1
|
Kassem NOF, Strongin RM, Stroup AM, Brinkman MC, El-Hellani A, Erythropel HC, Etemadi A, Exil V, Goniewicz ML, Kassem NO, Klupinski TP, Liles S, Muthumalage T, Noël A, Peyton DH, Wang Q, Rahman I, Valerio LG. A Review of the Toxicity of Ingredients in e-Cigarettes, Including Those Ingredients Having the FDA's "Generally Recognized as Safe (GRAS)" Regulatory Status for Use in Food. Nicotine Tob Res 2024; 26:1445-1454. [PMID: 38783714 PMCID: PMC11494494 DOI: 10.1093/ntr/ntae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Some firms and marketers of electronic cigarettes (e-cigarettes; a type of electronic nicotine delivery system (ENDS)) and refill liquids (e-liquids) have made claims about the safety of ingredients used in their products based on the term "GRAS or Generally Recognized As Safe" (GRAS). However, GRAS is a provision within the definition of a food additive under section 201(s) (21 U.S.C. 321(s)) of the U.S. Federal Food Drug and Cosmetic Act (FD&C Act). Food additives and GRAS substances are by the FD&C Act definition intended for use in food, thus safety is based on oral consumption; the term GRAS cannot serve as an indicator of the toxicity of e-cigarette ingredients when aerosolized and inhaled (ie, vaped). There is no legal or scientific support for labeling e-cigarette product ingredients as "GRAS." This review discusses our concerns with the GRAS provision being applied to e-cigarette products and provides examples of chemical compounds that have been used as food ingredients but have been shown to lead to adverse health effects when inhaled. The review provides scientific insight into the toxicological evaluation of e-liquid ingredients and their aerosols to help determine the potential respiratory risks associated with their use in e-cigarettes.
Collapse
Affiliation(s)
- Nada O F Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Andrea M Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD, USA
| | - Marielle C Brinkman
- College of Public Health, The Ohio State University, Columbus, OH, USA
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ahmad El-Hellani
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale Center for the Study of Tobacco Products (YCSTP), Yale School of Medicine, New Haven, CT, USA
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Vernat Exil
- School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Noura O Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Sandy Liles
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Alexandra Noël
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David H Peyton
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Luis G Valerio
- Division of Nonclinical Science (DNCS), Office of Science/Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
2
|
Kassem NOF, Strongin RM, Stroup AM, Brinkman MC, El-Hellani A, Erythropel HC, Etemadi A, Goniewicz ML, Hansen EG, Kassem NO, Li D, Liles S, Noël A, Rezk-Hanna M, Wang Q, Rahman I. Toxicity of waterpipe tobacco smoking: the role of flavors, sweeteners, humectants, and charcoal. Toxicol Sci 2024; 201:159-173. [PMID: 39037923 PMCID: PMC11424890 DOI: 10.1093/toxsci/kfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Waterpipe tobacco (WPT) smoking is a public health concern, particularly among youth and young adults. The global spread of WPT use has surged because the introduction of pre-packaged flavored and sweetened WPT, which is widely marketed as a safer tobacco alternative. Besides flavorants and sugars, WPT additives include humectants, which enhance the moisture and sweetness of WPT, act as solvents for flavors, and impart smoothness to the smoke, thus increasing appeal to users. In the United States, unlike cigarette tobacco flavoring (with the exception of menthol), there is no FDA product standard or policy in place prohibiting sales of flavored WPT. Research has shown that the numerous fruit, candy, and alcohol flavors added to WPT entice individuals to experience those flavors, putting them at an increased risk of exposure to WPT smoke-related toxicants. Additionally, burning charcoal briquettes-used as a heating source for WPT-contributes to the harmful health effects of WPT smoking. This review presents existing evidence on the potential toxicity resulting from humectants, sugars, and flavorants in WPT, and from the charcoal used to heat WPT. The review discusses relevant studies of inhalation toxicity in animal models and of biomarkers of exposure in humans. Current evidence suggests that more data are needed on toxicant emissions in WPT smoke to inform effective tobacco regulation to mitigate the adverse impact of WPT use on human health.
Collapse
Affiliation(s)
- Nada O F Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA 92182, United States
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR 97207-0751, United States
| | - Andrea M Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD 20850, United States
| | - Marielle C Brinkman
- College of Public Health, The Ohio State University, Columbus, OH 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43214, United States
| | - Ahmad El-Hellani
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43214, United States
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, United States
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, United States
- Department of Psychiatry, Yale School of Medicine, Yale Center for the Study of Tobacco Products (YCSTP), New Haven, CT 06511, United States
| | - Arash Etemadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eleanore G Hansen
- Division of Environmental Health Science, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noura O Kassem
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, Obstetrics and Gynecology, Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sandy Liles
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Mary Rezk-Hanna
- School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
3
|
Omaiye E, Luo W, McWhirter KJ, Talbot P. Ultrasonic Cigarettes: Chemicals and Cytotoxicity are Similar to Heated-Coil Pod-Style Electronic Cigarettes. Chem Res Toxicol 2024; 37:1329-1343. [PMID: 39051826 PMCID: PMC11337213 DOI: 10.1021/acs.chemrestox.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants ("Blueberry Ice," "Watermelon Ice," "Green Mint," and "Polar Mint") were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (>1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were <100 based on consumption of 1-2 SURGE u-cigarettes/day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes.
Collapse
Affiliation(s)
- Esther
E. Omaiye
- Department
of Molecular, Cell, and Systems Biology. University of California, Riverside, California 92521, United States
| | - Wentai Luo
- Department
of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97207, United States
| | - Kevin J. McWhirter
- Department
of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97207, United States
| | - Prue Talbot
- Department
of Molecular, Cell, and Systems Biology. University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Munger K, Anreise KM, Jensen RP, Peyton DH, Strongin RM. Mechanistic Rationale for Ketene Formation during Dabbing and Vaping. JACS AU 2024; 4:2403-2410. [PMID: 38938801 PMCID: PMC11200222 DOI: 10.1021/jacsau.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Ketene is one of the most toxic vaping emissions identified to date. However, its high reactivity renders it relatively challenging to identify. In addition, certain theoretical studies have shown that realistic vaping temperature settings may betoo low to produce ketene. Each of these issues is addressed herein. First, an isotopically labeled acetate precursor is used for the identification of ketene with enhanced rigor in vaped aerosols. Second, discrepancies between theoretical and experimental findings are explained by accounting for the effects of aerobic (experimental) versus anaerobic (simulated and theoretical) pyrolysis conditions. This finding is also relevant to explaining the relatively low-temperature production of aerosol toxicants beyond ketene. Moreover, the study presented herein shows that ketene formation during vaping is not limited to molecules possessing a phenyl acetate substructure. This means that ketene emission during vaping, including from popular flavorants such as ethyl acetate, may be more prevalent than is currently known.
Collapse
Affiliation(s)
- Kaelas
R. Munger
- Department
of Chemistry, Portland State University, Portland, Oregon 97217, United States
| | - Killian M. Anreise
- Department
of Chemistry, Portland State University, Portland, Oregon 97217, United States
| | | | - David H. Peyton
- Department
of Chemistry, Portland State University, Portland, Oregon 97217, United States
| | - Robert M. Strongin
- Department
of Chemistry, Portland State University, Portland, Oregon 97217, United States
| |
Collapse
|
5
|
Tran L, Rao G, Robertson NE, Hunsaker HC, Chiu EY, Poulin BA, Madl AK, Pinkerton KE, Britt RD, Nguyen TB. Quantification of Free Radicals from Vaping Electronic Cigarettes Containing Nicotine Salt Solutions with Different Organic Acid Types and Concentrations. Chem Res Toxicol 2024; 37:991-999. [PMID: 38778043 PMCID: PMC11187635 DOI: 10.1021/acs.chemrestox.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA). Furthermore, 2 wt % BA nicotine salts were studied at the following nicotine to acid ratios: 1:2 (pH 4), 1:1 (pH 7), and 2:1 (pH 8), in comparison with freebase nicotine (pH 10). Radical yields were quantified by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of free radicals in the nicotine salt aerosol matched those generated from the Fenton reaction, which are primarily hydroxyl (OH) radicals and other reactive oxygen species (ROS). Although the aerosol mass formation was not significantly different for most of the tested nicotine salts and acid concentrations, notable ROS yields were observed only from BA, CA, and TA under the study conditions. The e-liquids with SLA, LA, LVA, SA, and MA produced less ROS than the 2 wt % freebase nicotine e-liquid, suggesting that organic acids may play dual roles in the production and scavenging of ROS. For BA nicotine salts, it was found that the ROS yield increased with a higher acid concentration (or a lower nicotine to acid ratio). The observation that BA nicotine salts produce the highest ROS yield in aerosol generated from a fourth-generation vape device, which increases with acid concentration, has important implications for ROS-mediated health outcomes that may be relevant to consumers, manufacturers, and regulatory agencies.
Collapse
Affiliation(s)
- Lillian
N. Tran
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Nicholas E. Robertson
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Haylee C. Hunsaker
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Elizabeth Y. Chiu
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Amy K. Madl
- Center
for Health and the Environment, University
of California Davis, Davis, California 95616, United States
| | - Kent E. Pinkerton
- Center
for Health and the Environment, University
of California Davis, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Tran B. Nguyen
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Strongin RM, Sharma E, Erythropel HC, Kassem NOF, Noël A, Peyton DH, Rahman I. Chemical and physiological interactions between e-liquid constituents: cause for concern? Tob Control 2024:tc-2023-058546. [PMID: 38658055 DOI: 10.1136/tc-2023-058546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Studies of Electronic Nicotine Delivery Systems (ENDS) toxicity have largely focused on individual components such as flavour additives, base e-liquid ingredients (propylene glycol, glycerol), device characteristics (eg, model, components, wattage), use behaviour, etc. However, vaping involves inhalation of chemical mixtures and interactions between compounds can occur that can lead to different toxicities than toxicity of the individual components. Methods based on the additive toxicity of individual chemical components to estimate the health risks of complex mixtures can result in the overestimation or underestimation of exposure risks, since interactions between components are under-investigated. In the case of ENDS, the potential of elevated toxicity resulting from chemical reactions and interactions is enhanced due to high operating temperatures and the metallic surface of the heating element. With the recent availability of a wide range of e-liquid constituents and popularity of do-it-yourself creation of e-liquid mixtures, the need to understand chemical and physiological impacts of chemical combinations in ENDS e-liquids and aerosols is immediate. There is a significant current knowledge gap concerning how specific combinations of ENDS chemical ingredients result in synergistic or antagonistic interactions. This commentary aims to review the current understanding of chemical reactions between e-liquid components, interactions between additives, chemical reactions that occur during vaping and aerosol properties and biomolecular interactions, all of which may impact physiological health.
Collapse
Affiliation(s)
| | | | - Hanno C Erythropel
- Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, USA
| | - Nada O F Kassem
- CBEACH, San Diego State University Research Foundation, San Diego, California, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - D H Peyton
- Chemistry, Portland State University, Portland, Oregon, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
7
|
El Hajj Moussa F, Hayeck N, Hajir S, El Hage R, Salman R, Karaoghlanian N, Saliba NA. Enhancement of Benzene Emissions in Special Combinations of Electronic Nicotine Delivery System Liquid Mixtures. Chem Res Toxicol 2024; 37:227-233. [PMID: 38241642 PMCID: PMC10880085 DOI: 10.1021/acs.chemrestox.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Electronic nicotine delivery systems (ENDS) are battery-powered devices introduced to the market as safer alternatives to combustible cigarettes. Upon heating the electronic liquid (e-liquid), aerosols are released, including several toxicants, such as volatile organic compounds (VOCs). Benzene has been given great attention as a major component of the VOCs group as it increases cancer risk upon inhalation. In this study, several basic e-liquids were tested for benzene emissions. The Aerosol Lab Vaping Instrument was used to generate aerosols from ENDS composed of different e-liquid combinations: vegetable glycerin (VG), propylene glycol (PG), nicotine (nic), and benzoic acid (BA). The tested mixtures included PG, PG + nic + BA, VG, VG + nic + BA, 30/70 PG/VG, and 30/70 PG/VG + nic + BA. A carboxen polydimethylsiloxane fiber for a solid-phase microextraction was placed in a gas cell to trap benzene emitted from a Sub-Ohm Minibox C device. Benzene was adsorbed on the fiber during the puffing process and for an extra 15 min until it reached equilibrium, and then it was determined using gas chromatography-mass spectrometry. Benzene was quantified in VG but not in PG or the 30/70 PG/VG mixtures. However, benzene concentration increased in all tested mixtures upon the addition of nicotine benzoate salt. Interestingly, benzene was emitted at the highest concentration when BA was added to PG. However, lower concentrations were found in the 30/70 PG/VG and VG mixtures with BA. Both VG and BA are sources of benzene. Enhanced emissions, however, are mostly noticeable when BA is mixed with PG and not VG.
Collapse
Affiliation(s)
- Fatima El Hajj Moussa
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| | - Nathalie Hayeck
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Department
of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Salwa Hajir
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rachel El Hage
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| | - Rola Salman
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
- Mechanical
Engineering Department, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nareg Karaoghlanian
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
- Mechanical
Engineering Department, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Najat Aoun Saliba
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
8
|
Kim MD, Chung S, Baumlin N, Qian J, Montgomery RN, Sabater J, Berkland C, Salathe M. The combination of propylene glycol and vegetable glycerin e-cigarette aerosols induces airway inflammation and mucus hyperconcentration. Sci Rep 2024; 14:1942. [PMID: 38253598 PMCID: PMC10803801 DOI: 10.1038/s41598-024-52317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Despite concerns over their safety, e-cigarettes (e-cigs) remain a popular tobacco product. Although nicotine and flavors found in e-cig liquids (e-liquids) can cause harm in the airways, whether the delivery vehicles propylene glycol (PG) and vegetable glycerin (VG) are innocuous when inhaled remains unclear. Here, we investigated the effects of e-cig aerosols generated from e-liquid containing only PG/VG on airway inflammation and mucociliary function in primary human bronchial epithelial cells (HBEC) and sheep. Primary HBEC were cultured at the air-liquid interface (ALI) and exposed to e-cig aerosols of 50%/50% v/v PG/VG. Ion channel conductance, ciliary beat frequency, and the expression of inflammatory markers, cell type-specific markers, and the major mucins MUC5AC and MUC5B were evaluated after seven days of exposure. Sheep were exposed to e-cig aerosols of PG/VG for five days and mucus concentration and matrix metalloproteinase-9 (MMP-9) activity were measured from airway secretions. Seven-day exposure of HBEC to e-cig aerosols of PG/VG caused a significant reduction in the activities of apical ion channels important for mucus hydration, including the cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. PG/VG aerosols significantly increased the mRNA expression of the inflammatory markers interleukin-6 (IL6), IL8, and MMP9, as well as MUC5AC. The increase in MUC5AC mRNA expression correlated with increased immunostaining of MUC5AC protein in PG/VG-exposed HBEC. On the other hand, PG/VG aerosols reduced MUC5B expression leading overall to higher MUC5AC/MUC5B ratios in exposed HBEC. Other cell type-specific markers, including forkhead box protein J1 (FOXJ1), keratin 5 (KRT5), and secretoglobin family 1A member 1 (SCGB1A1) mRNAs, as well as overall ciliation, were significantly reduced by PG/VG exposure. Finally, PG/VG aerosols increased MMP-9 activity and caused mucus hyperconcentration in sheep in vivo. E-cig aerosols of PG/VG induce airway inflammation, increase MUC5AC expression, and cause dysfunction of ion channels important for mucus hydration in HBEC in vitro. Furthermore, PG/VG aerosols increase MMP-9 activity and mucus concentration in sheep in vivo. Collectively, these data show that e-cig aerosols containing PG/VG are likely to be harmful in the airways.
Collapse
Affiliation(s)
- Michael D Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel Chung
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jian Qian
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Robert N Montgomery
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, 33140, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Oldham MJ, Jeong L, Gillman IG. An Approach to Flavor Chemical Thermal Degradation Analysis. TOXICS 2023; 12:16. [PMID: 38250972 PMCID: PMC10819574 DOI: 10.3390/toxics12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Toxicological evaluations of flavor chemicals for use in inhalation products that utilize heat for aerosol generation are complicated because of the potential effect heat may have on the flavor chemical. The objective was to develop a thermal degradation technique to screen flavor chemicals as part of a toxicological testing program for their potential use in ENDS formulations. Based upon published data for acetaldehyde, acrolein, and glycidol from ENDS products (common thermal degradants of propylene glycol and glycerin), the pyrolizer temperature was adjusted until a similar ratio of acetaldehyde, acrolein, and glycidol was obtained from a 60/40 ratio (v/v) of glycerin/propylene glycol via GC/MS analysis. For each of 90 flavor chemicals, quantitative measurements of acetaldehyde, acrolein, and glycidol, in addition to semiquantitative non-targeted analysis tentatively identifying chemicals from thermal degradation, were obtained. Twenty flavor chemicals transferred at greater than 99% intact, another 26 transferred at greater than 95% intact, and another 15 flavor chemicals transferred at greater than 90% intact. Most flavor chemicals resulted in fewer than 10-12 tentatively identified thermal degradants. The practical approach to the thermal degradation of flavor chemicals provided useful information as part of the toxicological evaluation of flavor chemicals for potential use in ENDS formulations.
Collapse
|
10
|
Strongin RM, Sharma E, Erythropel HC, El-Hellani A, Kassem NOF, Mikheev VB, Noël A, Peyton DH, Springer ML. Emerging ENDS products and challenges in tobacco control toxicity research. Tob Control 2023; 33:110-115. [PMID: 35715171 PMCID: PMC9758272 DOI: 10.1136/tobaccocontrol-2022-057268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Electronic nicotine delivery systems (ENDS) continue to rapidly evolve. Current products pose unique challenges and opportunities for researchers and regulators. This commentary aims to highlight research gaps, particularly in toxicity research, and provide guidance on priority research questions for the tobacco regulatory community. Disposable flavoured ENDS have become the most popular device class among youth and may contain higher nicotine levels than JUUL devices. They also exhibit enhanced harmful and potentially harmful constituents production, contain elevated levels of synthetic coolants and pose environmental concerns. Synthetic nicotine and flavour capsules are innovations that have recently enabled the circumvention of Food and Drug Administration oversight. Coil-less ENDS offer the promise of delivering fewer toxicants due to the absence of heating coils, but initial studies show that these products exhibit similar toxicological profiles compared with JUULs. Each of these topic areas requires further research to understand and mitigate their impact on human health, especially their risks to young users.
Collapse
Affiliation(s)
| | - Eva Sharma
- Behavioral Health and Health Policy, Westat, Rockville, Maryland, USA
| | - Hanno C Erythropel
- Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, USA
| | - Ahmad El-Hellani
- Center for Tobacco Research and the Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nada O F Kassem
- Division of Health Promotion and Behavioral Science, San Diego State University Research Foundation, San Diego, California, USA
| | - Vladimir B Mikheev
- Battelle Public Health Center for Tobacco Research, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David H Peyton
- Chemistry, Portland State University, Portland, Oregon, USA
| | - Matthew L Springer
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Deng H, Tang S, Yang F, Chen D, Bian Z, Wang Y, Tang G, Lee HK. Recent advances in the analysis of electronic cigarette liquids and aerosols: Sample preparation and chromatographic characterization. J Chromatogr A 2023; 1712:464495. [PMID: 37952386 DOI: 10.1016/j.chroma.2023.464495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Electronic cigarette (e-cigarette) usage has risen dramatically worldwide in recent years. It has been publicized as a safer alternative to the conventional combustible cigarette. This, however, has not yet been supported by robust toxicological research evidence. Analysis of the chemical compositions of e-liquids and generated aerosols is an important step in evaluating the toxicity effects of e-cigarettes. Currently, a broad spectrum of analytical methods have been employed for qualitative and quantitative analysis of chemical compositions of e-cigarette liquids and aerosols. The aim of this article is to review the advances in the chromatographic characterization of chemical composition of the latter in the recent five years. In addition, sample preparation methods for e-liquids and aerosols are surveyed and discussed. A study of the relevant literature indicates that, expectedly, gas chromatography and liquid chromatography with a variety of detection systems, particularly mass spectrometry, have been the main analytical techniques used in this field. Sample preparation procedures primarily include headspace sampling, dilute-and-shoot approach, liquid-liquid extraction and sorbent-based extraction for e-liquids and for aerosols (the latter usually with laboratory-built collection devices). Some challenges of current e-cigarette analytical research, and an overview on prospective work are also presented.
Collapse
Affiliation(s)
- Huimin Deng
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection & Supervision, Kunming 650106, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China.
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Ruth T, Daniel J, König A, Trittler R, Garcia-Käufer M. Inhalation toxicity of thermal transformation products formed from e-cigarette vehicle liquid using an in vitro lung model exposed at the Air-Liquid Interface. Food Chem Toxicol 2023; 182:114157. [PMID: 39377481 DOI: 10.1016/j.fct.2023.114157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 10/09/2024]
Abstract
The increasing use of electronic nicotine delivery systems (ENDS), also known as e-cigarettes, has raised serious public health concerns, particularly regarding certain vaping product additives. The solvent carrier liquid, which consists of a mixture of propylene glycol (PG) and vegetable glycerine (VG), representing the main constituents of e-liquid formulations, have in contrast received little attention in health evaluations due to their apparent harmlessness when ingested; however, they can develop into potential lung hazards when heated, aerosolised and inhaled from ENDS with a user-defined heating profile. To assess the acute toxicity of the respirable aerosol, an effect-based in vitro testing strategy was applied in dependence of the heating power settings in ENDS. Human alveolar epithelial cells (A549) were exposed to vaping aerosol at the air-liquid interface (ALI), flanked by targeted chemical analyses of reactive carbonyl species. An exploratory, semi-automated in vitro exposure system provided evidence of a positive connection between vaporisation temperature and aerosol toxicity. Thermochemical transformation of the solvent leads to the formation of both cytotoxic and genotoxic substances that may disrupt lung homeostasis. Toxicity is therefore not limited to the presence of additives, as most harmful volatiles originate from the solvent itself, ultimately related to the device power output.
Collapse
Affiliation(s)
- T Ruth
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106, Freiburg, Germany
| | - J Daniel
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - A König
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106, Freiburg, Germany
| | - R Trittler
- Department of Pharmacy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - M Garcia-Käufer
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106, Freiburg, Germany.
| |
Collapse
|
13
|
Tran LN, Chiu EY, Hunsaker HC, Wu KC, Poulin BA, Madl AK, Pinkerton KE, Nguyen TB. Carbonyls and Aerosol Mass Generation from Vaping Nicotine Salt Solutions Using Fourth- and Third-Generation E-Cigarette Devices: Effects of Coil Resistance, Coil Age, and Coil Metal Material. Chem Res Toxicol 2023. [PMID: 37698991 PMCID: PMC10583227 DOI: 10.1021/acs.chemrestox.3c00172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 09/14/2023]
Abstract
Aerosol formation and production yields from 11 carbonyls (carbonyl concentration per aerosol mass unit) were investigated (1) from a fourth-generation (4th gen) e-cigarette device at different coil resistances and coil age (0-5000 puffs) using unflavored e-liquid with 2% benzoic acid nicotine salt, (2) between a sub-ohm third-generation (3rd gen) tank mod at 0.12 Ω and a 4th gen pod at 1.2 Ω using e-liquid with nicotine salt, together with nicotine yield, and (3) from 3rd gen coils of different metals (stainless steel, kanthal, nichrome) using e-liquid with freebase nicotine. Coil resistance had an inverse relationship with coil temperature, and coil temperature was directly proportional to aerosol mass formation. Trends in carbonyl yields depended on carbonyl formation mechanisms. Carbonyls produced primarily from thermal degradation chemistry (e.g., formaldehyde, acetaldehyde, acrolein, propionaldehyde) increased per aerosol mass with higher coil resistances, despite lower coil temperature. Carbonyls produced primarily from chemistry initiated by reactive oxygen species (ROS) (e.g., hydroxyacetone, dihydroxyacetone, methylglyoxal, glycolaldehyde, lactaldehyde) showed the opposite trend. Coil age did not alter coil temperature nor aerosol mass formation but had a significant effect on carbonyl formation. Thermal carbonyls were formed optimally at 500 puffs in our study and then declined to a baseline, whereas ROS-derived carbonyls showed a slow rise to a maximum trend with coil aging. The 3rd gen versus 4th gen device comparison mirrored the trends in coil resistance. Nicotine yields per aerosol mass were consistent between 3rd and 4th gen devices. Coil material did not significantly alter aerosol formation nor carbonyl yield when adjusted for wattage. This work shows that sub-ohm coils may not necessarily produce higher carbonyl yields even when they produce more aerosol mass. Furthermore, carbonyl formation is dynamic and not generalizable during the coil's lifetime. Finally, studies that compare data across different e-cigarette devices, coil age, and coil anatomy should account for the aerosol chemistry trends that depend on these parameters.
Collapse
Affiliation(s)
- Lillian N Tran
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Elizabeth Y Chiu
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Haylee C Hunsaker
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Kuan-Chen Wu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Brett A Poulin
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Amy K Madl
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, United States
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
14
|
Maan M, Abuzayeda M, Kaklamanos EG, Jamal M, Dutta M, Moharamzadeh K. Molecular insights into the role of electronic cigarettes in oral carcinogenesis. Crit Rev Toxicol 2023; 53:1-14. [PMID: 37051806 DOI: 10.1080/10408444.2023.2190764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Electronic cigarette (EC) usage or vaping has seen a significant rise in recent years across various parts of the world. They have been publicized as a safe alternative to smoking; however, this is not supported strongly by robust research evidence. Toxicological analysis of EC liquid and aerosol has revealed presence of several toxicants with known carcinogenicity. Oral cavity is the primary site of exposure of both cigarette smoke and EC aerosol. Role of EC in oral cancer is not as well-researched as that of traditional smoking. However, several recent studies have shown that it can lead to a wide range of potentially carcinogenic molecular events in oral cells. This review delineates the oral carcinogenesis potential of ECs at the molecular level, providing a summary of the effects of EC usage on cancer therapy resistance, cancer stem cells (CSCs), immune evasion, and microbiome dysbiosis, all of which may lead to increased tumor malignancy and poorer patient prognosis. This review of literature indicates that ECs may not be as safe as they are perceived to be, however further research is needed to definitively determine their oncogenic potential.
Collapse
Affiliation(s)
- Meenu Maan
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
| | - Moosa Abuzayeda
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
- School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
- School of Dentistry, European University Cyprus, Nicosia, Cyprus
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Kim MD, Chung S, Baumlin N, Sun L, Silswal N, Dennis JS, Yoshida M, Sabater J, Horrigan FT, Salathe M. E-cigarette aerosols of propylene glycol impair BK channel activity and parameters of mucociliary function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L468-L479. [PMID: 36809074 PMCID: PMC10042605 DOI: 10.1152/ajplung.00157.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Propylene glycol (PG) is a common delivery vehicle for nicotine and flavorings in e-cigarette (e-cig) liquids and is largely considered safe for ingestion. However, little is known about its effects as an e-cig aerosol on the airway. Here, we investigated whether pure PG e-cig aerosols in realistic daily amounts impact parameters of mucociliary function and airway inflammation in a large animal model (sheep) in vivo and primary human bronchial epithelial cells (HBECs) in vitro. Five-day exposure of sheep to e-cig aerosols of 100% PG increased mucus concentrations (% mucus solids) of tracheal secretions. PG e-cig aerosols further increased the activity of matrix metalloproteinase-9 (MMP-9) in tracheal secretions. In vitro exposure of HBECs to e-cig aerosols of 100% PG decreased ciliary beating and increased mucus concentrations. PG e-cig aerosols further reduced the activity of large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. We show here for the first time that PG can be metabolized to methylglyoxal (MGO) in airway epithelia. PG e-cig aerosols increased levels of MGO and MGO alone reduced BK activity. Patch-clamp experiments suggest that MGO can disrupt the interaction between the major pore-forming BK subunit human Slo1 (hSlo1) and the gamma regulatory subunit LRRC26. PG exposures also caused a significant increase in mRNA expression levels of MMP9 and interleukin 1 beta (IL1B). Taken together, these data show that PG e-cig aerosols cause mucus hyperconcentration in sheep in vivo and HBECs in vitro, likely by disrupting the function of BK channels important for airway hydration.
Collapse
Affiliation(s)
- Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Samuel Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Frank T Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
16
|
Canchola A, Langmo S, Meletz R, Lum M, Lin YH. External Factors Modulating Vaping-Induced Thermal Degradation of Vitamin E Acetate. Chem Res Toxicol 2023; 36:83-93. [PMID: 36534744 PMCID: PMC9846828 DOI: 10.1021/acs.chemrestox.2c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/23/2022]
Abstract
Despite previous studies indicating the thermal stability of vitamin E acetate (VEA) at low temperatures, VEA has been shown to readily decompose into various degradation products such as alkenes, long-chain alcohols, and carbonyls such as duroquinone (DQ) at vaping temperatures of <200 °C. While most models simulate the thermal decomposition of e-liquids under pyrolysis conditions, numerous factors, including vaping behavior, device construction, and the surrounding environment, may impact the thermal degradation process. In this study, we investigated the role of the presence of molecular oxygen (O2) and transition metals in promoting thermal oxidation of e-liquids, resulting in greater degradation than predicted by pure pyrolysis. Thermal degradation of VEA was performed in inert (N2) and oxidizing atmospheres (clean air) in the absence and presence of Ni-Cr and Cu-Ni alloy nanopowders, metals commonly found in the heating coil and body of e-cigarettes. VEA degradation was analyzed using thermogravimetric analysis (TGA) and gas chromatography/mass spectrometry (GC/MS). While the presence of O2 was found to significantly enhance the degradation of VEA at both high (356 °C) and low (176 °C) temperatures, the addition of Cu-Ni to oxidizing atmospheres was found to greatly enhance VEA degradation, resulting in the formation of numerous degradation products previously identified in VEA vaping emissions. O2 and Cu-Ni nanopowder together were also found to significantly increase the production of OH radicals, which has implications for e-liquid degradation pathways as well as the potential risk of oxidative damage to biological systems in real-world vaping scenarios. Ultimately, the results presented in this study highlight the importance of oxidation pathways in VEA thermal degradation and may aid in the prediction of thermal degradation products from e-liquids.
Collapse
Affiliation(s)
- Alexa Canchola
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Siri Langmo
- Department
of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521, United States
| | - Ruth Meletz
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael Lum
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
17
|
Soulet S, Sussman RA. Critical Review of the Recent Literature on Organic Byproducts in E-Cigarette Aerosol Emissions. TOXICS 2022; 10:714. [PMID: 36548547 PMCID: PMC9787926 DOI: 10.3390/toxics10120714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
We review the literature on laboratory studies quantifying the production of potentially toxic organic byproducts (carbonyls, carbon monoxide, free radicals and some nontargeted compounds) in e-cigarette (EC) aerosol emissions, focusing on the consistency between their experimental design and a realistic usage of the devices, as determined by the power ranges of an optimal regime fulfilling a thermodynamically efficient process of aerosol generation that avoids overheating and "dry puffs". The majority of the reviewed studies failed in various degrees to comply with this consistency criterion or supplied insufficient information to verify it. Consequently, most of the experimental outcomes and risk assessments are either partially or totally unreliable and/or of various degrees of questionable relevance to end users. Studies testing the devices under reasonable approximation to realistic conditions detected levels of all organic byproducts that are either negligible or orders of magnitude lower than in tobacco smoke. Our review reinforces the pressing need to update and improve current laboratory standards by an appropriate selection of testing parameters and the logistical incorporation of end users in the experimental design.
Collapse
Affiliation(s)
| | - Roberto A. Sussman
- Institute of Nuclear Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
18
|
Kerber PJ, Peyton DH. Kinetics of Aldehyde Flavorant-Acetal Formation in E-Liquids with Different E-Cigarette Solvents and Common Additives Studied by 1H NMR Spectroscopy. Chem Res Toxicol 2022; 35:1410-1417. [PMID: 35830545 PMCID: PMC10861150 DOI: 10.1021/acs.chemrestox.2c00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavorants, nicotine, and organic acids are common additives found in the e-liquid carrier solvent, propylene glycol (PG) and/or glycerol (GL), at various concentrations. Some of the most concentrated and prevalent flavorants in e-liquids include trans-cinnamaldehyde, vanillin, and benzaldehyde. Aldehyde flavorants have been shown to react with PG and GL to form flavorant-PG and -GL acetals that have unique toxicity properties in e-liquids before aerosolization. However, there is still much that remains unknown about the effects of different e-cigarette solvents, water, nicotine, and organic acids on the rate of acetalization in e-liquids. We used 1H NMR spectroscopy to determine the first-order initial rate constant, half-life, and % acetal formed at equilibrium for flavorant-acetal formation in simulated e-liquids. Herein, we report that acetalization generally occurs at a faster rate and produces greater yields in e-liquids with higher ratios of GL (relative to PG). trans-Cinnamaldehyde acetals formed the fastest in 100% PG-simulated e-liquids, followed by benzaldehyde and vanillin based on their half-lives and rate constants. The acetal yield was greatest for benzaldehyde in PG e-liquids, followed by trans-cinnamaldehyde and vanillin. Acetalization in PG e-liquids containing aldehyde flavorants was inhibited by water and nicotine but catalyzed by benzoic acid. Flavorant-PG acetal formation was generally delayed in the presence of nicotine, even if benzoic acid was present at 2-, 4-, or 10-fold the nicotine concentration, as compared to the PG e-liquids with 2.5 mg/mL flavorant. Thus, commercial e-liquids with aldehyde flavorants containing a higher GL ratio (relative to PG), little water, no nicotine, nicotine with excess organic acids, or organic acids without nicotine would undergo acetalization the fastest and with the highest yield. Many commercial e-liquids must therefore contain significant amounts of flavorant acetals.
Collapse
Affiliation(s)
- Paul J Kerber
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - David H Peyton
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| |
Collapse
|
19
|
Floyd E, Oni T, Cai C, Rehman B, Hwang J, Watson T. Validation of a High Flow Rate Puff Topography System Designed for Measurement of Sub-Ohm, Third Generation Electronic Nicotine Delivery Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137989. [PMID: 35805644 PMCID: PMC9265855 DOI: 10.3390/ijerph19137989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
There are few known puff topography devices designed solely for gathering electronic cigarette puff topography information, and none made for high-powered sub-ohm devices. Ten replicate Bernoulli flow cells were designed and 3D printed. The relationship between square root of pressure difference and flow rate was determined across 0−70 L/min. One representative flow cell was used to estimate puff volume and flow rate under six simulated puffing regimes (0.710 L, 2.000 L and 3.000 L, at low and high flow rates) to determine the system’s accuracy and utility of using dual pressure sensors for flow measurement. The relationship between flow rate and square root of pressure differential for the ten replicate cells was best fit with a quadratic model (R2 = 0.9991, p < 0.0001). The higher-pressure sensor was accurate at both low and high flow rates for 0.71 L (102% and 111% respectively), 2.00 L (96% and 103% respectively), and 3.00 L (100.1% and 107% respectively) but the lower-pressure sensor provided no utility, underpredicting volume and flow. This puff topography system generates very little resistance to flow, easily fits between user’s atomizer and mouthpiece, and is calibrated to measure flows up to 70 L/min.
Collapse
Affiliation(s)
- Evan Floyd
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.O.); (C.C.); (J.H.); (T.W.)
- Correspondence:
| | - Toluwanimi Oni
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.O.); (C.C.); (J.H.); (T.W.)
| | - Changjie Cai
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.O.); (C.C.); (J.H.); (T.W.)
| | - Bilal Rehman
- University of Oklahoma Health Sciences Center, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA;
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.O.); (C.C.); (J.H.); (T.W.)
| | - Tyler Watson
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.O.); (C.C.); (J.H.); (T.W.)
| |
Collapse
|
20
|
Canchola A, Meletz R, Khandakar RA, Woods M, Lin YH. Temperature dependence of emission product distribution from vaping of vitamin E acetate. PLoS One 2022; 17:e0265365. [PMID: 35324938 PMCID: PMC8947410 DOI: 10.1371/journal.pone.0265365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/26/2022] [Indexed: 01/01/2023] Open
Abstract
Nearly two years after vitamin E acetate (VEA) was identified as the potential cause of the 2019–2020 outbreak of e-cigarette, or vaping product-associated lung injuries (EVALI), the toxicity mechanisms of VEA vaping are still yet to be fully understood. Studies since the outbreak have found that e-liquids such as VEA undergo thermal degradation during the vaping process to produce various degradation products, which may pose a greater risk of toxicity than exposure to unvaped VEA. Additionally, a wide range of customizable parameters–including the model of e-cigarette used, puffing topography, or the applied power/temperature used to generate aerosols–have been found to influence the physical properties and chemical compositions of vaping emissions. However, the impact of heating coil temperature on the chemical composition of VEA vaping emissions has not been fully assessed. In this study, we investigated the emission product distribution of VEA vaping emissions produced at temperatures ranging from 176 to 356°C, corresponding to a variable voltage vape pen set at 3.3 to 4.8V. VEA degradation was found to be greatly enhanced with increasing temperature, resulting in a shift towards the production of lower molecular weight compounds, such as the redox active duroquinone (DQ) and short-chain alkenes. Low temperature vaping of VEA resulted in the production of long-chain molecules, such as phytol, exposure to which has been suggested to induce lung damage in previous studies. Furthermore, differential product distribution was observed in VEA degradation products generated from vaping and from pyrolysis using a tube furnace in the absence of the heating coil at equivalent temperatures, suggesting the presence of external factors such as metals or oxidation that may enhance VEA degradation during vaping. Overall, our findings indicate that vaping behavior may significantly impact the risk of exposure to toxic vaping products and potential for vaping-related health concerns.
Collapse
Affiliation(s)
- Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, United States of America
| | - Ruth Meletz
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Riste Ara Khandakar
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Megan Woods
- Department of Chemistry, University of California, Riverside, CA, United States of America
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, United States of America
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Canchola A, Sabbir Ahmed C, Chen K, Chen JY, Lin YH. Formation of Redox-Active Duroquinone from Vaping of Vitamin E Acetate Contributes to Oxidative Lung Injury. Chem Res Toxicol 2022; 35:254-264. [PMID: 35077135 PMCID: PMC8860880 DOI: 10.1021/acs.chemrestox.1c00309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In late 2019, the outbreak of e-cigarette or vaping-associated lung injuries (EVALIs) in the United States demonstrated to the public the potential health risks of vaping. While studies since the outbreak have identified vitamin E acetate (VEA), a diluent of tetrahydrocannabinol (THC) in vape cartridges, as a potential contributor to lung injuries, the molecular mechanisms through which VEA may cause damage are still unclear. Recent studies have found that the thermal degradation of e-liquids during vaping can result in the formation of products that are more toxic than the parent compounds. In this study, we assessed the role of duroquinone (DQ) in VEA vaping emissions that may act as a mechanism through which VEA vaping causes lung damage. VEA vaping emissions were collected and analyzed for their potential to generate reactive oxygen species (ROS) and induce oxidative stress-associated gene expression in human bronchial epithelial cells (BEAS-2B). Significant ROS generation by VEA vaping emissions was observed in both acellular and cellular systems. Furthermore, exposure to vaping emissions resulted in significant upregulation of NQO1 and HMOX-1 genes in BEAS-2B cells, indicating a strong potential for vaped VEA to cause oxidative damage and acute lung injury; the effects are more profound than exposure to equivalent concentrations of DQ alone. Our findings suggest that there may be synergistic interactions between thermal decomposition products of VEA, highlighting the multifaceted nature of vaping toxicity.
Collapse
Affiliation(s)
- Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - C.M. Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jin Y. Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA,Department of Environmental Sciences, University of California, Riverside, CA, USA,Corresponding Author Ying-Hsuan Lin - Department of Environmental Sciences, University of California, Riverside, California 92521, United States; Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States; Phone: +1-951-827-3785,
| |
Collapse
|
22
|
Abstract
Since the spread of tobacco from the Americas hundreds of years ago, tobacco cigarettes and, more recently, alternative tobacco products have become global products of nicotine addiction. Within the evolving alternative tobacco product space, electronic cigarette (e-cigarette) vaping has surpassed conventional cigarette smoking among adolescents and young adults in the United States and beyond. This review describes the experimental and clinical evidence of e-cigarette toxicity and deleterious health effects. Adverse health effects related to e-cigarette aerosols are influenced by several factors, including e-liquid components, physical device factors, chemical changes related to heating, and health of the e-cigarette user (e.g., asthmatic). Federal, state, and local regulations have attempted to govern e-cigarette flavors, manufacturing, distribution, and availability, particularly to underaged youths. However, the evolving e-cigarette landscape continues to impede timely toxicological studies and hinder progress made toward our understanding of the long-term health consequence of e-cigarettes.
Collapse
Affiliation(s)
- Terry Gordon
- Department of Environmental Medicine, NYU School of Medicine, New York, NY 10010, USA;
| | - Emma Karey
- Department of Environmental Medicine, NYU School of Medicine, New York, NY 10010, USA;
| | - Meghan E Rebuli
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Yael-Natalie H Escobar
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Ilona Jaspers
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Lung Chi Chen
- Department of Environmental Medicine, NYU School of Medicine, New York, NY 10010, USA;
| |
Collapse
|
23
|
Manigrasso M, Protano C, Vitali M, Avino P. Passive Vaping from Sub-Ohm Electronic Cigarette Devices. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111606. [PMID: 34770123 PMCID: PMC8583564 DOI: 10.3390/ijerph182111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
To investigate passive vaping due to sub-ohm electronic cigarettes (e-cigs), aerosol number size distribution measurements (6 nm–10 µm) were performed during volunteer-vaping sessions. E-liquids, with vegetable glycerin (VG) and propylene glycol (PG), with a VG/PG ratio of 50/50 (with nicotine) and 80/20 (without nicotine), were vaped with a double-coil, single aerosol exit hole at 25–80 W electric power, corresponding to 130–365 kW m−2 heat fluxes and with an octa-coil, four aerosol exit holes atomizers, at 50–150 W electric power, corresponding to 133–398 kW m−2 heat fluxes. At the lowest heat flux, lower particle number concentrations (NTot) were observed for the nicotine-liquid than for the nicotine-free liquid, also due to its higher content of PG, more volatile than VG. For the octa-coil atomizer, at 265 and 398 kW m−2, NTot decreased below the first-generation e-cig, whereas volume concentrations greatly increased, due to the formation of super micron droplets. Higher volume concentrations were observed for the 80/20 VG/PG liquid, because of VG vaporization and of its decomposition products, greater than for PG. For the double coil atomizer, increasing the electric power from 40 W (208 kW m−2) to 80 W (365 kW m−2) possibly led to a critical heat flow condition, causing a reduction of the number concentrations for the VG/PG 50/50 liquid, an increase for the 80/20 VG/PG liquid and a decrease of the volume concentrations for both of them. Coherently, the main mode was at about 0.1 µm on both metrics for both liquids. For the other tests, two main modes (1 and 2 µm) were observed in the volume size distributions, the latter becoming wider at 100 and 150 W (265 and 398 kW m−2), suggesting the increased emission of light condensable decomposition products. The lower aerosol emissions observed at 150 W than at 100 W suggest the formation of gas-phase decomposition products. The observation of low-count high-volume aerosols addresses the relevance of the volume metric upon measuring the second-hand concentration of the aerosols released by sub-ohm e-cigarettes.
Collapse
Affiliation(s)
- Maurizio Manigrasso
- Department of Technological Innovations, National Institute for Insurance against Accidents at Work (INAIL), 00187 Rome, Italy
- Correspondence: (M.M.); (C.P.)
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (C.P.)
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
24
|
Kerber PJ, Duell AK, Peyton DH. Ratio of Propylene Glycol to Glycerol in E-Cigarette Reservoirs Is Unchanged by Vaping As Determined by 1H NMR Spectroscopy. Chem Res Toxicol 2021; 34:1846-1849. [PMID: 34347480 PMCID: PMC10857734 DOI: 10.1021/acs.chemrestox.1c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
E-cigarette liquids (e-liquids) contain propylene glycol (PG) and/or glycerol (GL) to deliver flavorants/nicotine. It has recently been suggested that the PG:GL ratio in e-cigarette reservoirs changes during vaping, leaving almost entirely GL after aerosolizing much of a 30:70 PG:GL mixture. To evaluate this directly, we analyzed e-liquids from e-cigarettes before and after aerosolization using 4 different coils, and aerosol samples generated using high and low e-liquid levels. The PG:GL ratios of initial and final e-liquids and aerosol samples were comparable. This is important because a large change in e-liquid composition could substantially alter the aerosol profile during a vaping session.
Collapse
Affiliation(s)
- Paul J Kerber
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Anna K Duell
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - David H Peyton
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| |
Collapse
|
25
|
Jaegers NR, Hu W, Weber TJ, Hu JZ. Low-temperature (< 200 °C) degradation of electronic nicotine delivery system liquids generates toxic aldehydes. Sci Rep 2021; 11:7800. [PMID: 33833273 PMCID: PMC8032854 DOI: 10.1038/s41598-021-87044-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Electronic cigarette usage has spiked in popularity over recent years. The enhanced prevalence has consequently resulted in new health concerns associated with the use of these devices. Degradation of the liquids used in vaping have been identified as a concern due to the presence of toxic compounds such as aldehydes in the aerosols. Typically, such thermochemical conversions are reported to occur between 300 and 400 °C. Herein, the low-temperature thermal degradation of propylene glycol and glycerol constituents of e-cigarette vapors are explored for the first time by natural abundance 13C NMR and 1H NMR, enabling in situ detection of intact molecules from decomposition. The results demonstrate that the degradation of electronic nicotine delivery system (ENDS) liquids is strongly reliant upon the oxygen availability, both in the presence and absence of a material surface. When oxygen is available, propylene glycol and glycerol readily decompose at temperatures between 133 and 175 °C over an extended time period. Among the generated chemical species, formic and acrylic acids are observed which can negatively affect the kidneys and lungs of those who inhale the toxin during ENDS vapor inhalation. Further, the formation of hemi- and formal acetals is noted from both glycerol and propylene glycol, signifying the generation of both formaldehyde and acetaldehyde, highly toxic compounds, which, as a biocide, can lead to numerous health ailments. The results also reveal a retardation in decomposition rate when material surfaces are prevalent with no directly observed unique surface spectator or intermediate species as well as potentially slower conversions in mixtures of the two components. The generation of toxic species in ENDS liquids at low temperatures highlights the dangers of low-temperature ENDS use.
Collapse
Affiliation(s)
| | - Wenda Hu
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Thomas J Weber
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jian Zhi Hu
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
26
|
Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. Pharmacol Ther 2021; 224:107838. [PMID: 33746051 DOI: 10.1016/j.pharmthera.2021.107838] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Electronic cigarettes (e-cigarettes) were introduced in the United States in 2007 and by 2014 they were the most popular tobacco product amongst youth and had overtaken use of regular tobacco cigarettes. E-cigarettes are used to aerosolize a liquid (e-liquid) that the user inhales. Flavorings in e-liquids is a primary reason for youth to initiate use of e-cigarettes. Evidence is growing in the scientific literature that inhalation of some flavorings is not without risk of harm. In this review, 67 original articles (primarily cellular in vitro) on the toxicity of flavored e-liquids were identified in the PubMed and Scopus databases and evaluated critically. At least 65 individual flavoring ingredients in e-liquids or aerosols from e-cigarettes induced toxicity in the respiratory tract, cardiovascular and circulatory systems, skeletal system, and skin. Cinnamaldehyde was most frequently reported to be cytotoxic, followed by vanillin, menthol, ethyl maltol, ethyl vanillin, benzaldehyde and linalool. Additionally, modern e-cigarettes can be modified to aerosolize cannabis as dried plant material or a concentrated extract. The U.S. experienced an outbreak of lung injuries, termed e-cigarette, or vaping, product use-associated lung injury (EVALI) that began in 2019; among 2,022 hospitalized patients who had data on substance use (as of January 14, 2020), 82% reported using a delta-9-tetrahydrocannabinol (main psychoactive component in cannabis) containing e-cigarette, or vaping, product. Our literature search identified 33 articles related to EVALI. Vitamin E acetate, a diluent and thickening agent in cannabis-based products, was strongly linked to the EVALI outbreak in epidemiologic and laboratory studies; however, e-liquid chemistry is highly complex, and more than one mechanism of lung injury, ingredient, or thermal breakdown product may be responsible for toxicity. More research is needed, particularly with regard to e-cigarettes (generation, power settings, etc.), e-liquids (composition, bulk or vaped form), modeled systems (cell type, culture type, and dosimetry metrics), biological monitoring, secondhand exposures and contact with residues that contain nicotine and flavorings, and causative agents and mechanisms of EVALI toxicity.
Collapse
|
27
|
Azimi P, Keshavarz Z, Lahaie Luna M, Cedeno Laurent JG, Vallarino J, Christiani DC, Allen JG. An Unrecognized Hazard in E-Cigarette Vapor: Preliminary Quantification of Methylglyoxal Formation from Propylene Glycol in E-Cigarettes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E385. [PMID: 33419122 PMCID: PMC7825490 DOI: 10.3390/ijerph18020385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/01/2023]
Abstract
Up to 95% of the liquid volume in an e-cigarette consists of propylene glycol. Previous research has shown that propylene glycol can generate diacetyl and formaldehyde when heated. New research shows that propylene glycol can also generate methylglyoxal, an alpha di-carbonyl compound recently shown to cause epithelial necrosis at even lower concentrations than diacetyl, the flavoring chemical associated with bronchiolitis obliterans ("Popcorn Lung"). We analyzed chemical emissions from 13 JUUL pod flavors. Diacetyl and methylglyoxal was detected in 100% of samples with median concentration (range) of 20 µg/m3 (less than limit of quantification: 54 µg/m3) and 4219 µg/m3 (677-15,342 µg/m3), respectively. We also detected acetaldehyde (median concentration: 341 µg/m3) and propionaldehyde (median concentration: 87 µg/m3) in all samples. The recent evidence that methylglyoxal is more cytotoxic to airway epithelial cells than diacetyl makes this an urgent public health concern. Current smokers considering e-cigarettes as a smoking cessation tool, and never users, who may be under the impression that e-cigarettes are harmless, need information on emissions and potential risks to make informed decisions.
Collapse
Affiliation(s)
- Parham Azimi
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Zahra Keshavarz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Marianne Lahaie Luna
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
- Occupational & Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Jose Guillermo Cedeno Laurent
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Jose Vallarino
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - David C. Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (P.A.); (Z.K.); (M.L.L.); (J.G.C.L.); (J.V.); (D.C.C.)
| |
Collapse
|
28
|
Salam S, Saliba NA, Shihadeh A, Eissenberg T, El-Hellani A. Flavor-Toxicant Correlation in E-cigarettes: A Meta-Analysis. Chem Res Toxicol 2020; 33:2932-2938. [PMID: 33185445 PMCID: PMC7759004 DOI: 10.1021/acs.chemrestox.0c00247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/30/2022]
Abstract
Flavors in electronic cigarette (ECIG) liquids may increase ECIG aerosol toxicity via intact distillation or chemical transformation. For this report, we performed a meta-analysis of the literature to categorize the compounds found in flavored ECIG liquids into a few chemical classes and to predict their possible chemical transformations upon ECIG liquid aerosolization. This analysis allowed us to propose specific correlations between flavoring chemicals and aerosol toxicants. A literature search was conducted in November 2019 using PubMed. Keywords included terms related to ECIGs and flavors. Studies were included if they reported chemical ingredients of flavored liquids and clearly stated the commercial names of these liquids. The obtained data were visualized on a network diagram to show the common chemical compounds identified in flavored ECIG liquids and categorize them into different chemical classes. The systematic literature review included a total of 11 articles. Analysis of the data reported gave a total of 189 flavored liquids and 173 distinct chemical compounds that were categorized into 22 chemical classes according to their functional groups. The subsequent prediction of chemical transformations of these functional groups highlighted the possible correlation of flavor compounds to aerosol toxicants.
Collapse
Affiliation(s)
- Sally Salam
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Najat Aoun Saliba
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| | - Alan Shihadeh
- Department
of Mechanical Engineering, Maroun Semaan Faculty of Engineering and
Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| | - Thomas Eissenberg
- Department
of Psychology, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| | - Ahmad El-Hellani
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center
for the Study of Tobacco Products, Virginia
Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
29
|
Cunningham A, McAdam K, Thissen J, Digard H. The Evolving E-cigarette: Comparative Chemical Analyses of E-cigarette Vapor and Cigarette Smoke. FRONTIERS IN TOXICOLOGY 2020; 2:586674. [PMID: 35296117 PMCID: PMC8915913 DOI: 10.3389/ftox.2020.586674] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background: E-cigarette designs, materials, and ingredients are continually evolving, with cotton wicks and diverse coil materials emerging as the popular components of atomisers. Another recent development is the use of nicotine salts in e-liquids to replicate the form of nicotine found in cigarette smoke, which may help cigarette smokers to transition to e-cigarettes. However, scientific understanding of the impact of such innovations on e-cigarette aerosol chemistry is limited. Methods: To address these knowledge gaps, we have conducted a comparative study analyzing relevant toxicant emissions from five e-cigarettes varying in wick, atomiser coil, and benzoic acid content and two tobacco cigarettes, quantifying 97 aerosol constituents and 84 smoke compounds, respectively. Our focus was the potential for benzoic acid in e-liquids and cotton wicks to form aerosol toxicants through thermal degradation reactions, and the potential for nickel-iron alloy coils to catalyze degradation of aerosol formers. In addition, we analyzed e-cigarette emissions for 19 flavor compounds, thermal decomposition products, and e-liquid contaminants that the FDA has recently proposed adding to the established list of Harmful and Potentially Harmful Constituents (HPHCs) in tobacco products. Results: Analyses for benzene and phenol showed no evidence of the thermal decomposition of benzoic acid in the e-cigarettes tested. Measurements of cotton decomposition products, such as carbonyls, hydrocarbons, aromatics, and PAHs, further indicated that cotton wicks can be used without thermal degradation in suitable e-cigarette designs. No evidence was found for enhanced thermal decomposition of propylene glycol or glycerol by the nickel-iron coil. Sixteen of the 19 FDA-proposed compounds were not detected in the e-cigarettes. Comparing toxicant emissions from e-cigarettes and tobacco cigarettes showed that levels of the nine WHO TobReg priority cigarette smoke toxicants were more than 99% lower in the aerosols from each of five e-cigarettes as compared with the commercial and reference cigarettes. Conclusions: Despite continuing evolution in design, components and ingredients, e-cigarettes continue to offer significantly lower toxicant exposure alternatives to cigarette smoking.
Collapse
Affiliation(s)
- Anthony Cunningham
- British American Tobacco (Investments) Limited, Research and Development, Southampton, United Kingdom
| | - Kevin McAdam
- McAdam Scientific Ltd., Eastleigh, United Kingdom
| | - Jesse Thissen
- British American Tobacco (Investments) Limited, Research and Development, Southampton, United Kingdom
| | - Helena Digard
- British American Tobacco (Investments) Limited, Research and Development, Southampton, United Kingdom
| |
Collapse
|
30
|
Ureña JF, Ebersol LA, Silakov A, Elias RJ, Lambert JD. Impact of Atomizer Age and Flavor on In Vitro Toxicity of Aerosols from a Third-Generation Electronic Cigarette against Human Oral Cells. Chem Res Toxicol 2020; 33:2527-2537. [PMID: 32909746 DOI: 10.1021/acs.chemrestox.0c00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronic cigarettes (ECs) are categorized into generations which differ in terms of design, aerosol production, and customizability. Current and former smokers prefer third-generation devices that satisfy tobacco cravings more effectively than older generations. Recent studies indicate that EC aerosols from first- and second-generation devices contain reactive carbonyls and free radicals and can cause in vitro cytotoxicity. Third-generation ECs have not been adequately studied. Further, previous studies have focused on cells from the respiratory tract, whereas those of the oral cavity, which is exposed to high levels of EC aerosols, have been understudied. We quantified the production of reactive carbonyls and free radicals by a third-generation EC and investigated the induction of cytotoxicity and oxidative stress in normal and cancerous human oral cell lines using a panel of eight commercial EC liquids. We found that EC aerosols produced using a new atomizer contained formaldehyde, acetaldehyde, and acrolein, but did not contain detectable levels of free radicals. We found that EC aerosols generated from only one of the eight liquids tested using a new atomizer induced cytotoxicity against two human oral cells in vitro. Treatment of oral cells with the cytotoxic EC aerosol caused a concomitant increase in intracellular oxidative stress. As atomizer age increased with repeated use of the same atomizer, carbonyl production, radical emissions, and cytotoxicity increased. Overall, our results suggest that third-generation ECs may cause adverse effects in the oral cavity and normal EC use, which involves repeated use of the same atomizer to generate aerosol, may enhance the potential toxic effects of third-generation ECs.
Collapse
Affiliation(s)
- José F Ureña
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren A Ebersol
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ryan J Elias
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
31
|
El-Hellani A, El-Hage R, Salman R, Talih S, Zeaiter J, Eissenberg T, Shihadeh A, Saliba NA. Electronic Cigarettes Are Chemical Reactors: Implication to Toxicity. Chem Res Toxicol 2020; 33:2489-2490. [PMID: 33021780 PMCID: PMC9355289 DOI: 10.1021/acs.chemrestox.0c00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmad El-Hellani
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rachel El-Hage
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rola Salman
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Soha Talih
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joseph Zeaiter
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Thomas Eissenberg
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Alan Shihadeh
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Najat Aoun Saliba
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
32
|
Vreeke S, Zhu X, Strongin RM. A simple predictive model for estimating relative e-cigarette toxic carbonyl levels. PLoS One 2020; 15:e0238172. [PMID: 32845911 PMCID: PMC7449472 DOI: 10.1371/journal.pone.0238172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/11/2020] [Indexed: 11/29/2022] Open
Abstract
E-cigarette devices are wide ranging, leading to significant differences in levels of toxic carbonyls in their respective aerosols. Power can be a useful method in predicting relative toxin concentrations within the same device, but does not correlate well to inter-device levels. Herein, we have developed a simple mathematical model utilizing parameters of an e-cigarette’s coil and wick in order to predict relative levels of e-liquid solvent degradation. Model 1, which is coil length/(wick surface area*wraps), performed in the moderate-to-substantial range as a predictive tool (R2 = 0.69). Twelve devices, spanning a range of coil and wick styles, were analyzed. Model 1 was evaluated against twelve alternative models and displayed the best predictability. Relationships that included power settings displayed weak predictability, validating that power levels cannot be reliably compared between devices due to differing wicking and coil components and heat transfer efficiencies.
Collapse
Affiliation(s)
- Shawna Vreeke
- Department of Chemistry, Portland State University, Portland, Oregon, United States of America
| | - Xijing Zhu
- Department of Chemistry, Portland State University, Portland, Oregon, United States of America
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, Oregon, United States of America
| |
Collapse
|
33
|
El-Hage R, El-Hellani A, Salman R, Talih S, Shihadeh A, Saliba NA. Vaped Humectants in E-Cigarettes Are a Source of Phenols. Chem Res Toxicol 2020; 33:2374-2380. [DOI: 10.1021/acs.chemrestox.0c00132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rachel El-Hage
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ahmad El-Hellani
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Rola Salman
- Mechanical Engineering Department, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soha Talih
- Mechanical Engineering Department, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Alan Shihadeh
- Mechanical Engineering Department, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107-2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Najat Aoun Saliba
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
34
|
Talih S, Salman R, Karam E, El-Hourani M, El-Hage R, Karaoghlanian N, El-Hellani A, Saliba N, Shihadeh A. Hot Wires and Film Boiling: Another Look at Carbonyl Formation in Electronic Cigarettes. Chem Res Toxicol 2020; 33:10.1021/acs.chemrestox.0c00196. [PMID: 32635721 PMCID: PMC9355290 DOI: 10.1021/acs.chemrestox.0c00196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electronic cigarettes (ECIGs) are a class of tobacco products that emit a nicotine-containing aerosol by heating and vaporizing a liquid. Apart from initiating nicotine addiction in nonsmokers, a persistent concern about these products is that their emissions often include high levels of carbonyl species, toxicants thought to cause most noncancer pulmonary diseases in smokers. This study examined whether the phenomenon of film boiling can account for observations of high carbonyl emissions under certain operating conditions and, if so, whether film boiling theory can be invoked to predict conditions where high carbonyl emissions are likely. We measured the critical heat flux for several common heating materials and liquids and carbonyl emissions for several ECIG types while varying the power. We found that emissions rise drastically whenever the power exceeds the value corresponding to the critical heat flux. While limiting the heat flux to below this threshold can greatly reduce carbonyl exposure, ECIG manufacturer operating instructions often exceed it. Product regulations that limit heat flux may reduce the public health burden of electronic cigarette use.
Collapse
Affiliation(s)
- Soha Talih
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Rola Salman
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Ebrahim Karam
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Mario El-Hourani
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Rachel El-Hage
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Nareg Karaoghlanian
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Ahmad El-Hellani
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Najat Saliba
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| | - Alan Shihadeh
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut, Lebanon
- Center for the Study of Tobacco Products, Psychology Department, Virginia Commonwealth University, USA
| |
Collapse
|
35
|
Jiang H, Ahmed CMS, Martin TJ, Canchola A, Oswald IWH, Garcia JA, Chen JY, Koby KA, Buchanan AJ, Zhao Z, Zhang H, Chen K, Lin YH. Chemical and Toxicological Characterization of Vaping Emission Products from Commonly Used Vape Juice Diluents. Chem Res Toxicol 2020; 33:2157-2163. [PMID: 32618192 DOI: 10.1021/acs.chemrestox.0c00174] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent reports have linked severe lung injuries and deaths to the use of e-cigarettes and vaping products. Nevertheless, the causal relationship between exposure to vaping emissions and the observed health outcomes remains to be elucidated. Through chemical and toxicological characterization of vaping emission products, this study demonstrates that during vaping processes, changes in chemical composition of several commonly used vape juice diluents (also known as cutting agents) lead to the formation of toxic byproducts, including quinones, carbonyls, esters, and alkyl alcohols. The resulting vaping emission condensates cause inhibited cell proliferation and enhanced cytotoxicity in human airway epithelial cells. Notably, substantial formation of the duroquinone and durohydroquinone redox couple was observed in the vaping emissions from vitamin E acetate, which may be linked to acute oxidative stress and lung injuries reported by previous studies. These findings provide an improved molecular understanding and highlight the significant role of toxic byproducts in vaping-associated health effects.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Thomas J Martin
- Abstrax Tech, 15550 Rockfield Boulevard, Suite B120, Irvine, California 92618, United States
| | - Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Iain W H Oswald
- Abstrax Tech, 15550 Rockfield Boulevard, Suite B120, Irvine, California 92618, United States
| | - Jose Andres Garcia
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Kevin A Koby
- Abstrax Tech, 15550 Rockfield Boulevard, Suite B120, Irvine, California 92618, United States
| | - Anthony J Buchanan
- SepSolve Analytical Ltd., 4 Swan Court, Forder Way, Peterborough, Cambridgeshire, PE7 8GX, United Kingdom
| | - Zixu Zhao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
36
|
Zervas E, Matsouki N, Kyriakopoulos G, Poulopoulos S, Ioannides T, Katsaounou P. Transfer of metals in the liquids of electronic cigarettes. Inhal Toxicol 2020; 32:240-248. [PMID: 32538207 DOI: 10.1080/08958378.2020.1776801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objectives: E-cigarettes are electronic devices containing a liquid that usually consists of a mixture of glycerol, propylene glycol and nicotine, with or without flavorings, in various concentrations. A vapor or aerosol is produced, and inhaled from the user, when this liquid is heated by a heating coil. This work examines the impact of three parameters (e-liquid composition, nicotine content and air flow) on the transfer of metals' from the heating coils to the e-liquids.Materials and methods: A distillation unit was used, where 20ml of an e-liquid were boiled with two commercial heating elements. Four e-liquids: 100% Propylene Glycol, 100% Glycerol, 50/50% Propylene Glycol/Glycerol, 33.3/33.3/33.3% Propylene Glycol/Glycerol/Water, three nicotine contents: 0, 0.4 and 0.8% per volume and three air flows: 0, 0.5 and 1.0 L/min, were used. The liquids were analyzed by Total Reflection X-Ray Fluorescence spectrometry to determine the final content of metals.Results and discussion: Five metals, Fe, Ni, Cu, Zn, and Pb, were found to be transferred from the heating coils to the e-liquids. The transfer of those metals increases with air flow and nicotine concentration, while e-liquid composition also has a significant impact. Glycerol enhances the transfer of metals compared to propylene glycol and their mixtures. The boiling temperature of the e-liquids increases significantly the transfer of metals in the e-liquids.Conclusions: There is a transfer of metals from the heating coils to the e-liquids. This transfer depends on the e-liquid composition and on the boiling temperature.
Collapse
Affiliation(s)
- Efthimios Zervas
- School of Science and Technology, Hellenic Open University, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patra, Greece
| | - Niki Matsouki
- School of Science and Technology, Hellenic Open University, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patra, Greece
| | - Grigorios Kyriakopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Athens, Greece
| | - Stavros Poulopoulos
- Department of Chemical and Materials Engineering Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Theophilos Ioannides
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patra, Greece
| | - Paraskevi Katsaounou
- Department of Critical Care and Pulmonary Services, "Evangelismos" Hospital, Athens Medical School, University of Athens, Athens, Greece
| |
Collapse
|
37
|
Electronic nicotine delivery system design and aerosol toxicants: A systematic review. PLoS One 2020; 15:e0234189. [PMID: 32497139 PMCID: PMC7272070 DOI: 10.1371/journal.pone.0234189] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Electronic nicotine delivery systems (ENDS; e-cigarettes), consisting of a battery, heating element and e-liquid, have evolved significantly with wide variation in design, components, operating powers, and chemical constituents. Generated aerosols have been reported to contain potentially toxic substances. We conducted a systematic review to assess what is known about the presence of toxicants in ENDS aerosols in order to inform how system design could mitigate risk. METHODS Articles reporting on or evaluating design characteristics of ENDS and aerosol constituents were included and summarized. RESULTS The search identified 2,305 articles, of which 92 were included after full-text review. Findings were grouped into 6 major categories of potentially harmful chemicals: carbonyls, volatile organic chemicals, trace elements, reactive oxygen species and free radicals, polycyclic aromatic hydrocarbons, and tobacco-specific nitrosamines. In general, higher concentrations of aerosol toxicants are associated with increased power or voltage. Aerosol toxicants are also associated with e-liquid flavoring agents existing as primary ingredients or as products of thermal degradation. CONCLUSIONS Improved ENDS design can reduce toxicant levels. Additional research is needed to develop a framework for optimizing system characteristics to minimize exposure, especially with respect to heating power and e-liquids. Both manufacturers and regulatory agencies have roles in reducing toxicants and potential health risks from ENDS.
Collapse
|
38
|
Ebersole J, Samburova V, Son Y, Cappelli D, Demopoulos C, Capurro A, Pinto A, Chrzan B, Kingsley K, Howard K, Clark N, Khlystov A. Harmful chemicals emitted from electronic cigarettes and potential deleterious effects in the oral cavity. Tob Induc Dis 2020; 18:41. [PMID: 32435175 PMCID: PMC7233525 DOI: 10.18332/tid/116988] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigs), is increasing across the US population and is particularly troubling due to their adoption by adolescents, teens, and young adults. The industry’s marketing approach for these instruments of addiction has been to promote them as a safer alternative to tobacco, a behavioral choice supporting smoking cessation, and as the ‘cool’ appearance of vaping with flavored products (e.g. tutti frutti, bubble gum, and buttered popcorn etc.). Thus, there is a clear need to better document the health outcomes of e-cig use in the oral cavity of the addicted chronic user. There appears to be an array of environmental toxins in the vapors, including reactive aldehydes and carbonyls resulting from the heating elements action on fluid components, as well as from the composition of chemical flavoring agents. The chemistry of these systems shows that the released vapors from the e-cigs frequently contain levels of environmental toxins that considerably exceed federal occupational exposure limits. Additionally, the toxicants in the vapors appear to be retained in the host fluids/tissues at levels often approximating 90% of the levels in the e-cig vapors. These water-soluble reactive toxins can challenge the oral cavity constituents, potentially contributing to alterations in the autochthonous microbiome and host cells critical for maintaining oral homeostasis. This review updates the existing chemistry/environmental aspects of e-cigs, as well as providing an overview of the somewhat limited data on potential oral health effects that could occur across the lifetime of daily e-cig users.
Collapse
Affiliation(s)
- Jeffrey Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Vera Samburova
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, United States
| | - Yeongkwon Son
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, United States
| | - David Cappelli
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Christina Demopoulos
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Antonina Capurro
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Andres Pinto
- Oral and Maxillofacial Medicine and Diagnostic Sciences, School of Dental Medicine, Case Western University, Cleveland, United States
| | - Brian Chrzan
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Katherine Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Nathaniel Clark
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Andrey Khlystov
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| |
Collapse
|
39
|
Strongin RM. Toxic ketene gas forms on vaping vitamin E acetate prompting interest in its possible role in the EVALI outbreak. Proc Natl Acad Sci U S A 2020; 117:7553-7554. [PMID: 32234786 PMCID: PMC7149441 DOI: 10.1073/pnas.2003384117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR 97207
| |
Collapse
|
40
|
Gillman IG, Pennington AS, Humphries KE, Oldham MJ. Determining the impact of flavored e-liquids on aldehyde production during Vaping. Regul Toxicol Pharmacol 2020; 112:104588. [DOI: 10.1016/j.yrtph.2020.104588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/25/2022]
|
41
|
Nicol J, Fraser R, Walker L, Liu C, Murphy J, Proctor CJ. Comprehensive Chemical Characterization of the Aerosol Emissions of a Vaping Product Based on a New Technology. Chem Res Toxicol 2020; 33:789-799. [PMID: 32122129 PMCID: PMC7308067 DOI: 10.1021/acs.chemrestox.9b00442] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Around 10 million people in the United
States and 3 million people
in the United Kingdom are estimated to use vaping category products.
There are some estimates that there will be 75–80 million vapers
worldwide by 2020. Most of these products are based on coil-and-wick
technology. Because the heating and aerosol formation are separate
processes, the system can lead to dry-wicking and elevated emission
of carbonyls if designed and/or manufactured poorly. Low-nicotine
and low-power coil-and-wick devices have also been linked to increased
exposure to formaldehyde due to compensatory behavior by users. We
characterized the emissions of a vaping product which uses a fabric-free
stainless-steel mesh distiller plate technology that heats and aerosolizes
the e-liquid in a single process. The plate has a microporous structure
for capillary-induced liquid transformation (wicking) and aerosolization
that is optimized to avoid fluid starvation and overheating and improved
control. Compared with emissions previously reported for a coil-and-wick
nicotine vaping product (e-cigarette), most classes of harmful and
potentially harmful constituents (HPHCs) from this vaping product
were below the level of detection or quantification. For those that
were quantifiable, this vaping product generally had lower levels
of emissions than the e-cigarette, including carbonyls. Formaldehyde
and methyl glyoxal levels did not differ significantly between vaping
products. In this system, the single mode of liquid transfer and vapor
formation permits high aerosol mass delivery but further reduces emissions
of HPHCs that may be present in conventional e-cigarette aerosol,
by lessening the risk of thermal breakdown of the aerosol-generating
solvent mixture.
Collapse
Affiliation(s)
- James Nicol
- JTN Consulting Limited, 272 Bath Street, Glasgow, Scotland G2 4JR
| | - Rory Fraser
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | - Liam Walker
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | - Chuan Liu
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | - James Murphy
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | | |
Collapse
|
42
|
Uchiyama S, Noguchi M, Sato A, Ishitsuka M, Inaba Y, Kunugita N. Determination of Thermal Decomposition Products Generated from E-Cigarettes. Chem Res Toxicol 2020; 33:576-583. [DOI: 10.1021/acs.chemrestox.9b00410] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shigehisa Uchiyama
- Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako-shi, Saitama 351-0197, Japan
- Faculty and Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Mayumi Noguchi
- Faculty and Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Ayana Sato
- Faculty and Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Miho Ishitsuka
- Faculty and Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Yohei Inaba
- Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako-shi, Saitama 351-0197, Japan
| | - Naoki Kunugita
- School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan
| |
Collapse
|
43
|
Stephens WE, de Falco B, Fiore A. A Strategy for Efficiently Collecting Aerosol Condensate Using Silica Fibers: Application to Carbonyl Emissions from E-Cigarettes. Chem Res Toxicol 2019; 32:2053-2062. [PMID: 31515993 DOI: 10.1021/acs.chemrestox.9b00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analyzing harmful constituents in e-cigarette aerosols typically involves adopting a methodology used for analyzing tobacco smoke. Cambridge filter pads (CFP) are the basis of numerous protocols for analyzing the various classes of compounds representing 93 harmful and potentially harmful constituents identified in tobacco smoke by the FDA. This paper describes a simplified method for trapping the low volatility components of e-cigarette aerosols using a single trapping procedure followed by physical extraction. The trap is a plug of amorphous silica fibers (0.75 g of 4 μm diameter) within a 10 mL syringe inserted between the e-cigarette mouthpiece and the pump of the vaping machine. The method is evaluated for emissions from three generations of e-cigarette device (Kangertech CE4, EVOD, and Subox Mini-C). On average, the silica wool traps about 94% of the vaporized liquid mass in the three devices and higher levels of condensate is retained before reaching saturation compared with CFP. The condensate is then physically extracted from the silica wool plug using a centrifuge. Condensate is then available for use directly in multiple analytical procedures or toxicological experiments. The method is tested by comparison with published analyses of carbonyls, among the most potent toxicants and carcinogens in e-cigarette emissions. Ranges for HPLC-DAD analyses of carbonyl-DNPH derivatives in a laboratory formulation of e-liquid are formaldehyde (0.182 ± 0.023 to 9.896 ± 0.709 μg puff-1), acetaldehyde (0.059 ± 0.005 to 0.791 ± 0.073 μg puff-1), and propionaldehyde (0.008 ± 0.0001 to 0.033 ± 0.023 μg puff-1); other carbonyls are identified and quantified. Carbonyl concentrations are also consistent with published experiments showing marked increases with variable power settings (10W to 50W). Compared with CFPs, e-cigarette aerosol collection by silica wool requires only one vaping session for multiple analyte groups, traps more condensate per puff, and collects more condensate before saturation.
Collapse
Affiliation(s)
- W Edryd Stephens
- School of Earth & Environmental Sciences , University of St. Andrews , Irvine Building, North Street , St. Andrews , Fife KY16 9AL , Scotland , United Kingdom
| | - Bruna de Falco
- School of Earth & Environmental Sciences , University of St. Andrews , Irvine Building, North Street , St. Andrews , Fife KY16 9AL , Scotland , United Kingdom
- School of Applied Science, Division of Engineering and Food Science , University of Abertay , Bell Street , Dundee DD1 1HG , Scotland , United Kingdom
| | - Alberto Fiore
- School of Applied Science, Division of Engineering and Food Science , University of Abertay , Bell Street , Dundee DD1 1HG , Scotland , United Kingdom
| |
Collapse
|
44
|
Strongin RM. E-Cigarette Chemistry and Analytical Detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:23-39. [PMID: 30848928 PMCID: PMC6565477 DOI: 10.1146/annurev-anchem-061318-115329] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The study of e-cigarette aerosol properties can inform public health while longer-term epidemiological investigations are ongoing. The determination of aerosol levels of known toxins, as well as of molecules with unknown inhalation toxicity profiles, affords specific information for estimating the risks of e-cigarettes and for uncovering areas that should be prioritized for further investigation.
Collapse
Affiliation(s)
- Robert M Strongin
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA;
| |
Collapse
|
45
|
El Hourani M, Talih S, Salman R, Karaoghlanian N, Karam E, El Hage R, Saliba NA, Shihadeh A. Comparison of CO, PAH, Nicotine, and Aldehyde Emissions in Waterpipe Tobacco Smoke Generated Using Electrical and Charcoal Heating Methods. Chem Res Toxicol 2019; 32:1235-1240. [DOI: 10.1021/acs.chemrestox.9b00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mario El Hourani
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Soha Talih
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rola Salman
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nareg Karaoghlanian
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ebrahim Karam
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rachel El Hage
- Chemistry Department, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Najat Aoun Saliba
- Chemistry Department, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alan Shihadeh
- Mechanical Engineering Department, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
46
|
El-Hellani A, Al-Moussawi S, El-Hage R, Talih S, Salman R, Shihadeh A, Saliba NA. Carbon Monoxide and Small Hydrocarbon Emissions from Sub-ohm Electronic Cigarettes. Chem Res Toxicol 2019; 32:312-317. [PMID: 30656934 DOI: 10.1021/acs.chemrestox.8b00324] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronic cigarettes (ECIGs) are routinely advertised as a safer alternative to combustible cigarettes. ECIGs have been shown to emit less toxicants than conventional cigarettes. This study presents for the first time the mouthpiece emissions of carbon monoxide (CO) and small hydrocarbon gases, in addition to carbonyls, from a rebuildable atomizer sub-ohm device (SOD). Because ECIGs do not involve combustion, CO emissions are commonly thought to be a negligible component of ECIG aerosols. CO exposure is a major causative agent of heart disease among smokers. Aerosol generated by vaping a solution of propylene glycol and glycerol was collected in a small chamber. The gas phase was then directed for analysis to a long-path gas cell of a Fourier transform infrared instrument under reduced pressure. The effects of power, ECIG heating coil material, and coil geometry on the generation of small gases were assessed. Results showed that small gases, including CO, carbon dioxide, methane, ethylene, and acetylene, were detected in SOD-emitted gases. Electrical power and material of construction significantly affected the concentrations of the emitted gases. Nickel metal wire was more reactive than kanthal, nichrome, and stainless steel. Depending on use patterns and device operation, users of SOD devices may be exposed daily to similar levels of CO as are cigarette smokers. This finding casts doubt on the validity of CO as a biomarker to distinguish ECIG from tobacco cigarette use and suggests that some subset of ECIG users may be at risk from CO-related heart disease.
Collapse
Affiliation(s)
- Ahmad El-Hellani
- Chemistry Department, Faculty of Arts and Sciences , American University of Beirut , Beirut 1107 2020 , Lebanon.,Center for the Study of Tobacco Products , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Samira Al-Moussawi
- Chemical Engineering Department, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut , Beirut 1107 2020 , Lebanon
| | - Rachel El-Hage
- Chemistry Department, Faculty of Arts and Sciences , American University of Beirut , Beirut 1107 2020 , Lebanon.,Center for the Study of Tobacco Products , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Soha Talih
- Mechanical Engineering Department, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut , Beirut 1107 2020 , Lebanon.,Center for the Study of Tobacco Products , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Rola Salman
- Mechanical Engineering Department, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut , Beirut 1107 2020 , Lebanon.,Center for the Study of Tobacco Products , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Alan Shihadeh
- Mechanical Engineering Department, Maroun Semaan Faculty of Engineering and Architecture American University of Beirut , Beirut 1107 2020 , Lebanon.,Center for the Study of Tobacco Products , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Najat Aoun Saliba
- Chemistry Department, Faculty of Arts and Sciences , American University of Beirut , Beirut 1107 2020 , Lebanon.,Center for the Study of Tobacco Products , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| |
Collapse
|