofiber structures. Histological analysis showed that plant extract-loaded nanoliposomes embedded in chitosan/PCL nanofibers were used for tissue regeneration. The most effective nanofibers were determined as Wd-ClNL nanofibers. RESEARCH HIGHLIGHTS: Hypericum perforatum L. and Cistus laurifolius L. were prepared by modified ultrasonic extraction method. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extract-loaded nanoliposomes were prepared, and characterized. They were embedded in chitosan/polycaprolactone nanofiber. Effects of the wound dressing model were analyzed by in vitro and in vivo assays for tissue regeneration.
Collapse
Affiliation(s)
- Sevim Feyza Erdoğmuş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Özlem Erdal Altintaş
- Department of Medical Services and Techniques, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hasan Hüseyin Demirel
- Afyon Kocatepe University, Bayat Vocational School, Department of Laboratory and Veterinary Health, Afyonkarahisar, Turkey
| | - Nurullah Okumuş
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Pediatrics, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Li X, Mao X, Cong J, Zhang Q, Chen W, Yan K, Huang Y, Su D, Xiang Q. Recombinantly expressed rhFEB remodeled the skin defect of db/db mice. Appl Microbiol Biotechnol 2024; 108:183. [PMID: 38285241 PMCID: PMC10824822 DOI: 10.1007/s00253-024-13021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Fibronectin (FN) and collagen are vital components of the extracellular matrix (ECM). These proteins are essential for tissue formation and cell alignment during the wound healing stage. In particular, FN interacts with collagens to activate various intracellular signaling pathways to maintain ECM stability. A novel recombinant extra domain-B fibronectin (EDB-FN)-COL3A1 fusion protein (rhFEB) was designed to mimic the ECM to promote chronic and refractory skin ulcer wound healing. rhFEB significantly enhanced cell adhesion and migration, vascular ring formation, and the production of new collagen I (COL1A1) in vitro. rhFEB decreased M1 macrophages and further modulated the wound microenvironment, which was confirmed by the treatment of db/db mice with rhFEB. Accelerated wound healing was shown during the initial stages in rhFEB-treated db/db mice, as was enhanced follicle regeneration, re-epithelialization, collagen deposition, granulation, inflammation, and angiogenesis. The wound chronicity of diabetic foot ulcers (DFUs) remains the main challenge in current and future treatment. rhFEB may be a candidate molecule for regulating M1 macrophages during DFU healing. KEY POINTS: • A recombinant protein EDB-FN-collagen III (rhFEB) was highly expressed in Escherichia coli • rhFEB protein induces COL1A1 secretion in human skin fibroblasts • rhFEB protein accelerates diabetic wound healing.
Collapse
Affiliation(s)
- Xiaomin Li
- Perfect Life and Health Institute Co., Ltd, Zhongshan, China
| | - Xinliang Mao
- Perfect Life and Health Institute Co., Ltd, Zhongshan, China
| | - Jianhang Cong
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Qirong Zhang
- Biopharmaceutical R&D Center, Jinan University, Guangzhou, China
| | - Wenjie Chen
- Perfect Life and Health Institute Co., Ltd, Zhongshan, China
| | - Kunjun Yan
- Biopharmaceutical R&D Center, Jinan University, Guangzhou, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou, China
| | - Dun Su
- Perfect Life and Health Institute Co., Ltd, Zhongshan, China.
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.
- Biopharmaceutical R&D Center, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Patitucci F, Motta MF, Dattilo M, Malivindi R, Leonetti AE, Pezzi G, Prete S, Mileti O, Gabriele D, Parisi OI, Puoci F. 3D-Printed Alginate/Pectin-Based Patches Loaded with Olive Leaf Extracts for Wound Healing Applications: Development, Characterization and In Vitro Evaluation of Biological Properties. Pharmaceutics 2024; 16:99. [PMID: 38258109 PMCID: PMC10819698 DOI: 10.3390/pharmaceutics16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. Different polymer-to-plasticizer ratios were systematically examined to formulate a printable ink with optimal viscosity. The resultant film, enriched with OLE, exhibited a substantial polyphenolic content of 13.15 ± 0.41 mg CAE/g, showcasing significant antioxidant and anti-inflammatory properties. Notably, the film demonstrated potent scavenging abilities against DPPH, ABTS, and NO radicals, with IC50 values of 0.66 ± 0.07, 0.47 ± 0.04, and 2.02 ± 0.14 mg/mL, respectively. In vitro release and diffusion studies were carried out and the release profiles revealed an almost complete release of polyphenols from the patch within 48 h. Additionally, the fabricated film exhibited the capacity to enhance cell motility and accelerate wound healing, evidenced by increased collagen I expression in BJ fibroblast cells. Structural assessments affirmed the ability of the patch to absorb exudates and maintain the optimal moisture balance, while biocompatibility studies underscored its suitability for biomedical applications. These compelling findings endorse the potential application of the developed film in advanced wound care, with the prospect of tailoring patches to individual patient needs.
Collapse
Affiliation(s)
- Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Marisa Francesca Motta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Adele Elisabetta Leonetti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
| | - Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy; (O.M.); (D.G.)
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy; (O.M.); (D.G.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (F.P.); (M.F.M.); (M.D.); (R.M.); (A.E.L.); (G.P.); (S.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
14
|
Wang Z, Zhao F, Xu C, Zhang Q, Ren H, Huang X, He C, Ma J, Wang Z. Metabolic reprogramming in skin wound healing. BURNS & TRAUMA 2024; 12:tkad047. [PMID: 38179472 PMCID: PMC10762507 DOI: 10.1093/burnst/tkad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 01/06/2024]
Abstract
Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110013, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| |
Collapse
|
15
|
Deegan TC, Niemeyer M, Colegrove KM, Rotstein DS, Sharp SM. Pathology of short-term dorsal fin tag-attachments in tagged and re-stranded short-beaked common dolphins Delphinus delphis on Cape Cod, MA. DISEASES OF AQUATIC ORGANISMS 2023; 156:29-38. [PMID: 38078796 DOI: 10.3354/dao03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Odontocetes are difficult to study in the wild, making tagging and remote tracking a valuable practice. However, evaluations of host responses at tagging sites have been primarily limited to visual observations in the field. Here we explore the macro- and microscopic pathology of dorsal fin tag attachments in 13 stranded and released short-beaked common dolphins Delphinus delphis from Cape Cod, MA that later re-stranded and died or were euthanized 1-28 d post-tagging. Tags were attached to stranded dolphins' dorsal fins using 2 methods: core biopsy or piercing. Grossly, the piercing method resulted in epidermal compression into the dermis. One tag site had a necrotic border 28 d after application. Grossly, the biopsy method resulted in minimal to no tissue reaction. Two tag sites had granulation tissue accumulation 4 and 12 d after tagging. Histopathologic findings for all tag types and animals consisted of focal epithelial loss, dermal edema, perivascular edema, inflammation and hyperplasia, and inter- and extracellular edema in the adjacent epidermis. Minor expected pathological changes given the procedure were also observed: superficial epidermal necrosis in 3 cases, and superficial bacterial colonization in 2 cases. There was no evidence of sepsis and tagging was not related to cause of re-stranding or death in any case. These gross and histopathologic findings support previous observational conclusions in small delphinids that with appropriate sterile technique, the impacts of single pin dorsal fin tagging on the animal can be minimal and localized. Of the 2 methods, core biopsy may be a better tagging method.
Collapse
Affiliation(s)
- Treasa C Deegan
- Marine Mammal Rescue and Research Program, International Fund for Animal Welfare, Yarmouth Port, MA, 02675, USA
- Tufts Cummings School of Veterinary Medicine, Grafton, MA, 01536, USA
| | - Misty Niemeyer
- Marine Mammal Rescue and Research Program, International Fund for Animal Welfare, Yarmouth Port, MA, 02675, USA
| | - Kathleen M Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Brookfield, Illinois, 60513, USA
| | | | - Sarah M Sharp
- Marine Mammal Rescue and Research Program, International Fund for Animal Welfare, Yarmouth Port, MA, 02675, USA
| |
Collapse
|
16
|
Ahmed LM, Hassanein KMA, Mohamed FA, Elfaham TH. Formulation and evaluation of simvastatin cubosomal nanoparticles for assessing its wound healing effect. Sci Rep 2023; 13:17941. [PMID: 37864028 PMCID: PMC10589326 DOI: 10.1038/s41598-023-44304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
Wound healing is one of the most challenging medical circumstances for patients. Pathogens can infect wounds, resulting in tissue damage, inflammation, and disruption of the healing process. Simvastatin was investigated recently, as a wound healing agent that may supersede the present therapies for wounds. Our goal in this paper is to focus on formulation of simvastatin cubosomes for topical delivery, as a potential approach to improve simvastatin skin permeation. By this technique its wound healing effect could be improved. Cubosomes were prepared using the top-down method and the prepared cubosomes were characterized by several techniques. The most optimal simvastatin cubosomal formulation was then included in a cubogel dosage form using different gelling agents. The results showed that the average particle size of the prepared cubosomes was 113.90 ± 0.58 nm, the entrapment efficiency was 93.95 ± 0.49% and a sustained simvastatin release was achieved. The optimized formula of simvastatin cubogel displayed pseudoplastic rheological behavior. This same formula achieved enhancement in drug permeation through excised rat skin compared to free simvastatin hydrogel with flux values of 46.18 ± 2.12 mcg cm-2 h-1 and 25.92 ± 3.45 mcg cm-2 h-1 respectively. Based on the in-vivo rat studies results, this study proved a promising potential of simvastatin cubosomes as wound healing remedy.
Collapse
Affiliation(s)
- Lamiaa M Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Khaled M A Hassanein
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Fergany A Mohamed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Tahani H Elfaham
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
17
|
Hato H, Sakata KI, Watanabe H, Sugitani A, Sato J, Asaka T, Ohga N, Kitagawa Y. Potential relationship between the dosage of prednisolone and delayed healing at tooth extraction: A retrospective study. J Dent Sci 2023; 18:1765-1770. [PMID: 37799897 PMCID: PMC10547945 DOI: 10.1016/j.jds.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background/purpose Delayed healing of the extraction socket is not uncommon when tooth extraction is performed on patients taking prednisolone. This study aimed to identify specific dosage of prednisolone and factors associated with delayed healing of the extraction socket in patients taking prednisolone. Materials and methods This single-center retrospective study included 80 patients who underwent tooth extraction under local anesthesia and were taking prednisolone orally. Patients were divided into the nondelayed healing group (n = 50) and delayed healing group (n = 30), and their background and dosage of prednisolone were compared. Results The dosage of prednisolone was significantly higher in the delayed healing group than in the nondelayed healing group. A receiver operating characteristics curve analysis resulted in moderate accuracy when the cutoff value was set at 8.0, with 67% sensitivity, 76% specificity, and 0.765 area under the curve. The multivariate logistic regression analysis revealed that prednisolone dosage >8.0 mg/day (odds ratio [OR], 10.8; 95% confidence interval [CI], 2.79-41.6) and osteosclerotic changes beyond the alveolar bone around the tooth to be extracted (OR, 10.3; 95% CI, 2.81-37.8) in X-ray imaging had significant effects on delayed healing. Conclusion The results of this study suggested that delayed healing following tooth extractions in patients taking prednisolone was related to a dosage of 8.0 mg/day or higher and osteosclerotic changes.
Collapse
Affiliation(s)
- Hiroyuki Hato
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-ichiro Sakata
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Haruhisa Watanabe
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ayumu Sugitani
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Hokkaido, Japan
| | - Jun Sato
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Asaka
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Noritaka Ohga
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Chhabra J, Chopra H, Pahwa R, Raina N, Wadhwa K, Saini S, Negi P, Gupta M, Singh I, Dureja H, Emran TB. Potential of nanoemulsions for accelerated wound healing: innovative strategies. Int J Surg 2023; 109:2365-2377. [PMID: 37158143 PMCID: PMC10442146 DOI: 10.1097/js9.0000000000000460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Wounds represent various significant health concerns for patients and also contribute major costs to healthcare systems. Wound healing comprises of overlapped and various coordinated steps such as homeostasis, inflammation, proliferation, and remodeling. In response to the failure of many strategies in delivering intended results including wound closure, fluid loss control, and exhibiting properties such as durability, targeted delivery, accelerated action, along with histocompatibility, numerous nanotechnological advances have been introduced. To understand the magnitude of wound therapy, this systematic and updated review discussing the effectiveness of nanoemulsions has been undertaken. This review portrays mechanisms associated with wound healing, factors for delayed wound healing, and various technologies utilized to treat wounds effectively. While many strategies are available, nanoemulsions have attracted the tremendous attention of scientists globally for the research in wound therapy due to their long-term thermodynamic stability and bioavailability. Nanoemulsions not only aid in tissue repair, but are also considered as an excellent delivery system for various synthetic and natural actives. Nanotechnology provides several pivotal benefits in wound healing, including improved skin permeation, controlled release, and stimulation of fibroblast cell proliferation. The significant role of nanoemulsions in improved wound healing along with their preparation techniques has also been highlighted with special emphasis on mechanistic insights. This article illustrates recent research advancements for the utilization of nanoemulsions in wound treatment. An adequate literature search has been conducted using the keywords 'Nanoemulsions in wound healing', 'Wound therapy and nanoemulsions', 'Herbal actives in wound therapy', 'Natural oils and wounds treatment' etc., from PubMed, Science Direct, and Google Scholar databases. Referred and original publications in the English language accessed till April 2022 has been included, whereas nonEnglish language papers, unpublished data, and nonoriginal papers were excluded from the study.
Collapse
Affiliation(s)
- Jatin Chhabra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, New Delhi
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana
| | - Swati Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, New Delhi
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
19
|
Lindsey ML, Becirovic‐Agic M. Skin wound healing as a mirror to cardiac wound healing. Exp Physiol 2023; 108:1003-1010. [PMID: 37093202 PMCID: PMC10948174 DOI: 10.1113/ep090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
NEW FINDINGS What is the topic of this review? Wound healing is a general response of the body to injury and can be divided into three phases: inflammation, inflammation resolution and repair. In this review, we compare the wound-healing response of the skin after an injury and the wound-healing response of the heart after a myocardial infarction. What advances does it highlight? We highlight differences and similarities between skin and cardiac wound healing and summarize how skin can be used to provide information about the heart. ABSTRACT Wound healing is a general response of the body to injury. All organs share in common three response elements to wound healing: inflammation to prevent infection and stimulate the removal of dead cells, active anti-inflammatory signalling to turn off the inflammatory response, and a repair phase characterized by extracellular matrix scar formation. The extent of scar formed depends on the ability of endogenous cells that populate each organ to regenerate. The skin has keratinocytes that have regenerative capacity, and in general, wounds are fully re-epithelialized. Heart, in contrast, has cardiac myocytes that have little to no regenerative capacity, and necrotic myocytes are entirely replaced by scars. Despite differences in tissue regeneration, the skin and heart share many wound-healing properties that can be exploited to predict the cardiac response to pathology. We summarize in this review article our current understanding of how the response of the skin to a wounding event can inform us about the ability of the myocardium to respond to a myocardial infarction.
Collapse
Affiliation(s)
- Merry L. Lindsey
- School of Graduate StudiesMeharry Medical CollegeNashvilleTennesseeUSA
- Research ServiceNashville VA Medical CenterNashvilleTennesseeUSA
| | - Mediha Becirovic‐Agic
- Integrative Physiology, Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
20
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
21
|
Ghasemi MR, Ranjbar A, Tamri P, Pourmoslemi S, Nourian A, Dastan D. In vitro Antibacterial Activity and Wound Healing Effects of Achillea millefolium Essential Oil in Rat. J Pharmacopuncture 2023; 26:167-174. [PMID: 37405118 PMCID: PMC10315885 DOI: 10.3831/kpi.2023.26.2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 07/06/2023] Open
Abstract
Objectives In this study we aimed to evaluate the in vitro antibacterial activity and wound healing properties of Achillea millefolium essential oil (AMEO) in full-thickness wound model in rat. The antibacterial activity of AMEO was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa using the broth dilution method. Methods The 2 cm × 2 cm full-thickness excisional wounds were created on the back of animals. Topical therapy was applied twice a day using 1%, 2%, and 3% w/w AMEO ointments, and the measurement of the wounds area was carried out every 3 days, after that the wound closure percentage was calculated in these days. Hydroxyproline content and histopathological evaluation of wound tissue samples were carried out on day 7 and 14 post wounding. Eucerin was used for the treatment of vehicle control group and negative control group received no treatment. Results Our results revealed the bacteriostatic activity of AMEO against S. aureus and P. aeruginosa. Wound healing activity evaluation of AMEO showed the significant increase (p < 0.05) in the wound closure percentages in rats treated with AMEO 1% and 2% comparing to those of non-treatment group. In addition, hydroxyproline contents of tissue significantly (p < 0.01) increased in AMEO 1% and 2% comparing to non-treatment group. Histopathological evaluations of wound tissue samples on day 7 and 14 demonstrated higher accumulation of collagen fibers, reduction of edema and inflammation and also formation of tissue appendages in 1% and 2% AMEO treated groups in comparison with non-treatment group. Conclusion The results of this study indicated that AMEO has the potential to be used as a safe and effective wound healing agent.
Collapse
Affiliation(s)
- Mohammad Reza Ghasemi
- Department of Pharmacology & Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology & Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pari Tamri
- Department of Pharmacology & Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Pourmoslemi
- Department of Pharmaceutics, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Nourian
- Department of Laboratory Sciences, Faculty of Para-Veterinary Sciences, Bu-Ali Sina University, Hamadan, Iran
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Zhang W, Wang B, Xiang G, Jiang T, Zhao X. Photodynamic Alginate Zn-MOF Thermosensitive Hydrogel for Accelerated Healing of Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22830-22842. [PMID: 37129874 DOI: 10.1021/acsami.2c23321] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance reduces the effectiveness of infected wound healing, and it is necessary to develop a new strategy to promote infected wound healing without using antibiotics. Here, we develop a Chlorin e6 (Ce6)-loaded zinc-metal-organic framework (MOF) thermosensitive hydrogel (Ce6@MOF-Gel) based on alginate and poly(propylene glycol) 407, which enhances antibacterial effects and promotes infected wound healing by a novel strategy of combining zinc-MOF with photodynamic therapy (PDT). Zinc-MOF can realize acid-responsive release of Ce6 and improve antibacterial performance without drug resistance by destroying the integrity of bacterial cell membranes and enhancing the production of bacterial reactive oxygen species (ROS). Additionally, Ce6@MOF-Gel enhances the stability, solubility, and photodynamic properties of Ce6. More importantly, Ce6@MOF-Gel reduces inflammation and promotes collagen deposition and re-epithelialization to facilitate infected wound healing. Collectively, the photodynamic MOF-based hydrogel provides a new, efficient, and safe way for accelerated healing of infected wounds.
Collapse
Affiliation(s)
- Wenshang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Xiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Dzierżyńska M, Sawicka J, Deptuła M, Sosnowski P, Sass P, Peplińska B, Pietralik-Molińska Z, Fularczyk M, Kasprzykowski F, Zieliński J, Kozak M, Sachadyn P, Pikuła M, Rodziewicz-Motowidło S. Release systems based on self-assembling RADA16-I hydrogels with a signal sequence which improves wound healing processes. Sci Rep 2023; 13:6273. [PMID: 37072464 PMCID: PMC10113214 DOI: 10.1038/s41598-023-33464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR. The peptide hybrids were investigated for their structural aspects using circular dichroism, thioflavin T assay, transmission electron microscopy, and atomic force microscopy, as well as their rheological properties and stability in different fluids such as water or plasma, and their susceptibility to digestion by enzymes present in the wound environment. In addition, the morphology of the RADA-peptide hydrogels was examined with a unique technique called scanning electron cryomicroscopy. These experiments enabled us to verify if the designed peptides increased the bioactivity of the gel without disturbing its gelling processes. We demonstrate that the physicochemical properties of the designed hybrids were similar to those of the original RADA16-I. The materials behaved as expected, leaving the active motif free when treated with elastase. XTT and LDH tests on fibroblasts and keratinocytes were performed to assess the cytotoxicity of the RADA16-I hybrids, while the viability of cells treated with RADA16-I hybrids was evaluated in a model of human dermal fibroblasts. The hybrid peptides revealed no cytotoxicity; the cells grew and proliferated better than after treatment with RADA16-I alone. Improved wound healing following topical delivery of RADA-GHK and RADA-KGHK was demonstrated using a model of dorsal skin injury in mice and histological analyses. The presented results indicate further research is warranted into the engineered peptides as scaffolds for wound healing and tissue engineering.
Collapse
Affiliation(s)
- Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | | | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
24
|
Vivcharenko V, Trzaskowska M, Przekora A. Wound Dressing Modifications for Accelerated Healing of Infected Wounds. Int J Mol Sci 2023; 24:ijms24087193. [PMID: 37108356 PMCID: PMC10139077 DOI: 10.3390/ijms24087193] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Infections that occur during wound healing involve the most frequent complications in the field of wound care which not only inhibit the whole process but also lead to non-healing wound formation. The diversity of the skin microbiota and the wound microenvironment can favor the occurrence of skin infections, contributing to an increased level of morbidity and even mortality. As a consequence, immediate effective treatment is required to prevent such pathological conditions. Antimicrobial agents loaded into wound dressings have turned out to be a great option to reduce wound colonization and improve the healing process. In this review paper, the influence of bacterial infections on the wound-healing phases and promising modifications of dressing materials for accelerated healing of infected wounds are discussed. The review paper mainly focuses on the novel findings on the use of antibiotics, nanoparticles, cationic organic agents, and plant-derived natural compounds (essential oils and their components, polyphenols, and curcumin) to develop antimicrobial wound dressings. The review article was prepared on the basis of scientific contributions retrieved from the PubMed database (supported with Google Scholar searching) over the last 5 years.
Collapse
Affiliation(s)
- Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Marta Trzaskowska
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
25
|
Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar Drugs 2023; 21:md21040201. [PMID: 37103346 PMCID: PMC10142942 DOI: 10.3390/md21040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.
Collapse
|
26
|
Arcangeli D, Gualandi I, Mariani F, Tessarolo M, Ceccardi F, Decataldo F, Melandri F, Tonelli D, Fraboni B, Scavetta E. Smart Bandaid Integrated with Fully Textile OECT for Uric Acid Real-Time Monitoring in Wound Exudate. ACS Sens 2023; 8:1593-1608. [PMID: 36929744 PMCID: PMC10152490 DOI: 10.1021/acssensors.2c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Hard-to-heal wounds (i.e., severe and/or chronic) are typically associated with particular pathologies or afflictions such as diabetes, immunodeficiencies, compression traumas in bedridden people, skin grafts, or third-degree burns. In this situation, it is critical to constantly monitor the healing stages and the overall wound conditions to allow for better-targeted therapies and faster patient recovery. At the moment, this operation is performed by removing the bandages and visually inspecting the wound, putting the patient at risk of infection and disturbing the healing stages. Recently, new devices have been developed to address these issues by monitoring important biomarkers related to the wound health status, such as pH, moisture, etc. In this contribution, we present a novel textile chemical sensor exploiting an organic electrochemical transistor (OECT) configuration based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for uric acid (UA)-selective monitoring in wound exudate. The combination of special medical-grade textile materials provides a passive sampling system that enables the real-time and non-invasive analysis of wound fluid: UA was detected as a benchmark analyte to monitor the health status of wounds since it represents a relevant biomarker associated with infections or necrotization processes in human tissues. The sensors proved to reliably and reversibly detect UA concentration in synthetic wound exudate in the biologically relevant range of 220-750 μM, operating in flow conditions for better mimicking the real wound bed. This forerunner device paves the way for smart bandages integrated with real-time monitoring OECT-based sensors for wound-healing evaluation.
Collapse
Affiliation(s)
- Danilo Arcangeli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marta Tessarolo
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Francesca Ceccardi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Decataldo
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Federico Melandri
- Plastod S.p.A., Via Walter Masetti 7, Calderara di Reno, 40012 Bologna, Italy
| | - Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
27
|
An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
28
|
Öner Ç, Irmak F, Eken G, Öner BB, Karsıdağ SH. The effect of stromal vascular fraction in an experimental frostbite injury model. Burns 2023; 49:149-161. [PMID: 35241296 DOI: 10.1016/j.burns.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Despite current treatment modalities, frostbite remains an injury with a poor prognosis which may cause functional morbidities. Several experimental and clinical studies have demonstrated that stromal vascular fraction is an autologous mixture, which can improve wound healing and vasculogenesis. The aim of this study was to show the beneficial effects of stromal vascular fraction on experimental frostbite healing. MATERIAL AND METHODS Stromal vascular fraction (SVF) was harvested from 5 rats after excision of the inguinal fat pads. Another 20 rats were separated into 2 groups of 10 as the SVF group and the control group. A frostbite injury was created on each rat using a cryoprobe frozen with liquid nitrogen (-196 °C). SVF was applied to the SVF group and phosphate-buffered saline to the control group. All injections were performed subcutaneously within the frostbite injury area. Biopsies were performed on days 5 and 14 for histopathological and immunochemical evaluations. The tissue perfusion rates of both groups were assessed on day 14 using indocyanine green angiography (SPY system). RESULTS The increase in mean tissue perfusion was 373.3% ( ± 32.1) in the SVF group and 123.8% ( ± 16.3) in the control group (p < 0.001). The macroscopic wound reduction rates of the SVF and control groups were 25.5% ( ± 19.1) and 18.0% ( ± 5.9), respectively on day 5%, and 78.2% ( ± 9.2) and 57.3% ( ± 16.7) on day 14 (p = 0.007; p = 0.003). Acute inflammation and the fibrosis gradient were significantly decreased in the SVF group compared to the control group (p = 0.004, p = 0.054 respectively on day 14). Granulation tissue amount, re-epithelialization score and neovascularization were significantly increased in the SVF group (p = 0.006, p = 0.010 and p = 0.021, respectively on day 14). CONCLUSIONS The study results demonstrated that SVF increases frostbite wound healing by increasing tissue perfusion rate, neovascularization and re-epithelialization, and modulating acute inflammation and fibrosis.
Collapse
Affiliation(s)
- Çağatay Öner
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey; Department of Plastic, Reconstructive and Aesthetic Surgery, Sirnak State Hospital, Sirnak, Turkey.
| | - Fatih Irmak
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey.
| | - Gülçin Eken
- Department of Clinical Pathology, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey.
| | - Burcu Bitir Öner
- Department of Anesthesiology and Reanimation, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
| | - Semra Hacıkerim Karsıdağ
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey.
| |
Collapse
|
29
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
30
|
Walther M, Vestweber PK, Kühn S, Rieger U, Schäfer J, Münch C, Vogel-Kindgen S, Planz V, Windbergs M. Bioactive Insulin-Loaded Electrospun Wound Dressings for Localized Drug Delivery and Stimulation of Protein Expression Associated with Wound Healing. Mol Pharm 2023; 20:241-254. [PMID: 36538353 DOI: 10.1021/acs.molpharmaceut.2c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Effective therapy of wounds is difficult, especially for chronic, non-healing wounds, and novel therapeutics are urgently needed. This challenge can be addressed with bioactive wound dressings providing a microenvironment and facilitating cell proliferation and migration, ideally incorporating actives, which initiate and/or progress effective healing upon release. In this context, electrospun scaffolds loaded with growth factors emerged as promising wound dressings due to their biocompatibility, similarity to the extracellular matrix, and potential for controlled drug release. In this study, electrospun core-shell fibers were designed composed of a combination of polycaprolactone and polyethylene oxide. Insulin, a proteohormone with growth factor characteristics, was successfully incorporated into the core and was released in a controlled manner. The fibers exhibited favorable mechanical properties and a surface guiding cell migration for wound closure in combination with a high uptake capacity for wound exudate. Biocompatibility and significant wound healing effects were shown in interaction studies with human skin cells. As a new approach, analysis of the wound proteome in treated ex vivo human skin wounds clearly demonstrated a remarkable increase in wound healing biomarkers. Based on these findings, insulin-loaded electrospun wound dressings bear a high potential as effective wound healing therapeutics overcoming current challenges in the clinics.
Collapse
Affiliation(s)
- Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Pia Katharina Vestweber
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Shafreena Kühn
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Ulrich Rieger
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Jasmin Schäfer
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| |
Collapse
|
31
|
Song M, Wang J, He J, Kan D, Chen K, Lu J. Synthesis of Hydrogels and Their Progress in Environmental Remediation and Antimicrobial Application. Gels 2022; 9:16. [PMID: 36661783 PMCID: PMC9858390 DOI: 10.3390/gels9010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
As a kind of efficient adsorptive material, hydrogel has a wide application prospect within different fields, owing to its unique 3D network structures composed of polymers. In this paper, different synthetic strategies, crosslinking methods and their corresponding limitations and outstanding contributions of applications in the fields of removing environmental pollutants are reviewed to further provide a prospective view of their applications in water resources sustainability. Furthermore, the applications within the biomedical field, especially in wound dressing, are also reviewed in this paper, mainly due to their unique water retention ability, antibacterial ability, and good biocompatibility. Finally, the development direction of hydrogels in the fields of environmental remediation and biomedicine were summarized and prospected.
Collapse
Affiliation(s)
- Mengshan Song
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Jingfeng Wang
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Jiabei He
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Dongxiao Kan
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Kaiyun Chen
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Jialu Lu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Woldeamanuel MM, Geda MK, Mohapatra S, Bastia TK, Rath P, Panda AK. Ethnobotanical study of endemic and non-endemic medicinal plants used by indigenous people in environs of Gullele botanical garden Addis Ababa, central Ethiopia: A major focus on Asteraceae family. Front Pharmacol 2022; 13:1020097. [PMID: 36506590 PMCID: PMC9727095 DOI: 10.3389/fphar.2022.1020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Gullele Botanical Garden (GBG) in Addis Ababa, Ethiopia is a joint venture of Addis Ababa government and the university. The garden has been built mainly to conserve the endemic plants and to advance the research on the endemic and non-endemic plants collected from different part of Ethiopia. Many traditional healers from the environs of GBG and different subcities of Addis Ababa depend on the garden for their practice of traditional medicine but there is no systematic documentation of the traditional medicinal knowledge of these healers. The main objective of the present study is to comprehensively document the ethnobotanical and ethnomedicinal information from the traditional healers of different ethnic and cultural groups depending on GBG and to create a database of the endemic plants used by these healers. The ethnobotanical and ethnomedicinal data obtained from 60 traditional healers have been analyzed both qualitatively and quantitatively. A total of 81 medicinal plants belonging to 47 families have been identified. Majority of the plants used belonged to Asteraceae (12) family. The most frequently used plant form and plant parts are herbs and leaves. The major method adopted by the healers for preparation and administration of traditional medicine is crushing and topical, respectively. Skin and general diseases are the most important ailments treated by the healers. The three most cited plants used to treat diseases are Echinops kebericho Mesfin (60), Hagenia abyssinica (Bruce) J.F.Gmel (60) and Laggera tomentosa (A.Rich.) Sch.Bip. ex Oliv. & Hiern (58). The present study is the first systematic, qualitative, and quantitative ethnobotanical analysis and documentation done on the use of the medicinal plants from GBG for traditional medicine. In addition, our study reveals that E. kebericho is endemic and endangered plant and is highly used in traditional medicine. Therefore, GBG authorities should take steps for the propagation and restoration of this plant. Further it is suggested that the pharmacological properties of the roots and leaves of E. kebericho should be compared to find the possibility of use of leaves in place of roots for the preparation of traditional medicine which would help in conserving this endemic plant of Ethiopia.
Collapse
Affiliation(s)
- Melaku Masresha Woldeamanuel
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India,College of Natural and Computational Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Mohammed Kasso Geda
- College of Natural and Computational Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Shibani Mohapatra
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Tapan Kumar Bastia
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Prasanta Rath
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India,*Correspondence: Prasanta Rath, ; Alok Kumar Panda,
| | - Alok Kumar Panda
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India,*Correspondence: Prasanta Rath, ; Alok Kumar Panda,
| |
Collapse
|
33
|
Bazid HAS, Samaka RM, Mousa MEA, Seleit I. Immunohistochemical expression of Axin-2, as an implication of the role of stem cell in scar pathogenesis and prognosis. J Cosmet Dermatol 2022; 21:6010-6020. [PMID: 35546288 DOI: 10.1111/jocd.15075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Wound healing is a multi-phased process. A disruption in these phases could result in a persistent wound or an atypical scar. Wounding activates wingless proteins (Wnt) signaling, which aids in the healing process. Axis inhibition protein-2 regulates a variety of cellular activities through the Wnt and other pathways. AIM To assess the role of Axin-2 in patients with abnormal scars, using immunohistochemical study. METHODS This case-control study enrolled a total of 60 participants: 30 patients with abnormal scars (12 hypertrophic scars, 13 atrophic scars, and 5 keloid scars) and 30 age, sex, and site matched, apparently healthy controls. For immunohistochemistry examination of Axin-2 expression, skin samples were obtained from (i) lesional and (ii) perilesional skin of patients with aberrant scars, as well as (iii) normal control's skin. RESULTS Epidermal Axin-2 expression positivity, cellular topography, intensity, and H score showed significant differences between the groups (p < 0.05). In the dermis (fibroblast/myofibroblast), there were significant differences in Axin-2 expression positivity, location, intensity, and H score (p < 0.001 for all). The epidermal Axin-2 H score and the Manchester scale had a significant positive correlation (r = 0.832, p = 0.001). The epidermal Axin-2 H score and age (r = -0.576, p = 0.001), and the Stony Brook scale (r = -0.419, p = 0.021), had significant negative correlations. CONCLUSION Axin-2 overexpression might be accused in pathogenesis of abnormal scar and clinical worse scar outcome. In order to deprive scars of their regenerative cell pools, future scar therapies may target Axin-2 as a stem cell marker.
Collapse
Affiliation(s)
- Heba A S Bazid
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Rehab Monir Samaka
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Marwa E A Mousa
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Iman Seleit
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
34
|
Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 2022; 24:285-306. [PMID: 36222966 PMCID: PMC9555256 DOI: 10.1007/s10561-022-10039-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).
Collapse
|
35
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
36
|
Salazar-Gómez A, Alonso-Castro AJ. Medicinal Plants from Latin America with Wound Healing Activity: Ethnomedicine, Phytochemistry, Preclinical and Clinical Studies—A Review. Pharmaceuticals (Basel) 2022; 15:ph15091095. [PMID: 36145316 PMCID: PMC9505834 DOI: 10.3390/ph15091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Latin America is a multicultural region with ancient traditional medicine. There is extensive knowledge of the use of medicinal plants for wound healing in this region. Nevertheless, many of these medicinal plants lack pharmacological, toxicological, and chemical studies. This review focuses on the ethnomedicinal, phytochemical, and pharmacological (preclinical and clinical) studies of medicinal plants with wound healing activity, from Latin America. An electronic database search was conducted by consulting scientific articles and books. A total of 305 plant species with wound healing activity were recorded, based on traditional medicine. Most medicinal plants used in wound healing in Latin America are topically administered; their methods of preparation are mainly by water infusion from aerial parts. Only thirty-five percent of medicinal plants used in traditional medicine for wound healing have been experimentally validated for their pharmacological effects, and the wound healing activity of five medicinal plants has been studied in clinical trials. In all, 25 compounds (mostly terpenes and flavonoids) have been isolated from medicinal plants with wound healing activity; therefore, extensive work is necessary for a multidisciplinary approach to evaluate the wound healing effects of medicinal plants in Latin America. The mechanism of action of medicinal plants, their toxicological actions on the skin, and their bioactive compounds, have yet to be investigated. This review on the ethnomedicinal, phytochemical, and pharmacological studies, of medicinal plants from Latin America with wound healing activity, offers promising data for further studies, as well as providing new insights into their possible role in wound care.
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36250, Mexico
- Correspondence: ; Tel.: +52-473-732-0006
| |
Collapse
|
37
|
Hsieh MCW, Wang WT, Lin CY, Kuo YR, Lee SS, Hou MF, Wu YC. Stem Cell-Based Therapeutic Strategies in Diabetic Wound Healing. Biomedicines 2022; 10:biomedicines10092085. [PMID: 36140185 PMCID: PMC9495374 DOI: 10.3390/biomedicines10092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired wound healing and especially the “all-too-common” occurrence of associated diabetic foot ulcers (DFU) are becoming an increasingly urgent and deteriorating healthcare issue, which drastically impact the quality of life and further heighten the risks of infection and amputation in patients with diabetes mellitus. Amongst the multifactorial wound healing determinants, glycemic dysregulation has been identified to be the primary casual factor of poor wound healing. Unfortunately, current therapeutic modalities merely serve as moderate symptomatic relieves but often fail to completely restore the wound site to its pre-injury state and prevent further recurrence. Stem cell-based therapeutics have been employed for its promising potential to address the root of the problem as they not only exhibit the capacity for self-renewal and differentiation towards multiple lineages, but also have been disclosed to participate in mediating variant growth factors and cytokines. Herein we review the current literatures on the therapeutic benefits of using various kinds of stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and adipose-derived stem cells (ASCs) in diabetic wound healing by searching on the PubMed® Database for publications. This study shall serve as an overview of the current body of research with particular focus on autologous ASCs and the laboratory expandable iPSCs in hope of shedding more light on this attractive therapy so as to elevate the efficacy of wound healing that is almost always compromised in diabetic patients.
Collapse
Affiliation(s)
- Meng-Chien Willie Hsieh
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Wei-Ting Wang
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yur-Ren Kuo
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Shin Lee
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Division of Breast Oncology and Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Division of Breast Oncology and Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7675)
| |
Collapse
|
38
|
A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int J Mol Sci 2022; 23:ijms23179573. [PMID: 36076971 PMCID: PMC9455684 DOI: 10.3390/ijms23179573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Wound healing is a recovering process of damaged tissues by replacing dysfunctional injured cellular structures. Natural compounds for wound treatment have been widely used for centuries. Numerous published works provided reviews of natural compounds for wound healing applications, which separated the approaches based on different categories such as characteristics, bioactivities, and modes of action. However, current studies provide reviews of natural compounds that originated from only plants or animals. In this work, we provide a comprehensive review of natural compounds sourced from both plants and animals that target the different bioactivities of healing to promote wound resolution. The compounds were classified into four main groups (i.e., anti-inflammation, anti-oxidant, anti-bacterial, and collagen promotion), mostly studied in current literature from 1992 to 2022. Those compounds are listed in tables for readers to search for their origin, bioactivity, and targeting phases in wound healing. We also reviewed the trend in using natural compounds for wound healing.
Collapse
|
39
|
Tuned Gum ghatti and pectin for green synthesis of novel wound dressing material: Engineering aspects and in vivo study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Angiogenic Potential of Co-Cultured Human Umbilical Vein Endothelial Cells and Adipose Stromal Cells in Customizable 3D Engineered Collagen Sheets. J Funct Biomater 2022; 13:jfb13030107. [PMID: 35997445 PMCID: PMC9397038 DOI: 10.3390/jfb13030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
The wound healing process is much more complex than just the four phases of hemostasis, inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers or ECM molecules using bioprinting can be used to promote the wound healing process, especially for complex 3D tissue lesions like chronic wounds. Here, a 3D-printed mold has been designed to produce customizable collagen type-I sheets containing human umbilical vein endothelial cells (HUVECs) and adipose stromal cells (ASCs) for the first time. In these 3D collagen sheets, the cellular activity leads to a restructuring of the collagen matrix. The upregulation of the growth factors Serpin E1 and TIMP-1 could be demonstrated in the 3D scaffolds with ACSs and HUVECs in co-culture. Both growth factors play a key role in the wound healing process. The capillary-like tube formation of HUVECs treated with supernatant from the collagen sheets revealed the secretion of angiogenic growth factors. Altogether, this demonstrates that collagen type I combined with the co-cultivation of HUVECs and ACSs has the potential to accelerate the process of angiogenesis and, thereby, might promote wound healing.
Collapse
|
41
|
Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang SY, Asmatulu E. Polymeric biomaterials for wound healing applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1998-2050. [PMID: 35695023 DOI: 10.1080/09205063.2022.2088528] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The factors delaying the wound-healing process include obesity, stress, microbial infection, aging, edema, inadequate nutrition, poor oxygenation, diabetes, and implant complications. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including hydrogels, nanofibrous, composite, foam, spongy, bilayered, and trilayered scaffolds. Some recent advances in biomaterials development for healing both chronic and acute wounds are extensively compiled here. In addition, various properties of biomaterials for wound-healing applications and how they affect their performance are reviewed. Based on the recent literature, trilayered constructs appear to be a convincing candidate for the healing of chronic wounds and complete skin regeneration because they mimic the full thickness of skin: epidermis, dermis, and the hypodermis. This type of scaffold provides a dense superficial layer, a bioactive middle layer, and a porous lower layer to aid the wound-healing process. The hydrophilicity of scaffolds aids cell attachment, cell proliferation, and protein adhesion. Other scaffold characteristics such as porosity, biodegradability, mechanical properties, and gas permeability help with cell accommodation, proliferation, migration, differentiation, and the release of bioactive factors.
Collapse
Affiliation(s)
| | - Damilola O Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | | | | | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, KS, USA.,Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Eylem Asmatulu
- Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
| |
Collapse
|
42
|
Munadziroh E, Putri GA, Ristiana V, Agustantina TH, Nirwana I, Razak FA, Surboyo MDC. The Role of Recombinant Secretory Leukocyte Protease Inhibitor to CD163, FGF-2, IL-1 and IL-6 Expression in Skin Wound Healing. Clin Cosmet Investig Dermatol 2022; 15:903-910. [PMID: 35611048 PMCID: PMC9124476 DOI: 10.2147/ccid.s358897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
Background The wound healing process can be optimized through the addition of a biomaterial such as recombinant secretory leukocyte protease inhibitor (rSLPI). The SLPI is a non-glycosylated proteomic material that inhibits protease enzymes and has anti-inflammatory properties, thus accelerating wound healing. This study analyzed the administration of rSLPI doses 0.04 cc and 0.06 cc in skin wound healing on the CD163 expression of macrophages and cytokines such as interleukin 1 (IL-1), interleukin 6 (IL-6) and fibroblast growth factor 2 (FGF-2). Materials and Methods rSLPI produced from Escherichia coli TOP10 as the cloning host, BL21 (DE3) strains as the expression host and pET30a plasmids were used for the expression system construction. The wound was created on Wistar rat dorsal skin, then rSLPI 0.04 cc and 0.06 cc was administered. In the next four days, the back skin was biopsied and stained by immunohistochemistry to analyze the CD163, FGF-2, IL-1 and IL-6 expression. Results The administration of rSLPI increased CD163 and FGF-2 expression dependent on dose (p<0.05). On the other hand, administration of rSLPI decreased IL-1 and IL-6 expression depending on dose (p <0.05). Conclusion The administration of rSLPI is able to accelerate the wound healing process by increasing the CD163 and FGF-2 expression. The cytokines such as IL-1 and IL-6 decreased depending on rSLPI doses.
Collapse
Affiliation(s)
- Elly Munadziroh
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Giovani Anggasta Putri
- Bachelor of Dental Sciences, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Vera Ristiana
- Bachelor of Dental Sciences, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Titien Hary Agustantina
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Intan Nirwana
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Fathilah Abdul Razak
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.,Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | | |
Collapse
|
43
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
44
|
PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing. J Nanobiotechnology 2022; 20:201. [PMID: 35473604 PMCID: PMC9044828 DOI: 10.1186/s12951-022-01390-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/20/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds represent a major challenge to the present healthcare system. In recent decades, many topical therapies have been investigated for the treatment of chronic wounds, including different types of wound dressings, antimicrobial agents, and cell therapy. Platelet-derived growth factor (PDGF) plays an important role in wound healing and has been approved for treatment of wounds related to diabetes mellitus. However, the high cost and short retention time of PDGF protein have limited its wide application. To overcome this challenge, we designed a PDGF-mimicking peptide by connecting PDGF epitope VRKIEIVRKK and self-assembling motif derived from β-amyloid peptide. The resultant peptide can self-assemble into a fibril-rich network and leads to supramolecular hydrogelation with good stability. The hydrophilic epitope can be exposed on the surface of nanofibrils, which might contribute to the binding and activation of PDGF receptors. The forming hydrogel is able to induce the growth and migration of vascular endothelial cells and promote the formation of vascular branches. In the full-thickness skin wounds of healthy mice, after the application of the hydrogel, the density of neovascularization marked by CD31 was greater than that in the control group on Day 3. Larger collagen deposition and a thicker epidermis were observed on Day 12. These results demonstrate that the hydrogel can stimulate collagen deposition and angiogenesis, enhance skin regeneration, and show an excellent therapeutic effect. Taken together, this work not only provides new insight into the design of bioactive peptides but also offers a promising biomaterial for wound healing.
Collapse
|
45
|
Heydari MB, Ghanbari-Movahed Z, Heydari M, Farzaei MH. In vitro study of the mesenchymal stem cells-conditional media role in skin wound healing process: A systematic review. Int Wound J 2022; 19:2210-2223. [PMID: 35412017 DOI: 10.1111/iwj.13796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-conditioned medium (CM) offers a potential opportunity in the skin wound healing treatment. In this systematic review, an overview of the knowledge on this topic has been provided. A multistep search of the PubMed, Scopus and Science Direct database has been performed to identify papers on MSCs-conditional media used in skin wound healing. Eligibility checks were performed based upon predefined selection criteria. Of the 485 articles initially identified, consequently, only 96 articles apparently related to MSC-conditional media were initially assessed for eligibility. Finally, the 32 articles, strictly regarding the in vitro use of MSCs-conditional media in skin wounds, were analysed. The information analysed highlights the efficacy of MSCs-conditional media on skin wound healing in vitro models. The outcome of this review may be used to guide pre-clinical and clinical studies on the role of MSCs-conditional media in skin wound healing.
Collapse
Affiliation(s)
- Mohammad Bagher Heydari
- Specialist General Surgeon, Taleghani Hospital, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Heydari
- Department of Pharmacy Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
46
|
Tissue engineering in dermatology - from lab to market. Tissue Cell 2022; 74:101717. [PMID: 34973574 DOI: 10.1016/j.tice.2021.101717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
Tissue Engineering is a branch of regenerative medical technology which helps replace damaged tissue using appropriate scaffolding, living cells, and growth factors. Using tissue engineering products can be a promising method for treating skin lesions such as wounds and deep burns. The interaction and interconnection of cells within the bio-culture medium or within a three-dimensional scaffold provides the conditions for tissue regeneration and subsequent healing of skin wounds. Tissue engineering in the field of dermatology has evolved over time from a single application of skin cells or biopolymer scaffolds to the use of cell and scaffold combinations for the treatment, repair, and closure of acute and chronic skin wounds. It has evolved. This technology has reached a point where most products are accepted, and the body rejects a small number, which strengthens the tissue engineering market. In this article, we aimed to review and study the market of this field by reviewing various articles on tissue engineering in the field of dermatology. Tissue-engineered skin substitutes are future options for wound healing and tissue regeneration strategies.
Collapse
|
47
|
Sklenarova R, Svrckova M, Hodek P, Ulrichova J, Frankova J. Effect of the natural flavonoids myricetin and dihydromyricetin on the wound healing process in vitro. J Appl Biomed 2021; 19:149-158. [PMID: 34907758 DOI: 10.32725/jab.2021.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2021] [Indexed: 11/05/2022] Open
Abstract
Myricetin (MYR) and dihydromyricetin (DHM) are classified as natural flavonoids. Both substances are known for their anti-inflammatory and antioxidant properties. In this study, an in vitro model of inflammation was demonstrated on monolayers of scratched fibroblasts or keratinocytes exposed to LPS from Pseudomonas aeruginosa for six hours. MYR and DHM were subsequently applied to the cells for 24 hours at sub toxic concentrations (5-15 µM). Inflammatory parameters were analysed in collected cell medium and lysate after the incubation period using the Enzyme-Linked ImmuneSorbent Assay (ELISA) and Western blot. Both flavonoids inhibit the production of pro-inflammatory cytokines (IL-6, IL-8) in LPS-stimulated skin cells as well as the decreased level of MMP-1 in fibroblasts. However, the application of MYR and DHM dose dependently increased the level of MMP-1 in keratinocytes. In our experiments, we focused on the anti-glycation activity of MYR and DHM, where the higher concentration of MYR seems to be more effective.
Collapse
Affiliation(s)
- Renata Sklenarova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| | - Marika Svrckova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| | - Petr Hodek
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Jitka Ulrichova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| | - Jana Frankova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| |
Collapse
|
48
|
Study on the Effect and Mechanism of Antibacterial Adhesive Hydrogel on Wound Healing. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8212518. [PMID: 34887942 PMCID: PMC8651344 DOI: 10.1155/2021/8212518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022]
Abstract
Bleeding and infection can cause significant increases in mortalities. Hydrogel sealants have attracted extensive attention for their ability to control bleeding. In this study, the adjuvant treatment with antibacterial adhesive hydrogel dressings was applied to patients with deep second-degree burns/scalds. The traditional medical dressing was regarded as control adjuvant treatment. The results indicated that the total positive rate of bacteria in wound secretions and the pain during dressing change in patients who used antibacterial adhesive hydrogel dressings were significantly reduced. The number of fibroblasts and new capillaries in the granulation tissue of the wound increased, and the patient's wound healing is accelerated. The overall clinical effectiveness has been significantly improved. It is proven that the antibacterial adhesive hydrogel dressing has a significant effect on wound healing.
Collapse
|
49
|
Fallah N, Rasouli M, Amini MR. The current and advanced therapeutic modalities for wound healing management. J Diabetes Metab Disord 2021; 20:1883-1899. [PMID: 34900831 PMCID: PMC8630293 DOI: 10.1007/s40200-021-00868-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Ever-increasing demands on improving efficiencies of wound healing procedures are a strong driving force for the development of replacement approaches. This review focuses on wound healing management from the point of formation to the point of healing procedures. The most important usual healing modality with key characteristic is explained and their limitations are discussed. Novel interesting approaches are presented with a concentration of the unique features and action mechanisms. Special attention is paid to gas plasma and nanotechnology impact on wound healing management from fundamental processes to beneficial outcomes. Challenges and opportunities for the future trend that combined common protocols and emerging technologies are discussed.
Collapse
Affiliation(s)
- Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Plasma Research and Department of Physics, Kharazmi University, Tehran, Iran
| | - Mohammad Reza Amini
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Yin M, Wu J, Deng M, Wang P, Ji G, Wang M, Zhou C, Blum NT, Zhang W, Shi H, Jia N, Wang X, Huang P. Multifunctional Magnesium Organic Framework-Based Microneedle Patch for Accelerating Diabetic Wound Healing. ACS NANO 2021; 15:17842-17853. [PMID: 34761898 DOI: 10.1021/acsnano.1c06036] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diabetic wound healing is one of the major challenges in the biomedical fields. The conventional single drug treatments have unsatisfactory efficacy, and the drug delivery effectiveness is restricted by the penetration depth. Herein, we develop a magnesium organic framework-based microneedle patch (denoted as MN-MOF-GO-Ag) that can realize transdermal delivery and combination therapy for diabetic wound healing. Multifunctional magnesium organic frameworks (Mg-MOFs) are mixed with poly(γ-glutamic acid) (γ-PGA) hydrogel and loaded into the tips of MN-MOF-GO-Ag, which slowly releases Mg2+ and gallic acid in the deep layer of the dermis. The released Mg2+ induces cell migration and endothelial tubulogenesis, while gallic acid, a reactive oxygen species-scavenger, promotes antioxidation. Besides, the backing layer of MN-MOF-GO-Ag is made of γ-PGA hydrogel and graphene oxide-silver nanocomposites (GO-Ag) which further enables excellent antibacterial effects for accelerating wound healing. The therapeutic effects of MN-MOF-GO-Ag on wound healing are demonstrated with the full-thickness cutaneous wounds of a diabetic mouse model. The significant improvement of wound healing is achieved for mice treated with MN-MOF-GO-Ag.
Collapse
Affiliation(s)
- Mengting Yin
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Mingwu Deng
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chaohui Zhou
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huali Shi
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|